Biography

I studied physics in Bayreuth and got my PhD there in 2002. After post-doc positions at the Max Planck Institute for the Physics of Complex Systems in Dresden, the University of New South Wales in Sydney and the University of Greifswald, I was a junior professor for computational physics in Greifswald. Since 2009 I’m a tenured researcher at the Max Planck Institute for Mathematics and its head of IT.

my photo

Publications

Most of my publications are on arXiv, for citation counts see Web of Science.

Articles

  1. Weiße, A., & Fehske, H. (1998). Peierls instability and optical response in the one-dimensional half-filled Holstein model of spinless fermions. Phys. Rev. B, 58, 13526–13533. [ DOI | arXiv ]
  2. Weiße, A., Bouzerar, G., & Fehske, H. (1999). A new model to describe the physics of (VO) _2 P _2 O _7 . Eur. Phys. J. B, 7, 5–8. [ DOI | arXiv ]
  3. Weiße, A., Wellein, G., & Fehske, H. (1999). Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain. Phys. Rev. B, 60, 6566–6573. [ DOI | arXiv ]
  4. Ihle, D., Schindelin, C., Weiße, A., & Fehske, H. (1999). Magnetic order-disorder transition in the two-dimensional spatially anisotropic Heisenberg model at zero temperature. Phys. Rev. B, 60, 9240–9243. [ DOI | arXiv ]
  5. Weiße, A., Fehske, H., Wellein, G., & Bishop, A. R. (2000). Optimized phonon approach for the diagonalization of electron-phonon problems. Phys. Rev. B, 62, R747–R750. [ DOI | arXiv ]
  6. Fehske, H., Schindelin, C., Weiße, A., Büttner, H., & Ihle, D. (2000). Quantum to classical crossover in the 2D easy-plane XXZ model. Brazil. Jour. Phys., 30, 720–724. [ PDF ]
  7. Weiße, A., Loos, J., & Fehske, H. (2001). Considerations on the quantum double-exchange Hamiltonian. Phys. Rev. B, 64, 054406. [ DOI | arXiv ] Erratum
  8. Weiße, A., Loos, J., & Fehske, H. (2001). Two-phase scenario for the metal-insulator transition in colossal magnetoresistance manganites. Phys. Rev. B, 64, 104413. [ DOI | arXiv ]
  9. Fehske, H., Wellein, G., Weiße, A., Göhmann, F., Büttner, H., & Bishop, A. R. (2002). Peierls-insulator Mott-insulator transition in 1D. Physica B, 312–313, 562–563. [ DOI | arXiv ]
  10. Weiße, A., & Fehske, H. (2002). Numerical study of quantum percolation. Physica B, 312–313, 721–722. [ DOI | arXiv ]
  11. Weiße, A., & Fehske, H. (2002). Interplay of charge, spin, orbital and lattice correlations in colossal magnetoresistance manganites. Eur. Phys. J. B, 30, 487–494. [ DOI | arXiv ]
  12. Weiße, A., Loos, J., & Fehske, H. (2003). Mixed-phase description of colossal magnetoresistive manganites. Phys. Rev. B, 68, 024402. [ DOI | arXiv ]
  13. Fehske, H., Wellein, G., Hager, G., Weiße, A., & Bishop, A. R. (2004). Quantum lattice dynamical effects on single-particle excitations in one-dimensional Mott and Peierls insulators. Phys. Rev. B, 69, 165115. [ DOI | arXiv ]
  14. Weiße, A., & Fehske, H. (2004). Lattice and superexchange effects in doped CMR manganites. J. Magn. Magn. Mater., 272–276, 92–93. [ DOI | arXiv ]
  15. Weiße, A. (2004). Chebyshev expansion approach to the AC conductivity of the Anderson model. Eur. Phys. J. B, 40, 125–128. [ DOI | arXiv ]
  16. Sirker, J., Weiße, A., & Sushkov, O. P. (2004). Consequences of spin-orbit coupling for the Bose-Einstein condensation of magnons. Europhys. Lett., 68, 275–281. [ DOI | arXiv ]
  17. Weiße, A., & Fehske, H. (2004). Microscopic modelling of doped manganites. New J. Phys., 6, 158. [ DOI | arXiv ]
  18. Schubert, G., Weiße, A., & Fehske, H. (2005). Localisation effects in quantum percolation. Phys. Rev. B, 71, 045126. [ DOI | arXiv ]
  19. Weiße, A., Schubert, G., & Fehske, H. (2005). Optical response of electrons in a random potential. Physica B, 359–361, 786–788. [ DOI | arXiv ]
  20. Fehske, H., Wellein, G., Hager, G., Weiße, A., Becker, K. W., & Bishop, A. R. (2005). Luttinger liquid versus charge density wave behaviour in the one-dimensional spinless fermion Holstein model. Physica B, 359–361, 699–701. [ DOI | arXiv ]
  21. Weiße, A., Fehske, H., & Ihle, D. (2005). Spin-lattice coupling effects in the Holstein double-exchange model. Physica B, 359–361, 702–704. [ DOI | arXiv ]
  22. Alvermann, A., Schubert, G., Weiße, A., Bronold, F. X., & Fehske, H. (2005). Characterisation of Anderson localisation using distributions. Physica B, 359–361, 789–791. [ DOI | arXiv ]
  23. Schubert, G., Weiße, A., & Fehske, H. (2005). Delocalisation transition in chains with correlated disorder. Physica B, 359–361, 801–803. [ DOI | arXiv ]
  24. Sirker, J., Weiße, A., & Sushkov, O. P. (2005). Bose-Einstein condensation of magnons in TlCuCl _3 . Physica B, 359–361, 1318–1320. [ DOI | arXiv ]
  25. Sirker, J., Weiße, A., & Sushkov, O. P. (2005). The field-induced magnetic ordering transition in TlCuCl _3 . J. Phys. Soc. Jpn. (Suppl.), 74, 129–134. [ DOI | arXiv ]
  26. Schubert, G., Wellein, G., Weiße, A., Alvermann, A., & Fehske, H. (2005). Optical absorption and activated transport in polaronic systems. Phys. Rev. B, 72, 104304. [ DOI | arXiv ]
  27. Weiße, A., Wellein, G., Alvermann, A., & Fehske, H. (2006). The kernel polynomial method. Rev. Mod. Phys., 78, 275–306. [ DOI | arXiv ]
  28. Weiße, A., Bursill, R. J., Hamer, C. J., & Weihong, Z. (2006). t-J _z ladder: Density-matrix renormalization group and series expansion calculations of the phase diagram. Phys. Rev. B, 73, 144508. [ DOI | arXiv ]
  29. Weiße, A., Hager, G., Bishop, A. R., & Fehske, H. (2006). Phase diagram of the spin-peierls chain with local coupling: Density-matrix renormalization-group calculations and unitary transformations. Phys. Rev. B, 74, 214426. [ DOI | arXiv ]
  30. Hager, G., Weiße, A., Wellein, G., Jeckelmann, E., & Fehske, H. (2007). The spin-Peierls chain revisited. J. Magn. Magn. Mater., 310, 1380–1382. [ DOI | arXiv ] Erratum
  31. Boos, H. E., Damerau, J., Göhmann, F., Klümper, A., Suzuki, J., & Weiße, A. (2008). Short-distance thermal correlations in the XXZ chain. J. Stat. Mech., P08010. [ DOI | arXiv ]
  32. Weiße, A. (2009). Green-function-based Monte Carlo method for classical fields coupled to fermions. Phys. Rev. Lett., 102, 150604. [ DOI | arXiv ]
  33. Brockmann, M., Göhmann, F., Karbach, M., Klümper, A., & Weiße, A. (2011). Theory of microwave absorption by the spin-1/2 Heisenberg-Ising magnet. Phys. Rev. Lett., 107, 017202. [ DOI | arXiv ]
  34. Brockmann, M., Göhmann, F., Karbach, M., Klümper, A., & Weiße, A. (2012). Absorption of microwaves by the one-dimensional spin- \frac{1}{2} Heisenberg-Ising magnet. Phys. Rev. B, 85, 134438. [ DOI | arXiv ]
  35. Weiße, A. (2013). Divide and conquer the Hilbert space of translation-symmetric spin systems. Phys. Rev. E, 87, 043305. [ DOI | arXiv ]
  36. Borot, G., Eynard, B., & Weiße, A. (2017). Root systems, spectral curves, and analysis of a Chern-Simons matrix model for Seifert fibered spaces. Selecta Math., 23, 915–1025. [ DOI | arXiv ]
  37. Zeisner, J., Brockmann, M., Zimmermann, S., Weiße, A., Thede, M., Ressouche, E., … Göhmann, F. (2017). Anisotropic magnetic interactions and spin dynamics in the spin chain compounds Cu(py) _2 Br _2 : An experimental and theoretical study. Phys. Rev. B, 96, 024429. [ DOI | arXiv ]
  38. Heim, B., Neuhauser, M., & Weiße, A. (2018). Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function. Research in Number Theory, 4(3), 32. [ DOI | arXiv ]
  39. Adam, A., Pohl, A., & Weiße, A. (2018). Zero is a resonance of every Schottky surface. [ arXiv ]
  40. Bandtlow, O., Pohl, A., Schick, T., & Weiße, A. (2021). Numerical resonances for Schottky surfaces via LagrangeChebyshev approximation. Stochastics and Dynamics, 21(3), 2140005. [ DOI | arXiv ]
  41. Göhmann, F., Kleinemühl, R., & Weiße, A. (2021). Fourth-neighbour two-point functions of the XXZ chain and the Fermionic basis approach. J. Phys. A: Math. Theor., 54, 414001. [ DOI | arXiv ]

Contributions to books & proceedings

  1. Fehske, H., Holicki, M., & Weiße, A. (2000). Lattice dynamical effects on the Peierls transition in one-dimensional metals and spin chains. In B. Kramer (Ed.), Advances in solid state physics 40 (pp. 235–250). Wiesbaden: Vieweg. [ DOI | arXiv ]
  2. Fehske, H., Weiße, A., & Wellein, G. (2002). Exact diagonalization results for strongly correlated electron-phonon systems. In H. Rollnik & D. Wolf (Eds.), NIC symposium 2001, proceedings (NIC series, Vol. 9, pp. 259–269). Jülich: John von Neumann Institute for Computing. [ PDF ]
  3. Weiße, A., Wellein, G., & Fehske, H. (2002). Density-matrix algorithm for phonon Hilbert space reduction in the numerical diagonalization of quantum many-body systems. In E. Krause & W. Jäger (Eds.), High performance computing in science and engineering 2001 (pp. 131–144). Heidelberg: Springer-Verlag. [ DOI | arXiv ]
  4. Weiße, A., Wellein, G., & Fehske, H. (2003). Exact diagonalization study of spin, orbital, and lattice correlations in CMR manganites. In E. Krause & W. Jäger (Eds.), High performance computing in science and engineering 2002 (pp. 157–167). Heidelberg: Springer-Verlag. [ DOI | PDF ]
  5. Fehske, H., Wellein, G., Kampf, A. P., Sekania, M., Hager, G., Weiße, A., … Bishop, A. R. (2002). One-dimensional electron-phonon systems: Mott- versus Peierls-insulators. In S. Wagner, W. Hanke, A. Bode, & F. Durst (Eds.), High performance computing in science and engineering, munich 2002 (pp. 339–350). Heidelberg: Springer-Verlag. [ DOI | PDF ]
  6. Schubert, G., Weiße, A., Wellein, G., & Fehske, H. (2005). Comparative numerical study of anderson localization in disordered electron systems. In A. Bode & F. Durst (Eds.), High performance computing in science and engineering, garching 2004 (pp. 237–250). Heidelberg: Springer-Verlag. [ DOI | arXiv ]
  7. Schubert, G., Alvermann, A., Weiße, A., Hager, G., Wellein, G., & Fehske, H. (2006). Spectral properties of strongly correlated electron phonon systems. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC symposium 2006, proceedings (NIC series, Vol. 32, pp. 201–210). Jülich: John von Neumann Institute for Computing. [ PDF ]
  8. Weiße, A., & Fehske, H. (2008). Exact diagonalization techniques. In H. Fehske, R. Schneider, & A. Weiße (Eds.), Computational many-particle physics (Lecture notes in physics, Vol. 739, pp. 529–544). Heidelberg: Springer. [ DOI ]
  9. Weiße, A., & Fehske, H. (2008). Chebyshev expansion techniques. In H. Fehske, R. Schneider, & A. Weiße (Eds.), Computational many-particle physics (Lecture notes in physics, Vol. 739, pp. 545–577). Heidelberg: Springer. [ DOI ]

Books edited

  1. Fehske, H., Schneider, R., & Weiße, A. (Eds.). (2008). Computational many-particle physics (Lecture notes in physics, Vol. 739). Heidelberg: Springer. [ DOI ]
  2. Oberreuter, A., Vollmar, S., & Weiße, A. (Eds.). (2011). 27. DV-Treffen der Max-Planck-Institute (GWDG-Berichte, Vol. 77). Göttingen: Gesellschaft für wissenschaftliche Datenverarbeitung. [ PDF ]

Qualification theses

  1. Weiße, A. (1998). Peierls-Instabilität und niederenergetische Anregungen in ein- und zwei-dimensionalen Elektron- und Spinsystemen (Diplomarbeit). Universität Bayreuth. [ PDF ]
  2. Weiße, A. (2002). Theoretische Untersuchung magnetoresistiver Manganate – Modelle und Methoden (Dissertation). Universität Bayreuth; Mensch und Buch Verlag Berlin. [ PDF ]

Projects

My research interests changed a bit over the years. I graduated in condensed matter physics, turned to mathematical physics, in particular, integrable systems, and now occasionally work on pure math problems. The common theme of all my projects is that I like to solve problems with a computer, using both, numerical simulations and computer algebra.

In my role as head of IT I’m responsible for the planning, management and security of IT systems, and I’m interested in many related topics, including some computer science.

Spin systems

For a few years I’ve been collaborating with the mathematical physics group at Bergische Universität Wuppertal (Hermann Boos, Frank Göhmann and Andreas Klümper) in a long term project on correlation functions of integrable spin models, in particular, the one-dimensional XXZ Heisenberg chain, H = J \sum_{\langle ij\rangle} \Bigl( \sigma_{i}^x \sigma_j^x + \sigma_{i}^y \sigma_j^y + \Delta \sigma_{i}^z \sigma_j^z \Bigr) + h\sum_j \sigma_j^z\,.

This model is exactly solvable by Bethe ansatz, i.e., the structure of its eigenfunctions is known for quite some time. However, calculating correlation functions is a challenging task and an active field of research. It requires tools from representation theory (quantum groups) and analysis (non-linear integral equations).

Disorder

I repeatedly worked on problems involving disorder or randomness. In condensed matter physics I studied disordered electron systems and localization, and I used and developed Monte Carlo methods. Some of this know-how became useful recently, when I did numerical simulations of random matrix models in a joint project with Gaëtan Borot.

Programming

The condensed matter problems I initially worked on required efficient tools for large, sparse matrices, namely eigenvalue solvers and Chebyshev expansion methods, which I implemented on parallel high-performance computers. The exactly solvable spin systems, on the other hand, present an interesting mix of large scale computer algebra, the solving of non-linear integral equations and high-precision numerics. Most of the performance critial code I write in good old C or in Form, but I also enjoy learning new languages like Go or Julia.

Teaching

Here’s an archive of lectures and courses I gave or contributed to:

Contact

Phone: +49-228-402236
Fax: +49-228-402277
Mail: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Email: weisse @ mpim-bonn . mpg . de