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Abstract. To understand the interplay of spin, orbital and lattice degrees of free-
dom in colossal magneto-resistance manganites we numerically diagonalize an SU(2)
symmetric spin-orbital model coupled to dynamic Jahn-Teller and Holstein-type
phonons. For a four site cluster we demonstrate how the coupling to the lattice
changes the order of spins, orbitals and charges, and the correlations between them.

1 Introduction

The transition from a metallic ferromagnetic low-temperature phase to an in-
sulating paramagnetic high-temperature phase observed in some hole-doped
manganese oxides (e.g. in La1−x[Sr, Ca]xMnO3) is associated with an un-
usual dramatic change in their electronic and magnetic properties, including
a spectacularly large negative magneto-resistive response to an applied mag-
netic field, which might have important technological applications [1].

Apart from this so-called colossal magneto-resistance (CMR) transition
hole-doped manganites exhibit a very complex and fascinating phase diagram
(see Fig. 1). As a result of the subtle interplay of almost all degrees of freedom
known in solid state physics different crystal structures and magnetic, charge
and orbital ordered states are observed experimentally in dependence on tem-
perature and doping level. Although such a striking behaviour has stimulated
a considerable amount of both experimental and theoretical work [2] in the
last decades, much of the basic physics of the CMR still remains controversial.

At present, there has been a renewed interest in simplified model Hamilto-
nians, capable of describing both the electronic structure of CMR manganites
as well as the many-body correlations due to the interaction of charge, spin,
orbital, and lattice degrees of freedom. Computational techniques then pro-
vide a useful tool to analyze the properties of these microscopic Hamiltonians,
at least, in the difficult regime, where the correlations are strong and all in-
teractions have to be treated on an equal footing. Within our HLRS project,
reported on in this paper, we went a step in this direction by exactly diag-
onalizing a rather general low-energy model for the CMR manganites on a
small cluster.
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Fig. 1. Phase diagram of La1−xSrxMnO3 taken from Ref. [3]. The crystal
structures (Jahn-Teller distorted orthorhombic: O’, orthorhombic: O, orbital-
ordered orthorhombic: O”, rhombohedral: R, tetragonal: T, monoclinic: Mc,
and hexagonal: H) are indicated as well as the magnetic structures (param-
agnetic: PM (green), short-range order (SR), canted (CA), A-type antifer-
romagnetic structure: AFM (yellow); ferromagnetic: FM (blue), phase sepa-
rated (PS), and AFM C-type structure) and the electronic state (insulating:
I (dark); metallic: M (light)).

2 Theoretical model

The key elements of the electronic structure of the manganites are the par-
tially filled 3d states. The cubic environment of the Mn sites within the
perovskite lattice results in a crystal field splitting of Mn d-orbitals into eg

and t2g (cf. Fig. 2). In the case of zero doping (x = 0) there are four electrons
per Mn site which fill up the three t2g levels and one eg level, and by Hund’s
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Fig. 2. Left: Crystal-field and Jahn-Teller splitting of the five-fold degenerate
atomic Mn 3d levels (half-filled t2g triplets form local spins S = 3/2 inter-
acting ferromagnetically with electrons in single occupied eg levels); right: eg

(θ, ε) and t2g (ξ, η, ζ) orbitals.
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Fig. 3. Left: Along z-direction, electrons can hop only from θ = |3z2 − r2〉
orbitals; transfer processes involving ε = |x2− y2〉 orbitals are forbidden due
to vanishing overlap with the in-between O 2p states. Right: Double-exchange
model: If on-site Coulomb interaction U and Hund’s coupling Jh are strong,
hopping is allowed if the core spins are aligned and vanishes in the case
of antiparallel orientation, i.e., itinerant eg electrons cause a ferromagnetic
interaction of localized t2g spins.

rule coupling (Jh), form a S = 2 spin state. Doping will remove the electron
from the eg level, and by hopping via bridging oxygen sites the resulting holes
acquire mobility.

Due to the specific symmetry of the manganese d and oxygen p orbitals,
the transfer of the eg-electrons shows a pronounced (orbital) anisotropy (see
Fig. 3). In the limit of large on-site Coulomb interaction U and Hund’s rule
coupling Jh the electron transfer is strongly affected by the spin of the core
electrons as well. Concentrating on the link between magnetic correlations
and transport, early studies on lanthanum manganites attributed the low-T
metallic behaviour to Zener’s double-exchange mechanism, which maximizes
the hopping of a strongly Hund’s rule coupled eg-electron in a polarized
background of the Mn t2g-electron spins (see Fig. 3).

Recently it has been realized that physics beyond double-exchange is im-
portant not only to explain the phase diagram of the manganites but also
the CMR transition itself. In particular, orbital and lattice effects seem to
be crucial in explaining the CMR phenomenon. More specifically, the or-
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Fig. 4. Jahn-Teller and breathing-type phonon modes.

bital degeneracy in the ground state of Mn3+ ions connects the system to
the lattice, making it sensible to Jahn-Teller distortion and polaronic effects.
There are two types of lattice distortions which are important in manganites
(see Fig. 4). First the partially filled eg states of the Mn3+ ion are Jahn-
Teller active, i.e., the system can gain energy from a quadrupolar symmetric
elongation of the oxygen octahedra which lifts the eg degeneracy. A second
possible deformation is an isotropic shrinking of a MnO6 octahedron. This
“breathing”-type distortion couples to changes in the eg charge density, i.e.,
is always associated with the presence of an Mn4+ ion. In the heavily doped
material, both, breathing-mode collapsed (Mn4+) and Jahn-Teller distorted
(Mn3+) sites are created simultaneously when the holes are localized in pass-
ing the CMR metal insulator transition.

Restricting the electronic Hilbert space to the large Hund’s rule states
given by the spin-2 orbital doublet state 5E [t32(

4A2)e] for Mn3+ (d4) and the
spin-3

2 orbital singlet state 4A2 [t32] for Mn4+ (d3), within 2nd order pertur-
bation theory the following Hamiltonian results (for details see Ref. [4]):

H = Hdouble-exchange +H2nd order
spin-orbital +Helectron-JT +Helectron-breathing +Hphonon

=
∑

i,δ,α,β

(ai,↑a
†
i+δ,↑ + ai,↓a

†
i+δ,↓) tδαβ c†i,αni,ᾱni+δ,β̄ci+δ,β

+
∑

i,δ,κ,λ

(Jδ
κλ SiSi+δ + ∆δ

κλ) Pκ
i Pλ

i+δ

+g
∑

i

[
(ni,ε − ni,θ)(b

†
i,θ + bi,θ) + (d†i,θdi,ε + d†i,εdi,θ)(b

†
i,ε + bi,ε)

]

+g̃
∑

i

(ni,θ + ni,ε − 2ni,θni,ε)(b
†
i,a1

+ bi,a1
)

+ω
∑

i

[
b†i,θbi,θ + b†i,εbi,ε

]
+ ω̃

∑

i

b†i,a1
bi,a1

. (1)
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The effective low-energy Hamiltonian H contains Schwinger bosons a
(†)
i,µ,

i.e. 2Si = a†i,µσµνai,ν (µ, ν ∈ {↑, ↓}), fermionic holes c
(†)
i,α, phonons b

(†)
i,α

(α ∈ {θ, ε}), and orbital projectors P
κ(λ)
i (κ, λ ∈ {ξ, η, ζ}). In Eq. (1), the first

term, being proportional to t, corresponds to the well known double exchange
interaction [5]. The second term appears to be a bit more involved, since a
rather large number of accessible virtual excitations (proportional to t2 and
t2π) contribute (cf. Fig. 5). However, in all cases it is basically the product of a
Heisenberg-type spin interaction and two orbital projectors. The coupling be-
tween the orbital degree of freedom of the eg electrons and the optical phonon
modes to lowest order in Q is modeled by the E⊗ e Jahn-Teller Hamiltonian
(third term) and a Holstein-type interaction (fourth term). The energy of
the dispersionless optical phonons are given within harmonic approximation
(fifth term). Using a density matrix based optimization procedure [6], we are
able to retain the full quantum dynamic of these phonon modes within our
numerical solution of the model on small clusters.

U − 5Jh

2Jh nJh 2U − nJ h

U + nJ h

U + nJ h U + nJ h

t2g

eg θ,ε

ξ,η,ζ

Fig. 5. Virtual excitations accounted for within 2nd order perturbation the-
ory. The shaded region corresponds to t2-terms, the other terms are propor-
tional to t2π.
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3 Numerical results

3.1 Undoped case

Undoped manganites (LaMnO3, PrMnO3) usually exhibit A-type anti-ferro-
magnetic order and strong Jahn-Teller distortion of the ideal perovskite struc-
ture. The origin of the observed magnetic order has been subject to discus-
sions. While different band structure calculations [7] emphasize the impor-
tance of lattice distortions for the stability of anti-ferromagnetism, Feiner
and Oleś [8] favoured a purely electronic mechanism.

Our calculation points out that both parameters, U/Jh and g, can drive a
ferromagnetic to antiferromagnetic transition. The lower right panel of Fig. 6
shows the phase diagram of the purely electronic model, i.e., g = 0. We as-
sumed t = 0.4 eV and t/tπ = 3 for the hopping integrals and characterized
the magnetic phases according to the total spin of the ground state of the
four site cluster. Starting from the “ferromagnetic” phase both, increasing U
or g change the magnetic order of the ground state to “antiferromagnetism”
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Fig. 6. Upper panels: Total spin Stot (red line) and orbital order (blue line)
of the ground state at variable electron-phonon coupling g and Coulomb in-
teraction U . Lower left panel: Dependence of the spin-orbital correlations on
electron-phonon (U = 6; filled symbols) and Coulomb (g = 0; open sym-
bols) interactions. Lower right panel: phase diagram of the electronic model
without phonons.
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(upper panels). In order to identify the corresponding orbital order we con-
sider the local expectation value 〈nθ − nε〉. In view of the distinct driving
interactions both transitions appear to be very similar. However, we observe a
significant difference, if we study the (de)coupling of spin and orbital degrees
of freedom. The latter has been a rather controversial issue [9] in the case
of the Kugel-Khomskii model [10], which contains the same kind of second
order interactions, as our Hamiltonian, SiSj τ δ

i τ δ
j (here the pseudo-spin oper-

ators τ δ
i operate on the orbital degree of freedom). The lower left-hand panel

indicates that the correlation 〈SiSi+δ τ δ
i τ δ

i+δ〉 − 〈SiSi+δ〉〈τ δ
i τ δ

i+δ〉 is a factor
of 3 − 5 smaller, if phonons are responsible for the FM to AFM transition.
This behaviour is of course crucial for effective theories that are based on
such decoupling schemes.

The change of orbital and phonon correlations is illustrated graphically
in Fig. 7. Note however, that this is a rather suggestive picture. Studying
the eigenstates of the orbital density matrix on a bond 〈ij〉, we can classify
the states according to their behaviour under site exchange. Anti-symmetric
states |a〉ij = 1√

2
(|θ〉i ⊗ |ε〉j − |ε〉i ⊗ |θ〉j) are unique, whereas symmetric

states |s(ϕ,ψ)〉ij = 1
‖.‖ (|ϕ〉i ⊗ |ψ〉j + |ψ〉i ⊗ |ϕ〉j) can be written as a product

of two rotated orbitals |ϕ〉i = cos(ϕ)|θ〉i +sin(ϕ)|ε〉i [4]. Since for small g the
orbital configuration is antisymmetric for each bond, we can not draw the
correct pattern, but choose only an artificial sketch of it.

g↗−→

Fig. 7. Evolution of lattice and orbital correlations with increasing electron-
phonon coupling g at doping x = 0 (schematic view).

3.2 Finite doping

As can be seen from the phase diagram of La1−xSrxMnO3 (Fig. 1), in the
CMR regime (0.15 < x < 0.5), the metallic low-temperature phase is related
to ferromagnetic long-range order stabilized by the double exchange inter-
action. Our numerical calculations for the weakly doped case (x = 1

4 ) cor-
roborate the enhancement of ferromagnetic correlations. However, if strong
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Fig. 8. Upper panels: Total spin Stot and kinetic energy Ekin as a function
of electron-phonon coupling strength g/ω at various doping levels x. Lower
panel: Expectation values 〈qy〉 and 〈q2

y〉− 〈qy〉2 of the bond length in y direc-
tion at x = 1/4 (left) and density-density correlations at x = 1/2.

electron-phonon coupling causes localization of the carriers the spin order
switches to antiferromagnetism. This coincidence is illustrated in Fig. 8 (up-
per panels) showing the total spin of the cluster and the kinetic energy in
the ground state. The change in the magnetic order is accompanied by the
appearance of a lattice distortion and a signature in the fluctuation of the
bond length (∝ 〈q2

x/y〉 − 〈qx/y〉2), which reminds of the data measured close
to the critical temperature by Booth et al. [11] (lower left panel). The orbital
orientation at the sites which surround the hole is sketched in Fig. 9. Obvi-
ously increasing g isolates the lattice sites, each optimizing electron-phonon
interaction individually and uncorrelated with the neighbours.

At doping x = 1
2 the picture is more involved. Strong Coulomb and

electron-phonon interactions tend to order the charges in diagonal direction,
i.e., in an AB-structure (compare Fig. 8, lower right panel). This allows for
a rather large anti-ferromagnetic spin exchange ∝ t2/Jh. Consequently fer-
romagnetic order is unstable at much lower values of g. The ferromagnetic
to antiferromagnetic transition is not connected to charge localization and
causes only a tiny jump of the kinetic energy. Considering the most relevant
eigenstate of the bond orbital density matrix, we observe a symmetric or-
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g↗−→

Fig. 9. Evolution of lattice and orbital correlations with increasing electron-
phonon coupling g at doping x = 1/4.

der of complex orbitals along the diagonal [4]. After charge localization is
achieved at large g, neighbouring sites are again uncorrelated with respect to
orbital ordering and are in some real mixed-orbital state.

4 Performance analysis on supercomputers

Exact diagonalization studies of microscopic electron-phonon models involve
very large sparse matrices, even for small clusters. Since the matrix size acces-
sible for diagonalization determines the quality of our results, both continuous
access to the most powerful supercomputers and steady improvements of al-
gorithms and implementations are the technical basics of our project. Over
the last years Lanczos, Jacobi-Davidson, density-matrix, kernel-polynomial
expansion, and maximum-entropy algorithms have been successfully imple-
mented on numerous architectures including CRAY T3E, NEC SX-4/5, IBM
SP, Fujitsu VPP700 and Hitachi SR8000 supercomputers. The numerical core
of these algorithms is a matrix-vector multiplication (MVM), involving mega-
dimensional matrices. Although the matrices are extremely sparse (≈ 10−50
non-zero entries per row) a memory saving, parallel MVM implementation
has been developed, where the non-zero matrix entries are recomputed in
each MVM step. The parallel MVM is implemented in FORTRAN and uses
the MPI library for data exchange between processors. For CRAY T3E sys-
tems MPI calls have been replaced by calls to CRAY shmem library in selected
performance critical routines. With a total memory requirement of approx-
imately four vectors of matrix-dimension we are able to perform exact di-
agonalization studies up to matrices dimensions of 30 billion on present-day
german supercomputers.
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To demonstrate the scalability of our implementation we consider the
more simplified Holstein Hubbard Hamiltonian

H = −t
∑

i,σ

(c†iσci+1σ +H.c.)+U
∑

i

ni↑ni↓+gω0

∑

i,σ

(b†i + bi)niσ +ω0

∑

i

b†i bi,

(2)
which, nevertheless, can be taken as a generic model for the interaction of
electron and lattice degrees of freedom in solids. Here c†iσ creates a spin-σ elec-
tron at Wannier site i (ni,σ = c†iσciσ), b†i creates a local phonon of frequency
ω, t denotes the hopping integral, U is the on-site Hubbard repulsion, g is
a measure of the electron-phonon coupling strength. The Holstein Hubbard
Hamiltonian allows a scaling of the corresponding matrix size by increas-
ing the number of electrons without changing the principle matrix structure.
Since available memory is the limiting factor in our calculations we have fixed
a matrix dimension of 2 million per processor in the scalability study pre-
sented in Fig. 10. It is well known that the single processor performance of
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Fig. 10. Scaling study with fixed matrix size of 2 million per CRAY T3E
processor. The total performance is depicted as a function of CRAY T3E
processors (Nproc) used in the calculations. For comparison the correspond-
ing performance numbers of the Hitachi SR8000-F1 at LRZ Munich using
one (Nproc=1,8,28), two (Nproc=98) and four (Nproc=196) nodes are given.

sparse MVM algorithms is bounded by the quality of the memory access and
thus a performance of roughly 33 MFlop/s has been measured on one pro-
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cessor. For the parallel runs, however, our implementation benefits from the
high scalability of CRAY T3E systems and we find a parallel speed-up of ap-
proximately 130 on 196 processors, even for complex communication patterns
as used in the benchmarks. Nonetheless about 30 (60) CRAY T3E processors
are required to get the same performance (amount of memory) as one Hi-
tachi SR8000-F1 node at LRZ Munich using a hybrid parallel programming
approach.

The leading edge simulations had to be done on the LRZ system because
of the larger main memory which is not available at the HLRS at present.
However, even the size of the memory in Munich will not be enough for the
problems that we intend to solve in near future. Therefore the installation
of a more powerful system with a large aggregate amount of memory at the
HLRS would be highly desirable.

5 Concluding Remarks

The work presented in this report is an example for the reliability and predic-
tive power of many-body calculations performed on modern supercomputers.
The implementation of the various optimized program packages on the CRAY
T3E at the HLRS Stuttgart provided new and exciting insights into the com-
plex interplay of charge, spin, orbital and lattice degrees of freedom in the
currently most intensive studied novel materials: the quasi-1D metals, spin
chains and charge-density-wave systems, high-Tc cuprates, polaronic nick-
elates and colossal magneto-resistance manganites. For doped CMR man-
ganites we showed explicitely how the electron-phonon interaction effectively
controls spin and orbital order by affecting charge mobility and orbital degrees
of freedom. Our exact diagonalization study of even a small system provides
detailed information about correlations and driving interactions behind the
rich phase diagram of the manganites. This may support the development of
approximate theories.
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