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Summary. We analyze ground state and spectral properties of the one-dimensional
half-filled Holstein Hubbard model with respect to the Peierls-insulator to Mott-
insulator transition, exploiting Lanczos diagonalization, density matrix renormal-
ization, kernel polynomial expansion, and maximum entropy methods on the Hi-
tachi SR8000-F1 supercomputer.

1 Introduction

Quasi-one-dimensional (1D) strongly coupled electron-phonon systems like
MX-chain compounds or conjugated polymers are particularly rewarding to
study for a number of reasons. They exhibit a remarkable wide range of
strengths of competing forces and, as a result, physical properties. These
systems share fundamental features with higher dimensional novel materi-
als, such as high-temperature superconductors, charge-ordered nickelates or
colossal magneto-resistance manganites, i.e., they are complex enough to in-
vestigate the interplay of charge, spin, and lattice degrees of freedom which
is important for strongly correlated electronic systems in two and three di-
mensions as well. Nevertheless they are simple enough to allow for a nearly
microscopic modeling. Thus they are suited modern systems to develop and
test new theoretical methods by bringing together techniques from quantum
chemistry, electronic band structure investigations, and many-body physics.

Two properties of quasi-1D materials are crucial for their unusual elec-
tronic, magnetic and optical properties: first they have broken-symmetry
ground states, and second, in the insulating phases, they have gap states. The
first feature arises, because the itinerancy of the electrons strongly competes
with electron-electron and electron-phonon (EP) interactions, which tend
to localize the charge carriers by establishing spin-density-wave (SDW) and
charge-density-wave (CDW) ground states, respectively. Hence, at half-filling,
Mott (MI) or Peierls (PI) insulating phases are energetically favored over the
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metallic state. An interesting and still controversial question is whether or
not only one quantum critical point separates the PI and MI phases at tem-
perature T = 0 [2]. The second feature, i.e. the existence of gap states, may
be caused by donating electrons to or accepting electrons from the half-filled
host material. Those charged gap states are related to local lattice distortions
(polarons or bipolarons). Another possibility is “photo-doping”, i.e. the cre-
ation of neutral excitations (e.g., excitons). More recently, the existence and
stability of intrinsically localized vibrational modes has been demonstrated
both experimentally and theoretically in clean strong-CDW MX-materials [3].
These multi-phonon bound states occur inside the CDW gap when the ef-
fective lattice potential, dynamically self-generated in the process of carrier
localization, exhibits a significant nonlinearity as a consequence of a non-
adiabatic electron-phonon interaction of intermediate strength.

Significant progress has been made towards understanding the physics
underlying these various effects by numerical investigations of generic model
Hamiltonians. Neglecting in a first step the lattice dynamics, a frequently
used starting point has been the adiabatic Holstein-Hubbard model (AHHM):

HAHHM = Ht−U −
∑

i,σ

∆iniσ +
κ

2

∑

i

∆2
i , (1)

Ht−U = −t
∑

i,σ

(c†iσci+1σ + H.c.) + U
∑

i

ni↑ni↓ . (2)

Here, Ht−U constitutes the conventional Hubbard Hamiltonian with hopping
amplitude t and on-site Coulomb repulsion strength U ; c†iσ creates a spin-σ

electron at Wannier site i and niσ = c†iσciσ . In addition, HAHHM includes
the elastic energy of a harmonic lattice with a “spring constant” κ. Within
this so-called frozen phonon approach, ∆i = (−1)i∆ is a measure of the
static, staggered density modulations of the PI phase. Eq. (1) with κ = 0
and fixed ∆ is known as the ionic Hubbard model (IHM) for which a band
insulator (BI) to MI transition has been established previously [2]. The BI-
MI transition of the IHM on finite lattices was shown to be connected to a
ground state level crossing with a site-parity change, where the site inversion
symmetry operator P is defined by Pc†iσP

† = c†N−iσ with N = 4n [4].
Of course, dynamical phonon effects are known to be particularly impor-

tant in quasi-1D materials, where the lattice zero-point motion is usually
comparable to the Peierls distortion [5]. By any means quantum phonon
effects should be included in a theoretical analysis of transport and opti-
cal properties of electronically 1D compounds. Introducing phonon creation
b†i and destruction operators bi, the general Holstein-Hubbard Hamiltonian

(HHM) takes the form

H = Ht−U − gω0

∑

i,σ

(b†i + bi)niσ + ω0

∑

i

b†i bi , (3)
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where g =
√

εp/ω0 is a dimensionless EP coupling constant and ω0 de-
notes the frequency of the optical phonon mode. The physics of the HHM
is governed by three competing effects: the itinerancy of the electrons, their
Coulomb repulsion and the local EP interaction. There are two dimensionless
energy ratios, U/t and εp/t, which determine the tendency of the itinerant
quantum mechanical system to establish a magnetic or charge ordered state,
respectively. Since the EP coupling is retarded, the phonon frequency ω0 de-
fines a third relevant energy scale of the problem. At U = 0, the ground state
of the pure half-filled Holstein model is a Peierls distorted state with stag-
gered charge order in the adiabatic limit ω0 → 0 for any finite εp. However,
as in the HM of spinless fermions, quantum phonon fluctuations destroy the
Peierls state for small EP interaction strength [6]. Above a critical thresh-
old gc(ω0), the HM describes a PI with equal spin (∆s) and charge (∆c)
excitation gaps – the characteristic feature of a band insulator.

In what follows, exact numerical methods [7] are used to diagonalize the
HHM on finite chains, preserving the full dynamics of the phonons, and the
density matrix renormalization group (DMRG) technique is applied to the
AHHM and IHM.

2 Peierls- to Mott-insulator transition

In order to draw conclusions about the phase diagram in the adiabatic limit,
we plot in Fig. 1 ∆(U, κ) obtained from DMRG on an open chain of length
N = 64, where the value for the stiffness constant is fixed at κ = 0.74. In
contrast to the behavior of the 8-site chain ∆(U, κ) decreases more smoothly
with increasing U and vanishes discontinuously near U/2εp ≈ 0.75. Also
shown in Fig. 1 is the level crossing line ∆cr(U) of the IHM obtained from
finite-size scaling of Lanczos results for rings of up to 14 sites;∆cr(U) remains
finite in the infinite chain length limit. Importantly, ∆(U, κ) and ∆cr(U)
do not intercept because ∆(U, κ) jumps to zero before reaching the level
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Fig. 1. Level crossing
line ∆cr(U) of the IHM
for an 8-site ring (red
triangles) and from
finite-size scaling (black
circles). In addition:
ionic potential strength
∆(U, κ) of the AHHM
for an 8-site ring (green
diamonds) and on an
open 64-site chain (blue
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crossing point of the IHM. The discontinuous nature of the PI-MI transition
in the AHHM is easily verified in the atomic limit t = 0 where ∆ = 1/κ
for U < Uc = 1/κ and ∆ = 0 for U > Uc. The first order nature persists
for finite small t, i.e. in the strong coupling regime U , κ−1 � t. However, as
we have explicitely verified by diagonalization of a periodic AHHM ring of
length N = 14, the transition is second order in the weak coupling regime
U , κ−1 � t. This implies a continuous decrease of ∆(U) and therefore ∆(U)
necessarily intercepts the ∆cr(U) line of the IHM (c.f. Fig. 3). This intercept
marks the point Uopt when the site-parity sectors become degenerate and
the optical absorption gap ∆opt disappears. For weak coupling the PI-MI
transition therefore evolves across two critical points. We summarize these
findings in the phase diagram shown in Fig. 2. In the Peierls BI phase for U <
Uopt the spin and charge excitation gaps are equal and finite, and remarkably
∆opt 6= ∆c [8]. When the site-parity sectors become degenerate at U = Uopt,
∆opt = 0 but ∆c = ∆s > 0. For U ≥ Us the usual MI phase with ∆opt =
∆c > ∆s = 0 is realized. For strong coupling Uopt = Us holds. In weak
coupling there exists an intermediate region Uopt < U < Us in which all
excitation gaps are finite. The CDW persists for all U < Us. The site-parity
eigenvalue is P = +1 in the PI and P = −1 in the MI phase. It is natural
to expect an additional ordering phenomenon in the window Uopt < U < Us.
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A bond order wave (BOW) with a finite expectation value of the staggered

bond charge B = 1
N

∑

iσ(−1)i〈c†iσci+1 σ + H.c.〉 is the natural candidate.
In order to discuss the PI-MI transition at finite phonon frequencies, i.e.

in the non-adiabatic regime, we have calculated the regular part of the optical
conductivity at T = 0,

σreg(ω)=
π

N

∑

m6=0

|〈ψ0|ĵ|ψm〉|2

Em −E0
δ(ω−Em+E0) . (4)

Here |ψ0〉 and |ψm〉 denote the ground state and excited states, respectively,
with corresponding energies E0 and Em. Note that the current operator ĵ =
−iet

∑

iσ(c†iσci+1 σ − c†i+1 σciσ) has finite matrix elements between states of
different site-parity only.
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Fig. 3. Optical conductivity in the 8-site HHM ring for ω0 =0.1t and g2 =7. Top
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0
σreg(ω′) dω′ is a natural

measure for the relative weight of the different optical absorption processes.
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The evolution of the frequency dependence of σreg(ω) from the PI to the
MI phase with increasing U is illustrated in Fig. 3. In the PI regime the elec-
tronic excitations are gapped due to the pronounced CDW correlations. The
broad optical absorption band for U = 0 results from particle-hole excita-
tions across the BI gap which are accompanied by multi-phonon absorption
and emission processes. The shape of the absorption band reflects the phonon
distribution function in the ground state. Excitonic gap states may occur in
the process of structural relaxation. In the MI phase the optical gap is by its
nature a correlation gap. The lower panel in Fig. 3 shows clearly that σ(ω) of
the HHM in the MI phase is dominated by excitations which can be related
to those of the pure Hubbard model. In addition, phononic sidebands appear.
More interesting, we found phonon-induced states with low spectral weight
within the Mott-Hubbard gap. These states can be viewed as a “fingerprint”
of the lower Hubbard band and will be discussed in more details elsewhere [9].
Most notably, in-between the PI and MI phases the optical gap closes at Uopt

and, due to the selection rules for optical transitions, this necessarily implies
a ground state level crossing with a site-parity change. We have explicitly
verified that the ground state site parity in the PI phase is P = +1 and
P = −1 in the MI phase. For the HHM on finite rings Uopt is identical to
the critical point where Sc(π) sharply drops. From our conductivity data we
found evidence for only one critical point in the non-adiabatic region.

This finding is corroborated by the results obtained for the spectral den-
sity of single-particle excitations associated with the injection of a spin-σ
electron with wave number K (inverse photoemission (IPE))

A+
Kσ(ω) =

∑

m

|〈ψ(Nel+1)
m |c†Kσ|ψ

(Nel)
0 〉|2 δ[ω − (E(Nel+1)

m −E
(Nel)
0 )] , (5)

and the corresponding quantity for the emission of an electron (photoemission
(PE))

A−
Kσ(ω) =

∑

m

|〈ψ(Nel−1)
m |cKσ|ψ

(Nel)
0 〉|2 δ[ω + (E(Nel−1)

m −E
(Nel)
0 )] . (6)

Here |ψ
(Nel)
0 〉 is the ground state of the system with Nel electrons and

|ψ
(Nel±1)
m 〉 are eigenstates of the (Nel±1)-particle system. E

(Nel)
0 and E

(Nel±1)
m

are the corresponding energies.
For the half-filled band case (Nel = N , total Sz=0 sector), the single-

particle spectral function AKσ(ω) = A+
Kσ(ω) + A−

Kσ(ω) of the interacting
system is gapped at EF ∀ K, indicating massive charge excitations across
the CDW (U < Uopt) and Mott-Hubbard (U > Uopt) gaps in the PI and MI
phases [9]. When U approaches the critical value Uopt from both below and
above, the gap feature vanishes for the Fermi momenta KF = ±π/2. Figure 4
displays the K-resolved IPE and PE spectra at U = Uopt. One recognizes that
the spectral function AKσ(ω) obeys various sum rules. The simplest one,
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∫ ∞

−∞
AKσ(ω)dω = 1, is not useful for (angle-resolved) photoemission spec-

troscopy (ARPES) since it involves both occupied and unoccupied states [10].
The one-particle density of states is given by Nσ(ω) =

∑

K AKσ(ω). The im-
portant sum rule for ARPES, however, is

∑

σ

∫ ∞

−∞
nF (ω)AKσ(ω)dω = n(K)

(nF (ω) is the Fermi function), which relates the ARPES intensity to the

number of electrons in a momentum state K: n(K) =
∑

σ〈c
†
KσcKσ〉. The

momentum distribution n(K) is one for K’s far below KF and shows a sharp
drop for K near KF .

3 Performance analysis on the Hitachi SR8000-F1

Although there has been a tremendous increase in the computational power
during the past decade, the numerical simulation of the interacting quantum
systems discussed in the preceding section remains a “grand-challenge appli-
cation” for modern supercomputers. Even for small clusters, exact diagonal-
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ization (ED) studies of microscopic electron-phonon models like the Holstein
Hubbard model involve very large sparse matrices. In order to achieve high
accuracy within our numerical calculations and to ensure an efficient use of
supercomputers DMRG algorithms [11] and one–step ED methods (Lanc-
zos [12], Jacobi-Davidson [13], Maximum-Entropy[14]) have been used. The
DMRG algorithm which is an iterative method with hundreds of ED steps on
a reduced subspace can be run on workstations or multi-processor systems.
On the contrary, one–step ED techniques require matrix vector multiplica-
tions (MVM) involving a sparse matrix representation of the total Hilbert
space but provide to date the only method free of any approximations. Since
the MVM step determines the computational time as well as the memory
requirements for these algorithms, two supplementary MVM strategies have
been implemented.

The in–core implementation stores the non-zero matrix elements using
sparse storage formats, such as Compressed Row Storage (CRS) [15] or Jagged

Diagonals Storage (JDS) [15] yielding high performance at the cost of ad-
ditional storage. It has been demonstrated [17], that a combination of JDS
format (which achieves best performance on vector computers [16]) and an hy-
brid programming approach is best suited for the Hitachi SR8000-F1, where
the 100 GFlop/s barrier can be exceeded on 128 nodes. Furthermore we have
shown that, although based on RISC technology, one Hitachi SR8000-F1
node can exceed the performance of comparable present-day vector proces-
sors (NEC SX5e) even if vector-gather operations are involved [17]. The in–

core JDS implementation is used in combination with the Jacobi-Davidson
method to compute several low lying eigenstates (10–100) where thousands
of MVM steps are required.

A memory-saving, scalable, and parallel algorithm that recomputes the
non-zero matrix elements in each MVM step is used for the out-of-core MVM
implementation (cf. Ref. [7, 18]). In combination with Lanczos (Maximum
Entropy) algorithms - which typically need 50–250 MVM steps - the total
memory requirements for our ED studies of ground state (spectral) properties
can be reduced to approximately 3–4 arrays of the matrix dimension (Dmat).
Here the available main memory sets the only limit for the matrix dimension
accessible for ED and thus determines the quality of our numerical results.

For more than four years the CRAY T3E systems at HLR Stuttgart and
NIC Jülich have provided the largest amount of aggregate main memory
with a maximum of 128 GB available for production runs. Including the final
upgrade at the beginning of 2002 the Hitachi SR8000-F1 system allows us to
increase the matrix dimensions by a factor of roughly 7 with approximately
900 GB main memory available for batch jobs on 152 nodes. A brief summary
of the development of supercomputers and out-of-core MVM implementations
used in our ED projects during the past decade is given in Tab. 1. Note that
programming language did not change all along, while the parallelization
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Table 1. Development of supercomputer resources and programming techniques
used for ED in the past decade. System specifications, programming languages
and parallelization techniques used in the MVM are given in the first five rows.
Maximum matrix sizes achieved on each system and the corresponding time per
MVM step are given in the last two rows.

TM CM5 CRAY T3E Hitachi SR8000-F1
System

GMD St. Augustin NIC Jülich LRZ Munich

Util. time 1993/1994 1998- 2001-

#CPUs 64 256 1216

Memory 2 GB 128 GB 900 GB

Language FORTRAN FORTRAN FORTRAN

Parallelization CMFortran MPI/CRAY-shmem MPI+OpenMP

Dmax
mat 5.6 × 107 4.4 × 109 3.3 × 1010

MVM [s] 156 33 63

strategy of the MVM step had to be adapted several times to ensure the best
use of the supercomputer architecture.

Performance and scalability of different out-of-core MVM parallelization
strategies on the Hitachi SR8000-F1 are depicted in Fig. 5 for a fixed matrix
size (Dmax

mat = 1.6×109). Running a pure MPI parallelization (MPP-mode) and
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pure MPI mode. (ii) HSR-
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Hybrid mode with additional
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performance of a 256 proces-
sor CRAY T3E-1200 system
is depicted (red line).
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assigning one process to each processor, satisfying performance numbers can-
not be achieved. At larger processor counts the total performance even drops
with increasing number of processors, because a large number of outstanding
MPI communication requests over-floods internal message queues. The im-
pact of this bottleneck can be substantially reduced by applying an hybrid
programming strategy, where MPI has been used for inter-node communi-
cation while shared memory parallelization is carried out within one node
(HSR-Hybrid1). As a result, the total number of MPI processes is reduced
by a factor of 8 (when compared to the MPP-mode) resulting in performance
numbers comparable to CRAY T3E-1200 systems. When spending two ad-
ditional arrays (of matrix dimension Dmat) for buffering of messages and
separating communication from computation (HSR-Hybrid2) a performance
boost by a factor of 3-4 is obtained. At the same time, however, the maximum
matrix dimension achievable by the HSR-Hybrid2 implementation is reduced
by a factor of roughly 2 when compared to the HSR-Hybrid1 implementation
(cf. Tab. 1).

In conclusion, for the one–step ED techniques applied in our project,
the hybrid programming approach is the method of choice to achieve high
performance and high scalability on the Hitachi SR8000-F1.

4 Conclusions

The work presented in this report is an example for the predictive power of
large-scale numerical many-body calculations performed on modern super-
computers. The implementation of the various optimized program packages
on the Hitachi SR8000-F1 at the LRZ München allows us to obtain new and
exciting insights into the complex interplay of charge, spin, and lattice degrees
of freedom in the currently intensively studied quasi-1D materials. More pre-
cisely, using quasi-exact numerical techniques to determine the ground state
and spectral properties of the one-dimensional half-filled Holstein-Hubbard
model, we have revealed the physics behind the crossover from a Peierls band
insulator to a correlated Mott-Hubbard insulator. The transition results from
a ground state level crossing with a change in the ground state site-parity
eigenvalue. In the adiabatic limit, where the quantum phase transition is con-
nected to the band- to Mott-insulator transition of the ionic Hubbard model,
two scenarios emerge: a discontinuous PI-MI transition in the strong-coupling
regime, and two continuous transitions for weak interactions with an interme-
diate phase of possible coexistence of charge-density-wave and bond-order-
wave. In the non-adiabatic regime, optical conductivity and charge structure
factor data indicate that the PI-MI transition proceeds continuously.
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