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Abstract. For each of the simple Lie algebras g = Al, Dl or E6, we show that the all-genera
one-point FJRW invariants of g-type, after multiplication by suitable products of Pochhammer
symbols, are the coefficients of an algebraic generating function and hence are integral. Moreover,
we find that the all-genera invariants themselves coincide with the coefficients of the unique
calibration of the Frobenius manifold of g-type evaluated at a special point. For the A4 (5-spin)
case we also find two other normalizations of the sequence that are again integral and of at most
exponential growth, and hence conjecturally are the Taylor coefficients of some period functions.
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1. Introduction and description of the results for the 5-spin case

In this paper, we will study certain intersection numbers τg(g) (the precise definition will

be given in Section 2) on the moduli space of stable algebraic curves Mg,n [32] associated to
simple Lie algebras, the case of Ar−1-type simple Lie algebra being essentially one-point r-spin
intersection numbers, introduced by Witten [112]. (What we call τAr−1(g) would be 〈τn,m〉 in
Witten’s notation, where 2(r + 1)g = r(n+ 1) +m+ 2 with n ≥ 0, 0 ≤ m ≤ r − 2; our notation
in later sections will be slightly different from Witten’s.) In particular, we will give recursive,
closed, and asymptotic formulas for these numbers. Using these formulas, we will show for
g = Al (l ≥ 1), or Dl (l ≥ 4), or E6 that by multiplying τg(g) by appropriate gamma factors
(products of Pochhammer symbols) we obtain new numbers whose generating functions are
algebraic. In particular, these renormalized numbers are integral and grow only exponentially
in g. Moreover, for the case of A4, we find that there are different normalizations of the τg(g),
obtained by multiplying by other gamma factors, that are again integral and of exponential
growth, so that each of the corresponding generating series is conjecturally a period function for

†Deceased on March 19, 2019.

1
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some family of algebraic varieties (or equivalently, a solution of some Picard–Fuchs differential
equation). This latter point is also of interest from the point of view of the general arithmetic
theory of differential equations (see for instance [115], where the conjecture relating integrality
and geometric origin is discussed on pp. 728–729 and the A4 example on pp. 768–769) and will
be discussed from this point of view in the later paper [114].

For most of this introduction, we will assume that g = A4 and describe our results in detail
only for that case, indicating briefly at the end of the introduction where the statements of the
general results can be found in the paper. For convenience, we write τg = τA4(g) for g > 0, and
also set τ0 = 1 and τg = 0 for g < 0. The first values are

g 0 1 2 3 4 5 6 7 8 9

τg 1 1
6

11
3600 0 341

25920000
161

777600000
3397

93312000000
3421

4199040000000 0 1670581
846526464000000000

One-point 5-spin intersection numbers

The following theorem, which will be proved in Section 5, gives three different integrality
statements about the numbers τg. One of these statements (the integrality of the numbers ag)
will be generalized to all Al, Dl and E6 in Sections 5–7 below. The two others will be given in
this paper for the A4 case only, with a discussion of the integrality properties of τg(g) for other
simple Lie algebras postponed to the later paper [114] mentioned above.
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. Here (x)k := x(x+ 1) · · · (x+k− 1) denotes the ascending Pochhammer symbol.

The point here is that the numbers τg decay like 1/Γ(2g
5 ), as we will see in a moment, and that

therefore each of the numbers ag, bg and cg, as well as being integral (away from the primes 2, 3
and 5), is of only exponential growth in g and hence is expected to be the gth Taylor coefficient
of some period function. It would be very interesting to identify the two generating functions∑
bgx

g and
∑
cgx

g as explicit period functions, but we have not yet been able to do this. For ag,
on the other hand, the next theorem includes the stronger statement that the generating function∑
agx

g is not only a period function, but is in fact algebraic.

Remark 1. The formulas (1)–(4) can be written uniformly as

ag =
(−1)m

5
(A)m τg , bg = (A)n (B)n τg , cg = (A)n (C)n τg , (5)

where m =
[2g−1

5

]
, n = dg5e, and A, B, C are the fractional parts of 2g−1

5 , 2g+1
5 , 2g+3

5 , respectively.
Recall that for a real number x, its fractional part is defined as {x} := x− [x]. Note that A = 0
if g ≡ 3 (mod 5), and that both ag and τg vanish in this case.

In the following theorem we collect many further properties of τg. All of the statements of
this theorem will be generalized in the main body of the paper to the Al, Dl, and E6 cases.

Theorem 2. The numbers τg = τA4(g) have the following properties:
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(i) [recursion] The numbers τg satisfy the recursion relation

28 34 517 31 g (g − 1) (g − 2) (g − 4) τg

− 511
(
28 34 g4 − 213 34 g3 + 24 32 54331 g2 − 24 32 431 6329 g + 51 71 2013229

)
τg−5

+ 22 56
(
22 32 5 g2 − 22 33 51 7 g + 19739

)
τg−10 − τg−15 = 0 , g ∈ Z (6)

with the initial conditions given by the above table.

(ii) [dual topological ODE] The generating series

ϕ(X) :=
∑
g≥0

τgX
g
5 (7)

satisfies the fourth-order linear differential equation Qϕ = 0, where

Q = 28 34 515X3
(
X − 56 31

) d4

dX4
+ 28 34 514X2

(
21 32X − 56 231 31

) d3

dX3

− 24 32 59X
(
X2 − 54 6091X + 26 33 510 71 31

) d2

dX2

− 25 32 58
(

2X2 − 54 3209X + 25 33 510 31
) d

dX

+
(
X2 + 22 56 61X + 513 71 231 31

)
. (8)

(iii) [algebraicity] The generating function of the numbers ag defined in (5) is algebraic. More
precisely, we have

y :=
∑
g≥0

ag z
g ⇒ y5 − z

6
y3 +

z2

400
y = 1 . (9)

(iv) [closed formula] Denote m = [(2g − 1)/5] as above, and define cp,j ∈ Q (0 ≤ p ≤ j) by

cp,j := coefficient of xj in
1

p!

(
(1 + x)6 − 1− 6x

6x

)p
. (10)

Then for all g ≥ 0 with g 6≡ 3 (mod 5), we have

τg = Γ
({2g−1

5

}) (−1)g+m−1

5g

2g∑
p=0

cp,2g

Γ
(2g−1

5 − p+ 1
) . (11)

(v) [product formula] Let

w(u) = 1 +
∑
n≥0

Cn u
n+1 = 1 + u − 2

3
u2 +

11

18
u3 − . . . (12)

be the unique power-series solution in 1 + u+ u2Q[[u]] to the sextic equation

w6

30
− w

5
+

1

6
=

u2

2
, (13)

and let f(T ) :=
∑

k≥0(2k − 1)!!C2k (−T )k. Then

f(T ) f(−T ) =
∑
g≥0

(
1 +

2g − 1

5

)
2g

(−1)g−1 53g ag T
2g (14)

with ag as in (5) or in part (iii).
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(vi) [terminating hypergeometric sum] For all g ∈ Z with g 6≡ 3 (mod 5), we have

τg =
6−g

Γ
(
1−

{2g−1
5

}) ∑
0≤s≤g/2

(−1)s
( 3

10
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5

)
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. (15)

(vii) [asymptotics] For g 6≡ 3 (mod 5) and as g →∞, τg is given asymptotically by

τg ∼
5

√
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√
πg3

sin
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m

(
6

2
5 20 sin2

(π
5

))−g
, (16)

where m = [(2g − 1)/5] is again as above.

The proof of this theorem is given in Sections 2 and 5.

Remark 2. Of course, parts (i) and (ii) are equivalent, by the usual bijection between power series
satisfying a linear differential equation with polynomial coefficients and sequences of numbers
satisfying a recursion with polynomial coefficients. More explicitly, since the recursion (6) involves
only τg, τg−5, τg−10 and τg−15, it is equivalent to five separate recursions for τg with g ≡ s (mod 5),
0 ≤ s ≤ 4, the values for s = 3 being uninteresting because τg = 0. Similarly, by the Frobenius

method, the differential equation in part (ii) has four fundamental solutions in xλQ[[x]] with
λ = 0, 1

5 ,
2
5 ,

4
5 , and the generating function (7) is simply a certain linear combination of these

with rational coefficients.

Remark 3. The integrality (away from 2, 3, and 5) of ag in Theorem 1 follows immediately from
part (iii) of Theorem 2, since the Taylor coefficients of any algebraic function are integral after
some fixed rescaling. The integrality of bg and cg is harder and will follow from formula (15), as
a consequence of the stronger statement that the product of either (A)n(B)n or (A)n(C)n with
each summand on the right-hand side of (15) is p-adically integral for each p > 5.

Remark 4. We say something here about the origin of the problem and about some of the
various approaches that can be used to solve it. The way that we are approaching intersection
numbers is to use integrable systems. In 1990, Witten [110] proposed his famous conjecture
that the partition function of ψ-class intersection numbers is a tau-function for the Korteweg-de
Vries (KdV) integrable hierarchy. This conjecture was later proved by Kontsevich [82]. The
r-spin Witten conjecture [112], stating that the partition function of the r-spin intersection
numbers gives a tau-function for the Gelfand–Dickey integrable hierarchy [34], was proved by
Faber–Shadrin–Zvonkine [64]. (The r = 2 case corresponds to Witten’s conjecture in 1990.)
More generally, the ADE Witten conjecture [112], given its precise form by Fan–Jarvis–Ruan [67]
(cf. also Givental–Milanov [72]), states that the partition function of the FJRW invariants
associated to a certain simple singularity [3] gives a tau-function for the Drinfeld–Sokolov (DS)
integrable hierarchy [13, 25, 31, 38, 49]. The ADE Witten conjecture was proved by Fan–Jarvis–
Ruan [67] (cf. also [68, 72, 89]) with the D4 case confirmed in [65]. For all these cases, the
main mathematical object of the study is the so-called topological solution utop [48, 57] to the
corresponding integrable system together with its tau-function. Perhaps, the simplest way to
describe this particular solution is to use its initial value (observe that each member of the
DS hierarchy is an evolutionary PDE), which in terms of the normal coordinates [57] r1, . . . , rl
(where l is the rank) reads:

rtop
α |higher times=0 = ηα1 t

1,0 , (17)

where α = 1, . . . , l and ηα1 are constants. One could then apply methods in integrable systems to
compute utop and more importantly its tau-function. These methods include the wave-function
approach [5, 8, 9, 14, 20, 25, 34, 39, 53, 77, 106, 107], the ΨDOs [29, 34, 79, 86], the Sato
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Grassmannian approach [14, 30, 34, 106, 107], the Dubrovin–Zhang approach [24, 43, 48, 50,
55, 57], the Givental quantization [24, 69, 70, 71, 72], the topological recursion of Chekhov–
Eynard–Orantin type (or of Bouchard–Eynard type) (cf. [15, 59, 116, 118] and the references
therein), the matrix-resolvent method [11, 12, 13, 52, 53] (cf. also [21, 87, 88, 96]), etc. One
of the keys for several of these methods is the Lax pair (cf. [5, 34, 38, 39]). In the second
paper [54] of the series, the mathematical object will be a different solution to the DS hierarchy,
whose tau-function has a different topological meaning; more general cases are considered in
joint papers currently in preparation with Daniele Valeri. Taking the dispersionless limit of
the DS hierarchy, one can also obtain an interesting geometric structure, suitable for studying
arbitrary solutions, i.e., the Frobenius structure [41, 42, 43, 48, 57], which plays one of the central
roles in understanding the above-mentioned methods. Besides the methods from integrable
systems, there are other important methods for computing the intersection numbers from other
theories, including the theory of matrix models [1, 2, 16, 17, 18, 33, 73, 82, 94], vertex algebras
[6, 35, 68, 78, 91, 117, 120], emergent geometry [118, 119, 121], etc.

Our next result (see Theorem 8 and its corollary) gives an explicit relationship between the
all-genera FJRW intersection numbers of g-type (with g = Al, Dl or E6) and genus zero, which
again will be stated in the introduction only for the 5-spin case. Let B be the Frobenius manifold
associated to the A4 Coxeter group [43, 45, 104, 122], and let (θα,m)α=1,...,4,m≥0 be the unique
calibration [50, 57] on B. The reader who is not familiar with the theory of Frobenius manifolds
could simply identify θα,m with the following formal power series of infinitely many variables:

θα,m =
∂2F0(t)

∂tα,m∂t1,0
, (18)

where t = (tα,q)α=1,...,4, q≥0 and the definition of F0 can be found in (37). Denote vα = θα,0,
α = 1, . . . , 4, and denote v = (v1, . . . , v4). Then from the theory of Frobenius manifolds (see
Appendix B) we know that all the θα,m are polynomials in v, with the first values being

θα,0 = vα ,

θ1,1 = v1v4 + v2v3 ,

θ2,1 =
v2

3

2
+

1

10
v2

1v3 + v4v2 +
1

10
v2

2v1 ,

θ3,1 =
v3

2

15
+

1

75
v3

1v2 +
1

5
v3v1v2 + v4v3 ,

θ4,1 =
v5

1

2500
+

1

50
v2

2v
2
1 +

1

10
v2

3v1 +
v2

4

2
+

1

10
v3v

2
2 ,

θ1,2 =
v6

1

3750
+

1

50
v2

2v
3
1 +

1

10
v2

3v
2
1 +

1

2
v2

4v1 +
1

5
v3v

2
2v3 +

v4
2

30
+
v3

3

6
+ v4v3v2 .

Theorem 3. Define

v∗1 =
1

6
, v∗2 = 0 , v∗3 =

11

3600
, v∗4 = 0 .

Then for all g ≥ 1 with g 6≡ 3 (mod 5), we have

τg = θα,m(v∗) , (19)

where α ∈ {1, 2, 3, 4} and m ≥ 0 are such that 2g − 1 = α+ 5m.

Organization of the paper. In Section 2, we recall the definition of τg(g) for all g. In
Section 3 we generalize parts (i), (ii) of Theorem 2 from A4 to an arbitrary g. In Section 4, we
provide several technical preparations for the subsequent sections. In Section 5 we prove the
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generalization of the rest of Theorem 2 for the A series, as well as proving Theorem 1. The
analogues of Theorem 2 for the Dl and E6 cases are given in Sections 6 and 7, respectively, while
Theorem 3 is generalized to the Al, Dl and E6 cases in Section 8. The necessary material on the
wave-function-pair approach for computing residues of pseudodifferential operators and a brief
review of the theory of Frobenius manifolds are provided in Appendices A and B.

Acknowledgements. We would like to thank Giordano Cotti, Yuri Manin, Maxim Smirnov,
Jian Zhou and Wadim Zudilin for their interest and helpful discussions. D.Y. is grateful to Youjin
Zhang and Marco Bertola for their advice. We also thank Elba Garcia-Failde for a very careful
reading of this paper and for very helpful comments. Part of the work of D.Y. was done during
his postdoctoral studies and visits at SISSA and MPIM; he thanks both institutes for their
excellent working conditions, warm hospitality and financial support. The work was partially
supported by the National Key Research and Development Project “Analysis and Geometry on
Bundles” SQ2020YFA070080, and by NSFC No. 12061131014.

2. Cohomological field theories and FJRW invariants of g-type

Let g be a simply-laced simple Lie algebra. In this section, we review the definitions of the
enumerative invariants τg(g), called the one-point FJRW (Fan–Jarvis–Ruan, Witten) invariants,
that are studied in this paper.

We start with the definitions for the A case. For g, n ≥ 0, let 1 ≤ α1, . . . , αn ≤ r be integers
satisfying the divisibility condition r

∣∣ ∑n
i=1 αi−n− (2g−2). For an algebraic curve C of genus g

with n distinct marked points x1, . . . , xn, there exists a line bundle T on C such that

T ⊗r = KC ⊗O
(
(1− α1)x1

)
⊗ · · · ⊗ O

(
(1− αn)xn

)
, (20)

where KC is the canonical class of C. For C smooth there are r2g such line bundles. A choice of
such an “r-th root” of the bundle (20) is called an r-spin structure, and it defines a point in a
covering of Mg,n. After a suitable compactification, this covering is denoted by

p :M1/r
g,n(α1, . . . , αn)→Mg,n .

In genus zero, for a point
(
C, x1, . . . , xn, T

)
in the covering space M1/r

0,n (α1, . . . , αn), denote

V = H1(C, T ). This gives a vector bundle V →M1/r
0,n (α1, . . . , αn) as the space V has constant

dimension thanks to the fact that H0(C, T ) vanishes. Put

c0(α1, . . . , αn) := p∗ e
(
V∨
)
∈ H2(s−1)

(
M0,n

)
, (21)

where e(V∨) is the Euler class of the dual vector bundle V∨, and s :=
∑n
i=1 αi−n+2

r . The

cohomology class c0(α1, . . . , αn) is called the Witten class. For higher genus, H0(C, T ) is only
generically zero and the vector bundle can only be defined on a generic stratum. The Witten
class cg(α1, . . . , αn) could still be defined as a particular cohomology class in H2(s+g−1)(Mg,n)

with s =
∑n
i=1 αi−n−(2g−2)

r , but the construction is more involved (cf. [26, 27, 28, 66, 67, 75, 95,
100, 101, 112]). The genus g r-spin intersection numbers are defined as the following integrals:∫

Mg,n

cg(α1, . . . , αn)ψq11 · · ·ψ
qn
n =: 〈τα1,q1 · · · ταn,qn〉g , q1, . . . , qn ≥ 0 , (22)

where ψi (1 ≤ i ≤ n) denotes the first Chern class of the ith tautological line bundle over Mg,n.
These integrals vanish unless the degree and the dimension match:

s + g − 1 + q1 + · · · + qn = 3g − 3 + n .
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The so-called Vanishing Axiom, conjectured in [75] and proved in [100, 101], says that the Witten
class cg(α1, . . . , αn) vanishes if any of α1, . . . , αn reaches r. Therefore we assume that α1, . . . , αn
are in {1, . . . , r − 1}. The numbers τAr−1(g) that we are looking at are the r-spin intersection
numbers with n = 1 (one-point). More precisely, they are defined by

τAr−1(g) := 〈τα,q〉g , (23)

where α ∈ {1, . . . , r − 1} and q ≥ 0 are uniquely determined by

2 (r + 1) g − 1 = α + r (q + 1) . (24)

The Witten class gives a particular cohomological field theory (CohFT) [83, 93] of rank (r− 1).
Let us recall the definition of a general CohFT. A rank l CohFT is a quadruple

(
V l, η,1,Ωg,n

)
,

where V is a C-vector space, η is a symmetric non-degenerate bilinear form, 1 is a particular
element in V , called the unity, and {Ωg,n}2g−2+n>0 is a collection of linear maps from V ⊗n to

Heven
(
Mg,n;C

)
, satisfying the following axioms:

C1. (total symmetry) Each Ωg,n is Sn-invariant, where the action of Sn permutes both the

marked points of Mg,n and the tensor products V ⊗n.
C2. (splitting) Denote by q and s be the gluing maps

q : Mg−1,n+2 →Mg,n , (25)

s : Mg,n1+1 ×Mg,n2+1 →Mg,n . (26)

Then it is required that ∀ x1, . . . , xn ∈ V ,

q∗Ωg,n(x1, . . . , xn) = Ωg−1,n+2(x1, . . . , xn, eα, e
α) , (27)

s∗Ωg,n(x1, . . . , xn) = Ωg1,n1+1(x1, . . . , xn1 , eα) Ωg1,n2+1(eα, xn1+1, . . . , xn) . (28)

C3. (unity) Let p :Mg,n+1 →Mg,n be the forgetful map. Then ∀ x1, . . . , xn ∈ V ,

Ωg,n+1(x1, . . . , xn,1) = p∗Ωg,n(x1, . . . , xn) , (29)

Ω0,3(x1, x2,1) = η(x1, x2) . (30)

Choose e1 = 1, e2, . . . , el a basis of V , and denote ηαβ := η(eα, eβ), η = (ηαβ),
(
ηαβ
)

:= η−1.

It is natural to view V as the complex coordinate space {(v1, . . . , vl) | vα ∈ C} and therefore as
the complex manifold Cl. Define a power series F = F (v) ∈ C[[v1, . . . , vl]] by

F :=
∑
n≥3

∫
M0,n

Ω0,n(eα1 , . . . , eαn)
vα1 · · · vαn

n!
. (31)

We call F the genus-zero primary potential (cf. [43, 57, 83, 93, 97, 98, 109]). Denote by B ⊂ Cl
the domain of convergence for F around v = 0. Throughout the paper we assume that B contains
an open ball centered at v = 0.

Remark 5. For a projective variety X, the Gromov–Witten classes associated to X give rise to a
CohFT. For this case, it is sometimes helpful or even necessary to replace the ring Heven

(
Mg,n;C

)
with N ⊗Heven

(
Mg,n;C

)
, where N is the Novikov ring [83, 93]. We did not write the axioms

involving the Novikov ring because for the specific CohFTs that are considered in this paper the
power series F is actually a polynomial and so B = Cl. Nevertheless, it will be interesting to
generalize the results of this paper to the situation when the Novikov ring is introduced.

A CohFT
(
V, η,1,Ωg,n

)
is called homogeneous of charge d if it satisfies the following axiom:
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C4. There is a vector field E on B which for some choice of the basis eα of V has the form

E =
(
1− d

2

)
vα ∂α + rα ∂α −

l∑
α=1

µα v
α ∂α , (32)

and such that if we define the action of E on Ω by

(EΩ)g,n(eα1 , . . . , eαn) :=

(
gr + 2−d

2 n−
n∑
i=1

µαi

)
Ωg,n(eα1 , . . . , eαn)

+ p∗Ωg,n+1

(
eα1 , . . . , eαn , r

αeα
)
, (33)

where p denotes the forgetful map, and gr is the grading operator defined by

grφ := q φ , if φ ∈ H2q(Mg,n;C) , (34)

then
(EΩ)g,n =

(
(g − 1) d+ n

)
Ωg,n , ∀ 2g − 2 + n > 0 . (35)

The genus g correlators of the CohFT are defined by∫
Mg,n

Ωg,n(eα1 , . . . , eαn)ψq11 · · ·ψ
qn
n =: 〈τα1,q1 · · · ταn,qn〉Ωg , q1, . . . , qn ≥ 0 . (36)

Below, the label Ω will often be omitted. Here and throughout the paper, free Greek indices
take the integer values from 1 to l, the Einstein summation convention will be used for repeated
Greek indices with one up and one down, and the tensors ηαβ and ηαβ will be used to raise and
lower the Greek indices. The genus g free energy of the CohFT is defined by

Fg(t) :=
∑
n≥0

∑
q1,...,qn≥0

tα1,q1 · · · tαn,qn
n!

〈τα1,q1 · · · ταn,qn〉g , (37)

where t := (tα,q)α=1,...,l,q≥0 denotes the infinite vector of indeterminates. The exponential

e
∑
g≥0 ε

2g−2Fg(t) =: Z (38)

is called the partition function of the CohFT, where ε is an indeterminate. It satisfies the
following string equation ∑

q≥1

tα,q
∂Z

∂tα,q−1
+

1

2ε2
ηαβt

α,0tβ,0Z =
∂Z

∂t1,0
. (39)

An immediate consequence of the string equation is that

〈τα,q−1〉g = 〈τα,qτ1,0〉g . (40)

The CohFT Ωg,n given by the Witten class cg(α1, . . . , αn) is also recognized as the FJRW
CohFT of Ar−1-type. This is the reason for the notation used in (23). For each simply-laced
simple Lie algebra g of rank l, Fan, Jarvis and Ruan [66, 67] constructed a rank l homogeneous
CohFT from a certain simple singularity such that the corresponding Frobenius manifold is
isomorphic to the Frobenius manifold associated to the Weyl group of g [45, 122]. This CohFT will
be referred to as the FJRW CohFT of g-type, whose partition function is shown to be a particular
tau-function for the DS hierarchy of g-type [38, 67, 110, 112] (cf. [65, 68, 71, 72, 78, 82, 89, 113]).
In [89] Liu, Ruan and Zhang introduced the notion of a partial CohFT, and constructed certain
partial CohFTs associated to simple singularities, whose partition functions are proved ibid. to
be tau-functions for the DS hierarchies of BCFG-type. Correlators of these CohFTs or partial
CohFTs are referred to as the FJRW–LRZ invariants. The main focus of this paper will be
on the ADE cases, leaving the more detailed studies of the BCFG cases to future publications.
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It should be noted that the terminology “DS hierarchy of g-type” refers to the DS hierarchy,
under the choice of a principal nilpotent element, associated to the untwisted affine Kac–Moody
algebra ĝ(1) (see page 1402 of [12] for more details; cf. also [13]).

Now let g be a simply-laced simple Lie algebra of rank l with the normalized Cartan–Killing
form (·|·). Denote by r the Coxeter number of g, and by m1, . . . ,ml the exponents of g. Here
we order m1, . . . ,ml such that 1 = m1 ≤ m2 ≤ · · · ≤ ml = r − 1, except for the Dl case, where
we set mα = 2α − 1 for α = 1, . . . , l − 1 and ml = l − 1. (Observe the difference with [12, 13],
where for the Dl case the exponents are numbered by 1 = m1 ≤ m2 ≤ · · · ≤ ml = r − 1.) Let(
V l, η,1,Ωg,n

)
denote the FJRW CohFT of g-type. Choose a basis eα of V satisfying

Ωg,n(eα1 , . . . , eαn) ∈ H2(s+g−1)
(
Mg,n

)
, s :=

∑l
i=1mαi − n− (2g − 2)

r
. (41)

The existence of such a choice can be verified case by case from the data provided in [67], and this
implies that the CohFT Ωg,n is homogeneous of charge d = r−2

r . The associated correlators (36)
are called genus g FJRW invariants of g-type. The degree-dimension matching implies that
〈τα1,q1 · · · ταn,qn〉g vanishes unless∑n

i=1mαi − n− (2g − 2)

r
+ g − 1 +

n∑
i=1

qi = 3g − 3 + n . (42)

For given (αi, qi), i = 1, · · · , n, for simplicity we sometimes omit the subindex g in 〈· · · 〉g,
because for all possibly non-zero invariants this subindex can be reconstructed by (42); in such
an omission, if the reconstructed g is not an integer, 〈τα1,q1 · · · ταn,qn〉 is defined as 0. It is also
convenient to take ε = 1 in (38) for the definition of the partition Z, i.e., we have

Z = Z(t) := e
∑
g≥0 Fg(t) , (43)

and the string equation reads∑
q≥1

tα,q
∂Z(t)

∂tα,q−1
+

1

2
ηαβ t

α,0 tβ,0 Z(t) =
∂Z(t)

∂t1,0
. (44)

The numbers τg(g) that we are studying in this paper are defined by

τg(g) := 〈τα,q〉 , g ≥ 0 , (45)

where
2 (r + 1) g − 1 = mα + r (q + 1) . (46)

It should be noticed that for the case g = Dl with l being an even number, there are two equal
exponents ml/2 and ml, so for this case, the different (α = l/2, q) and (α = l, q) correspond to
the same g. However, with an appropriate choice of the basis, the numbers 〈τl,q〉 vanish, and we
use τg(g) to denote 〈τl/2,q〉.

3. Differential equation

The topological and dual topological ODEs of g-type are introduced in [12] for computing the
FJRW–LRZ invariants, which are obtained as a result of the theorems of Fan–Jarvis–Ruan and
Liu–Ruan–Zhang together with an application of the matrix-resolvent method [11, 12, 13] for the
Drinfeld–Sokolov hierarchy of g-type [38]. In this section, via reducing the dual topological ODE
to a scalar differential equation, we generalize parts (i) and (ii) of Theorem 2 of the Introduction
from A4 to an arbitrary simple Lie algebra g.

Fix h a Cartan subalgebra of g and let 4 be the root system. Choose a set of simple roots Π,
and let E1, . . . , El, F1, . . . , Fl be the Weyl generators. Denote by θ the highest root with respect
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to Π, and by E−θ a root vector associated to −θ. The semisimple element Λ = Λ(λ) (aka the

Kostant element) is defined by Λ(λ) =
∑l

α=1Eα +λE−θ, λ ∈ C. Kostant [84] shows that for any
λ 6= 0, g has the orthogonal decomposition with respect to (·|·), i.e. g = Ker adΛ(λ) ⊕ Im adΛ(λ),

Ker adΛ(λ) ⊥ Im adΛ(λ). Denote by L(g) = g⊗ C
[
λ, λ−1

]
the loop algebra, and by ρ∨ the Weyl

co-vector (which is the unique element in h satisfying [ρ∨, Eα] = Eα). Introduce a grading
operator on L(g)

gr := adρ∨ + hλ
d

dλ
. (47)

An element q in L(g) is called homogeneous of principal degree k if gr q = k q. It was proven by
Kac [76] that the kernel of adΛ(λ) in L(g) has the form

⊕
j∈E CΛj(λ). Here, E is the exponent

set of L(g), and Λj(λ) ∈ L(g) are homogeneous of principal degree j, normalized by Λ1 = Λ,

Λmα+`h(λ) = λmα(λ)λ`, ` ≥ 0, and
(
Λmα |Λmβ

)
= hλ ηαβ for some non-degenerate symmetric

constant matrix η.
Write

ρ∨ =
n∑
i=1

xiHi, xi ∈ C ,

and define I− = 2
∑n

i=1 xi Fi. Then I+, I−, ρ
∨ form an sl2(C) Lie algebra:

[ρ∨, I+] = I+, [ρ∨, I−] = −I−, [I+, I−] = 2ρ∨. (48)

According to [7, 84], there exist elements γ1, . . . , γn ∈ g such that

Ker adI− = SpanC{γ1, . . . , γn}, [ρ∨, γi] = −mi γ
i. (49)

Fix {γ1, . . . , γn}, then the lowest weight decomposition of g has the form

g =

n⊕
i=1

Li , Li = SpanC
{
γi, adI+γ

i, . . . , ad2mi
I+

γi
}
. (50)

Here each Li is an sl2(C)-module. Any g-valued function M(λ) can be uniquely represented as

M(λ) =

n∑
i=1

Si(λ) ad2mi
I+

γi +

n∑
i=1

2mi−1∑
m=0

Kim(λ) admI+γ
i , (51)

where Si(λ), Kim(λ) are certain complex-valued functions. Note that ad2mi
I+

γi is the highest

weight vector of Li, i = 1, . . . , n.
The dual topological ODE of g-type [12] is an ODE for a g-valued function G defined by[

dG

dx
,E−θ

]
+
[
G, I+

]
+ xG = 0 . (52)

Write

G(x) =

l∑
α=1

φα(x) ad2mα
I+

γα +

l∑
α=1

2mα−1∑
m=0

K̃αm(x) admI+γ
α . (53)

It is shown in [12] that the ODE (52) is equivalent to an ODE for φ = (φ1, . . . , φl)
T

dφ

dx
=

2h−2∑
i=−1

xi Vi φ , (54)

where Vi (i = −1, . . . , 2h − 2) are constant l × l matrices and V−1 = diag(−ml+1−α/h)α=1,...,l.
(Equivalence between systems of ODEs means that their solutions have a one-to-one correspon-
dence.) Here we note that x = 0 is a Fuchsian singular point of (54) and that the matrices V−1,
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. . . , V2h−2 are determined by the lowest-weight-structure-constants of g. It is obvious from (54)
that the dimension of the space of solutions to (52) is equal to the rank of g.

Denote by (Gα)α=1,...,l a solution basis of (52), and by φα;1, . . . , φα;l the φ-coefficients of Gα.
The matrix Φ defined by Φβα := φα;β is called the fundamental solution matrix, which can be
normalized by using the following initial condition near x = 0:

Φ = D
(
I +

∑
m≥1

Φm x
m
)
, D = diag

(
x−

ml+1−α
h

)
α=1,...,l

. (55)

For each fixed α we allow Gα to have a multiplicative non-zero constant and keep using the
notations Gα and φα;β . The following proposition is proved in [12], and we review its proof here.

Proposition 1. The series φα;l can be expressed in terms of the FJRW invariants of g-type by

φα;l(x) =
x−

1
r

Γ(mαh )
δα,l +

x
mα
r

Γ(mαr )

∑
w≥0

cα,w x
mα+(r+1)w+1 , (56)

where
cα,w = (−1)mα+(r+1)w

〈
τα,mα+(r+1)w

〉
(−r)

mα+1+rw
2 , w ≥ 0 . (57)

Here we note that when g is a non-simply-laced simple Lie algebra, the 〈τα,mα+(r+1)w〉 in the
right-hand side of (57) should be considered as the one-point correlators of the corresponding
Liu–Ruan–Zhang partial CohFT (cf. [12, 13, 89]).

Proof of Proposition 1. Recall that the topological ODE of g-type [12] is the g-valued ODE

dM(λ)

dλ
=
[
M(λ),Λ(λ)

]
. (58)

About this ODE, the following statements are proved in [12, 13].
(a) The dimension of the formal Puiseux series solutions to (58) is equal to the rank of g.
(b) There exists a unique basis M1, . . . ,Ml of the formal solutions to (58) such that

Mα(λ) = λ−
mα
h

[
Λmα(λ) +

∑
k≥1

Mα,k(λ)

]
, (59)

Mα,k(λ) ∈ L(g) , grMα,k(λ) =
[
mα − (h+ 1)k

]
Mα,k(λ) . (60)

(c) Denote κ = (
√
−r)−r. The following identity for one-point FJRW invariants of g-type is true:

κ
2
r+1
√
−r

∑
g,q≥0

(−1)q
(mαr )q+2

(κ
1
r+1λ)

mα
r

+q+2
〈τα,q〉g =

(
E−θ|Mα(λ)

)
− λ−

r−1
r δα,l . (61)

Write (
E−θ|Mα(λ)

)
= λ−

mα
r

∑
q≥0

Sα,q λ
−q =: Sα(λ) , Sα,q ∈ Q . (62)

We have for w ∈ Z and (1 +mα + rw)/2 ∈ Z≥0,〈
τα,mα+(r+1)w

〉
= (−1)mα+(r+1)w Sα,mα+(r+1)w+2

(−r)
mα+1+rw

2

(
mα
r

)
mα+(r+1)w+2

. (63)

According to the definition given in [12], solutions to topological and dual topological ODEs
are related via the Laplace transform M(λ) =

∫
G(x) e−λx dx. In particular, the series φα;l are

related to Sα by

Sα(λ) =

∫
C
φα;l(x) e−λx dx , (64)
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where C is a carefully chosen contour (which can depend on α) on the x-plane. We have

φα;l(x) =
∑
q≥0

Sα,q
xq+

mα
r
−1

Γ(q + mα
r )

=
x
mα
r
−1

Γ(mαr )

∑
q≥0

Sα,q
xq(
mα
r

)
q

. (65)

The proposition is proved. �

An immediate consequence of Proposition 1 is that the intersections numbers τg(g) grow at
most exponentially. Let us introduce the series a(x) by

a(x) := (−r)−
1

2(r+1)

l∑
α=1

Γ
(mα

r

)
(−1)

mα−r
r φα;l(x) , (66)

where φα;l(x) are given by (56). More explicitly,

a(x) = (−r)−
1

2(r+1) (−x)−
1
r +

l∑
α=1

∑
w≥0

(−1)mα+(r+1)w+mα−r
r

〈τα,mα+(r+1)w〉 (−r)
mα+1+rw

2 x
(r+1)mα+r(r+1)w+r

r

=
(
−(−r)

r
2(r+1)x

)− 1
r

+
(
−(−r)

r
2(r+1)x

)− 1
r
∑
g≥0

τg(g)
(
−(−r)

r
2(r+1)x

)2g+ 2g
r
.

Denote t = −(−r)
r

2(r+1)x and

b(t) = t−
1
r + t−

1
r

∑
g≥1

τg(g) t2g+
2g
r =

∑
g≥0

τg(g) t2g
r+1
r
− 1
r .

We have a(x) = b(t). We are ready to generalize part (i) of Theorem 2 by showing that b(t)
satisfies an ODE with polynomial coefficients.

Theorem 4. Let g be an arbitrary simple Lie algebra of rank l. The component φl satisfies a
linear ODE with polynomial coefficients of order at most l. In other words, for every fixed α, the
series φα;l satisfies this ODE. In particular, b(t) satisfies an ODE of order at most l.

Proof. For g with l = 1, the statement is trivial. Below we consider l ≥ 2. As we have mentioned,
the dual topological ODE is equivalent to system (54). This system consists of l linear equations
for φ1, . . . , φl. Denote these equations by e1, . . . , el. Let N be a positive integer. Now consider
the following linear combination of equations

e :=

N∑
k=0

clk
dkel
dxk

+

l−1∑
α=1

N∑
k=1

cαk
dk−1eα
dxk−1

. (67)

Requiring that the coefficients of φ1, . . . , φl−1, dφ1dx , . . . ,
dφl−1

dx , . . . , d
N−1φ1
dxN−1 , . . . ,

dNφl−1

dxN
vanish gives

rise to a system of linear equations for cl0 and cαk , k = 1, . . . , N . The number of equations is
equal to (l − 1)(N + 1), while the number of unknowns is 1 +Nl. Take N = l − 1, we have

1 +Nl − (l − 1)(N + 1) = 2 + N − l = 1 . (68)

According to the Gauss elimination we know that this linear system over the field C(x) has a

non-zero solution cl0 and cαk , k = 1, . . . , N . The theorem is proved by further noticing that dkel
dxk

(k = 0, . . . , N) and dk−1eα
dxk−1 (α = 1, . . . , l− 1, k = 1, . . . , N) together are linearly independent. �
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It is clear that part (i) of Theorem 2 is a special case of Theorem 4 with the particular form
of the linear ODE (8) computed from the standard sl5(C) realization with the Λ(λ) given by

Λ(λ) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
λ 0 0 0 0

 , (69)

and from the change of independent variable t 7→ X = t
2(r+1)
r and ϕ(X) = b(t) t

1
r .

4. Computing residues

In this section, we carry out several technical preparations for the later sections. It is very
convenient here to permit the variable r, which originally came from r-spin classes and hence
was a positive integer, to take on arbitrary complex values, since essentially all of the identities
we need are polynomial in r (at least at the level of the individual coefficients of the generating
functions appearing).

Let r be a complex number and let L be the pseudodifferential operator

L = ∂r + C x , (70)

where ∂ = d/dx and C is an arbitrarily given constant. We are to compute the residues zk(x) of

the pseudodifferential operators Lk/r, i.e.

zk(x) := resL
k
r . (71)

We note that most of the time we consider k as a nonnegative integer, although sometimes we
give results valid for any k ∈ C. For the definition of a pseudodifferential operator and its residue
we refer to [29, 34, 79].

4.1. Closed formula. Let us first introduce some notations. Define polynomials cp,j(r) ∈ Q[r]
(0 ≤ p ≤ j) by the generating function

1

p!

(
(1 + x)r+1 − 1− (r + 1)x

(r + 1)x

)p
=

∞∑
j=p

cp,j(r)x
j (72)

(then cp,j(r) has degree j and is divisible by rp), the first few values being

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

j = 0 1

j = 1 0 r/2

j = 2 0 1
3

(
r
2

) (r/2)2

2!

j = 3 0 1
4

(
r
3

) r2(r−1)
12

(r/2)3

3!

j = 4 0 1
5

(
r
4

) r(5r−8)
72

(
r
2

) r3(r−1)
48

(r/2)4

4!

j = 5 0 1
6

(
r
5

) r(4r−7)
60

(
r
3

) r3(r−1)(7r−10)
576

r4(r−1)
288

(r/2)5

5!

The polynomials cp,j(r) (0 ≤ p ≤ j ≤ 5)

The result of this subsection is given by the following proposition.
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Proposition 2. Let L = ∂r + Cx. For any r, λ ∈ C, we have

Lλ =
∑
j,s≥0

Cj+s dj,s(λ, r)x
s ∂r(λ−s)−(r+1)j

x , (73)

where dj,s(λ, r) is a polynomial in λ and r with rational coefficients, given explicitly by

dj,s(λ, r) =
1

s!

j∑
p=0

cp,j(r) (λ)−s+p+j . (74)

Here (λ)−n :=
∏n
m=1(λ−m+ 1) denotes the descending Pochhammer symbol.

Proof. By the rules for manipulating pseudodifferential operators [29, 34, 79], it is clear that
Lλ has the form (73) for some polynomials dj,s(λ, r). It then suffices to prove (74) for λ ∈ Z≥0,
which we do by induction, the case λ = 0 being trivial (both sides of (74) then reduce to δj,0 δs,0).

Expanding the identity Lλ+1 = LλL, we find that dj,s satisfies the recursive relation

dj,s(λ+ 1, r) − dj,s−1(λ, r) − dj,s(λ, r) =
(
r(λ− s)− (r + 1)(j − 1)

)
dj−1,s(λ, r) .

If we multiply both sides of this by s! and replace dj,s everywhere by the expression given in (74),
then the left-hand side equals∑

p≥0

cp,j
[
(λ+ 1)−s+p+j − s (λ)−s+p+j−1 − (λ)−s+p+j

]
=
∑
p≥0

(p+ j) cp,j (λ)−s+p+j−1

and the right-hand side equals∑
p≥0

cp,j−1

[
r (λ−s)−(r+1) (j−1)

]
(λ)−s+p+j−1 =

∑
p≥0

cp,j−1

[
r (λ)−s+p+j+(rp−j+1) (λ)−s+p+j−1

]
.

(Define cp,j = 0 if p > j.) Comparing the coefficients of (λ)−n on both sides, we see that the claim
follows from the recursion (p+ j) cp,j = (rp− j + 1) cp,j−1 + r cp−1,j−1, which follows easily by
differentiating (72).

We observe that there is a slightly different proof, which does not depend on the polynomiality,
obtained by using the identity LLλ = Lλ L instead of LλL = Lλ+1. Expanding both sides and
comparing coefficients, we find the identity(
r (λ−s+1)−(r+1) j

)
dj,s−1(λ, r) − r s dj,s(λ, r) =

j∑
m=1

(
r

m+ 1

)
(s+m)−m+1 dj−m,s+m(λ, r) ,

which determines the dj,s completely by a double induction (first on j, and then for a given j
on s). The proposition then follows by verifying that the right-hand side of (74) satisfies the
same identity, which is an elementary exercise using the generating function (72). �

Corollary. For arbitrary positive integers r and k, the polynomial zk(x) = resL
k
r is given by

zk(0) = Cjdj,0(k/r, r) if k = −1 + (r + 1)j with j ≥ 0 and is 0 otherwise, and similarly for any

s ≥ 0, z
(s)
k (0) is equal to Cs+jdj,s(k/r, r) if k = −1 + (r + 1)j with j ≥ 0 and vanishes otherwise.

4.2. Product formula. In this subsection we will derive another formula for zk(0) using the
wave-function-pair approach (see Appendix A or [53]). Before doing this, we will first introduce
some functions and prove several lemmas that are useful for the construction.

Definition 1. Define a power series (algebraic if r is rational)

w = 1 + u − r − 1

6
u2 +

(r − 1)(2r + 1)

72
u3 − · · · (75)
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by
wr+1

r(r + 1)
− w

r
+

1

r + 1
=

u2

2
(76)

and define coefficients Cn(r, j) ∈ Q[r, j], n ≥ 0 by

wj+1 − 1

j + 1
=
∑
n≥0

Cn(r, j)un+1 (replace LHS by logw if j = −1) , (77)

the first few values being

C0(r, j) = 1 , C1(r, j) =
j

2
− r − 1

6
, C2(r, j) =

j(j − r)
6

+
(r − 1)(2r + 1)

72
,

C3(r, j) =
j(j − r)(j − r − 1)

24
− (r − 1)(r + 2)(2r + 1)

540
.

Define C−2(r, j) = C−1(r, j) = 0.

Remark 6. Immediately from the definition we find a further property for the coefficients
Cn(r, j), that is, they have an S3-symmetry generated by two involutions

Cn(r, j) = (−1)nCn

(
−r − 1,

n− 3

2
− j
)

= (r + 1)nCn

( −r
r + 1

,
j − r
r + 1

)
. (78)

We hope to investigate this very intriguing property and its applications later.

We now define a power series fj(T ) = fr,j(T ) ∈ Q[r, j][[T ]] (we usually omit r) by

fj(T ) :=
∑
k≥0

(2k + 1)!!C2k(r, j) (−T )k . (79)

Note that this is defined for all r and j in C, not just for non-negative integers, because the
Cn(r, j) are polynomials.

Lemma 1. The power series fj(T ) (j ∈ C) satisfy the following two identities:

fj+1(T ) =

(
1 +

(r − 1

2
− j
)
T + (r + 1)T 2 d

dT

)
fj(T ) , (80)

fj+r(T ) = fj(T ) − r j T fj−1(T ) . (81)

Proof. We have by definition

wj
dw

du
=
∑
n≥0

(n+ 1)Cn(r, j)un . (82)

Applying d/du to (76) gives(wr
r
− 1

r

) dw
du

= u ⇒ wr+j
dw

du
− wj

dw

du
= r uwj .

Substituting (82) and (77) into this identity, comparing the Taylor coefficients of u, and noticing

that C0(r, j) = 1, C1(r, j) = j
2 −

r−1
6 , we obtain that for all n ≥ 0,

(n+ 1)Cn(r, r + j) = (n+ 1)Cn(r, j) + r j Cn−2(r, j − 1) + r δn,1 ,

which proves (81). Similarly, we have(
wj+1 − wj

) dw
du

= wj+1
(
wr
dw

du
− r u

)
− wj

dw

du

= wj
(r(r + 1)

2
u2 − r + (r + 1)w

) dw
du
− r uwj+1 − wj

dw

du
.
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Namely, (
wj+1 − wj

) dw
du

= − r + 1

2
u2wj

dw

du
+ uwj+1 ,

which implies (80). The lemma is proved. �

We note that the above relations (80) and (81) determine fr,j(T ) ∈ 1 + T C[r, j][[T ]] uniquely
for all r, j ∈ C. To prove this, we may assume that j ≥ 0 and r ≥ 2 are integers (since
these countably many values define the polynomial coefficients uniquely). Then (80) implies by
induction that f1, f2, f3, . . . , fr are uniquely determined by f0 and then (81) with j = 0 gives a
differential equation for f0, which has a unique solution in 1 + T C[r, j][[T ]]. (In fact, this proof
shows that the fj,r(T ) are uniquely determined by just (80) and the equation f0 = fr.)

We now define an odd Laurent series (again algebraic if r is rational)

X =
1

u
− r − 1

6
u +

(r − 1)(2r + 1)(r − 3)

360
u3 + · · · ∈ 1

u
Q[r][[u2]]

by the equation
(X + 1)r+1 − (X − 1)r+1

2 (r + 1)
=

1

ur
, (83)

and define coefficients C̃n(r, i, j) ∈ Q[r, i, j] by

− (X + 1)i (X − 1)j
dX

du
=
∑
n≥0

C̃n(r, i, j)un−i−j−2 . (84)

The first two C̃n(r, i, j) are given by

C̃0(r, i, j) = 1 , C̃1(r, i, j) = i− j . (85)

Taking i = j = 0 in (84), we have

− dX

du
=
∑
n≥0

C̃n(r, 0, 0)un−2 . (86)

Integrating this equality with respect to u we find that

−X = − 1

u
+
∑
n≥2

1

n− 1
C̃n(r, 0, 0)un−1 . (87)

Lemma 2. The numbers C̃n(r, i, j) satisfy the following relations:

C̃n(r, i+ 1, j) − C̃n(r, i, j + 1) = 2 C̃n−1(r, i, j) , (88)

C̃n(r, i+ r + 1, j) − C̃n(r, i, j + r + 1) = 2 (r + 1) C̃n−1(r, i, j) . (89)

Proof. We have from the defining equation (84) that

− (X + 1)i+1 (X − 1)j
dX

du
= (X + 1)

∑
n≥0

C̃n(r, i, j)un−i−j−2 ,

− (X + 1)i (X − 1)j+1 dX

du
= (X − 1)

∑
n≥0

C̃n(r, i, j)un−i−j−2 .

Subtracting these two identities, using again (84), and comparing the coefficients of powers of u
gives (88). Similarly, multiplying (X + 1)i(X − 1)j to both sides of the defining equation (83),
using (84), and comparing the coefficients of powers of u, we obtain (89). �
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Proposition 3. We have the following identities: ∀ i, j ∈ C,

fi(T ) fj(−T ) =
∑
n≥0

(
1 + n−i−j−1

r

)
n
C̃n(r, i, j)

(r T
2

)n
, (90)

where (s)n = s(s+ 1) · · · (s+ n− 1) denotes the ascending Pochhammer symbol.

Proof. Write

fi(T ) fj(−T ) =
∑
n≥0

(
1 + n−i−j−1

r

)
n
Pi,j,n(r)

(r T
2

)n
. (91)

It then suffices to show that the Pi,j,n(r) satisfy the same recursion relation as C̃n(r, i, j). This
can be verified straightforwardly using (79)–(81). The proposition is proved. �

Let us now assume that r is a positive integer and use the wave-function-pair approach (see

Appendix A) to compute the residue of Lk/r, where we remind the reader that

L = ∂r + Cx .

First we construct a particular pair of wave functions (ψ,ψ∗) of L. Start with solving the equation
Lψ = zrψ, that is, (

∂r − C (zr/C − x)
)
ψ = 0 . (92)

Denote X = zr/C − x. Then we have(
(−∂X)r − CX

)
ψ = 0 . (93)

Using the formal saddle point method, we know that this linear ODE has a unique formal Puiseux
series solution of the form:

P1(X) = e−
r
r+1

C
1
r X

r+1
r
X−

r−1
2r

∑
m≥0

cm

X
(r+1)m

r

, c0 := 1 . (94)

Therefore, any wave function ψ(x, z) for L can be expressed as α1(z)P1(X) for some α1(z).
Although as we know that the choice of α1(z) is not unique, let us show that the following
function gives a particular choice:

αbisp
1 (z) :=

1

e−
r
r+1

C
1
rX

r+1
r
X−

r−1
2r

∣∣∣∣
x=0

= C−
r−1
2r e

r
r+1

C−1zr+1

z
r−1
2 . (95)

Indeed, define

ψ = ψ(x, z) := αbisp
1 (z)P1(X) . (96)

Then it is easy to see that ψ has the form ψ = Φ1(exz), where Φ1 =
∑

k≥0 φ1,k(x) ∂−k with

φ1,0 ≡ 1. Hence the function ψ constructed by (96) is indeed a wave function of L. We call this
choice of α1(z) the bispectral one. Similarly, denote by

P2(X) := e
r
r+1

C
1
r X

r+1
r
X−

r−1
2r

∑
m≥0

c∗m

X
(r+1)m

r

, c∗0 := 1 (97)

the unique formal solution to the linear ODE(
∂rX − CX

)
ψ∗ = 0 . (98)

Define
αbisp

2 (z) := C−
r−1
2r e−

r
r+1

C−1zr+1

z
r−1
2 , (99)

and construct
ψ∗ = ψ∗(x, z) := αbisp

2 (z)P2(X) . (100)
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Then it is easy to see that ψ∗ can be written as ψ∗ = Φ2(e−xz), where Φ2 =
∑

k≥0 φ2,k(x) ∂−k

with φ2,0 ≡ 1.

Proposition 4. The above ψ,ψ∗ form a particular pair of wave and dual wave functions of L.

Proof. Since we already know that ψ is a wave function and ψ∗ is a dual wave function, we are left
to show that ψ, ψ∗ form a pair. From the definition it then suffices to show that Φ1◦Φ∗2 ≡ 1. Note
that for any two pseudo-differential operators P,Q, resz P (exz)Q(e−xz) dz = res P ◦Q∗. Taking
P = ∂i ◦Φ1 and Q = Φ2 in this identity we find res ∂i ◦Φ1 ◦Φ∗2 = resz ∂

i ◦Φ1(exz) Φ2(e−xz) dz.
Therefore, showing Φ1 ◦ Φ∗2 ≡ 1 is further equivalent to showing that for all i ≥ 0,

resz ∂
i
(
ψ(z, x)

)
ψ∗(z, x) dz = 0 . (101)

Before continuing the proof let us do preparations. Following [14, 20] (see also [77]), introduce
the following linear operators Sz and S∗z :

Sz :=
C

rzr−1
∂z −

r − 1

2r
Cz−r − z =

C

r
z−

r−1
2 ◦ ∂z ◦ z−

r−1
2 − z , (102)

S∗z := − C

rzr−1
∂z +

r − 1

2r
Cz−r − z =

C

r
z−

r−1
2 ◦ (−∂z) ◦ z−

r−1
2 − z . (103)

Then we have the following lemma.

Lemma 3. For any i ≥ 0, we have

∂i
(
ψ(x, z)

)
=
(
−Sz

)i (
ψ(x, z)

)
, ∂i

(
ψ∗(x, z)

)
=
(
S∗z
)i (

ψ∗(x, z)
)
. (104)

Proof. By straightforward calculations using the definitions (96), (100). �

As in Appendix A, define

c(z) := ψ(0, z) , c∗(z) := ψ∗(0, z) .

We then further have the following lemma.

Lemma 4. The ψ and ψ∗ defined by (96) and (100) have the expressions:

ψ(x, z) =
∑
i≥0

(−1)i

i!
S i
z

(
c(z)

)
xi =

∑
i≥0

(xz)i

i!
fi
( C/r
zr+1

)
, (105)

ψ∗(x, z) =
∑
i≥0

1

i!
(S∗z )i

(
c∗(z)

)
xi =

∑
i≥0

(−1)i
(xz)i

i!
fi
(−C/r
zr+1

)
, (106)

where we recall that fi are given by (79).

Proof. Performing the Taylor expansion of ψ with respect to x at x = 0 and using Lemma 3 we
immediately get the first equality of (105). By using (94) we find that c(z) has the form

c(z) =
∑
m≥0

C
(r+1)m

r
cm

z(r+1)m
, c0 = 1 . (107)

Define

f̃i := z−i (−Sz)i(c(z)) .
Then by using the definition of Sz we observe that f̃i ∈ C[[1/zr+1]]. Write

f̃i = f̃i(T ) , T =
C

r zr+1
.
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Using again the definition of Sz as well as (92), we find that

f̃j+1(T ) =

(
1 +

(r − 1

2
− j
)
T + (r + 1)T 2 d

dT

)
f̃j(T ) ,

f̃j+r(T ) = f̃j(T ) − r j T f̃j−1(T ) .

Comparing these with (80)–(81) and using the uniqueness of the recursion we conclude that

fi = f̃i. This proves (105). The proof of (106) is similar. The lemma is proved. �

End of the proof of Proposition 4. Using the above Lemma 4 and (90), we have

resz ∂
i
x

(
ψ(z, x)

)
ψ∗(z, x) dz

= resz
∑
m≥0

zm+ixm

m!
fm+i

( C/r
zr+1

)∑
`≥0

(−1)`
(xz)`

`!
f`
(−C/r
zr+1 ) dz

= resz
∑

m,`,q≥0

(−1)`
zm+`+i−q(r+1) xm+`

m! `!

(
1 +

q − i−m− `− 1

r

)
q
C̃q(r,m+ i, `)

(r
2

)q
dz = 0 .

The proposition is proved. �

Corollary. Let L = ∂r + Cx and zk(x) be defined by (71). We have

zk(0) =

{
(−1)(r+1)n

(
1 + n−1

r

)
n
C̃n(r, 0, 0) C

n

2n , if k = −1 + (r + 1)n with n ≥ 0 ,
0 , otherwise.

(108)

Proof. According to (279) and (278), and using Lemma 4, we have∑
k≥−1

(−1)k+1 zk(0) z−(k+1) = f0

( C/r
zr+1

)
f0

(
− C/r
zr+1

)
. (109)

Here z−1(0) := 1. Substituting (90) in this equality we find∑
n≥0

(
1 + n−1

r

)
n

C̃n(r, 0, 0)Cn

2nzn(r+1)
= 1 +

∑
k≥0

(−1)k−1 zk(0) z−(k+1) . (110)

The corollary is proved by comparing the coefficients of powers of z−1. �

5. The A series

In this section, we will prove Theorem 5, which generalizes all parts of Theorem 2 (except for
(i) and (ii), which were generalized to all g, not just Al, in Section 3) from A4 to Ar−1 for all r.
We will also prove the integrality result Theorem 1, which we have obtained for r = 5 only. The
odd-looking numbering is meant to correspond to the various parts of Theorem 2.

Theorem 5. Let m :=
[
(2g − 1)/r

]
. The following statements are true:

(iii) [algebraicity] Define ãg(r) from the generating function

y(x) =
∑
g≥0

ãg(r) (2x)2g = 1 − r − 1

6
x2 +

(r − 1)(r − 3)(2r + 1)

360
x4 + · · · , (111)

where y(x) is the unique solution in 1 + x2Q[r][[x2]] of the polynomial equation

(y + x)r+1 − (y − x)r+1

2x
− r − 1 = 0 . (112)
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Then for all g ≥ 1 with 2g − 1 6≡ 0 (mod r),

τAr−1(g) =
(−1)m+g r1−g({2g−1

r

})
m

ãg(r) . (113)

(iv) [closed formula] Define cp,j(r) as in (72). Then for all g ≥ 0, we have

τAr−1(g) =
(−1)g+m−1 r−g({2g−1

r

})
2g+m+1

2g∑
p=0

(
2g(r + 1)− 1

r

)−
p+2g

cp,2g(r) . (114)

(v) [product formula] Define Cn(r, j) ∈ Q[r, j] by (75)–(77) and fj(T ) by (79), i.e., fj(T ) =∑
k≥0(2k + 1)!!C2k(r, j) (−T )k. Then the following identity holds true:

f0(T ) f0(−T ) =
∑
g≥0

(
1− 1− 2g

r

)
2g

(1− 2g) r2g ãg(r)T
2g . (115)

(vi) [terminating hypergeometric sum] Set R = [r/2]. For all g ≥ 1 with 2g − 1 6≡ 0 (mod r), we
have

τAr−1(g) =
(−1)g+m({2g−1

r

})
m

r1−g

1− 2g

∑
d≥0

(2g−1
r

d

)
Kg,d , (116)

where

Kg,d =
1

4g (r + 1)d

∑
m1+m2+···+mR=d

m1+2m2+···+RmR=g

(
d

m1, . . . ,mR

) R∏
i=1

(
r + 1

2i+ 1

)mi
. (117)

(vii) [asymptotics] For r ≥ 3, as g →∞ with 2g − 1 6≡ 0 (mod r), we have

τAr−1(g) ∼ r
√
π

√
r + 1

r−2
r

1

Γ
(
1−

{2g−1
r

}) 1

Γ(2g−1
r )

g−
3
2

(
4 r (r + 1)

2
r sin2

(
π
r

))−g
. (118)

For r = 2 (the A1 case) the asymptotic formula is the same with an extra factor of 1/2.

Proof. Let us start from recalling the r-spin Witten conjecture [112] (the Faber–Shadrin–Zvonkine
theorem [64]). Introduce the Lax operator

L = ∂r +
r−1∑
α=1

uα ∂
r−1−α . (119)

The Gelfand–Dickey hierarchy [34] is the following infinite family of PDEs for (r − 1) unknown
functions u1, . . . , ur−1:

∂L

∂sα,q
=
[(
Lk/r

)
+
, L
]
, q ≥ 0 , (120)

where k = α+ rq. Similarly as before, denote s := (sα,q)α=1,...,r−1, q≥0. Since

∂uα
∂s1,0

=
∂uα
∂x

,

we identify s1,0 with x. Denote by Z(t) the r-spin partition function defined by (38) with Ω
being the Witten class. Then the r-spin Witten conjecture [112] is stated as follows: the partition
function Z = Z(t(s)) is a particular tau-function for the Gelfand–Dickey hierarchy (120), where

tα,q = (−1)q+1 (
√
−r)

3k
r+1

+1
(α
r

)
q+1

sα,q , q ≥ 0 ; (121)
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moreover, the partition function Z satisfies the string equation (44) with ηαβ = δα+β,r. Note
that the string equation (44) written in terms of the time variables sα,q reads

l∑
α=1

∑
q≥0

(α+ rq + r) sα,q+1 ∂Z

∂sα,q
+

1

2

l∑
α=1

α (r − α) sα,0sl+1−α,0 Z =
∂Z

∂s1,0
. (122)

It is known that the differential polynomials hk defined by

hk :=
(−1)q+1

(
√
−r)3 1+k

r+1 (αr )q+1

resL
k
r

(
k ∈ Z>0 r rZ>0

)
(123)

are the tau-symmetric Hamiltonian densities for the Gelfand–Dickey hierarchy (see [34, 112];
also cf. [14, 23, 24, 57]). Here k = α + rq. Denote by uα(s) the solution corresponding to the
particular tau-function Z(t(s)). The Lax operator L given by (119) is now also subjected to this
solution. We have

hk(s(t)) =
∂2 logZ(t)

∂tα,q∂t1,0
. (124)

Then using the string equation together with a Miura-type transformation we find that the initial
Lax operator L|sα,q=x δα,1δq,0 , still denoted by L, has the following explicit expression [14]:

L = ∂r + r x . (125)

Now by using the above (40), (123), (124) we have

τAr−1(g) = (−1)q+g
z2g(r+1)−1(0)

r3g (αr )q+2
, ∀ g ≥ 0 , (126)

where α ∈ {1, . . . , l}, q ≥ 0 are the unique integers satisfying (24), and we recall that zk(x) :=

resLk/r. Therefore, by using (108), Proposition 3, and the corollary to Proposition 2 from the
previous section, we arrive at parts (iii)–(v). We remark in passing that equation (112) multiplied
out, takes the form

r/2∑
i=0

(
r + 1

2i+ 1

)
x2i yr−2i − r − 1 = 0 , (127)

which for r = 5 agrees with the equation in (9) (part (iii) of Theorem 2) if we set z = − 20x2.
To show (116), we will prove a more general statement (suitable for the later as well). Denote

λ(p; s) = pr +
r−1∑
i=1

si p
r−1−i ,

where s = (s1, . . . , sl). Consider the following algebraic equation for p:

λ(p; s) = ξr . (128)

This equation has a unique formal solution p(ξ; s) in ξ + Q[s][[ξ−1]]. Write

p(ξ; s) = ξ +
∑
k≥1

uk(s) ξ
−k (129)

with uk(s) ∈ Q[s], k ≥ 1. Differentiating (129) with respect to ξ, we find

dp(ξ; s)

dξ
= 1 −

∑
k≥1

k uk(s) ξ
−k−1 . (130)
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Therefore,

k uk(s) = resξ=∞
dp(ξ; s)

dξ
ξkdξ = resξ=∞ ρ

kdp(ξ; s) = resp=∞ f(p; s)
k
r dp . (131)

Noting that (
pr +

r−1∑
i=1

si p
r−1−i

) k
r

= pk
∑
j≥0

(k
r

j

) r−1∑
i1,...,ij=1

si1 . . . sij p
−j−i1−···−ij , (132)

we obtain the following expressions for uk(s):

k uk(s) = −
∑
j≥0

(k
r

j

) ∑
1≤i1,...,ij≤r−1

j+i1+···+ij=k+1

si1 . . . sij (133)

= −
∑

n1,...,nr−1≥0

2n1+3n2+···+rnr−1=k+1

( k
r∑
i ni

)( ∑
i ni

n1, . . . , nr−1

)
sn1

1 . . . s
nr−1

r−1 . (134)

Now specializing the above to s = s∗ given by

s∗2i = 0 , s∗2i−1 =
1

4i(r + 1)

(
r + 1

2i+ 1

)
,

we obtain

(1− 2g)u2g−1(s∗) =
∑
d≥0

( 2g−1
r
d

)
4g (r + 1)d

∑
m1+···+mR=d

m1+2m2+···+RmR=g

(
d

m1, . . . ,mR

) R∏
i=1

(
r + 1

2i+ 1

)mi
. (135)

Here mi = n2i−1. Combining with (112) we obtain (116).
It remains to prove part (vii). In view of (113), (118) is equivalent to the asymptotic formula

ãg(r) ∼
(r + 1)

1
r
− 1

2√
πg3

sin
(2g−1

r π
)(

− 4 (r + 1)
2
r sin2

(
π
r

))g , r > 2 (136)

for the coefficients ãg(r) defined in (111). By a standard principle, this is in turn equivalent to
studying the asymptotic properties (to lowest order) of the generating function y(x) near its
singularities of smallest absolute value. Let P = P (x, y) be the polynomial on the left-hand side
of (112) and denote by Px and Py its partial derivatives with respect to x and y, respectively. The
singularities of y(x) are located at the points where its graph becomes vertical, i.e., where both
P and Py vanish (and where Px doesn’t vanish, but one sees easily that these three polynomials
have no common zeros). Since Py/(r + 1) = ((y + x)r − (y − x)r)/(2x), we see that the curve
{Py = 0} has (r − 1) components, parametrized by the non-trivial rth roots of unity ζ and given

by y+x
y−x = ζ. Setting (x, y) = c

( ζ−1
2 , ζ+1

2

)
with c ∈ C, and substituting this into the equation

P (x, y) = 0, we find that cr = r + 1. Thus, setting c0 = (r + 1)1/r, we have that the r(r − 1)

common points of P = 0 and Py = 0 are given parametrically by (x, y) = c0

(α−β
2 , α+β

2

)
with

(α, β) ranging over all pairs of distinct rth roots of unity. Of these, the ones with x nearest to

the origin are those with α/β = ζ±1
r , where ζr = e2πi/r, i.e., they are the 2r points (±xj , yj),

where j ∈ Z/rZ and (xj , yj) := c0
2

(
ζjr − ζj−1

r , ζjr + ζj−1
r

)
, all of them with |xj | = c0 sin(π/r).

To complete the proof, we must (a) compute the potential contribution from each nearest
singularity and (b) see that only the four singularities (±x0, y0) and (±x1, y1) belong to the
subset of {P = 0} that is parametrized by x 7→ (x, y(x)) in the closed disk |x| ≤ c0 sin(π/r).
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For (a), we note that from the Taylor expansion of P near the singularity (xj , yj) we find
that for a point (x, y) = (xj − ε, yj + δ) near (xj , yj) lying on the curve P = 0 we must have

Px(xj , yj) ε ≈ Pyy(xj , yj) δ
2/2 or y ≈ yj +Cj

√
1− x/xj with Cj = ±

√
(2xPx/Pyy)(xj , yj). A

short computation gives that xjPx(xj , yj) = r (r + 1) and Pyy(xj , yj) = − ζ1−2j
r r (r + 1)2−2/r, so

Cj = ± i
√

2 ζ
j− 1

2
r (r + 1)

1
r
− 1

2 . The contribution from this singularity to the coefficient 22gãg(r)

of x2g in y(x) is then asymptotically equal to Cj
(

1/2
2g

)
x−2g
j , and of course the contribution

from (−xj , yj) is the same since P is even in X. Since
(

1/2
2g

)
is asymptotically equal to −1/

√
32πg3,

we find that the sum of the four contributions coming from (±x0, y0) and (±x1, y1) indeed gives
the asymptotic formula stated in (136). For (b), we first note that since P is a polynomial in x2

and y having degree r in y, the map π : (x, y) 7→ X = x2 represents the Riemann surface {P = 0}
as an r-sheeted branched cover of P1(C). By the above calculations, this map is unramified over
the open disc D = {|X| < |x2

j | = c2
0 sin2(π/r)}, but has r ramification points (Xj = x2

j , yj), at

each of which exactly two of the r sheets come together, over the closure D. The inverse image
of the disk D consists of r disjoint disks Dζ , indexed by the rth roots of unity ζ, where Dζ is the
component of π−1(D) containing (0, ζ) and is parametrized by y = ζy(x/ζ) with x ∈ D. If we
write Dj (j ∈ Z/rZ) for D

ζjr
, then it is not hard to see that Dj meets Dj−1 at the point (Xj , yj)

and, of course (replacing j by j + 1) also meets Dj+1 at (Xj+1, yj+1), and that the closed disks

Dj have no other points in common. In particular, the component D0 parametrized by y = y(x)
contains the two ramification points (X0, y0) and (X1, y1) in its closure, and no others, and this

means that the two points nearest to the origin where the series y(
√
X) is not analytic are X0

and X1, as claimed. For r = 2, this proof of the asymptotics also applies, but the situation on
how the various branches over the closed disk D meet at their boundaries is slightly different,
and we get the extra factor 1/2. This can also be seen directly, since y =

√
1− x2/3 in this case,

but in any case there is no need to do any of this since the well-known formula τA1(g) = 1
24g g!

immediately gives the asymptotics.
This completes the proof of all parts of Theorem 5. �

Remark 7. A different approach for computing the r-spin intersection numbers, using the theory
of matrix models, was obtained by Brézin–Hikami [16, 17]. For the one-point numbers τAr−1(g),
Brézin–Hikami discovered the following integral formula:

τAr−1(g) =
(−1)g r1−g

1− α
r

[
t2g
] ∫ ∞

0
exp

(
−(s+ t/2)r+1 − (s− t/2)r+1

(r + 1) t

)
ds , (137)

where g ≥ 0 with 2g − 1 ≡ α (mod r), α = 1, . . . , r − 1. We note that formula (116) of part (vi)
of Theorem 5 can also be proved by using (137). Indeed, expanding the integrand suitably and
integrating term-by-term, one can obtain that

τAr−1(g) =
(−1)g r−g

4g Γ
(
1−

{2g−1
r

}) ∑
d≥0

(−1)d
Γ(d− 2g−1

r )

(r + 1)d

∑
m1+m2+···+mR=d

m1+2m2+···+RmR=g

R∏
i=1

(
r+1
2i+1

)mi
mi!

, (138)

which by Euler’s formula is equivalent to (116). Liu–Vakil–Xu [86] obtained formula (138) by
using the integral formula (137); this was also our original derivation of (116). Therefore, part (vi)
of Theorem 5 is not new; however, our current proof for (116) using the wave-function-pair
approach from the theory of integrable systems is a self-contained one. We also note that the
integral formula (137) in principle could also be used together with the method of steepest
descent to give a different proof for part (vii) of Theorem 5. (The recursion given by the dual
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topological ODE, cf. Theorem 4, could give a third proof of part (vii) of Theorem 5 with the
constant term in the right-hand side of (136) undetermined.)

By using (111)–(113) one immediately gets the first few values of τAr−1(g):

τAr−1(1) =
r − 1

24
, r ≥ 2 , (139)

τAr−1(2) =

{
1/1152 , r = 2 ,

(r−3)(r−1)(2r+1)
5760 r , r ≥ 3 ,

(140)

τAr−1(3) =


1/82944 , r = 2 ,
1/31104 , r = 3 ,
3/20480 , r = 4 ,

(r−5)(r−1)(2r+1)(8r2−13r−13)
2903040 r2

, r ≥ 5 .

(141)

Corollary. For r ≥ 2g, the value of τAr−1(g) is a Laurent polynomial in r. Moreover, the value

of this Laurent polynomial at r = −1 is equal to
B2g

2g , where Bn is the nth Bernoulli number.

Proof. If r ≥ 2g, then m = 0, so the right-hand side of (113) reduces to −ãg(r)/(−r)g−1. The
first statement then follows from the fact that ãg(r) ∈ Q[r]. Now by taking the r → −1 limit
in (112) we find the unique solution y = x

tanhx . The second statement then follows. �

According to Witten [111, 112] the second statement in the corollary should give a new proof of
the Harer–Zagier formula [73, 99] on the orbifold Euler characteristic of Mg,1 (cf. also [17, 86]).

We now give the proof of the three integrality statements for τA4(g) stated in the introduction.

Proof of Theorem 1. The algebraicity of the generating function of the numbers ag as given in
part (iii) of Theorem 2 implies their integrality away from the primes 2, 3, and 5. To prove the
integrality of bg and cg defined by equation (5), we use (15). It follows from (15) that

cg = 6−g
∑

0≤s≤5g/2

2−2s (−9)s c[s]
g , (142)

where the numbers c
[s]
g are given according to the value of g (mod 5) by

c
[s]
5n :=

5−2s(3
5)n(4

5)n(1
5)3n−s

s! (5n− 2s)!
, c

[s]
5n−1 :=

5−2s(2
5)n(4

5)n(3
5)3n−1−s

s! (5n− 1− 2s)!
,

c
[s]
5n−3 :=

5−2s(3
5)n(1

5)n(2
5)3n−2−s

s! (5n− 3− 2s)!
, c

[s]
5n−4 :=

5−2s(1
5)n(2

5)n(4
5)3n−3−s

s! (5n− 4− 2s)!
.

To show that cg belongs to Z
[
1/30

]
we will actually show the stronger statement that each c

[s]
g

belongs to Z[1/5].

Consider first the case g = 5n. For each prime p 6= 5, the p-adic valuation of c
[s]
5n is given by

νp
(
c

[s]
5n

)
= νp

((
3
5

)
n

)
+ νp

((
4
5

)
n

)
+ νp

((
1
5

)
3n−s

)
− νp(s!) − νp((5n− 2s)!) .

Namely,

νp
(
c

[s]
5n

)
=
∑
k≥1

[
u
((

3
5

)
n
, pk
)

+ u
((

4
5

)
n
, pk
)

+ u
((

1
5

)
3n−s, p

k
)
− u

(
s!, pk

)
− u

(
(5n− 2s)!, pk

)]
,
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where u
(
(a/5)n, p

k
)

denotes the number of elements in {a, a+ 5, . . . , a+ 5n−5} that are divisible

by pk (a = 1, . . . , 5, k ≥ 1). Counting these numbers we find

u
((

3
5

)
n
, pk
)

+ u
((

4
5

)
n
, pk
)

+ u
((

1
5

)
3n−s, p

k
)
− u

(
s!, pk

)
− u

(
(5n− 2s)!, pk

)
= fj

(
n
pk
, s
pk

)
if pk ≡ j (mod 5), 1 ≤ j ≤ 4 , (143)

where the functions fj : R2 → Z are defined by

f1(x, y) := [x+ 2
5 ] + [x+ 1

5 ] + [3x− y + 4
5 ] − [y] − [5x− 2y] , (144)

f2(x, y) := [x+ 1
5 ] + [x+ 3

5 ] + [3x− y + 2
5 ] − [y] − [5x− 2y] , (145)

f3(x, y) := [x+ 4
5 ] + [x+ 2

5 ] + [3x− y + 3
5 ] − [y] − [5x− 2y] , (146)

f4(x, y) := [x+ 3
5 ] + [x+ 4

5 ] + [3x− y + 1
5 ] − [y] − [5x− 2y] . (147)

Therefore it suffices to show that each of f1, f2, f3, f4 is nowhere negative on R2. To show this,
we observe that each fα(x, y) is periodic in both variables and is also piecewise constant, with
jumps only along finitely many lines in the unit square [0, 1]2, so one only has to compute the
values of fα(x, y) in each component of the complement of the union of these lines. (The value
of fi at a point lying on one of these lines is always equal to the value of fi in one of the adjacent
open regions.) This is most easily seen graphically, as illustrated in Figure 1, which shows that

Figure 1. The values of f1 and f2 in [0, 1]2

each of f1 and f2 assumes only the values 0, 1, and 2, and this also gives the non-negativity of f3

and f4 as well since f3(x, y) = 2− f2(−x,−y) and f4(x, y) = 2− f1(−x,−y).
The proof for each other residue class of g (mod 5) is exactly similar and again reduces to the

non-negativity of four piecewise continuous functions on R2/Z2, but when one goes through the
details it turns out that these four are a permutation of the same four functions fj as above in
each case, so that we do not need to make new graphs. The proofs for bg are also similar, and
again a priori involve the non-negativity of 16 periodic functions on R2, which again turn out to
be repetitions of only four functions:

g1(x, y) = [x+ 1
5 ] + [x+ 4

5 ] + [3x− y + 4
5 ] − [y] − [5x− 2y] , (148)

g2(x, y) = [x+ 3
5 ] + [x+ 2

5 ] + [3x− y + 2
5 ] − [y] − [5x− 2y] , (149)

g3(x, y) = [x+ 2
5 ] + [x+ 3

5 ] + [3x− y + 3
5 ] − [y] − [5x− 2y] , (150)

g4(x, y) = [x+ 4
5 ] + [x+ 1

5 ] + [3x− y + 1
5 ] − [y] − [5x− 2y] . (151)

Their non-negativity can be proved as for the fj . The theorem is proved. �
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6. The D series

In this section, we derive explicit formulas for the numbers τg(g) with g being Dl (l ≥ 4).
Denote by r = 2l − 2 the Coxeter number of g, and recall that τDl(g) = 〈τα,q〉 are the one-point
FJRW invariants of Dl-type, where α, q are determined by (46). Denote by Z = Z(t) the
partition function for the FJRW invariants of Dl-type as in (38).

Theorem 6. Let l ≥ 4 be an integer and r = 2l − 2. Set m := [(2g − 1)/r]. Then the following
statements are true:

(iii) [algebraicity] Define ng(r) from the generating function

y(t) =
∑
g≥0

ng(r) t
2g = 1 − r + 2

24
t2 +

(r + 2)(r − 6)(2r + 1)

5760
t4 + · · · , (152)

where y(t) is the unique solution in 1 + t2 Q[r][[t2]] to the algebraic equation

r/2∑
j=0

1

2j + 1

(
j + r/2

2j

)
yr−2j t2j − 1 = 0 (153)

or alternatively t and y = y(t) are related algebraically by

t/y = Z − Z−1 , tr
Zr+1 − Z−r−1

r + 1
=
(
Z − Z−1

)r+1
. (154)

Then for all g ≥ 1 we have

τDl(g) =
(−1)m+g r1−g({2g−1

r

})
m

ng(r) . (155)

(iv) [closed formula] For all g ≥ 1, we have

τDl(g) =
(−1)g+m−1 r−g({2g−1

r

})
2g+m+1

2g∑
j=0

j∑
p=0

cp,j(r)

(
2g(r + 1)− 1

r

)−
2g+p

(
−1

2

2g − j

)
. (156)

(v) [product formula] Define Cn(r, j) ∈ Q[r, j] by (75)–(77) and fj(T ) by (79), i.e., fj(T ) =∑
k≥0(2k + 1)!!C2k(r, j) (−T )k. Then the following identity holds true:[

f 1
2
(T ) f− 1

2
(−T )

]
even

=
∑
g≥0

(
1− 1− 2g

r

)
2g

(1− 2g) r2g ng(r)T
2g . (157)

Here for a power series v(T ), [ v(T ) ]even means taking the even degree part of v(T ).

(vi) [terminating hypergeometric sum] For all g ≥ 1,

τDl(g) =
(−1)g+m({2g−1

r

})
m

r1−g

1− 2g

∑
d≥0

(2g−1
r

d

)
Kg,d , (158)

where

Kg,d =
∑

m1+m2+···+ml−1=d

m1+2m2+···+(l−1)ml−1=g

(
d

m1, . . . ,ml−1

) R∏
i=1

[( r+i+1
2
i+1

)
i+ 2

]mi
. (159)

(vii) [asymptotics] For l > 4, as g →∞, τDl(g) is given asymptotically by

τDl(g) ∼
r
√
π cos(πr )

√
r + 1

r−2
r

1

Γ
(
1−

{2g−1
r

}) 1

Γ(2g−1
r )

g−
3
2

(
4 r (r + 1)

2
r sin2

(
π
r

))−g
. (160)
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For l = 4 the formula is the same with an extra factor of 3.

Proof. Recall that the DS hierarchy of Dl-type admits the following scalar Lax operator [38]:

L = ∂r + ∂−1 ◦
l−1∑
α=1

(
uα ◦ ∂2α−1 + ∂2α−1 ◦ uα

)
+ ∂−1 ◦ ul ◦ ∂−1 ◦ ul . (161)

For α = 1, . . . , l − 1, the corresponding DS flows can be written in terms of L by

∂L

∂sα,q
=
[(
Lk/r

)
+
, L
]
, q ≥ 0 , (162)

where k = mα+rq. Denote s := (sα,q)α=1,...,l, q≥0. For α = l, the corresponding flows could also be
obtained in terms of L via the so-called negative flows [90, 108] or by definition from the original
Drinfeld–Sokolov’s matrix Lax system [38]. Since ∂uα/∂s1,0 = ∂uα/∂x, we identify s1,0 with x.
Witten’s ADE conjecture [65, 67, 112] for the Dl case (the Fan-Jarvis-Ruan theorem [65, 67]; see
also [72, 78, 89]) can then be stated as follows: the partition function Z := Z(t(s)) is a particular
tau-function for the DS hierarchy of Dl-type, where

tα,q = (−1)q+1 (
√
−r)

3k
r+1

+1
(mα

r

)
q+1

sα,q , q ≥ 0 ; (163)

moreover, Z(t) satisfies the string equation (44) with ηαβ in (44) given by

(ηαβ) =



0 . . . 0 1 0
...

...
... 0 0

0 1
...

...
...

1 0
...

... 0
0 0 . . . 0 1

 . (164)

One can alternatively write the string equation (44) using the variables sα,q from (163) as

l∑
α=1

∑
q≥0

(mα+rq+r) sα,q+1 ∂Z

∂sα,q
+

l−1∑
α=1

mα(r −mα)

2
sα,0sl−α,0Z +

m2
l

2
(sl,0)2Z =

∂Z

∂s1,0
. (165)

Denote by uα = uα(s) the solution corresponding to the particular tau-function Z, the so-called
topological solution. The Lax operator L given by (161) is now also subjected to this solution.
Similarly as in the proof for the A case, we note that

hk :=
(−1)q+1

(
√
−r)3 1+k

r+1 (mαr )q+1

resL
k
r (k > 0 odd) (166)

are a part of the tau-symmetric Hamiltonian densities for the DS hierarchy of Dl-type. Here
k = mα + rq. Therefore,

hk(s(t)) =
∂2 logZ(t)

∂tα,q∂t1,0
. (167)

The initial Lax operator L|sα,q=x δα,1δq,0 will again be denoted by L. We have the following
lemma.

Lemma 5. We have

L = ∂r + r x− 1

2
r ∂−1 . (168)
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Proof. For the topological solution, the corresponding normal coordinates rα satisfy

rα(t) =
∂2 logZ(t)

∂tα,0∂t1,0
. (169)

Dividing the string equation (44) by Z(t), then differentiating it with respect to tα,0, and finally
taking tα,q = t1,0 δα,1δq,0 we obtain that

rα(t)|tα,q=t1,0 δα,1δq,0 = ηα1 t
1,0 = δα,l−1 t

1,0 . (170)

Then, as in [13, 14], by using the Miura-type transformation between the normal coordinates
and the u-coordinates together with a degree argument we find that

uα|sβ,q=x δβ,1δq,0 =
r

2
x δα,1 .

The lemma is proved. �

As before, denote zk(x) := resLk/r. Using (167), (40) and (46) we obtain that

τDl(g) = (−1)q+g
z2g(r+1)−1(0)

r3g (mαr )q+2
. (171)

Lemma 6. The following formula holds true:

L = ∂−
1
2 ◦
(
∂r + r x

)
◦ ∂

1
2 . (172)

Proof. RHS = ∂r + r ∂−
1
2 ◦ x ◦ ∂

1
2 = LHS. �

Using (73) and (172), we have(
∂r + r x − 1

2
r ∂−1

)λ
= ∂−

1
2 ◦
(
∂r + r x

)λ ◦ ∂ 1
2

=
∑

0≤p≤j
s≥0

rj+s cp,j(r) (λ)−s+j+p

s∑
v=0

(
−1

2

v

)
xs−v

(s− v)!
∂r(λ−s)−(r+1)j−v .

Combining with (171) we obtain (156).
To prove (153), let us use the wave-function-pair approach (see Appendix A and Section 4).

We first construct a particular pair of wave and dual wave functions for L. Start with solving
Lψ = zrψ, i.e., (

∂r + (r x− zr)− r

2
∂−1

)
ψ = 0 . (173)

Denote X = zr/r − x. We have(
(−∂X)r − r X +

r

2
∂−1
X

)
ψ = 0 . (174)

Similarly as in Section 4 we find that this equation has a unique formal solution of the form

P1(X) = e−
1
r+1

r
r+1
r X

r+1
r
X−

1
2

∑
m≥0

cm

X
(r+1)m

r

, c0 := 1 . (175)

Therefore, ψ(x, z) = α1(z)P1(X) for some α1(z) to be determined. The choice of α1(z) is not
unique. We will use the particular choice of α1(z) given by

αbisp
1 (z) :=

1

e−
r
r+1

r
1
rX

r+1
r
X−

1
2

∣∣∣∣
x=0

= r−
1
2 e

r
r+1

C−1zr+1

z
r
2 . (176)
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We call this particular choice the bispectral one. Namely, we construct

ψ = ψ(x, z) := αbisp
1 (z)P1(X) . (177)

Similarly, denote by

P2(X) := e
r
r+1

r
1
rX

r+1
r
X−

1
2

+ 1
r

∑
m≥0

c∗m

X
(r+1)m

r

, c∗0 := 1 (178)

the unique formal solution to the following linear equation:(
∂rX − r X − r

2
∂−1
X

)
ψ∗ = 0 . (179)

Define

αbisp
2 (z) := r−

1
2

+ 1
r e−

1
r+1

zr+1

z
r
2
−1 , (180)

and construct

ψ∗ = ψ∗(x, z) := αbisp
2 (z)P2(X) . (181)

Proposition 5. The ψ,ψ∗ form a particular pair of wave and dual wave functions of L.

Proof. It is easy to verify that ψ is a wave function and ψ∗ is a dual wave function for L. Write
ψ = Φ1(exz) and ψ∗ = Φ2(e−xz), where

Φ1 =
∑
k≥0

φ1,k(x) ∂−k , Φ2 =
∑
k≥0

φ2,k(x) ∂−k

with φ1,0 = φ2,0 ≡ 1. To show ψ and ψ∗ form a pair, it suffices to show Φ1 ◦Φ∗2 = 1. Similarly as
before, we know that this is equivalent to show that for all i ≥ 0,

resz ∂
i
(
ψ(z, x)

)
ψ∗(z, x) dz = 0 . (182)

Before continuing the proof of the proposition let us prove two lemmas.

Lemma 7. Introduce two linear operators Rz and R∗z:

Rz =
1

zr−1
∂z −

r

2
z−r − z , R∗z = − 1

zr−1
∂z +

r − 2

2
z−r − z . (183)

Then we have for any i ≥ 0,

∂ix
(
ψ(x, z)

)
=
(
−Rz

)i (
ψ(x, z)

)
, ∂ix

(
ψ∗(x, z)

)
=
(
R∗z
)i (

ψ∗(x, z)
)
. (184)

Proof. By direct calculations. �

Lemma 8. The ψ and ψ∗ have the following expressions:

ψ(x, z) =
∑
i≥0

(−1)i

i!
R i
z

(
c(z)

)
xi =

∑
i≥0

(xz)i

i!
fi−1/2

(
1

zr+1

)
, (185)

ψ∗(x, z) =
∑
i≥0

1

i!
(R∗z)

i
(
c∗(z)

)
xi =

∑
i≥0

(−1)i
(xz)i

i!
fi+1/2

( −1
zr+1

)
. (186)

Here, c(z) := ψ(0, z), c∗(z) := ψ∗(0, z), and fi±1/2 are given by (79).

Proof. Doing the Taylor expansion of ψ with respect to x at x = 0 and using Lemma 7 we
immediately get the first equality in (185). From (175) we find that c(z) has the form

c(z) =
∑
m≥0

r
(r+1)m

r
cm

z(r+1)m
, c0 = 1 . (187)
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Define
f̃i := z−i (−Rz)i

(
c(z)

)
.

From the definition of Sz one easily finds that f̃i ∈ C[[z−(r+1)]]. Write

f̃i = f̃i(T ) , T =
1

zr+1
,

and we find from the definition of Rz and (173) that

f̃j+1(T ) =

(
1 +

(r
2
− j
)
T + (r + 1)T 2 d

dT

)
f̃j(T ) ,

f̃j+r(T ) = f̃j(T ) − r
(
j − 1

2

)
T f̃j−1(T ) .

Comparing with (80)–(81) and using the uniqueness argument that is similar to the one given

after the proof of Lemma 1, we conclude that f̃i = fi−1/2. This proves (185). The proof of (186)
is similar. The lemma is proved. �

End of the proof of Proposition 5. Using Lemma 8 and identity (90) we have

resz ∂
i
(
ψ(z, x)

)
ψ∗(z, x) dz

= resz
∑
m≥0

zm+i xm

m!
fm+i−1/2

(
1

zr+1

) ∑
`≥0

(−1)`
(xz)`

`!
f`+1/2

( −1
zr+1

)
dz

= resz
∑

m,`,q≥0

(−1)`
zm+`+i−q(r+1)xm+`

m! `!

(
1 +

q − i−m− `− 1

r

)
q
C̃q

(
r,m+ i− 1

2
, `+

1

2

)(r
2

)q
dz

= 0 .

Proposition 5 is proved. �

Using formulas (171), (278), (279), Proposition 5, Lemma 8 and Proposition 3 we obtain that

τDl(g) =
(−1)g+m−1({2g−1

r

})
m+1

C̃ 1
2
,− 1

2
,2g(r)

22g r3g
. (188)

Lemma 9. For any g ≥ 0, we have

ng = −
C̃2g(r,

1
2 ,−

1
2)

22g (2g − 1)
. (189)

Proof. From the definition of C̃n(r, i, j) and the fact that X is an odd Laurent series in u−1 one
easily obtains the equality∑

g≥0

C̃2g

(
r,

1

2
,−1

2

)
u2g = −u

2

2

(√
X + 1

X − 1
+

√
X − 1

X + 1

)
dX

du
=

−u2X√
X2 − 1

dX

du
. (190)

Then it suffices to show that the series P defined by

P :=
∑
g≥0

C̃2g

(
r,

1

2
,−1

2

) u2g

1− 2g
= 1 − r + 2

6
u2 + · · · (191)

satisfies ∑
j≥0

(
j + r/2

2j

)
(2u)2j P r−2j

2j + 1
= 1 . (192)



GEOMETRY AND ARITHMETIC OF INTEGRABLE HIERARCHIES 31

(Note that since in our case r = 2l − 2 is a non-negative even integer, the above sum terminates
at j = l − 1 and expresses P as an algebraic function of u, but even if r is a complex or formal
variable the identity makes sense and will be shown to be true.) Comparing (190) and (191) we
find

d

dX

(P
u

)
=

d(P/u)/du

dX/du
=

X√
X2 − 1

.

Therefore,

P = u
√
X2 − 1 .

Combining with (83) it suffices to show

∑
j≥0

22j

2j + 1

(
j + r/2

2j

)
(X2 − 1)r/2−j =

(X + 1)r+1 − (X − 1)r+1

2 (r + 1)
,

which is an elementary exercise (also equivalent to (154)). �

Identity (157) follows directly from (188). Formulas (188) and (189) yield (155). Formulas (155)
and (134) yield (158).

Finally, the proof of the asymptotic formula (160) is very similar to that of the corresponding
statement in Theorem 5, and will only be sketched. In view of the relation (155) we see that it is
equivalent to the asymptotic formula

ng(r) ∼ cos
(π
r

) (r + 1)
1
r
− 1

2√
πg3

sin((2g − 1)πr )(
−4 (r + 1)

2
r sin2(πr )

)g (l > 4) (193)

for the coefficients ng(r) defined in (152). Writing (153) in the form
(

Z2

Z2−1

)r+1−
(

1
Z2−1

)r+1
= r+1

tr

and setting the derivative of this expression with respect to Z equal to 0, we find that Z2 is a
non-trivial rth root of unity at all singularities of y = y(t), and substituting this back into (153)

we find that the singularities are given by (t, Z2) = ((r + 1)1/r(α− β), α/β)) where α and β are
distinct rth roots of unity. In particular, the singular points of y(t) of smallest absolute value

are equal to 2 (r + 1)1/r sin(π/r) times (2r)th roots of unity. The rest of the proof is exactly
along the lines of the proof of part (vii) of Theorem 5 and will be omitted. Just as in the A case
for l = 1, the proof has to be modified slightly if l = 4 because the way that the sheets above the
closed disk {|t| ≤ 2 (r + 1)1/r sin(π/r)} meet at their boundary is slightly different from what
happens for l > 4; we leave the details as an exercise.

This completes the proof of all parts of Theorem 6. �

Remark 8. It seems worth observing that the factors 1/2 and 3 appearing in part (vii) of
Theorems 5 and 6 respectively are related to the symmetries of the corresponding Dynkin
diagrams. Indeed, |Sym(Al)| = 2 for l > 1, 1 for l = 1; |Sym(Dl)| = 2 for l > 4, 6 for l = 4.

We note that the polynomial P on the left-hand side of (153) also has the following expression:

P =
2 yr+1 sinh

[
(r + 1) arcsinh

(
t

2y

)]
(r + 1) t

− 1 . (194)
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Using the formulas (152)–(155) one can compute the first few values of τDl(g):

τDl(1) =
r + 2

24
, (195)

τDl(2) =
(r + 2)(r − 6)(2r + 1)

5760 r
, (196)

τDl(3) =
(r + 2)(2r + 1)(8r3 − 77r2 + 196r + 188)

2903040 r2
. (197)

Here we note that r ≥ 6 (as l ≥ 4). For r = 6, our formulas agree with the explicit computations
in [12]. More precisely, the explicit expression of the dual topological ODE of D4-type was
computed in [12], which reduces to a second order ODE for φ3 (in our current notation):

108x2 φ′′3 −
(
104x8 + 108x

)
φ′3 −

(
4x14 + 260x7 + 39

)
φ3 = 0 . (198)

One could then give an alternative proof of Theorem 6 for D4 by using (198). We leave this as
an exercise because in the next section we will prove the algebracity for E6 in this way.

Similarly as in the A case, we have the following corollary.

Corollary. For all r ≥ 2g, the value of τDl(g) is a Laurent polynomial in r. Moreover, the value

of this Laurent polynomial at r = −1 is equal to
(1−21−2g)B2g

2g .

Proof. If r ≥ 2g, then m = 0, so the right-hand side of (155) reduces to −ng(r)/(−r)g−1. The
first statement then follows from the fact that ng(r) ∈ Q[r]. By taking the r → −1 limit in (154)

we find the unique solution y = t/2
sinh (t/2) , which yields the second statement of the corollary. �

It might be of interest to see whether the coefficients or the values of the Laurent polynomials
in r occurring in the above corollary and the corollary to Theorem 5 have any topological
meaning.

7. The E6 case

In the proof of Theorems 5 and 6 for the Al, Dl cases in the previous two sections, we used
the equivalent scalar Lax representation of the corresponding DS hierarchy [38]. For the E6

case, as far as we know, the existence of such a representation is an open question. However,
following Proposition 1, we can get the higher-genera one-point invariants by computing the dual
topological ODE of E6-type. (Of course, for any fixed l, as it was mentioned above (see (198)),
we could alternatively have used the corresponding dual topological ODE to give a different proof
of Theorems 5–6; this deserves a further study.)

Let us now compute the dual topological ODE of E6-type. We use the 27-dimensional
representation [49] of g = E6. Recall that the Coxeter number and the exponents for this case
read as follows:

r = 12 , m1 = 1 , m2 = 4 , m3 = 5 , m4 = 7 , m5 = 8 , m6 = 11 ,

and that the dimension of this simple Lie algebra is 78. Denote

X1 = E6,7 + E8,9 + E10,11 + E12,14 + E15,17 + E26,27 ,

X2 = E4,5 + E6,8 + E7,9 − E18,20 − E21,22 − E23,24 ,

X3 = E4,6 + E5,8 + E11,13 + E14,16 + E17,19 + E25,26 ,

X4 = E3,4 − E8,10 − E9,11 − E16,18 − E19,21 + E24,25 ,

X5 = E2,3 − E10,12 − E11,14 − E13,16 + E21,23 + E22,24 ,

X6 = E1,2 + E12,15 + E14,17 + E16,19 + E18,21 + E20,22 .
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Kostant’s sl2-subalgebra of g can be given by

I− = 16XT
1 + 22XT

2 + 30XT
3 + 42XT

4 + 30XT
5 + 16XT

6 , (199)

I+ = X1 +X2 +X3 +X4 +X5 +X6 , (200)

ρ∨ =
1

2

(
I+I− − I−I+

)
. (201)

Using the above data one can compute explicitly the dual topological ODE of E6-type, i.e.,
equation (52) for G ∈ g, or equivalently (54) for the vector φ = (φ1, . . . , φ6) ∈ C6. We denote by
(φα;β)β=1,...,6 (α = 1, . . . , 6) the six linearly independent vector solutions that were introduced in
Section 3. (Here β labels the components of the vector.) Recall that each φα;6 has the form (56).
Following the principle of Theorem 4, namely, by reducing the ODE (54) for the vector-valued
function φ to a scalar ODE for the top component φ6 (the highest weight vector of g), we find
the following fourth-order one:

0 = 2985984x4
(
37x39 − 2775x26 − 36960x13 + 11520

)
φ′′′′6

− 466560x3
(
2331x52 − 162985x39 − 2985600x26 − 4951296x13 + 811008

)
φ′′′6

− 27x2
(
6545189x65 − 1276342935x52 + 10115971680x39 − 127523831040x26

+ 860446310400x13 − 52110950400
)
φ′′6

− 27x
(
23310x78 − 8293439x65 − 3559160940x52 − 153887586840x39

+ 1228034776320x26 + 236111616000x13 + 49235558400
)
φ′6

+
(
37x91 − 3464310x78 + 2278737540x65 + 114309996390x52

+ 10889113435200x39 − 60840963615600x26

− 15770999462400x13 − 328914432000
)
φ6 . (202)

This means that every φα;6 must satisfy (202). From the discussion in Section 3, we know that
each φα;6 has the form

φα;6 = x1+ 13
12
mα fα

(
x13
)

(203)

for some power series fα(u) ∈ Q[[u]] (resp. u−1Q[[u]] for α = 6). But if we use the Frobenius
method, then we find that the indicial equation for (202) at x = 0 has only four roots 25/12,
77/12, 103/12, −1/12. This implies that φ2;6 and φ5;6 must both vanish (which was not obvious
from their original definition), while the expansions of the other φα;6, if we normalize to make
the power series monic, are given by (203) with 1 + 13

12mα = 26α−1
12 and

f1(u) = 1 +
4235

29 31 13
u +

23102233

218 32 132
u2 +

381109489145

229 33 133
u3 + . . . ,

f3(u) = 1 +
4613

210 13
u +

340813583

219 32 51 132
u2 +

1468738987769

228 32 133 17
u3 + . . . ,

f4(u) = 1 +
34829

28 51 71 13
u +

112497481

220 32 132
u2 +

45611422760339

228 32 51 71 133 19
u3 + . . . ,

u f6(u) = 1 +
435

28 13
u +

330276383

219 32 111 132
u2 +

7178883185

227 31 133
u3 + . . . .

According to Proposition 1, the numbers τE6(g) with g ≥ 1 in the particular normalizations
that we are using, can be expressed in terms of φα;6 as follows: for g 6≡ 2 (mod 3),

τE6(g) =
cα

26m 34m

[
um
]
(fα) , (204)
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where α ∈ {1, 3, 4, 6} and m are determined by 2g − 1 = mα + 12m and

c1 =
1

4
, c3 =

5

1152
, c4 =

25

27648
, c6 =

1

2634
; (205)

otherwise τE6(g) = 0. For simplicity we set τE6(0) = 1 which also agrees with (204). It should
be noted that here the freedom of normalizations is fixed in such a way that it agrees with
the explicit Frobenius manifold potential of E6-type given by Klemm–Theisen–Schmidt [80]
(see (243) below) as well as with the genus 1 formula of Dubrovin–Zhang [55] (cf. [49, 67]). For
the reader’s convenience, let us list the first few values of τE6(g) in the following table:

g 0 1 2 3 4 5 6 7 8 9 10

τE6(g) 1 1
4 0 5

1152
25

27648 0 145
5750784

4235
414056448 0 23065

79498838016
174145

3338951196672

One-point FJRW invariants of E6-type

Theorem 7. Set B = 21/12
(
3 + 2

√
3
)1/4

. Define Ak, k ≥ −1 from the generating series

U(V ) =
1

B

∑
k≥−1

Ak V
−k/12 ,

where U(V ) is the unique solution in

1

B
V 1/12 + C

[[
V −1/12

]]
to the polynomial equation

U24 − 36U22 + 540U20 − 4488U18 + 22992U16 − 76032U14

+
(

5V +
2140032

13

)
U12 − 2

(
19V +

1501248

13

)
U10 + 108

(
V +

24320

13

)
U8

− 32
(

5V +
41104

13

)
U6 + 32

(
5V +

9696

13

)
U4 − 96

(
V +

192

13

)
U2

− 1

108

(
V 2 − 34560

13
V − 442368

169

)
= 0 , (206)

of degree 12 in U2 and 2 in V . Then for all g ≥ 0 with g 6≡ 2 (mod 3) we have

τE6(g) = ψρ 2−
13
6
g 3−

7
6
g A2g−1({2g−1

12

})
m

, (207)

where ρ ∈ {1, 5, 7, 11} and m are such that 2g − 1 = ρ+ 12m, and ψρ are given by

ψ1 = 2
1
2 3

5
12 , ψ5 = 21 3

3
4 ε
− 1

2
3 , ψ7 = −2

3
2 3

2
3 ε
− 1

2
3 , ψ11 = −12 , (208)

where ε3 = 2 +
√

3.

Proof. The differential equation of φ6 translates into recursions for the coefficients of fα with
α = 1, 3, 4, 6. On the other hand, any algebraic function satisfies a linear differential equation
and hence its coefficients satisfy a recursion. One verifies by computer that the recursions and
the initial conditions agree. �

The first few values of Ak are given by

A−1 = 1 , A1 = 2−
1
3 3

3
4 , A5 = 2−

3
2 3

3
4 51 ε

1
2
3 , A7 = −2−

17
6 31 52 ε

1
2
3 . (209)

In general, the numbers Ak are (up to fractional powers of 2, 3 and ε3) algebraic integers
belonging to Q(

√
3), so that Theorem 7 implies an integrality statement for the τE6(g) similar to
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the first one in Theorem 1. Another consequence of the theorem is an asymptotic formula for
the numbers τE6(g) similar to the ones we found for the A and D cases:

Corollary. As g →∞ with g 6≡ 2 (mod 3), we have

τE6(g) ∼ 13−5/12√π θρ

Γ
(
1−

{2g−1
12

}) 1

Γ
(2g−1

12

) g− 3
2

(√
3 + 2

√
3

21 3
7
6 13

1
6

)g
, (210)

where ρ ∈ {1, 5, 7, 11} and m are such that 2g − 1 = ρ+ 12m, and θρ are constants defined by

θ1 = 21 3
5
12
(
1 +
√

3
)
, θ5 = 22 3

3
4 , θ7 = 2

5
2 3

2
3 , θ11 = 2

5
2 31

(
1 +
√

3
)
. (211)

Proof. Using (207) we find that it suffices to show that as g →∞ with g 6≡ 2 (mod 3),

A2g−1 ∼
13−5/12

√
π

χρQ
g/6 g−3/2 (212)

with Q = 27
(
3 + 2

√
3
)3
/13 and with

χ1 = −χ11 = 1 , χ5 = −χ7 = ε3 . (213)

The corollary can then be proved again by using the similar argument as for the A case. �

Remark 9. We expect that Theorem 7 (and its corollary) will have an analogue for E7 and E8,
and actually also for all non-simply-laced simple Lie algebras.

8. Explicit relation for FJRW invariants of g-type

In this section, based on the results in the previous sections and on the theory of Frobenius
manifolds (see [43, 46, 47, 74, 93, 109]), we generalize Theorem 3 from A4 to Al, Dl and E6.

According to Kontsevich–Manin [83, 93] (cf. also Appendix B), a homogeneous CohFT of
charge d gives a formal Frobenius manifold of charge d with the formal Frobenius potential
F = F (v) given by (31). Denote by B the domain of convergence of F . Let g be a simply-laced
simple Lie algebra of rank l. As before, denote by Ωg,n the FJRW CohFT of g-type and by r
the Coxeter number. It follows from the quasi-homogeneity (42) that the formal Frobenius
potential F is a polynomial. Therefore, the convergence domain B is the whole of Cl. We call
the Frobenius manifold B constructed from Ωg,n the Frobenius manifold of g-type. Note that the
Frobenius structure on B given by (307)–(308) can alternatively be constructed from the orbit
space of the Coxeter group of g-type ([43, 45, 104, 122]), or else from the miniversal deformation
of a simple singularity of g-type ([22, 36, 37, 46, 74, 102]). The charge and the spectrum of B are

d =
r − 2

r
, µα =

mα

r
− 1

2
, R = 0 , (214)

and the Euler vector field of B is

E =
l∑

α=1

r + 1−mα

r
vα∂α . (215)

Before stating and proving the generalized theorem, we first prove a useful lemma.

Lemma 10. If g is a simply-laced simple Lie algebra, there exists a unique choice of calibration
{θα,m}m≥0 for the Frobenius manifold of g-type.



36 DUBROVIN, YANG, AND ZAGIER

Proof. The existence of θα,m that satisfy (301)–(306) is known. (For the meaning of calibration
and the proof of the existence see Appendix B.) We only need to prove the uniqueness. First of
all, observing that set of the differences {µα − µβ} does not contain positive integers, we know
from [43, 46] that equations (290)–(291) and (295)–(297) determine Θ(v; z) uniquely. Therefore,

θα,m are uniquely determined by (298) and (299) up to constants only, i.e., if {θ̃α,m}m≥0 also

satisfies (301)–(304), then θ̃α,m(v)− θα,m(v) = bα,m with bα,m being constants. The uniqueness
then follows immediately from (306). The lemma is proved. �

Lemma 10 is true for the Frobenius manifold associated to any finite Coxeter group with the
same proof as above.

The following theorem gives the main result of this section.

Theorem 8. Let g be a simple Lie algebra of type Al, Dl, or E6, and let (B, 〈 , 〉, ·) denote the
Frobenius manifold of g-type. Take v = (v1, . . . , vl) the flat coordinates on B and (θα,m)α=1,...,l,m≥0

the associated unique calibration. Denote v∗α = 〈τα,mα〉. Then the following identity holds:

〈τα,mα+(r+1)m〉 = θα,m(v∗) , ∀m ≥ 0 . (216)

Here, we recall that 〈τα,q〉 denote the one-point FJRW invariants of g-type.

Proof. Let us prove this theorem case by case from A to E.
Start with the Al case. Consider the Frobenius manifold of Al-type. In this case, r = l + 1 is

the Coxeter number. Define

λ = λ(p; s) = pl+1 +
l∑

β=1

sβ p
l−β . (217)

Here s = (s1, . . . , sl) ∈ Cl. The reader who is familiar with the theory of Frobenius manifolds
recognizes λ as the superpotential, and the Frobenius structure on B could be defined by the
standard formulas [43, 46, 47] (cf. also [36, 60, 61, 102, 103]) using the superpotential under
some carefully chosen normalization factors, and the flat coordinates v are related to s by

vα = −(
√
−r)

3α
r+1
−1

r − α
resp=∞ λ

r−α
r dp . (218)

It is not difficult to verify that det
(
∂vα

∂sβ

)
6= 0, so the map s 7→ v given by (218) is indeed

an invertible coordinate transformation. By a degree argument, this coordinate change (218)
actually has the triangular nature.

Lemma 11. For the Al case, the unique functions θα,m(v), m ≥ 0 have the following expressions:

θα,m(v) = − (−1)m+1

(
√
−r)3 1+α+rm

r+1 (αr )m+1

resp=∞ λ
α+rm
r dp . (219)

Proof. We prove this lemma by showing that the right-hand side of (219), denoted by θ̃α,m,
satisfies the defining conditions (301)–(306). The conditions (304) with z = 0 and (301) are
known to hold true. Indeed, they follow from the Laplace-type transform between the deformed
flat coordinates and λ-periods of the Frobenius manifold, with λ being the corresponding
superpotential [4, 36, 37, 43, 46, 61, 62, 102, 103] and with the careful choosing of the rescaling
factor to match with Witten’s normalization of times [112]. Here, the definitions of the product
and the invariant flat metric can be found ibid., and we also normalize the metric such that
ηαβ = δα+β,l+1. The equality (305) can be easily proved by computing the residues, which also
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implies (303). Since equality (304) is a rewritting of (297), we know that (304) is actually a
consequence of (301)–(303). To show (302), introduce the following extended Euler operator:

Ẽ := E +
1

r
p
∂

∂p
, (220)

where E in this case is given by (215) with mα = α. From (217) and (218) we obtain

Ẽ λ = λ . (221)

The required quasi-homogeneity (302) for the gradients of θα,m then holds true for the gradients

of θ̃α,m. It remains to show (306). Observe from the definition (219)–(221) that the θ̃α,m
themselves satisfy the following quasi-homogeneity condition:

E θα,m =
(
m+ µα +

1

r
+

1

2

)
θα,m , ∀m ≥ 0 . (222)

Hence the θ̃α,m, m ≥ 0, which are polynomials of v, do not contain constant terms. This
gives (306). The lemma is proved. �

We are ready to show (216). For m = 0, the validity of (216) is obvious, because from the
definition we know that θα,0 = vα. Let us now prove the validity of (216) for an arbitrary m ≥ 0.
Following [43, 46, 47], consider the polynomial equation

λ(p; s) = ξr . (223)

We know that equation (223) has a unique solution p = p(ξ; s) in ξ + C[s][[ξ−1]]. Write

p(ξ; s) = ξ +
∑
k≥1

uk(s) ξ
−k , (224)

where uk(s) ∈ Q[s], k ≥ 1. Using similar arguments to those in the previous sections we have

k uk(s) = resp=∞ λ(p; s)
k
r dp . (225)

Comparing this equality with (219) we obtain that

θα,m(v) = − (−1)m+1(α+mr)

(
√
−r)3 1+α+rm

r+1 (αr )m+1

uα+mr(s) , ∀m ≥ 0 . (226)

Now define

s∗β =

{ (
r
2i

)
a2i

1+2i , β = 2i− 1 (i = 1, . . . , [r/2]) ;

0 , otherwise.
(227)

And we restrict our discussion to the particular point s = s∗ on B. Here

a :=
√
−r

2−r
r+1 /2 . (228)

From (217), (223) and (227), we know that the series p(ξ; s∗) satisfies

[r/2]∑
i=0

(
r

2i

)
a2i p(ξ; s

∗)r−2i

1 + 2i
= ξr .

Comparing this equation with formula (111)–(113) (cf. (127)) we get

τAr−1(g) =
(−1)m+g r1−g

22g a2g (αr )m
u2g−1 ,

where g, α,m are related by 2g − 1 = α+ rm. Substituting (226) in this equality and using (24)
and (228), we obtain (216). This completes the proof for the A case.
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We continue to prove the statement for the D case. In this case, the Coxeter number r = 2l−2.
Similarly as in the A case, introduce the superpotential [36]:

λ = pr +

l−1∑
β=1

sβ p
r−2β + s2

l p
−2 . (229)

The flat coordinates in our normalization are given by

vα := − (
√
−r)

3mα
r+1
−1

r −mα
resp=∞λ

r−mα
r dp , α = 1, . . . , l − 1 (230)

and

vl := − 2
√
l − 1

√
−r

3
2
r+2
r+1

sl . (231)

It is not difficult to verify again that det
(
∂vα/∂sβ

)
6= 0, and the map s 7→ v given by (230)–(231)

indeed gives an invertible coordinate transformation.

Lemma 12. The unique functions θα,m(v), m ≥ 0 have the following expressions:

θα,m(v) = − (−1)m+1

(
√
−r)3 1+mα+rm

r+1 (mαr )m+1

resp=∞ λ
mα
r

+mdp , α = 1, . . . , l − 1 , (232)

θl,m(v) =
(−1)m+1

√
l − 1

(
√
−r)3 l+rm

r+1 (1
2)m+1

resp=0 λ
1
2

+mdp . (233)

Proof. The proof is almost identical with that of Lemma 11, so we only give some brief indications
here. Note that the invariant metric η in our normalization is given by

η =



0 . . . 0 1 0
...

...
... 0 0

0
...

...
...

...

1 0
...

... 0
0 0 . . . 0 1

 .

The extension of the Euler vector field is again given by (220). The lemma is proved. �

Following [43, 46, 47], we consider the following polynomial equation:

λ(p; s) = ξr . (234)

It is easy to see that (234) has a unique solution p = p+(ξ; s) in ξ+C[s][[ξ−1]] as well as a unique

solution p = p−(ξ; s) in sl ξ
−r/2 + ξ−(r+2)/2C[s][[ξ−1]]. Write

p+(ξ; s) = ξ +
∑
k≥1

uk(s) ξ
−k , p−(ξ; s) =

∑
m≥0

vm(s) ξ−m−
r
2 . (235)

Here v0(s) = sl. Differentiating both equations in (235) with respect to ξ, we find

dp+

dξ
= 1 −

∑
k≥1

k uk(s) ξ
−k−1 ,

dp−

dξ
= −

∑
m≥0

(
m+

r

2

)
vm(s) ξ−m−

r
2
−1 . (236)
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Therefore,

kuk(s) = resξ=∞
dp+(ξ; s)

dξ
ξkdξ = resp=∞ λ(p; s)

k
r dp , (237)(

m+
r

2

)
vm(s) = resξ=∞

dp−(ξ; s)

dξ
ξrm+ r

2dξ = − resp=0 λ(p; s)m+ 1
2dp . (238)

Comparing (237) and (238) with (232) and (233), respectively, we have for α = 1, . . . , l − 1,

θα,m(v) = − (−1)m+1(mα +mr)

(
√
−r)3 1+mα+rm

r+1 (mαr )m+1

umα+mr(s) , ∀m ≥ 0 , (239)

and for α = l,

θl,m(v) = −
√
l − 1

(−1)m+1(l − 1 +mr)

(
√
−r)3 l+rm

r+1 (1
2)m+1

vm(s) , ∀m ≥ 0 . (240)

Define

s∗β =

{ (
l−1+β

2β

)
a2β

1+2β , β = 1, . . . , l − 1 ,

0 , otherwise,
(241)

and we now restrict the discussion to the particular point s = s∗ on B. Here

a :=
√
−r

2−r
r+1 . (242)

From (229), (234) and (241), we know that the series p+(ξ; s∗) and p−(ξ; s∗) satisfy

l−1∑
i=0

(
i+ l − 1

2i

)
a2i

1 + 2i
p+(ξ; s∗)r−2i = ξr , p−(ξ; s∗) = 0 .

Comparing with (152)–(155) we get

τDl(g) =
(−1)m+g r1−g

a2g (mαr )m
u2g−1 ,

where g is related with α,m by 2g − 1 = mα + rm. Substituting (239) in this identity and
using (46), and (228), we find (216). This completes the proof for the D case.

Finally, let us prove the statement for the E6 case. Let B = C6 be the Frobenius manifold of
E6-type. The spectrum data (µ,R) are now given by

µ1 = − 5

12
, µ2 = −1

6
, µ3 = − 1

12
, µ4 =

1

12
, µ5 =

1

6
, µ6 =

5

12
, R = 0 .
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According to Klemm–Theisen–Schmidt [80], the Frobenius potential has the explicit expression:

F =
1

2
(v1)2 v6 + v1 v2 v5 + v1 v3 v4 +

1

2
(v2)2 v3

+
1

2
(v2)2 v4 v6 +

1

2
v2 (v4)2 v5 +

1

6
(v3)3 v6 +

1

4
(v3)2 (v5)2

+
1

2
v2 v3 v5 (v6)2 +

1

6
v2 (v5)3 v6 +

1

2
v3 v4 (v5)2 v6 +

1

12
v4 (v5)4 +

1

12
(v4)4 v6

+
1

6
v2 v4 v5 (v6)3 +

1

24
(v2)2 (v6)4 +

1

4
(v4)2 (v5)2 (v6)2 +

1

6
v3 (v4)2 (v6)3

+
1

60
(v3)2 (v6)5 +

1

24
v4 (v5)2 (v6)5 +

1

24
v3 (v5)2 (v6)4 +

1

24
(v5)4 (v6)3

+
1

252
(v4)2 (v6)7 +

1

576
(v5)2 (v6)8 +

(v6)13

185328
. (243)

Here, (v1, . . . , v6) ∈ B is a system of flat coordinates satisfying that ∂1 is the identity vector
field. The invariant flat metric and the Euler vector filed in this coordinate system are given by
ηαβ = δα+β,7, and

E = v1 ∂1 +
3

4
v2 ∂2 +

2

3
v3 ∂3 +

1

2
v4 ∂4 +

5

12
v5 ∂5 +

1

6
v6 ∂6 . (244)

The first few values of the unique calibration θα,p for B are

θα,0 = vα ,

θ1,1 = v1 v6 + v3 v4 + v2 v5 ,

θ2,1 = v1 v5 + v2 v3 + v2 v4 v6 +
1

2
(v4)2 v5

+
1

2
v3 v5 (v6)2 +

1

6
v4 v5 (v6)3 +

1

6
(v5)3 v6 +

1

12
v2 (v6)4 .

To prove (216), similarly as in the A and D cases, we will use the corresponding superpotential.
Following Eguchi–Yang [63] (cf. [19, 81, 85]), introduce three polynomials Q1, P1, P2:

Q1 = 270 p15 +
(
171 + 57

√
3
)
t10 p

13 +
(
54 + 27

√
3
)
t210 p

11

+
(
126 + 84

√
3
)
t7 p

10 +
((35

4
+

175

36

√
3
)
t310 +

(
144 + 72

√
3
)
t6

)
p9

+
(135

2
+

81

2

√
3
)
t7 t10 p

8

+
((225

4
+

125

4

√
3
)
t6 t10 +

(345

384
+

35

96

√
3
)
t410 +

(
135 + 81

√
3
)
t4

)
p7

+
((

126 + 72
√

3
)
t3 +

(
10 +

35

6

√
3
)
t7 t

2
10

)
p6

+
((63

4
+ 9
√

3
)
t27 +

(
36 + 21

√
3
)
t4 t10 +

( 11

768
+

19
√

3

2304

)
t510 +

(21

4
+ 3
√

3
)
t6 t

2
10

)
p5

+
((33

2
+

19

2

√
3
)
t3 t10 +

(19

48
+

11

48

√
3
)
t7 t

3
10 +

(
24 + 14

√
3
)
t6 t7

)
p4

−
(11

8
+

19

24

√
3
)
t37 t10 p

3 +
(45

4
+

13

2

√
3
)
t3 t7 p +

(5

8
+

13

36

√
3
)
t37 , (245)

P1 = 78 p10 +
(
30 + 10

√
3
)
t10 p

8 +
(14

3
+

7

3

√
3
)
t210 p

6 +
(33

2
+ 11
√

3
)
t7 p

5
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+
((1

4
+

5

36

√
3
)
t310 +

(
16 + 8

√
3
)
t6

)
p4 +

(25

12
+

5

4

√
3
)
t7 t10 p

3

+
((

5 + 3
√

3
)
t4 +

( 7

3456
+

1

864

√
3
)
t410 +

(3

4
+

5

12

√
3
)
t6 t10

)
p2

−
(7

2
+ 2
√

3
)
t3 p −

( 7

12
+

1

3

√
3
)
t27 , (246)

P2 = 12 p10 +
(
6 + 2

√
3
)
t10 p

8 +
(4

3
+

2

3

√
3
)
t210 p

6 +
(
6 + 4

√
3
)
t7 p

5

+
((

8 + 4
√

3
)
t6 +

(1

8
+

5

72

√
3
)
t310

)
p4 +

(5

3
+
√

3
)
t7 t10 p

3

+
((

10 + 6
√

3
)
t4 +

( 7

1728
+

1

432

√
3
)
t410 +

(3

2
+

5

6

√
3
)
t6 t10

)
p2

+
(
14 + 8

√
3
)
t3 p +

( 7

12
+

1

3

√
3
)
t27 , (247)

and define

λ(p; t) =
1

270 + 156
√

3

(
−u0 +

Q1 + P1

√
P2

p3

)
, (248)

where

u0 = −
(
270 + 156

√
3
)
t0 −

1

16

(
19 + 11

√
3
)
t4 t

2
10 −

1

576

(
33 + 19

√
3
)
t6 t

3
10

− 1

4

(
21 + 12

√
3
)
t26 −

1

16

(
33 + 19

√
3
)
t10 t

2
7 . (249)

Here, (t0, t3, t4, t6, t7, t10) gives the flat coordinates of Eguchi–Yang, which relate to the flat
coordinates (v1, . . . , v6) of Klemm–Theisen–Schmidt via a rescaling:

v1 = κ6 t0 , v2 = κ5 t3 , v3 = κ4 t4 , v4 = κ3 t6 , v5 = κ2 t7 , v6 = κ1 t10 , (250)

where

κ1 = − 1

2
√

3
, κ2 = (

√
3− 1)

1
2 , κ3 = −(

√
3− 1) ,

κ4 = 2(
√

3− 1) , κ5 = −2
√

3 (
√

3− 1)
1
2 , κ6 = 8

√
3 .

Lemma 13. We have

θα,m(v) = −κα
(8
√

3)m

(mα12 )m+1
resp=∞ λ

mα+12m
12 dp , α = 1, . . . , 6, m ≥ 0 . (251)

Proof. The conditions (304) with z = 0 and (301) have been verified by Eguchi–Yang [63], where
we use different normalization constants κα from the ones in [63] to agree with Klemm–Theisen–
Schmidt’s normalization for the product and the metric. The proof is again similar to that of
Lemma 11. For this case, the extended Euler operator is again defined by

Ẽ := E +
1

r
p
∂

∂p
, (252)

where E is given by (244). We have Ẽλ = λ and the quasi-homogeneity (302) for the gradients
of θα,m follows. The condition (306) follows from the quasi-homogeneity (just as (222)) of θα,m.
The lemma is proved. �

Following [43, 46, 47], we consider the polynomial equation

λ(p; t) = ξ12 . (253)
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It is easy to see that (253) has a unique solution p = p(ξ; t) in ξ + C[t][[ξ−1]]. Write

p(ξ; t) = ξ +
∑
k≥1

uk(t) ξ
−k . (254)

By using the same arguments as before we have

k uk(t) = resp=∞ λ(p; t)
k
12dp . (255)

Comparing (255) with (251) we obtain

θα,m(v) = −κα (8
√

3)m
mα + 12m

(mα12 )m+1
umα+12m(t) , ∀m ≥ 0 . (256)

Now define (v2)∗ = (v5)∗ = 0 and

(v1)∗ =
145

5750784
, (v3)∗ =

25

27648
, (v4)∗ =

5

1152
, (v6)∗ =

1

4
, (257)

and restrict the discussion to the particular point v = v∗ on B, which corresponds t = t∗.
From (248), (253) we know that the series p = p(ξ; t∗) satisfies

1

270 + 156
√

3

(
−u∗0 +

Q∗1 + P ∗1
√
P ∗2

p3

)
= ξ12 , (258)

where Q∗1, P ∗1 , P ∗2 , u∗0 are respectively Q1, P1, P2, u0 evaluated at t = t∗. Theorem 8 is proved
by simplifying (258). �

Observe that on the left-hand side of (216), g = mα+rm+1
2 . So if mα + rm + 1 is an odd

number, then as a direct consequence of (216) the value θα,m(v∗) must vanish.
We also have the following corollary.

Corollary. For a FJRW CohFT of g-type with g being Al, Dl, or E6, we have

〈τα,mα+(r+1)m〉 =
∑
n≥0

∑
1≤α1,...,αn≤l
1≤β1,...,βn≤l

〈τα,m−1τα1,0 . . . ταn,0〉0
n!

n∏
i=1

ηαiβi 〈τβi,mβi 〉 , ∀m ≥ 1 . (259)

Proof. Following [43], consider the principal integrable hierarchy associated to B:

∂vα

∂tβ,q
= ηαγ∂t1,0

(
∂θβ,q+1

∂vγ

)
, q ≥ 0 (260)

and its initial value problem (viewing t1,0 as the space variable) with the initial data:

vα|tβ,q=t1,0 δβ,1 δq,0 = δα,1 t1,0 . (261)

The defining equations (301)–(306) for θβ,q and the axioms of Frobenius manifolds imply that the
equations in (260) all commute, and thus the above initial value problem has a unique solution
in C[[t]]⊗l, called the topological solution to the principal hierarchy, denoted by vtop(t) =(
vtop,1(t), . . . , vtop,l(t)

)
. It is shown in [43] that the following identity holds true:

∂2F0(t)

∂t1,0∂tβ,m
= θβ,m

(
vtop(t)

)
. (262)

Taking tγ,p = tγ,0 δp,0 on both sides of this identity, and noticing that

vtop,α(t)
∣∣
tγ,p=tγ,0 δp,0

= tα,0 , (263)
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we obtain
∂2F0(t)

∂t1,0∂tβ,m

∣∣∣∣
tγ,p=tγ,0 δp,0

= θβ,m
(
t1,0, . . . , tl,0

)
. (264)

On the other hand, the genus zero part of the string equation (44) reads as follows:∑
p≥1

tα,p
∂F0(t)

∂tα,p−1
+

1

2
ηρσ t

ρ,0tσ,0 =
∂F0(t)

∂t1,0
. (265)

For m ≥ 1, by differentiating (265) with respect to tβ,m and taking tγ,q = tγ,0 δq,0 we get

∂F0(t)

∂tβ,m−1

∣∣∣∣
tγ,p=tγ,0 δp,0

=
∂2F0(t)

∂t1,0∂tβ,m

∣∣∣∣
tγ,p=tγ,0 δp,0

. (266)

Using the definition (37) for F0(t), identities (264) and (266), as well as identity (216), we
obtain (259). �

Note that due to (42) the sum “
∑

n≥0” in the right-hand side of (259) is actually a finite sum.

We also note that identity (259) can be written alternatively as follows: for all g ≥ (r + 2)/2,

τg(g) =
∑
n≥0

∑
1≤α1,...,αn≤l
1≤β1,...,βn≤l

〈τα,m−1τα1,0 . . . ταn,0〉0
n!

n∏
i=1

ηαiβi 〈τβi,mβi 〉 , (267)

where α,m are such that 2g − 1 = mα + rm.

Remark 10. For g = E7 or E8, we also expect the validity of identity (216) (or (259), (267)).
It might be possible to get proofs in these cases by applying the constructions of the λ-periods
for the orbit space of the Coxeter group of g-type ([43, 44, 45, 104]) (or for the simple singularity
of g-type [4, 10, 46, 72, 74, 92, 102, 103, 105]) as well as their Laplace-type transforms [43, 46, 47]
to compute the θα,m, and then matching these with the left-hand side τg(g) of (216), which can
be read off from the coefficients of the top components φα;l of the fundamental solutions to the
dual topological ODE of g-type. Moreover, since we know that the λ-periods for the Frobenius
manifold of g-type are algebraic, this method of proof, if it works, would also lead to algebraicity
(as already mentioned in Remark 9) and therefore integrality of the renormalized numbers of τg(g).
When g is a non-simply-laced simple Lie algebra, in order for identity (216) (or (259), (267)) to
remain valid, one may need to use the notion of the partial CohFT [89]. We hope to study these
cases and other more general situations (semisimple or nonsemisimple CohFTs including the
cases with the Novikov ring mentioned in Remark 5; cf. e.g. [19, 43, 51, 56, 121]) in later work.

Remark 11. We also observe that the particular point v∗ on the Frobenius manifold of A-type
that we use for l ≥ 2 is different from the particular semisimple point used by Pandharipande,
Pixton and Zvonkine [97, 98] for obtaining relations in the cohomology ring ofMg,n. It might be
interesting to see whether their method can be applied also to our v∗ to give further information
connected with the topology of Mg,n.

We provide a few examples to illustrate the results of this section.

Example 1 (A1). The superpotential reads as follows:

λ = p2 + s1 , v1 =
s1

2
.

We have η = 1 and F = (v1)3/6. For m ≥ 0, we know that θ1,m(v) = (v1)1+m/(1 +m)!. Recall
again the well-known formula for the one-point invariants:

〈τ1,1+3m〉g=1+m =
1

241+m(1 +m)!
. (268)
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From these explicit expressions we immediately see the validity of identity (216), where the
particular point of the Frobenius manifold is given by v∗1 = 1/24.

Example 2 (A2). The superpotential reads

λ = p3 + s1 p + s2 , v1 =
s2

3
√
−3

1/4
, v2 =

√
−3

1/2

3
s1 .

We have F = (v1)2v2/2+(v2)4/72 and ηαβ = δα+β,3. The first few terms of the unique calibration
can be read from

θ2(v; z) = v1 +

(
(v2)3

18
+

(v1)2

2

)
z +

(
(v1)3

6
+

1

18
(v2)3 v1

)
z2 + · · · ,

θ1(v; z) = v2 + v1 v2 z +

(
(v2)4

36
+

1

2
(v1)2 v2

)
z2 + · · · .

The particular point v∗ of the Frobenius manifold is given by v∗1 = 1/12 and v∗2 = 0.

Example 3 (A4). We have

λ = p5 + s1 p
3 + s2 p

2 + s3 p + s4 ,

v1 = −s1s2 − 5s4

25
√
−5

1
2

, v2 = −s1 − 5s3

25
, v3 =

1

5

√
−5

1
2 s2 , v4 =

√
−5

5
s1 ,

F =
1

2
(v1)2(v4) + v1v2v3 +

(v2)3

6
+

(v4)6

15000
+

1

150
(v3)2(v4)3

+
1

20
(v2)2(v4)2 +

1

10
v2(v3)2v4 +

(v3)4

60
.

and ηαβ = δα+β,5. The first few terms of the unique calibration and the particular point v∗ of
the Frobenius manifold are already given in Theorem 3.

Example 4 (D4). The superpotential reads

λ = p6 + s1 p
4 + s2 p

2 + s3 +
s2

4

p2
,

and

p+(ξ; s) = ξ − s1

6ξ
+
s2

1 − 4s2

24ξ3
+
−7s3

1 + 36s2s1 − 216s3

1296ξ5

+
−55s4

1 + 360s2s
2
1 − 864s3s1 − 432s2

2 − 5184s2
4

31104ξ7
+ · · · ,

p−(ξ; s) =
s4

ξ3
+
s3s4

2ξ9
+

(3s2
3 + 4s2s

2
4)s4

8ξ15
+

(8s1s
4
4 + 20s2s3s

2
4 + 5s3

3)s4

16ξ21
+ · · · .

We have η =

(
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

)
and

F =
1

2
(v1)2 v3 +

1

2
v1 (v2)2 +

1

36
(v2)3 v3 +

1

216
(v2)2 (v3)3 +

(v3)7

272160

+

(
v1

2
− 1

12
v2v3 +

(v3)3

216

)
(v4)2 . (269)
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We have θα,0 = vα = ηαβv
β, and

θ1,1 =
(v2)2

2
+

(v4)2

2
+ v1 v3 ,

θ2,1 =
1

108
v2 (v3)3 +

1

12
(v2)2 v3 − 1

12
v3 (v4)2 + v1 v2 ,

θ3,1 =
(v3)6

38880
+

1

72
(v2)2 (v3)2 +

1

72
(v3)2 (v4)2 +

(v2)3

36
− 1

12
v2 (v4)2 +

(v1)2

2
,

θ4,1 =
1

108
v4 (v3)3 − 1

6
v2 v3 v4 + v1 v4 .

The particular point v∗ of the Frobenius manifold is given by

v∗1 =
1

3
, v∗2 = 0 , v∗3 =

13

40824
v∗4 = 0 . (270)

We list in the following table the first few of the numbers τD4(g), again putting τD4(0) = 1.

g 0 1 2 3 4 5 6 7 8 9

τD4(g) 1 1
3 0 13

40824
13

122472 0 1433
16665989760

253
9999593856 0 33917

2041117097886720

One-point FJRW invariants of D4-type

Appendix A. Wave functions

In this appendix we give a method of computing residues of pseudo-differential operators by
means of wave functions. Denote by r a positive integer. Let qm(x) (m ≤ r − 1) be arbitrarily
given power series of x, and L the pseudodifferential operator

L := ∂r +
r−1∑

m=−∞
qm(x) ∂m . (271)

An element ψ = ψ(x, z) ∈ C[[x]][[z−1]]⊗ exz of the form ψ =
∑∞

i=0 φi(x) z−i exz with φ0(x) ≡ 1
is called a wave function of L if

Lψ = zr ψ . (272)

Here we recall that ∂−i(exz) := exzz−i, i ≥ 0, and that for all f(x) ∈ C[[x]],

∂m ◦ f(x) :=
∑
`≥0

(
m

`

)
f (`)(x) ∂m−` , ∀m ∈ Z .

Multiplying by e−xz on both sides of (272) and comparing the coefficients of powers of z give∑
j,`≥0
j+`≤i

q`+j+r−i(x)

(
`+ j + r − i

`

)
φ

(`)
j (x) = φi(x) , i ≥ 0 . (273)

This leads to recursive relations for the power series φi(x), i ≥ 0. The solution ψ depends
on a sequence of arbitrary constants C1, C2, · · · . Alternatively, we observe that if ψ(x, z) is
a wave function, then for an arbitrary power series g(z) of z−1 with constant coefficients
g(z) =

∑
i≥0 gi z

−i, g0 = 1, the product g(z)ψ(z, x) is again a wave function.
A pseudo-differential operator Φ of the form

Φ =
∑
i≥0

φ̃i(x) ∂−i , φ̃i(x) ∈ C[[x]] , φ̃0(x) ≡ 1 (274)
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is called a dressing operator of L if

Φ ◦ ∂r ◦ Φ−1 = L . (275)

For the given qm(x) (m ≤ r − 1), the dressing operator is not unique, its freedom being in
one-to-one correspondence with the coefficients of g(z) above. Indeed, there is a one-to-one
correspondence between wave functions ψ and dressing operators by ψ =

∑
i φi(x) z−i exz ↔

Φ =
∑

i φi(x) ∂−i. Define the formal adjoint operator Φ∗ of Φ by

Φ∗ :=
∑
i≥0

(−1)i ∂−i ◦ φ̃i(x) .

Fix ψ a wave function of L, and take Φ to be the corresponding dressing operator. Define ψ∗ by

ψ∗ = ψ∗(x, z) :=
(
Φ−1

)∗ (
e−xz

)
. (276)

Clearly, ψ∗ ∈ C[[x]][[z−1]]]⊗ e−xz, the product ψ∗exz has leading term 1, and

L∗ ψ∗ = zr ψ∗ . (277)

We call ψ∗ a dual wave function of L associated to ψ, and we call (ψ,ψ∗) a pair of wave and
dual wave functions.

Lemma 14. Let
(
ψ,ψ∗

)
and

(
ψ̃, ψ̃∗

)
be two pairs of wave and dual wave functions of L. Then

ψ(x, z)ψ∗(x, z) = ψ̃(x, z) ψ̃∗(x, z) .

Proof. Let g = g(x, z) := ψ̃(x, z)/ψ(x, z), which must have the form

g =
∑
i≥0

gi(x) z−i ∈ C[[x]]
[[
z−1
]]
, g0(x) ≡ 1 .

It follows from (273) that g′i(x) = 0, i ≥ 1. Therefore, for i ≥ 1, gi are all constants. Let Φ, Φ̃ be

the dressing operators corresponding to ψ, ψ̃, respectively. We have ψ̃ = g(z) Φ
(
exz
)

= Φ ◦G
(
exz
)
,

where G :=
∑

i≥0 gi ∂
−i
x . Therefore, Φ̃ = Φ ◦ G. It follows that

(
Φ̃−1

)∗ ◦ G∗ =
(
Φ−1

)∗
. So(

Φ̃−1
)∗(

g(z) e−xz
)

=
(
Φ−1

)∗(
e−xz

)
. Namely, g(z)ψ̃∗(x, z) = ψ∗(x, z). The lemma is proved. �

Let ψ and ψ∗ be a pair of wave and dual wave functions of L. Define

c(z) :=
(
e−xz ψ(z, x)

)∣∣
x=0

, c∗(z) :=
(
exz ψ∗(z, x)

)∣∣
x=0

, H(z) := c(z) c∗(z) . (278)

It follow from Lemma 14 that the product H(z) ∈ C[[z−1]] is uniquely determined by L, where
we recall that L is defined by (271). We have the following lemma.

Lemma 15. Define zk(x) = resL
k
r for all k ≥ 0. Then

H(z) = 1 +
∑
k≥1

(−1)k zk−1(0) z−k . (279)

Proof. Following Liu–Vakil–Xu [86], define Φ− =
∑

i≥0 φ−,i(x) ∂−i with φ−,i(x) ∈ C[[x]] and

φ̃−,0(x) ≡ 1 as the particular dressing operator of L fixed by the additional conditions:

φ−,i(0) = 0 , i ≥ 1 .
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Denote by (ψ−, ψ
∗
−) the corresponding pair of wave and dual wave functions, and define c−, c∗− as

ψ−, ψ∗− evaluated at x = 0, respectively. It is clear from the definition that c−(z) ≡ 1. Therefore,
H(z) ≡ c∗−(z). Now, on one hand, noticing that(

Φ−1
−
)∗

=
∑
i≥0

(−∂)−i ◦ φ−,i(x) =
∑
k≥0

(−1)k
∑
i,`≥0
i+`=k

(
k − 1

`

)
φ

(`)
−,i(x) ∂−k ,

we find

ψ∗−(x, z) =
(
Φ−1
−
)∗(

e−xz
)

=
∑
k≥0

(−1)k
∑
i,`≥0
i+`=k

(
k − 1

`

)
φ

(`)
−,i(x) z−k e−xz .

Hence

c∗−(z) =
∑
k≥0

(−1)k
k∑
i=0

(
k − 1

i− 1

)
φ

(k−i)
−,i (0) z−k . (280)

On the other hand, from the definition of the dressing operator Φ− we know that

zk(x) = res
(
Φ− ◦ ∂r ◦ Φ−1

−
) k
r = res Φ− ◦ ∂k ◦ Φ−1

− .

Taking x = 0 in this formula we find that

zk(0) =
(
res ∂k ◦ Φ−1

−
) ∣∣
x=0

=

(
res
∑
i≥0

k∑
`=0

(
k

`

)
φ

(k−`)
−,i (x) ∂`−i

)∣∣∣∣∣
x=0

=
k∑
`=0

(
k

`

)
φk−`−,`+1(0) .

The lemma is proved by comparing this expression with (280) and using c−(z) ≡ 1. �

We note that, in the above proof, the function c−(z) is very simple, being just the constant
function 1, but the formula (280) for c∗−(z) might be very complicated. The main point of the
wave-function-pair approach is the following: using Lemma 14 it is sometimes possible to find a
particular choice of pair of wave functions such that c(z) and c∗(z) both have relatively simple
expressions so that their product can be given in closed form, and this is the case in particular
both for this paper and for [52, 53], where bispectrality [52, 53, 58] is used for fixing the particular
choice. In other situations, the Sato tau-function, theta-functions, and etc. could also be used to
construct a pair of wave functions; instead of giving the details we refer to [5, 11, 14, 20, 34, 40]
for specific constructions.

Appendix B. Frobenius manifolds

In this appendix, we give a brief review of the theory of Frobenius manifolds [43, 46, 47, 57, 93,
109]. Recall that a Frobenius algebra is a triple (V,1, 〈 , 〉), where V is a commutative associative
algebra over C with unity 1, and 〈 , 〉 : V × V → C is a symmetric non-degenerate bilinear form
satisfying 〈x · y, z〉 = 〈x, y · z〉, ∀x, y, z ∈ V .

Definition 2 ([41, 43]). A Frobenius structure of charge d on a complex manifold M l is a family
of Frobenius algebras

(
TpM,1p, 〈 , 〉p

)
, p ∈M depending holomorphically on p and satisfying:

FM1 The metric 〈 , 〉 on M is flat. Let ∇ denote the Levi–Civita connection of 〈 , 〉. Then the
uint vector field 1 must satisfy ∇1 = 0.

FM2 Define a 3-tensor field c by c(X,Y, Z) := 〈X · Y, Z〉, for X,Y, Z being holomorphic vector
fields on M . The 4-tensor field ∇c must be symmetric.
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FM3 There exists a holomorphic vector field E on M , called the Euler vector field, satisfying

∇∇E = 0 , (281)

[E,X · Y ]− [E,X] · Y − X · [E, Y ] = X · Y , (282)

E 〈X,Y 〉 − 〈[E,X], Y 〉 − 〈X, [E, Y ]〉 = (2− d) 〈X,Y 〉 . (283)

A complex manifold endowed with a Frobenius structure is called a Frobenius manifold, with 〈 , 〉
being called the invariant flat metric.

Let M be a Frobenius manifold of complex dimension l. Following [43], define a one-parameter
family of affine connections on M :

∇̃XY := ∇XY + z X · Y , z ∈ C . (284)

This family of affine connections ∇̃ are all flat [43], and is called the deformed flat connection.

Moreover, it can be extended to a flat affine connection [43] on M × C∗, still denoted by ∇̃,
whose definition along the z-direction is given as follows:

∇̃∂zX :=
∂X

∂z
+ E ·X − 1

z
µX , ∇̃∂z∂z := 0 , ∇̃X∂z := 0 , (285)

for X being an arbitrary holomorphic vector field on M × C∗ with zero component along the z

direction. Here, µ := 2−d
2 −∇E. We call ∇̃ the extended deformed flat connection. A holomorphic

function f(v; z) on some open subset of M × C∗ is called ∇̃-flat if

∇̃df = 0 . (286)

To understand the flat coordinates for the extended deformed flat connection ∇̃, let us
take v =

(
v1, . . . , vl

)
a system of flat coordinates with respect to 〈 , 〉. Denote ∂α = ∂

∂vα ,

ηαβ := 〈∂α, ∂β〉, η = (ηαβ), and
(
ηαβ
)

:= η−1. By FM1 we choose v1 satisfying ∂1 = 1. For
simplicity we will assume that ∇E is diagonalizable, so the flat coordinates are chosen such that
µ = diag(µ1, . . . , µl), and we have

E =
∑

1≤α≤l

((
1− d

2 − µα
)
vα ∂α + rα ∂α

)
. (287)

The axioms FM1–FM3 imply the local existence of a holomorphic function F , called the Frobenius
potential of M , satisfying

∂3F

∂vα∂vβ∂vγ
= cαβγ := c

(
∂α, ∂β, ∂γ

)
, (288)

EF = (3− d)F + a quadratic function of v . (289)

Clearly, F is uniquely determined by the Frobenius structure up to a quadratic function of v.

The flatness of ∇̃ implies that there locally exist l independent ∇̃-flat holomorphic functions

ṽ1, . . . , ṽl

on M × C∗, called the deformed flat coordinates for the Frobenius manifold. Let us give their

construction. For a ∇̃-flat holomorphic function f on M × C∗, denote yα = ηαβ∂f/∂vβ and
y = (y1, . . . , yl)T . By definition the column-vector-valued function y satisfies the following system
of linear differential equations:

∂y

∂vα
= z Cα y , (290)

dy

dz
=
(
U +

µ

z

)
y . (291)
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Here, (Cα)βγ := cβαγ and Uαβ := Eρcαρβ. To fix a system of deformed flat coordinates we need to

choose a basis of the solution space to (290)–(291). Observe that the ODE system (291) possesses
a Fuchsian singular point at z = 0 and an irregular singular point of Poincaré rank 1 at z =∞.
The axioms of Frobenius manifolds imply the isomonodromicity of (290)–(291). The monodromy
data around z = 0 is then given by two constant matrices µ,R, satisfying

R∗ = −eπiµRe−πiµ (292)

zµRz−µ = R0 + R1z + R2z
2 + . . . (293)

for some matrices Rk, k ≥ 0 satisfying

[µ,Rk] = k Rk , k ≥ 0 . (294)

Let us fix a choice of R. It is shown in [43, 46] (cf. also [70]) that locally there exists a
fundamental solution matrix Y = Y(v; z) around z = 0 to (290)–(291) of the form

Y(v; z) = Θ(v; z) zµzR =
∑
m≥0

Θm(v) zm+µzR , (295)

where Θ(v; z) is a matrix-valued analytic function on M × C satisfying

Θ(v; 0) ≡ I , (296)

η−1Θ(v;−z)T ηΘ(v; z) ≡ I . (297)

It can be easily checked that the matrix-valued function Θ(v; z) satisfies

∂βΘα
γ (v; z) = ∂αΘβ

γ (v; z) .

Then by the Poincaré lemma, there locally exist holomorphic functions θγ(v; z) of the form

θγ(v; z) =
∑
m≥0

θγ,m(v) zm , (298)

such that

ηαβ
∂θγ(v; z)

∂vβ
= Θα

γ (v; z) . (299)

Hence the functions ṽ1(v; z), . . . , ṽn(v; z) defined by(
ṽ1(v; z), . . . , ṽn(v; z)

)
=
(
θ1(v; z), . . . , θl(v; z)

)
zµzR (300)

give a system of deformed flat coordinates on M × C∗ (see [43, 46, 47, 57] for more details).
From the above construction we know that θα,m, m ≥ 0 satisfy the following conditions:

∂α∂β
(
θγ,m+1

)
= cσαβ ∂σ

(
θγ,m

)
, p ≥ 0 , (301)

E
(
∂βθα,m

)
= (p+ µα + µβ) ∂β

(
θα,m

)
+

∑
1≤k≤m

(Rk)
γ
α ∂β

(
θγ,m−k

)
, p ≥ 0 , (302)

∂θα,0
∂vβ

= ηαβ , (303)

〈∇θα(v, z),∇θβ(v,−z)〉 = ηαβ . (304)

One can further normalize θα,m(v) by requiring

θα,0 = vα , (305)

∂1

(
θα,m+1

)
= θα,m , m ≥ 0 . (306)
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Indeed, (305) is obviously compatible with (301)–(304), and we leave the verification of the
compatibility between (306) and (301)–(304) as an exercise to the reader. As in [50], we call a
choice of {θα,m}m≥0 satisfying (301)–(306) a calibration on M .

According to Kontsevich–Manin [83, 93], the genus zero part of a CohFT(
V l, η,1, {Ωg,n}2g−2+n>0

)
gives a pre-Frobenius structure on the convergence domain B under the assumption (see Section 2).
Here “pre” means the axiom FM3 is not required. (In some literature a pre-Frobenius structure
is called a Frobenius structure.) Let us recall Kontsevich–Manin’s construction of the Frobenius
structure from the CohFT. As in Section 2, take e1 = 1, e2, . . . , el a basis of V . Define a metric
〈 , 〉 on B and a multiplication “ · ” on the tangent spaces of B by

〈∂α, ∂β〉 := ηαβ , (307)

〈∂α · ∂β, ∂γ〉 :=
∂3F

∂vα∂vβ∂vγ
, (308)

where F is defined in (31). From (307), it is obvious that the metric 〈 , 〉 is flat and in fact
(v1, . . . , vn) is a system of flat coordinates for 〈 , 〉. The invariance of 〈 , 〉 with respect to the
multiplication “ · ” on each tangent space as well as the FM2 are also obviously true from the
construction. The axioms of the CohFT imply [83] that the multiplication “ · ” is associative and
∂1 is a unit vector field. So (B, 〈 , 〉, ·, ∂1) is a pre-Frobenius manifold. Using (35) we see further
that a homogeneous CohFT

(
V, η,1, {Ωg,n}2g−2+n>0

)
of charge d endows B with a Frobenius

structure of charge d with E given by (32) being the Euler vector field.
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[17] Brézin, E., Hikami, S., Computing topological invariants with one and two-matrix models. J. High Energy
Phys. (2009), 110.
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