
TRACES OF SINGULAR MODULI

Don Zagier

Introduction. “Singular moduli” is the classical name for the values assumed by the modular
invariant j(τ) (or by other modular functions) when the argument is a quadratic irrationality.
These values are algebraic numbers and have been studied intensively since the time of Kronecker
and Weber. In [5], formulas for their norms, and for the norms of their differences, were obtained.
Here we obtain instead a result for their traces, and a number of generalizations. The results are
closely related to a theorem of Borcherds [1] of which we will give a new proof and a generalization.

The formula for the traces of the singular values of j can be stated in two equivalent ways. The
first one, formulated in §1, gives these traces as the Fourier coefficients of a certain modular form
of weight 3/2. The second one, stated in §2 and proved in §§3–4, gives them as the solutions of
a certain pair of recursion equations. The proof of one of the two recursions is a variant of the
classical proof of the Kronecker class number relations and is quite amusing.

Borcherds’s theorem is recalled in §5 and the relationship to our result is explained. In a few
words, it is as follows. There is a sequence of modular forms fd(τ) of weight 1/2, one for each
order in an imaginary quadratic field, and a sequence of modular forms gD(τ) of weight 3/2, one
for each order in a real quadratic field. Our formula says that the trace of a singular modulus of
discriminant −d is the coefficient of qd in the fixed modular form −g1(τ) ; Borcherds’s theorem
implies that it is the coefficient of q1 in the variable modular form fd ; and the relationship of the
two results is that, for any d and D, the Dth Fourier coefficient of fd is the negative of the dth
Fourier coefficient of gD. In fact, by a relatively straightforward application of Hecke operators one
can obtain the full statement of Borcherds’s theorem (which describes the minimal polynomials of
singular moduli, not just their traces, in terms of the n2-th Fourier coefficients of fd as n varies)
from the formula for the traces. This is done in §6.

The third part of the paper describes generalizations in three different directions: §7 gives
an interpretation of the other Fourier coefficients as traces (roughly speaking, the Dth Fourier
coefficient of fd, or the dth coefficient of gD, describes the relative traces of singular moduli of
discriminant −dD from the Hilbert class field of Q(

√
−dD) to its real quadratic subfield Q(

√
D) );

in §8 a generalization to the traces of singular values of Hauptmodules for certain other groups
of genus 0 is described (they are equal to the Fourier coefficients of Jacobi forms of weight 2
and index > 1); and in §9 we state a generalization to modular forms of other small half-integral
weights (there are modular forms of weight k+1/2 and 3/2− k satisfying the same sort of duality
relation as the fd and gD, and their Fourier coefficients again can be interpreted as traces, but
now of singular values of certain non-holomorphic modular functions). These results can be seen
as analogues of the Shimura correspondence between modular forms of integral and half-integral
weight.

We mention that the first results of this paper were found in 1994 and were quoted and applied
in the two papers [8] and [9] by Masanobu Kaneko, who used Theorem 1 to obtain a closed formula
for the Fourier coefficients of j(τ) in terms of traces of singular moduli.

§1. The trace of j(α) . Throughout this paper, d denotes a positive integer congruent to 0
or 3 modulo 4. We denote by Qd the set of positive definite binary quadratic forms Q = [a, b, c] =
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aX2+bXY +cY 2 (a, b, c ∈ Z) of discriminant b2−4ac = −d, with the usual action of the modular
group Γ = PSL(2,Z). To each Q ∈ Qd we associate its unique root αQ in H (= upper half-plane).
The value of j(αQ) depends only on the Γ-equivalence class of Q and, as is well-known, is an
algebraic integer. More precisely, if h(−d) denotes the class number of −d, i.e., the number of Γ-
equivalence classes of primitive quadratic forms in Qd, then each of the corresponding h(−d) values
of j(αQ) is an algebraic integer of exact degree h(−d) and they form a full set of conjugates, so that
the sum of these numbers is the trace. For instance, we have h(−3) = h(−4) = h(−7) = h(−8) = 1
and h(−15) = 2, and the corresponding j-values are

j
(1 + i

√
3

2

)
= 0, j(i) = 1728, j

(1 + i
√
7

2

)
= −3375, j(i

√
2) = 8000,

j
(1 + i

√
15

2

)
=

−191025− 85995
√
5

2
, j

(1 + i
√
15

4

)
=

−191025 + 85995
√
5

2
.

(1)

We want to give a formula for the traces. Actually, it is convenient to make three small changes.
First, we replace the function j by the normalized Hauptmodul for Γ = PSL(2,Z),

J(τ) = j(τ)− 744 = q−1 + 196884 q + 21493760 q2 + · · · (τ ∈ H, q = e2πiτ ). (2)

Secondly, we sum over all forms in Qd, not just the primitive ones. Finally, we weight the number
J(αQ) by the factor 1/wQ, where wQ = |ΓQ| (=2 or 3 if Q is Γ-equivalent to [a, 0, a] or [a, a, a], and
1 otherwise). We therefore define the Hurwitz-Kronecker class numbers H(d) and the modular

trace function t(d) by

H(d) :=
∑

Q∈Qd/Γ

1

wQ
, t(d) :=

∑

Q∈Qd/Γ

1

wQ
J(αQ) (d > 0, d ≡ 0 or 3 (mod 4)) .

For instance, from the examples in (1) we see that H(3) = 1
3 , H(4) = 1

2 , H(15) = 2 and

t(3) =
0− 744

3
= −248, t(4) =

1728− 744

2
= 492, t(15) = −191025− 2 · 744 = −192513 .

Further values are given in the following small table.

d 3 4 7 8 11 12 15 16 19

H(d) 1/3 1/2 1 1 1 4/3 2 3/2 2
t(d) −248 492 −4119 7256 −33512 53008 −192513 287244 −885480

d 20 23 24 27 28 31 32

H(d) 2 3 2 4/3 2 3 2
t(d) 1262512 −3493982 4833456 −12288992 16576512 −39493539 52255768

On the other hand, we define a (meromorphic) modular form of weight 3/2 by the formula

g(τ) := θ1(τ)
E4(4τ)

η(4τ)6
= q−1 − 2 + 248 q3 − 492 q4 + 4119 q7 − 7256 q8 + · · · . (3)

where θ1, E4 and η are the classical modular forms

θ1(τ) =
∞∑

n=−∞
(−1)nqn

2

, E4(τ) = 1 + 240
∞∑

n=1

n3 qn

1− qn
, η(τ) = q1/24

∞∏

n=1

(
1− qn

)

of weights 1/2, 4, and 1/2, respectively. Comparing the first few coefficients of g with the above
table suggests the following “modular” formula for the traces t(d) :
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Theorem 1. Write the Fourier expansion of g(τ) as g(τ) =
∑

d≥−1 B(d) qd . Then

t(d) = −B(d) (∀d > 0) . (4)

The proof of this result will occupy the next three sections.

§2. A recursion for the numbers t(d) . Let θ(τ) be the theta series
∑

n∈Z q
n2

and U4

the operator
∑

cnq
n 7→ ∑

c4nq
n. The fact that g(τ) is a modular form of weight 3/2 having

non-zero Fourier coefficients only for qd with d ≡ 0 or 3 modulo 4 (the so-called “Kohnen plus-
condition”; see §5) implies that the function (gθ)|U4 is a holomorphic modular form of weight 2
on the full modular group PSL(2,Z) and hence vanishes identically. Similarly, the image [g, θ]|U4

of the “Cohen bracket” [g, θ](τ) = g′(τ)θ(τ)− 3g(τ)θ′(τ) under U4 is a holomorphic modular form
of weight 4 on PSL(2,Z) and hence is a multiple of E4(τ). Writing these two facts out in terms of
Fourier coefficients gives the two identities

∑

r∈Z

B(4n− r2) = 0 ,
∑

r>0

r2 B(4n− r2) = 240σ3(n) (∀n ≥ 0) ,

where σ3(0) = 1/240 and σ3(n) for n ≥ 1 is the sum of the cubes of the positive divisors of n.
These formulas can be rewritten

B(4n− 1) = 240σ3(n)−
∑

2≤r≤
√
4n+1

r2 B(4n− r2) , B(4n) = −2
∑

1≤r≤
√
4n+1

B(4n− r2),

and in this form obviously determine all the B(d) by recursion: B(−1) = 240σ3(0) = 1, B(0) =
−2B(−1) = −2, B(3) = 240σ3(1) − 4B(0) = 248, B(4) = −2B(3) − 2B(0) = −492, etc. Thus to
prove (4) it suffices to prove the corresponding identities for t(d); i.e., Theorem 1 follows from:

Theorem 2. For all integers n ≥ 1 we have the identities

∑

|r|<2
√
n

t(4n− r2) =





−4 if n is a square,

2 if 4n+ 1 is a square,

0 otherwise

(5)

and

∑

1≤r<2
√
n

r2 t(4n− r2) = −240σ3(n) +





−8n if n is a square,

4n+ 1 if 4n+ 1 is a square,

0 otherwise.

(6)

The proofs of equations (5) and (6) are given in the next two sections and are rather pretty.
In particular, the proof of (5) is a refinement of the classical proof of Kronecker’s class number
relation ∑

|r|<2
√
n

H(4n− r2) =
∑

d|n
max{d, n/d} +

{
1/6 if n is a square,

0 otherwise.
(7)

§3. Proof of the first recursion for t(d). In this section we prove equations (5) and (7).
Let Φn(X,Y ) ∈ Z[X,Y ] denote the well-known nth modular polynomial, defined by the property

Φn

(
X, j(τ)

)
=

∏

M∈Γ\Mn

(
X − j(M ◦ τ)

)
(τ ∈ H), (8)
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where Mn denotes the set of 2 × 2 integral matrices of determinant n, with M and −M being
identified, and ◦ denotes the usual action of PGL+(2,R) on H. We exclude for the moment the
case when n is a square. Then observing that the function Φn(j(τ), j(τ)) vanishes exactly at the
points τ ∈ H which are fixed by some M ∈ Mn, and that these are just the points αQ with Q
a positive definite quadratic form whose discriminant has the form r2 − 4n for some integer r
(= tr(M)) satisfying |r| < 2

√
n, we get the classical identity

Φn(X,X) = const.×
∏

|r|<2
√
n

H4n−r2(X) , (9)

where the constant factor (which is always ±1 and is easily determined) does not matter to us and
the function Hd(X) is defined by

Hd(X) =
∏

Q∈Qd/Γ

(
X − j(αQ)

)1/wQ
(d > 0, d ≡ 0 or 3 (mod 4)) . (10)

This function is X1/3 times a polynomial in X if d/3 is a square, (X−1728)1/2 times a polynomial
in X if d is a square, and a polynomial in X otherwise. Clearly we have the q-expansion

Hd

(
j(τ)

)
=

∏

Q∈Qd/Γ

(
q−1 − J(αQ) + O(q)

)1/wQ
= q−H(d)

(
1− t(d) q +O(q2)

)
. (11)

On the other hand, taking as representatives for Γ\Mn the matrices
(
a b

0 d

)
with ad = n, 1 ≤ b ≤ d,

we get

Φn

(
j(τ), j(τ)

)
=

∏

ad=n

d∏

b=1

(
j
(
τ
)
− j

(aτ + b

d

))

=
∏

ad=n

d∏

b=1

(
q−1 − e−2πib/d q−a/d +O

(
q>0

))

=
∏

ad=n

(
q−d − q−a

)(
1 + O

(
q>1

))

=
∏

ad=n

±q−max{a,d} (1 − εa q + O(q2)
)
,

where εa is 1 if |a− d| = 1 (which can happen only if 4n+ 1 is a perfect square) and 0 otherwise.
Comparing this with (9) and (11), we get both equations (5) and (7) for non-square n.

If n is a square, then Φn(X,Y ) is divisible by Φ1(X,Y ) = X − Y and we must replace (9) by

Φn(X,Y )

Φ1(X,Y )

∣∣∣∣
Y=X

= const.×
∏

|r|<2
√
n

H4n−r2(X) /
∏

|r|<2

H4−r2(X) .

When we substitute X = j(τ), the left-hand side is ±qA
(
1 + O(q2)

)
by essentially the same

calculation as before, but omitting the factor corresponding to a = d =
√
n, b = 0. (Note that

now 4n+ 1 is not a square.) Hence
∑

|r|<2
√
n t(4n− r2) =

∑
|r|<2 t(4− r2) = −4.

§4. Proof of the second recursion for t(d). The method used to prove (5) was essentially
geometric: we identified two different functions up to a constant by observing that they had
the same divisors, and then obtained the desired identity by computing the expansions of both
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expressions at infinity. This does not generalize directly to the higher weight identity (6), but does
if we think of the logarithmic derivatives of the previous functions as modular forms of weight
2 and replace these by modular forms of higher weight. (One could state this geometrically by
working on the Kuga variety over H/Γ, or with appropriate local coefficient systems over H/Γ, but
we will not do this.) More precisely, for each positive integer d ≡ 0 or 3 (mod 4) we define

Λd(τ) =
d

dτ
logHd(j(τ)) =

∑

Q∈Qd/Γ

1

wQ

j′(τ)

j(τ)− j(αQ)
.

This is a meromorphic modular form of weight 2, holomorphic at infinity and with a simple pole
of residue 1/|Γα| at each point α ∈ H satisfying a quadratic equation over Z of discriminant −d,
and is uniquely characterized by these properties since there are no holomorphic modular forms of
weight 2 on Γ. The analogue of the logarithmic derivative of equation (9) is then the following:

Proposition. Let n be a positive integer which is not a square, τ ∈ H. Then

E4(τ)E6(τ)

∆(τ)

∑

M∈Γ\Mn

(E4|M)(τ)

j(τ)− j(Mτ)
=

1

4πi

∑

|r|<2
√
n

(r2 − n) Λ4n−r2(τ) , (12)

where Mτ :=
aτ + b

cτ + d
and (E4|M)(τ) := n3(cτ + d)−4E4(Mτ) for M =

(
a b

c d

)
∈ Mn.

Proof. Both sides of the equality are meromorphic modular forms of weight 2, holomorphic at
infinity, and with only simple poles, so it suffices to compare the residues. Let α ∈ H be a fixed
point of the action of M =

(
a b

c d

)
∈ Mn, where we can suppose that c > 0. The number λ = cα+d

is a quadratic algebraic integer of trace r = tr(M) and norm n, and

Resτ=α

(
E4(τ)E6(τ)

∆(τ)

(E4|M)(τ)

j(τ)− j(Mτ)

)
=

E4(α)E6(α)

∆(α)

n3λ−4E4(α)

(1− nλ−2)j′(α)
=

1

2πi

−λ̄3

λ− λ̄
.

(We leave to the reader the modifications necessary if α is a root of E4 or E6, i.e. a point with

a non-trivial stabilizer in Γ.) By combining the matrices M and nM−1 =
( d −b

−c a

)
, which have

the same fixed points but conjugate values of λ, we can replace the expression −λ̄3/(λ − λ̄) by
1
2 (λ

3 − λ̄3)/(λ− λ̄) = 1
2 (r

2 − n). The proposition follows.

The rest of the proof is similar to the calculation in the last section. Denote by Sn(τ) the
expression on the left-hand side of (12) and write its expansion at infinity as C0+C1q+ · · · . From
(12) and the expansion

− 1

2πi
Λd(τ) =

∑

Q∈Qd/Γ

1

wQ

q−1 +O(q)

q−1 − J(αQ) + O(q)
= H(d) + t(d) q +O(q2) ,

we obtain

C0 =
1

2

∑

|r|<2
√
n

(n− r2)H(4n− r2), C1 =
1

2

∑

|r|<2
√
n

(n− r2)t(4n− r2) .

On the other hand, again taking as a set of representatives for Γ\Mn the matrices
(
a b

0 d

)
with

0 ≤ b < d and ad = n, we find that Sn(τ) =
∑

ad=n a
3Sa,d(τ) where

Sa,d(τ) =
E4(τ)E6(τ)

∆(τ)
· 1
d

∑

0≤b<d

E4

(
(aτ + b)/d

)

j
(
τ
)
− j

(
(aτ + b)/d

) .

5



If a < d, then we can calculate the q-expansion of Sa,d(τ) as

Sa,d(τ) =
(
q−1 − 240 + O(q)

)
· 1
d

∑

ζd=1

1 + 240 ζqa/d + 240σ3(2) ζ
2q2a/d + · · ·

q−1 − ζ−1q−a/d +O(qa/d)

=
∑

l,m≥0
l≡m (mod d)

240σ3(l) q
m+a(l−m)/d

(
1− 240q +O(q2)

)

= 1 +
(
240 δa,1 σ3(n) + δa,d−1

)
q + O(q2),

since the only pairs (l,m) which contribute to the powers q0 and q1 are (0,0), (1,1), (d,0) (if a = 1)
and (0,d) (if a = d− 1). Similarly, for a > d we find

Sa,d(τ) =
∑

l≥0,m≥1
l+m≡0 (mod d)

240σ3(l) q
−m+a(l−m)/d (1− 240q +O(q2)

)

= −δa,d+1 q + O(q2) ,

since this time only the pair (l,m) = (0, d) contributes. Summing over all divisors a of d, we find
that the first two Fourier coefficients of Sn(τ) are given by

C0 =
∑

0<a<
√
n

a|n

a3 , C1 = 240σ3(n)−
{

3n+ 1 if 4n+ 1 = �,

0 otherwise,

where the last term comes from the two factorizations of n as ad with a− d = ±1. Comparing the
formula for C1 with the one given above, we obtain equation (6) (or more precisely, the difference
between 2 times equation (6) and n times equation (5), but we have already proved (5)) for non-
square n. The proof when n is a square is similar, except that we must also compute the Fourier
expansion of Sa,d(τ) in the case when a = d; we leave this calculation to the reader. By comparing
the two expressions obtained for C0 we also get the (well-known) identity

∑

|r|<2
√
n

(n− r2)H(4n− r2) =
∑

d|n
min(d, n/d)3 −

{
n/2 if n is a square,

0 otherwise,

which together with (7) recursively determines the Hurwitz-Kronecker class numbers H(n).

§5. Relation to Borcherds’s theorem. By equation (11), the Hurwitz-Kronecker class
number H(d) and the modified-trace-of-j function t(d) can be interpreted as the first two Fourier
coefficients of the logarithmic derivative of Hd(j(τ)), where Hd(X) is the (nearly) polynomial
function (10). Borcherds’s theorem describes the full Fourier expansion of the logarithmic deriva-
tive of Hd(j(τ)) in terms of certain Fourier coefficients of a meromorphic modular form fd(τ) of
weight 1/2. In this section we state his result and show how to deduce from it the formula for t(d)
given in Theorem 1. In §6 we show how, conversely, Borcherds’s formula follows from Theorem 1
and some simple considerations about Hecke operators in integral and half-integral weight, and
in the following section we show how similar ideas can be used to identify the remaining Fourier
coefficients of fd(τ) in terms of traces of singular moduli.

To define the functions fd(τ), we need some basic facts from the theory of modular forms of
half-integral weight. For any integer k, denote by Mk+1/2(Γ0(4)) the space of functions which are

holomorphic in H and at the cusps and which transform under the action of Γ0(4) like θ(τ)2k+1,
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where θ(τ) is the Jacobi theta-function
∑

n q
n2

already used in §2. The “Kohnen plus-space” is
the subspace consisting of functions whose Fourier expansion at infinity has the form

∑
c(n)qn

where c(n) is non-zero only for integers n satisfying (−1)kn ≡ 0 or 1 modulo 4. We will denote this
space simply by Mk+1/2, and consider its elements to be modular forms “of level one,” because of
Kohnen’s basic result that Mk+1/2 is isomorphic as a Hecke module to the space M2k = M2k(Γ) of
holomorphic modular forms of weight 2k on the full modular group. (The definition of the action
of the Hecke algebra on Mk+1/2 will be recalled in the next section.)

From the isomorphism Mk+1/2 ≈ M2k, or directly, we see that the space Mk+1/2 is one-
dimensional (spanned by θ itself) for k = 0 and is zero for k = 1 or k < 0. To get non-trivial spaces
in these low half-integral weights, we have to allow modular forms with poles. Let M !

k+1/2(Γ0(4))

be defined like Mk+1/2(Γ0(4)) but with the condition “holomorphic at the cusps” relaxed to “mero-
morphic at the cusps” (Borcherds [1] calls such forms “nearly holomorphic”) and define a “plus-
subspace” M !

k+1/2 of it by the same condition on the Fourier coefficients as before (where now c(n)

may be non-zero for a finite number of negative values of n). Equivalently, a function f(τ) belongs
to M !

k+1/2 if and only if f(τ)∆(4τ)n belongs to Mk+12n+1/2 for some integer n > 0. The space

M !
k+1/2 is infinite-dimensional for every k. In particular, for every integer d ≥ 0 with d ≡ 0, 3

(mod 4) there is a unique modular form fd ∈ M !
1/2 having a Fourier development of the form

fd(τ) = q−d +
∑

D>0

A(D, d) qD , (13)

and the functions f0, f3, f4, f7, . . . form a basis of M !
1/2. The existence and uniqueness of

the forms fd (=Lemma 14.2 of [1]) are easy to see. Indeed, the uniqueness is clear since the
difference of any two functions satisfying the definition of fd would be an element of M1/2 with
constant term 0 and hence would vanish. For the existence, we first construct f0 and f3 “by hand”
(f0(τ) is just θ(τ) itself, and a non-trivial linear combination of f3 and f0 can be obtained e.g. as
[θ(τ), E10(4τ)]/∆(4τ), where E10(τ) = E4(τ)E6(τ) is the Eisenstein series of weight 10 on Γ and
[θ(τ), E10(4τ)] = θ(τ)E′

10(4τ) − 5θ′(τ)E10(4τ) the Cohen bracket of θ(τ) and E10(4τ)). Then
for each d ≥ 4 we obtain fd(τ) by multiplying fd−4(τ) by j(4τ) to get a “plus”-form of weight
1/2 with leading coefficient q−d and then subtracting off multiples of fd′ to successively kill the

coefficients of q−d′

for 0 ≤ d′ < d. The process is effective and we find, for instance, that the
Fourier expansions of the first few fd begin as follows:

f0 = 1 + 2q + 2q4 + 2q9 + 2q16 + O(q25),

f3 = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 +O(q12),

f4 = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 +O(q12),

f7 = q−7 − 4119q + 8288256q4 − 52756480q5 + 5734772736q8 +O(q9),

f8 = q−8 + 7256q + 26124256q4 + 190356480q5 + 29071392966q8 +O(q9),

f11 = q−11 − 33512q + 561346944q4 − 5874905295q5 + 2225561184000q8 +O(q9) .

Theorem 3 (Borcherds [Bo, p. 204]). Let d > 0, d ≡ 0 or 3 (mod 4). Then

Hd

(
j(τ)

)
= q−H(d)

∞∏

n=1

(
1− qn

)A(n2,d)
. (14)

Example. From equation (14) for d = 3 and the above expansion of f3 we find

j(τ)1/3 = q−1/3 (1− q)−248 (1− q2)26752 (1− q3)−4096248 · · · .

Comparing equation (14) with (11), we obtain :
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Corollary. t(d) = A(1, d) for all d > 0.

This corollary and Theorem 1 give two apparently different ways to calculate t(d): Theorem 1
gives all of the t(d) as the Fourier coefficients of a single modular form g(τ) of weight 3/2, while
the Corollary gives each t(d) as a coefficient of a different modular form fd of weight 1/2. To see
how the two formulas are related, we define a second sequence of modular forms, analogous to the
fd but now in weight 3/2 rather than 1/2, namely for each positive integer D congruent to 0 or 1
modulo 4 we define gD(τ) as the unique form in M !

3/2 having a Fourier expansion of the form

gD(τ) = q−D +
∑

d≥0

B(D, d) qd . (15)

For D = 1 this is just the function g(τ) defined in (3), so B(1, d) is the same as the coefficient which
was denoted B(d) in §2. We can construct g4 either by applying the weight 3/2 Hecke operator
T (2) to g1 (cf. §6) or in the same way as f3 was constructed from f0 ([g1(τ), E10(τ)]/∆(4τ) is
a linear combination of g1(τ), g4(τ), and g1(τ)j(4τ) ), and then get the forms gD(τ) for D > 4
inductively by multiplying gD−4(τ) by j(4τ) and subtracting a suitable linear combination of
gD′(τ) with D′ < D; and the uniqueness of the gD follows from the fact that M3/2 = {0}. Here
are the beginnings of the Fourier developments of the first few gD:

g1 = q−1 − 2 + 248q3 − 492q4 + 4119q7 − 7256q8 + 33512q11 − 53008q12 +O(q15),

g4 = q−4 − 2− 26752q3 − 143376q4 − 8288256q7 − 26124256q8 +O(q11),

g5 = q−5 + 0 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 +O(q11),

g8 = q−8 + 0− 1707264q3 − 18473000q4 − 5734772736q7 − 29071392966q8 +O(q11),

g9 = q−9 − 2 + 4096248q3 − 51180012q4 + 22505066244q7 − 125891591256q8 +O(q11) .

Comparing these expansions with those of the fd given above, we notice that the coefficients
occurring are the same up to sign. The next theorem, which by virtue of the above corollary
reduces to (4) for D = 1, says that this is true in general.

Theorem 4. A(D, d) = −B(D, d) for all D and d.

Proof. Consider the function

F (τ1, τ2) =
f0(τ1)g4(τ2) + f3(τ1) g1(τ2)

j(4τ2)− j(4τ1)
(τ1, τ2 ∈ H) .

It is meromorphic, with a simple pole whenever 4τ1 and 4τ2 are Γ-equivalent. If ℑ(τ1) and ℑ(τ2)
are big enough (to be precise, bigger than 1/4), then this is the case if and only if 4τ1 and 4τ2
differ by an integer. On the other hand, we can easily check that

f0
(
τ +

n

4

)
g4(τ) + f3

(
τ +

n

4

)
g1(τ) = −1 + in

2πi
j′(4τ) (n = 0, 1, 2, 3),

so the residue of F (with respect to τ1, keeping τ2 fixed) at τ1 = τ2+n/4 (n ∈ Z) equals (1+in)/8πi.
This is the same as the residue of the elementary function F0(τ1, τ2) = (q41 + q1q

3
2)/(q

4
1 − q42), where

qj = e2πiτj , so F − F0 is a holomorphic function of (q1, q2) in a neighbourhood of (0, 0) ∈ C2, i.e.

F (τ1, τ2) =
q41 + q1q

3
2

q41 − q42
+

∑

D>0, d≥0

C(D, d) qD1 qd2
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in this neighbourhood for some coefficients C(D, d). Here we can write D > 0 rather than D ≥ 0
in the summation because both F and F0 obviously vanish on the q2-axis; moreover, it is clear that
C(D, d) is 0 unless D and d satisfy the usual congruences D ≡ 0, 1 (mod 4), d ≡ 0, 3 (mod 4).
Expanding F0 in a geometric series in the region |q2| < |q1|, we find that the Taylor expansion of
F with respect to τ2 is given by

F (τ1, τ2) =
∑

d≥0
d≡0, 3 (mod 4)

(
q−d
1 +

∑

D>0
D≡0, 1 (mod 4)

C(D, d) qD1

)
qd2 (τ1 ∈ H, ℑ(τ2) → ∞).

Since F is a (plus-)modular form of weight 1/2 with respect to τ1, the expression in parentheses
also is one, so it equals fd(τ1). Hence C(D, d) = A(D, d). Similarly, from the expansion

F (τ1, τ2) =
∑

D>0
D≡0, 1 (mod 4)

(
−q−D

2 +
∑

d≥0
d≡0, 3 (mod 4)

C(D, d) qd2

)
qD1 (τ2 ∈ H, ℑ(τ1) → ∞)

and the fact that F is a (plus-)modular form of weight 3/2 with respect to τ2 we deduce that
C(D, d) = −B(D, d). This completes the proof.

Notice that the Fourier expansions of F just given also yield formulas for all fd(τ) (d ≥ 0) as
linear combinations of f0(τ) and f3(τ) with coefficients in Q[j(4τ)], namely

fd(τ) =

[d/4]∑

n=0

Coeffqd

(
g4(τ)

j(4τ)n+1

)
j(4τ)nf0(τ) +

[(d−3)/4]∑

n=0

Coeffqd

(
g1(τ)

j(4τ)n+1

)
j(4τ)nf3(τ) ,

and similarly for all gD(τ) (D > 0) as linear combinations over Q[j(4τ)] of g1(τ) and g4(τ).

Remark. As Masanobu Kaneko has pointed out to me, there is an easier proof of Theorem 4.
It is easily checked that the constant term of the q-expansion of fg vanishes for any f ∈ M !

1/2 and

g ∈ M !
3/2 (because fg|U4 is a modular form of weight 2 on SL2(Z) with a pole only at infinity,

and every such form is the derivative of a polynomial in j). Applying this to f = fd, g = gD
immediately gives the assertion. We have retained the original proof because of the supplementary
information it gives about the functions fd and gD.

§6. Hecke operators. Theorems 1 and 4 together clearly imply the corollary to Borcherds’s
theorem, since one has t(d) = −B(1, d) = A(1, d). In fact, they imply the full theorem in a more
or less straightforward way, as we now explain.

To obtain the full minimal polynomial Hd(X) of the algebraic number j(αQ), we need not just
its trace but also the traces of all of its powers (or at least of all of its powers up to the class
number). Instead of working with the traces of j (or of J), we work with the functions Jm, defined
for every integer m ≥ 0 as the unique holomorphic function on H/Γ with a Fourier expansion
beginning q−m +O(q) . For m = 0 this is the constant function 1 and for m = 1 it is the function
J(τ) defined in (2), while the next three values have Fourier developments starting

J2(τ) = q−2 + 42987520 q + 40491909396 q2 + 8504046600192 q3 + · · · ,
J3(τ) = q−3 + 2592899910 q + 12756069900288 q2 + 9529320689550144 q3 + · · · ,
J4(τ) = q−4 + 80983425024 q + 1605963589611520 q2 + 3497254878743101440 q3 + · · · .

The uniqueness of these functions is obvious (the difference of any two functions satisfying the
definition of Jm would be a holomorphic cusp form of weight 0 and hence 0) and the existence
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also, since Jm can clearly be obtained as a monic polynomial of degree m in j(τ), e.g.

J2(τ) = j(τ)2 − 1488 j(τ) + 159768 ,

J3(τ) = j(τ)3 − 2232 j(τ)2 + 1069956 j(τ)− 36866976 ,

J4(τ) = j(τ)4 − 2976 j(τ)3 + 2533680 j(τ)2 − 561444608 j(τ) + 8507424792 .

The minimal polynomials of all j(αQ) are then determined if we know the numbers

tm(d) :=
∑

Q∈Qd/Γ

1

wQ
Jm(αQ) (16)

for all d and all m ≥ 1 (or even just for 0 ≤ m ≤ H(d)). To get them, we must generalize Theorems
1 and 4 to include Hecke operators. For any integer m ≥ 1 let Am(D, d) and Bm(D, d) denote the
coefficient of qD in fd| 1

2

T (m) and the coefficient of qd in gD| 3
2

T (m), respectively, where | 1
2

T (m)

and | 3
2

T (m) denote the action of the mth Hecke operator T (m) (sometimes denoted T (m2) or

T+(m2)) on the space M !
k , k = 1/2 or 3/2. The formulas for this action (at least for holomorphic

modular forms, but nothing changes if we allow the pole at infinity) are given in many places, e.g.
[10], Prop. 2 or, in the equivalent language of Jacobi forms, [4], Th. 4.5. In particular, for m = p
prime we have

Ap(D, d) = pA(p2D, d) +
(D
p

)
A(D, d) + A(p−2D, d) (17)

and

Bp(D, d) = B(D, p2d) +
(−d

p

)
B(D, d) + pB(D, p−2d) (18)

(with the convention that A(p−2D, d) = 0 unless p−2D is an integer congruent to 0 or 1 modulo 4,
and similarly for B(D, p−2d) ), while for D = 1 and m arbitrary we have

Am(1, d) =
∑

n|m
nA(n2, d) . (19)

Theorem 5. With the above notations, we have

(i) Hd

(
j(τ)

)
= q−H(d) exp

(
−

∞∑
m=1

tm(d)
qm

m

)
for all d ;

(ii) tm(d) = −Bm(1, d) for all m and d ;

(iii) Am(D, d) = −Bm(D, d) for all m, D and d .

Note that parts (ii) and (iii) of this theorem are the generalizations of Theorems 1 and 4 to m ≥ 1,
while Theorem 3 is obtained by combining (i), (ii), the case D = 1 of (iii), and equation (19).

Proof. (i) This identity follows directly from the definitions (10) and (16) of Hd(τ) and tm(d)
together with the identity

j(τ)− j(z) = q−1 exp

(
−

∞∑

m=1

Jm(z)
qm

m

) (
q = e2πiτ , ℑ(τ) ≫ 0) , (20)

an identity which has been discovered independently by a number of authors and which can be
proved easily by noting that the logarithmic derivative with respect to τ of either side is, for fixed
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τ with sufficiently large imaginary part, a Γ-invariant meromorphic function of z whose only pole
in the standard fundamental domain is a simple one of residue 1 at z = τ and which vanishes at
infinity.

(ii) We first observe that the function Jm is the composite of J with the mth Hecke operator
T (m) acting in degree 0, i.e., Jm(τ) is the sum of J(M(τ)) with M ranging over Γ\Mn. (This
is obvious, since J1|0T (m) is a modular function with a pole q−m +O(q) at infinity and no other
poles.) It follows that tm(d) is the sum of the values of J1(α) summed over all α ∈ Sd|T (m),
where Sd ⊂ H/Γ is the set of αQ, Q ∈ Qd/Γ (counted with multiplicity 1/qQ). But Sd|T (m) is
a combination of sets Sdm2/n2 with n ranging over the divisors of m. For example, Sd|T (p) for p
prime is equal to Sdp2 +

(−d

p

)
Sd + pSd/p2 . (The proof of this is an exercise, carried out, e.g., on

pages 290–292 of [15].) Assertion (ii) for m = p then follows from Theorem 1 and equation (18).
The general case can be proved similarly, or one can use the multiplicative properties of Hecke
operators (which are the same in integral and half-integral weight) and induction on the number
of prime factors of m.

(iii) Again we need only consider the case when m = p is prime. Formula (17) for the Fourier
coefficients of fd| 1

2

T (p) is true for all D, negative as well as positive, so from the defining property

A(D, d) = δD,−d (D < 0) of fd we deduce that Ap(D, d) = pδD,−d/p2 +
(−d

p

)
δD,−d + δD,−dp2

for D < 0, i.e., the principal part of fd| 1
2

T (p) at infinity is pq−d/p2

+
(−d

p

)
q−d + q−dp2

(with

the first term to be omitted unless −d/p2 is a discriminant). It follows that fd| 1
2

T (p) equals

pfd/p2+
(−d

p

)
fd+fdp2 and hence that itsDth Fourier coefficient Ap(D, d) is equal to pA(D, d/p2)+

(−d

p

)
A(D, d) + A(D, dp2). Comparing with (18), we find that (iii) follows from Theorem 4. One

could also give a dual proof by using (18) to show that gD| 3
2

T (p) = pgDp2 +
(D
p

)
gD + gD/p2 , and

there is yet a third proof along the lines of the proof given for the special case Theorem 4 by
looking at the singular part at infinity of the images of the two-variable modular form F (τ1, τ2)
under the actions of T (p) on τ1 (in weight 1/2) and τ2 (in weight 3/2).

This completes the proof of Theorem 5 and of Borcherds’s product formula (14) from our more
elementary formula (4). In the remaining sections of the paper we describe without detailed proofs
generalizations of these results in various different directions.

§7. First generalization: other discriminants. The theorems we have discussed so far give
an interpretation of the numbers Am(D, d) = −Bm(D, d) as traces when D is equal to 1 or, more
generally, whenever D is a perfect square. Is there a similar interpretation for the other values?

The answer is yes, but now we have to take “twisted” traces in which the conjugates of j(αQ) are
multiplied by a genus character before summing. We recall the definition of these characters. LetD
and −d be a positive and a negative discriminant, respectively. For ease of exposition we suppose
them to be fundamental and coprime. (Comments on other situations are given in Remark 3
below.) Then the genus character χ = χD,−d assigns to any quadratic form Q of discriminant

−dD a value ±1 defined by χ(Q) =
(
D
p

)
=

(−d
p

)
where p is any prime represented by Q and not

dividing Dd. (This is independent of the choice of p.)

Theorem 6. Let D > 1 and −d < 0 be coprime fundamental discriminants, and χ = χD,−d the

11



associated genus character. Then

A(D, d) =
1√
D

∑

Q∈QdD/Γ

χ(Q) j(αQ) . (21)

Example. Take D = 5, d = 3, the first non-trivial case. There are two Γ-equivalence classes
of quadratic forms of discriminant −15, represented by the forms Q1 = [1, 1, 4] and Q2 = [2, 1, 2]
with χ(Q1) = 1, χ(Q2) = −1. The corresponding values of j(αQ) are given in (1). We see

that the right-hand side of (21) is
(
j(αQ1

)− j(αQ2
)
)
/
√
5 = −85995, in agreement with the value

A(5, 3) = −B(5, 3) = −85995 given in §5.
Remarks. 1. In formula (21) we could omit the usual factor w−1

Q because it is always 1 for D

and d as in the theorem, and similarly we could write j(αQ) rather than J(αQ) because summing
with the non-trivial character χ kills the additive constant by which j and J differ.

2. The right-hand side of (21) is a priori a rational integer. Indeed, the sum of j(αQ) as Q ranges
over the forms with χ(Q) = +1 is, by class field theory, the trace of the algebraic integer j(αQ) from

the Hilbert class field of Q(
√
−dD) to its real quadratic subfield Q(

√
D). If we write this number

as λ = 1
2 (a+ b

√
D) with a and b in Z, then the sum over all j(αQ) is equal to Tr

Q(
√
D)/Q(λ) = a

and therefore the weighted sum
∑

χ(Q)j(αQ) is equal to −a+ 2λ = b
√
D.

3. If D and d are not coprime, then the statement of the theorem is unaltered but χ(Q) must be
defined as 0 for imprimitive forms Q which are divisible by some prime dividing both D and d.
Thus for instance the values A(8, 4) = 18473000 and A(5, 15) = −292658282496 are obtained as

(j(α[1,0,8])− j(α[3,2,3]))/
√
8 and (j(α[1,1,19])− j(α[3,3,7]))/

√
5, respectively. The cases when D and

d are not assumed to be fundamental can be given by a suitable modification of (21) (the reader
can find the right formulas easily by a little numerical experimentation) or can be obtained from
the case of fundamental discriminants by suitable applications of Hecke operators.

We can also give a generalization of the Borcherds product expansion (14), but with a difference.
For D and d as in the theorem we define a rational function HD,d(X) by

HD,d(X) =
∏

Q∈QDd/Γ

(
X − j(αQ)

)χ(Q)
. (22)

For the same reasons as in Remark 2, this belongs to Q(
√
D)(X) and is mapped by the non-

trivial element of Gal(Q(
√
D)/Q) to its inverse. It follows that the power series expansion of

logHD,d(j(τ)), which begins with 1, has a logarithm belonging to
√
DQ[[q]].

Theorem 7. Let D, d and HD,d(X) be as above. Then

HD,d

(
j(τ)

)
=

∞∏

n=1

PD(qn)A(n2D,d) (23)

where

PD(t) := exp

(
−
√
D

∞∑

r=1

(D
r

) tr
r

)
∈ Q(

√
D)[[t]] . (24)

The function Pd(t) is a rational function of t with coefficients in Q(
√
D).

Examples. For D = 1 we clearly have P1(t) = 1 − t, so that (24) reduces to (14) in this case.
The next values of PD are

P5(t) =
1− φ t+ t2

1− φ′t+ t2
, P8(t) =

1−
√
2 t+ t2

1 +
√
2 t+ t2

, P12(t) =
1−

√
3 t+ t2

1 +
√
3 t+ t2

,
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where φ = (1 +
√
5)/2 is the golden ratio and φ′ = (1 −

√
5)/2 its Galois conjugate. A typical

example of the theorem (D = 8, d = 3) is the expansion

j(τ)− 2417472− 1707264
√
2

j(τ)− 2417472 + 1707264
√
2

=
∞∏

n=1

(
1−

√
2qn + q2n

1 +
√
2 qn + q2n

)A(8n2, 3)

of the ratio of j(τ)− j(
√
−6) and j(τ)− j(

√
−3/2), whereas Borcherds’s product expansion (14)

would give the Fourier expansion of the product of the same two expressions in the form

j(τ)2 − 4834944 j(τ) + 14670139392 = q2
∞∏

n=1

(
1− qn

)A(n2, 24)
,

Theorem 7 follows from Theorem 6 in the same way as explained in §6 for the special case
D = 1. If we denote by t(D, d) the sum occurring in the right-hand side of (21) (“twisted trace”)
and by tm(D, d) the corresponding sum with j replaced by Jm, then we can use Hecke operators
in integral and half-integral weight to show that (21) generalizes to

tm(D, d)) = Am(D, d)
√
D for all m, D and d . (25)

From equations (20) and (25) we find

HD,d

(
j(τ)

)
= exp

(
−

∞∑

m=1

tm(D, d)
qm

m

)
= exp

(
−
√
D

∞∑

m=1

Am(D, d)
qm

m

)
,

and combining this with the formula

Am(D, d) =
∑

n|m
n
( D

m/n

)
A(n2D, d) ,

which is the generalization of (19) to fundamental discriminants D > 1, gives (23). For the final

statement of Theorem 7 we use the Gauss sum identity
√
D

(D
r

)
=

∑
0<n<D

(D
n

)
e2πinr/D to get

PD(t) =
∏

0<n<D

(
1 − ζnD t

)(D
n
)
=

N
Q(ζD)/Q(

√
D)

(
1− ζDt

)2

NQ(ζD)/Q

(
1− ζDt

)
(
ζD = exp2πi/D

)
. (26)

Digression on Hilbert modular surfaces, the Doi-Naganuma lifting, and twisted
Borcherds products. To prove Theorem 6, two approaches are possible (although to be honest I
have not actually carried out either one in detail). One way would be to generalize the proof which
Borcherds gave in [1] for the case D = 1. This proof is based on the circle method and uses explicit
calculations of the Fourier developments of Poincaré series, so that it is a kind of multiplicative
analogue of the method which was introduced in [13] to construct the Doi-Naganuma lifting from
elliptic to Hilbert modular forms and applied in [11] for the usual Shimura lifting from modular
forms of half-integral to modular forms of integral weight. But in keeping with the spirit of the rest
of this paper, one would like to give a more elementary proof, and also to see the “twisted traces”
t(D, d) for a fixed D and variable d appear naturally as the Fourier coefficients of a single modular
form gD rather than a collection of modular forms {fd}. The method used to prove Theorem 1 in
this paper was to reduce it to the set of recursions given in Theorem 2 and then prove these by

13



a geometric method. Specifically, to prove Theorem 2 we used the polynomial Φn(X,Y ), which
is the function on P1 × P1 ∼= H/Γ × H/Γ =: X1 whose zero-divisor is the graph of the Hecke
correspondence Tn ⊂ X1. The recursions (5) and (6) are then connected with the geometric fact
that the intersection of Tn with the diagonal T1 = H/Γ ⊂ X1 is the union over |r| < 2

√
n of the

CM-cycles S4n−r2 ⊂ H/Γ. We would like to see what replaces this when D > 1.

The obvious replacement for the surface X1 when one is dealing with a non-square positive
discriminant D, say the discriminant of a real quadratic field K, is the Hilbert modular surface
XD = H×H/SL(2,OK), and the usual replacement for the graph of the Hecke correspondence in
X1 is the curve (also denoted Tn) in XD which was studied in [7]. The result Tn ∩ T1 =

⋃S4n−r2

on X1 then generalizes nicely to a similar formula on XD (essentially Tn ∩ T1 =
⋃S(4n−r2)/D, at

least for D prime, which we now assume). The problem is that Tn is not in general the zero-set
of any function on XD, because its homology class on the surface XD is not in general trivial.
Indeed, the main result of [7] says that this homology class as n varies is the nth coefficient of a

modular form (with coefficients in H2(XD)) of level D and Nebentypus
( ·
D

)
and that this modular

form describes (i.e., is the kernel function for) the Naganuma map [12] from M2

(
Γ0(D),

( ·
D

))
to

M2

(
SL(2,OK)

)
. This map is injective and the dimension of M2

(
Γ0(D),

( ·
D

))
grows linearly with

D, so it becomes increasingly difficult to find linear combinations of the curves Tn which are are
homologically trivial.

However, as well as the Naganuma lifting from Mk

(
Γ0(D),

( ·
D

))
to Mk(SL(2,OK), there is also

the lifting constructed earlier by Doi and Naganuma [3] from Mk

(
SL(2,Z)

)
to Mk(SL(2,OK), and

in [14, pp. 63–65] it was shown that it, too, could be described geometrically in terms of intersections

numbers with certain divisors T̃n on XD. But since there are no cusp forms of weight 2 on SL(2,Z),

this means that all of the divisors T̃n are homologically trivial and hence (since XD is known to be
simply connected) principal, so that they can be obtained as the divisors of certain Hilbert modular

functions Ψ
(D)
n . It is these functions which are the analogues of the functions Φn(j(τ1), j(τ2)) in

the case D = 1. The definition of the curves T̃n, which we will not repeat here, is well suited to our

twisted traces t(D, d) and twisted Heegner cycles SD,d =
∑

χ(Q)[αQ], because T̃n is defined as the
difference of two components of TnD2 which are distinguished by the value of the Legendre symbol

(·/D). Using this one finds easily that T̃n ∩ T1 =
⋃

r SD,4n−r2 and hence that the restriction of

Ψ
(D)
n to T1 is

∏
r HD,4n−r2(j), where we have identified T1 ≈ H/Γ with the j-line, and it is this

which replaces the classical identity (9).

We now have an amusing calculation. Write Jm(τ) = q−m +
∑

n>0 cm(n)qn. The coefficients

cm(n) are given by cm(n) =
∑

d|(m,n) md−1c(mn/d2), where c(n) = c1(n) is the coefficient of qn in

J(τ). It follows that cm(n) = mn−1cn(m) and that the function Sm(τ) := q−m −∑
n>0 cn(m)qn

is a multiple of J ′
m(τ) and hence is the (obviously unique) modular form in M !

2(Γ) with a Fourier
expansion of the form q−m+O(q). Now consider the function (gDθ)|U4, whereD as usual is positive
and congruent to 0 or 1 modulo 4. From gD = q−D − 2ε(D)+O(q) (ε(D) = 1 or 0 according as D

is or is not a square) we find (gDθ)|U4 =
∑

f q
(f2−D)/4 +O(q), where the summation runs over all

integers f with f2 < D, f ≡ D (mod 2). Also, (gDθ)|U4 is a modular form of weight 2 on Γ and
is nearly holomorphic. Hence by our previous remark (gDθ)|U4 =

∑
f S(D−f2)/4, and comparing

the coefficients of qn on both sides we obtain the identity

∑

r2<4n

A(D, 4n− r2) =
∑

f2<D, f≡D (mod 2)

cn
(D − f2

4

)
+ 2ε(4n+D) .

Combining this with the above identity Ψ
(D)
n (τ, τ) =

∏
r2<4n HD,4n−r2(j(τ)) and equation (23),
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we deduce after a short calculation that

Ψ(D)
n (τ, τ) =

∏

ν∈d−1, Tr(ν)>0

PD

(
qTr(ν)

)cn(Dνν′)
,

where the product is over all all elements ν in the inverse different d−1 = D−1/2OK with Tr(ν)
positive and Dνν′ either positive or else equal to −n. This strongly suggests the identity

Ψ(D)
n (τ1, τ2) =

∏

ν∈d−1/{±1}
PD

(
e2πi(ντ1+ν′τ2)

)cn(Dνν′)
(27)

(in a suitable neighborhood of infinity), which is a kind of twisted Borcherds product expansion

for the Hilbert modular function Ψ
(D)
n . This identity is similar (apart from the twisting) to an

identity proved by Bruinier [2] for the usual curves Tn, and could doubtless be proved the same
way, although I have not gone through the details. Indeed, the calculation should be much easier
here because in Bruinier’s case only certain linear combinations of the Tn were homologically trivial
and therefore representable as the divisor of a Hilbert modular function, and (correspondingly) the
Poincaré series of weight 2, which here are trivial because Γ has genus 0, were more complicated
because of the the presence of holomorphic cusp forms (on Γ0(D) and Nebentypus) of weight 2.

If we take the logarithm of (27) and substitute the definition (24) of the power series PD(t), then

we find that the coefficient of e2πi(ντ1+ν′τ2) in log
(
Ψ

(D)
n (τ1, τ2)

)
is equal to

∑
r
r−1

(D
r

)
cn
(Dνν′

r2
)
.

This formula is identical (with an = cn and k = 0) to the formula for the νth Fourier coefficient
of the classical Doi-Naganuma lifting of a holomorphic modular form f =

∑
anq

n ∈ Mk(Γ)

(cf. [13]). We can thus interpret the logarithm of Ψ
(D)
n as the Doi-Naganuma lifting of the nearly

holomorphic modular form Jn ∈ M !
0(Γ), and (28) as saying that such a multiplicative version of

the Doi-Naganuma lifting exists. Again, this is the analogue of the corresponding (but harder)
result proved by Bruinier for the case of the Naganuma lifting.

An interesting problem would be to show that the Hilbert modular function Ψ
(D)
n is defined

over Q or K and to compute its values at CM points, as was done in [5] for the case D = 1. In
analogy with the results of [5], we would expect these values to factor completely into small primes
in a way which can be described explicitly.

§8. Second generalization: other groups. Another evident way to generalize Theorem 1
is to replace the function j(τ) by a modular function of higher level, and in particular by the
Hauptmodul associated to other groups of genus 0. We discuss examples of this in this section.
We will consider only the case when the genus 0 group is the group Γ∗

0(N) (the extension of Γ0(N)
by the group of all Atkin-Lehner involutions Wp, p|N). We will look in detail at the first five values
N = 2, 3, 4, 5 and 6 (although there are many further values of N for which Γ∗

0(N) has genus 0).
The corresponding Hauptmodules (with apologies for the mixed German/English spelling!) are

j∗2 (z) =

(
η(z)

η(2z)

)24

+ 24 + 212
(
η(2z)

η(z)

)24

= q−1 + 4372 q + 96256 q2 + 1240002 q3 + 10698752 q4 + 74428120 q5 + 431529984 q6 + · · · ,

j∗3 (z) =

(
η(z)

η(3z)

)12

+ 12 + 36
(
η(3z)

η(z)

)12

= q−1 + 783 q + 8672 q2 + 65367 q3 + 371520 q4 + 1741655 q5 + 7161696 q6 + · · · ,

j∗4 (z) =

(
η(z)

η(4z)

)8

+ 8 + 44
(
η(4z)

η(z)

)8

= q−1 + 276 q + 2048 q2 + 11202 q3 + 49152 q4 + 184024 q5 + 614400 q6 + · · · ,
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j∗5 (z) =

(
η(z)

η(5z)

)6

+ 6 + 53
(
η(5z)

η(z)

)6

= q−1 + 134 q + 760 q2 + 3345 q3 + 12256 q4 + 39350 q5 + 114096 q6 + · · · ,

j∗6 (z) =

(
η(z)η(2z)

η(3z)η(6z)

)4

+ 4 + 34
(
η(3z)η(6z)

η(z)η(2z)

)4

=

(
η(z)η(3z)

η(2z)η(6z)

)6

+ 6 + 26
(
η(2z)η(6z)

η(z)η(3z)

)6

= q−1 + 79 q + 352 q2 + 1431 q3 + 4160 q4 + 13015 q5 + 31968 q6 + · · · .

Each of these functions takes on algebraic integer values at CM points in the upper half-plane,
and we want to give a formula for their traces.

For N > 1 one must consider Heegner points rather than arbitrary CM points. The easiest
way to describe these is to say that they are the images of the roots αQ ∈ H of quadratic forms
Q(X,Y ) = aX2 + bXY + cY 2 with a ≡ 0 (mod N) and (a, b, c,N) = 1. (The last condition is
automatic if we assume that the −d is not divisible as a discriminant by the square of any prime
dividing N , an assumption we make from now on.) This requires in particular that the discriminant
−d of Q is congruent to a square modulo 4N . The class of αQ modulo Γ0(N) has a second invariant,
apart from its class in Qd/Γ, namely the value of b (mod 2N). If we fix this class, i.e., choose an
integer β (mod 2N) with β2 ≡ −d (mod 4N) and consider only forms Q = [a, b, c] with a ≡ 0
(mod N) and b ≡ β (mod 2N), then the number of Γ0(N)-equivalence classes of such Q, counted
as usual with multiplicity 1/wQ, is H(d), and the natural map from the quotient Qd,N,β/Γ0(N)

(with the obvious notation) to Qd/Γ is a bijection. We could then define a trace t(N,β)(d) as the
sum of the values of j∗N (αQ) with Q running over a set of representatives for Qd,N,β/Γ0(N). In
our case, however, we are looking at the smaller quotient of H by Γ0(N)∗, and here the value of
t(N,β)(d) is independent of β. (This is why we chose to restrict to this case.) We can therefore
define

t(N)(d) =
∑

Q

1

wQ
j∗N

(
αQ

)
,

where the sum runs over Γ∗
0(N)-representatives of forms Q = [a, b, c] satisfying N |a. Here are some

numerical examples with N = 2 and N = 3:

t(2)(4) =
1

2
j∗2
(1 + i

2

)
= −52 , t(2)(7) = j∗2

(1 +
√
−7

4

)
= −23 , t(2)(8) = j∗2

(√−2

2

)
= 152 ,

and

t(3)(3) =
1

3
j∗3
(−3 +

√
−3

6

)
= −14 , t(3)(11) = j∗3

(1 +
√
−11

6

)
= 22 .

In analogy with Theorem 1, we want to express these traces as the coefficients of some modular
forms of weight 3/2. In fact, the results will be more easily formulated in the language of Jacobi
forms rather than modular forms of half-integral weight. (If we were looking at Hauptmodules for
groups Γ0(N) rather than Γ∗

0(N), then we would actually have to work with Jacobi forms, since
the trace would then depend on both the discriminant −d and on a choice of square-root β of −d
(mod 4N), as explained above. In our case it would be possible to work just with modular forms,
but using Jacobi forms makes things simpler.) We begin by recalling some basic definitions and
facts from the theory of Jacobi forms, referring to [4] for a more detailed exposition.

For any integers k and N > 0, the space Jk,N of Jacobi forms of weight k and index N (on the
full modular group) is defined as the set of holomorphic functions φ(τ, z) on H×C which are in a
suitable sense both modular (with respect to the action (τ, z) 7→ ((aτ + b)/(cτ + d), z/(cτ + d)) of
Γ on H×C) and elliptic (with respect to the translations of z by elements of the lattice Zτ + Z),
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and which satisfy a suitable condition of holomorphy at infinity. The transformation equations
imply that φ has a Fourier development of the form

φ(τ, z) =
∑

n,r∈Z

c(n, r) qnζr
(
q = e2πiτ , ζ = e2πiz

)

in which the coefficient c(n, r) depends only on the quantity 4Nn − r2 and on r (mod 2N). The
holomorphy condition at infinity is that c(n, r) vanishes unless 4Nn − r2 ≥ 0. If we relax the
condition to merely requiring that c(n, r) = 0 if n < 0, we obtain the space of weak Jacobi forms,

denoted J̃k,N in [4], and if we drop it entirely we obtain the space of nearly holomorphic Jacobi

forms, which we will denote J !
k,N . The structure of the ring J̃∗,∗ of all weak Jacobi forms was

determined in [4], Theorem 9.3 and 9.4: its even weight subring is the free polynomial algebra over

M∗ = M∗(Γ) = C[E4(τ), E6(τ)] on two generators a = φ̃−2,1(τ, z) ∈ J̃−2,1 and b = φ̃0,1(τ, z) ∈ J̃0,1,

while the full ring is an extension of this by a further element c ∈ J̃−1,2 with 432c2 = ab3−3E4a
3b+

2E6a
4. It follows from this description that the rings J !

ev,∗ and J !
∗,∗ are given by a similar formula,

but with M∗(Γ) replaced by M !
∗(Γ) = C[E4, E6,∆

−1]/(E3
4−E2

6 = 1728∆). The Fourier expansions
of a and b begin

a =(ζ − 2 + ζ−1) + (−2ζ2 + 8ζ − 12 + 8ζ−1 − 2ζ−2) q

+ (ζ3 − 12ζ2 + 39ζ − 56 + . . . ) q2 + (8ζ3 − 56ζ2 + 152ζ − 208 + . . . ) q3 + · · ·
b =(ζ + 10 + ζ−1) + (10ζ2 − 64ζ + 108− 64ζ + 10ζ2) q

+ (ζ3 + 108ζ2 − 513ζ + 808− . . . ) q2 + (−64ζ3 + 808ζ2 − 2752ζ + 4016− . . . ) q3 + · · · ,

where the “ . . . ” means that the coefficients of negative powers of ζ have been omitted (the
transformation equation of Jacobi forms imply that c(n,−r) = (−1)kc(n, r) for a Jacobi form of
weight k). The above-mentioned periodicity property of the Fourier coefficients is clearly visible
in these expansions.

If N = 1, then the periodicity property of the Fourier coefficients mentioned above implies that
c(n, r) = C(4n − r2) for some function d 7→ C(d), and also that k is even. There is then an
isomorphism between Jk,1 and Mk−1/2, and between J !

k,1 and M !
k−1/2, sending

∑
c(n, r)qnζr to∑

C(d)qd. For example, the two forms g1 and g5 in M3/2 correspond to the Jacobi forms

φ(τ, z) = E4 a = (ζ − 2 + ζ−1) + (−2ζ2 + 248ζ − 492 + . . . ) q + · · · ,

φ5(τ, z) =
(5
6

E4
4

∆
− 816E4

)
a +

1

6

E2
4E6

∆
b

= (ζ + ζ−1) q−1 + 0 q0 + (ζ3 + 85995ζ − 565760 + . . . ) q + · · · .

in J̃2,1 and J !
2,1 , respectively. Generalizing the function φ = φ(1) there are Jacobi forms φ(N) ∈

J̃2,N (2 ≤ N ≤ 6) uniquely characterized by the requirement that they have Fourier coefficients

c(n, r) = B(N)(4nN−r2) which depend only on the discriminant r2−4Nn (except in the case when
N = 4 and r ≡ 0 (mod 4), in which case c(n, r) = (−1)r/4 B(4)(16n − r2)), with B(N)(−1) = 1,
B(N)(0) = −2. (In particular, the Fourier development of φ(N) begins (ζ − 2 + ζ−1) + O(q).) The

representations of the forms φ(N) in terms of the generators a = φ̃−2,1, b = φ̃0,1 of J̃∗,∗ are as
17



follows:

φ(2) =
1

12
a
(
E4b− E6a

)
,

φ(3) =
1

122
a
(
E4b

2 − 2E6ab+ E2
4a

2
)
,

φ(4) =
1

123
a
(
E4b

3 − 3E6ab
2 + 3E2

4a
2b− E4E6a

3
)
,

φ(5) =
1

124
a
(
E4b

4 − 4E6ab
3 + 6E2

4a
2b2 − 4E4E6a

3b+ (4E2
6 − 3E3

4)a
4
)
,

φ(6) =
1

125
a
(
E4b

5 − 5E6ab
4 + 10E2

4a
2b3 − 10E4E6a

3b2 + (8E2
6 − 3E3

4)a
4b− E2

4E6a
5
)
,

so that each φ(N)(τ, z) has the form
∑N

ν=1 fN,ν(τ)φ̃−2,1(τ, z)
ν φ̃0,1(τ, z)

N−ν where fN,ν(τ) is a

holomorphic modular form of weight 2ν+2 on SL(2,Z) with constant term (−1)ν−1

12N−1

(
N−1
ν−1

)
. Using

these expansions one can compute the Fourier coefficients B(N)(d). Here is a table for 0 < d < 30.

d 3 4 7 8 11 12 15 16 19 20 23 24 27 28

B(2)(d) 52 23 −152 496 1 −1036 2256 94 −4400 8192
B(3)(d) 14 34 −22 −52 138 116 −115 −348 482
B(4)(d) 23 0 1 −52 94 0
B(5)(d) 8 12 38 6 −20 −12 44
B(6)(d) 10 28 10 −12 13 −44

(The empty entries correspond to −d which are not congruent to squares modulo 4N .) Comparing
these numbers with the examples of traces t(N)(d) given at the beginning of the section, we are
led to the following result, which can be proved in a way analogous to the proof of Theorem 1.

Theorem 8. t(N)(d) = −B(N)(d) for all d and N .

§9. Third generalization: other weights. The results discussed so far concerned the
modular forms j(τ) and Jm(τ) of weight 0, the modular forms fd of weight 1/2, and the modular
forms gD of weight 3/2. It is natural to wonder whether there are similar results for other weights.

In fact our story so far involved not only the weights 0, 1/2, and 3/2, but also the weight 2,
although in an invisible form: the existence of the Hauptmodul, a special modular form of weight 0,
depended on the fact that the modular curve being studied had genus 0 and hence that the space
of modular forms of the complementary weight 2 contained no cusp forms. We will find analogous
results for all other pairs of half-integral weights (k + 1

2 ,
3
2 − k) for which there are no non-zero

cusp forms of weight 2k on SL(2,Z), i.e., for k = 2, 3, 4, 5, and 7.

We look first at the case k = 2. For each nonpositive discriminant −d there is a unique form
ud ∈ M!

5/2 such that ud = q−d +O(q) at infinity, and for each positive discriminant D there is a

unique form vD ∈ M!
−1/2 such that vD = q−D + O(1) at infinity. The Fourier expansions of the

18



first few of these functions begin

u0 = 1− 10q − 70q4 − 48q5 − 120q8 − 250q9 − 240q12 − 240q13 +O(q16) ,

u3 = q−3 + 64q − 32384q4 + 131565q5 − 4257024q8 + 11535936q9 +O(q12) ,

u4 = q−4 − 108q − 131976q4 − 656800q5 − 34867000q8 − 109046412q9 +O(q12) ,

u7 = q−7 + 513q − 4451328q4 + 35655680q5 − 6275241984q8 +O(q9) ,

u8 = q−8 − 808q − 12327152q4 − 112985280q5 − 27914678946q8 +O(q9) ,

v1 = q−1 + 10− 64q3 + 108q4 − 513q7 + 808q8 − 2752q11 + 4016q12 +O(q15) ,

v4 = q−4 + 70 + 32384q3 + 131976q4 + 4451328q7 + 12327152q8 +O(q11) ,

v5 = q−5 + 48− 131565q3 + 656800q4 − 35655680q7 + 112985280q8 +O(q11) ,

v8 = q−8 + 120 + 4257024q3 + 34867000q4 + 6275241984q7 +O(q8) ,

v9 = q−9 + 250− 11535936q3 + 109046412q4 − 27774693612q7 +O(q8) .

These values suggest the following result, whose proof is entirely analogous to that of Theorem 4.

Theorem 9. For all D and d the coefficient of qD in ud is the negative of the coefficient of qd

in vD .

The corresponding result holds also for the other cases k = 3, 4, 5, and 7. We will come back
to this at the end of the section, but first we want to know whether there is any analogue of
Theorem 1 for the new coefficients, and specifically whether the coefficients of the form v1 (and
then later of the other forms vD and ud, in analogy with the generalization of Theorem 1 given
in §7) can be interpreted as traces of some modular function.

The answer is yes, but we have to work with non-holomorphic modular functions. This is in
a sense quite natural. The values k = 2, 3, 4, 5, 7 for which Sk+1/2 = {0} are, by virtue of the
Shimura-Kohnen correspondence, precisely those for which S2k(Γ) = {0}, as already mentioned, so
their special behaviour has to do with the pair of integral weights 2k and 2−2k, rather than 2 and 0
as in the case we studied originally. In particular, for these values of k there is a unique nearly
holomorphic modular form Fk ∈ M!

2−2k(Γ) having a Fourier development starting q−1 + O(1).
We would like to take the sum of the values of this function at all points of Qd/Γ, but of course
this makes no sense since Fk is not Γ-invariant. However, there is a well-known non-holomorphic

differentiation operator which increases the weight of a modular form by 2 (at the cost of making
it mildly non-holomorphic), and by applying this the right number of times to the function Fk we
get a Γ-invariant function which we then can evaluate on Qd/Γ. For k = 2 the function Fk is given
by

F2(τ) =
E4(τ)E6(τ)

∆(τ)
= q−1 − 240− 141444 q − 8529280 q2 − 238758390 q3 − · · ·

and its non-holomorphic derivative is the function

K(τ) = −
(

1

2πi

∂

∂τ
+

1

2πℑ(τ)

)
F2(τ) =

E∗
2 (τ)E4(τ)E6(τ) + 3E4(τ)

3 + 2E6(τ)
2

6∆(τ)
,

where E4 and E6 are the usual Eisenstein series of weights 4 and 6 on SL2(Z) and

E∗
2 (τ) = 1− 24

∞∑

n=1

n qn

1− qn
− 3

πℑ(τ) = 1− 3

πℑ(τ) − 24 q − 72 q2 − 96 q3 − 168 q4 − · · ·
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the non-holomorphic Eisenstein series of weight 2 on Γ.

It is well-known that, although E∗
2 (z) is not holomorphic, it has the same arithmetic property

as a holomorphic modular form with rational Fourier coefficients, namely that its quotient by a
meromorphic modular form of weight 2 has algebraic values (belonging to the usual class field) at
CM points in the upper half-plane. It follows that K(τ) is algebraic at all CM points. Here are a
few sample values.

K
(1 +

√
−3

2

)
= −576, K

(
i
)
= 864, K

(1 +
√
−7

2

)
= −3591, K

(√
−2

)
= 6464,

K
(1 +

√
−15

2

)
=

−176625− 78939
√
5

2
, K

(1 +
√
−15

4

)
=

−176625 + 78939
√
5

2
.

Note that in all of these examples, the values of K(αQ) are algebraic integers, but this is not
always the case. For instance, the values of K(αQ) for the three inequivalent quadratic forms of
discriminant −31 are the roots of the polynomial

X3 + 37235619X2 − 61346290410

31
X + 1143159756791823

in which the coefficients of X2 and X0 (trace and norm) are integral and even divisible by 31, but

the coefficient of X has a denominator 31. This is because the values of E4(z)/∆(z)1/3 = 3

√
j(z)

and E6(z)/∆(z)1/2 =
√

j(z)− 1728 for z ∈ Qd are algebraic integers, but E∗
2 (z)/∆(z)1/6 in

general has a denominator
√
−d. For instance, the values of E∗

2 (z)/∆(z)1/6 for z ∈ Q31 (with an
appropriate choice of ∆(z)1/6) are equal to 3α/

√
−31 with α a root of α3 − 26α2 +85α− 141 = 0.

Comparing the values of K(τ) just given with the coefficients of the function v1 given above, we
are led to formulate the following theorem, which is analogous to Theorem 1 and can be proved
in a similar way:

Theorem 10. For all positive integers d congruent to 0 or 3 (mod 4) we have

∑

Q∈Qd/Γ

1

wQ
K(αQ) = d β(d) , (28)

where β(d) denotes the coefficient of qd in the function v1 ∈ M !
−1/2 .

All of the extensions of Theorem 1 which we discussed in the previous sections carry over to the
new situation. For instance, we can consider the image Km = K ◦T (m) of K under the mth Hecke
operators (m ≥ 1), which has the form pm(j(τ))K(τ) + j(τ)(j(τ) − 1728)p′m(j(τ)) for a certain
monic polynomial pm(j) of degree m − 1 (p1 = 1, p2 = j − 504, p3 = j2 − 1248j + 180252, . . . ),
determined by the requirement that pm(j(τ))F2(τ) = q−m +O(1). Then (28) generalizes to

∑

Q∈Qd/Γ

1

wQ
Km(αQ) = d βm(d) , (29)

where βm(d) is the coefficient of qd in the image of v1 under T (m), given for m = p prime by

βp(d) = p3 β(p2d) + p
(−d

p

)
β(d) + β(p−2d) .
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As numerical examples of (29), for m = 2 we find the values

1

3 · 3 K2

(1 +
√
−3

2

)
= 32256 = 8β(12)− 2β(3) ,

1

2 · 4 K2

(
i
)
= 132192 = 8β(16) ,

1

7
K2

(1 +
√
−7

2

)
= 4450302 = 8β(28) + 2β(7) ,

1

12

(
K2(

√
−3) +

1

3
K2

(1 +
√
−3

2

))
= 450927936 = 8β(48) + β(3) .

The results of §7 also carry over in the obvious way. For instance, the number −78939 occurring
as the coefficient of

√
5 in the formula for K((1+

√
−15)/2) given above is 3/5 times the coefficient

−131565 of q3 in v5 (or of −q5 in u3). One can also give a generalization to higher levels along the
lines of the formulas in §8, for all levels having no cusp forms of weight 4.

We now turn to the higher values 3, 4, 5, 6 and 7 of k. The situation here turns out to be
similar, but with a difference according as k is even or odd. The forms Fk ∈ M !

2−2k for these k

are E2
4/∆, E6/∆, E4/∆ and 1/∆, respectively. The associated non-holomorphic modular forms

of weight 0 are Φk = (−1)k−1 ∂−2 ◦ ∂−4 · · · ∂2−2k

(
Fk

)
, where ∂h is the operator

1

2πi

∂

∂τ
− h

4πℑ(τ)
which maps modular forms of weight h to modular forms of weight h + 2. The value of Φ2 = K
was given above. The others are

Φ3(τ) =
3E∗2

2 E2
4 + 12E∗

2E4E6 + 13E3
4 + 8E2

6

36∆
,

Φ4(τ) =
5E∗3

2 E6 + 15E∗2
2 E2

4 + 27E∗
2E4E6 + 16E3

4 + 9E2
6

72∆
,

Φ5(τ) =
35E∗4

2 E4 + 70E∗3
2 E6 + 120E∗2

2 E2
4 + 130E∗

2E4E6 + 51E3
4 + 26E2

6

432∆
,

Φ7(τ) =
385E∗6

2 + 525E∗4
2 E4 + 280E∗3

2 E6 + 315E∗2
2 E2

4 + 168E∗
2E4E6 + 39E3

4 + 16E2
6

1728∆
.

In particular, each Φk belongs to Q(J)[K], e.g. Φ3 =
(6K − 5J − 264)2

12(J − 984)
+ 2K − 13

12
J − 38 .

On the half-integral side we define γk(τ) to be the unique modular form in M !
−k+3/2 with a

Fourier expansion beginning q−1 + O(1) if k is even (i.e., k = 2 or 4), and the unique modular
form in M !

k+1/2 with a Fourier expansion beginning q−1 +O(q) if k is odd (i.e., k = 3, 5 or 7). If

α = q−1 − 2 + 8q3 − 12q4 + 39q7 − 56q8 + 152q11 − 208q12 + · · · ,
β = q−1 + 10− 64q3 + 108q4 − 513q7 + 808q8 − 2752q11 + · · ·

denote the forms in M !
−5/2 and M !

−1/2 corresponding under the isomorphism M !
k−1/2 ≈ J !

k,1 to the

two generators a = φ̃−2,1(τ, z) ∈ J̃−2,1 and b = φ̃0,1(τ, z) ∈ J̃0,1 of the ring of weak Jacobi forms,
then the γk are given by γ2 (= v1) = β and γ4 = α for k even and by

γ3 =
5E6 α+ E4 β

6
= q−1 − 384 q3 + 1248 q4 − 19473 q7 + 40768 q8 − 272512 q11 + · · · ,

γ5 =
5E2

4 α+ E6 β

6
= q−1 + 312 q3 − 1632 q4 + 57351 q7 − 144704 q8 + 1503272 q11 + · · · ,

γ7 =
5E4E6α+ E2

4β

6
= q−1 − 144 q3 + 1248 q4 − 109473 q7 + 340288 q8 − 5768752 q11 + · · ·

for k odd. The generalization of Theorem 10 to higher weights is then:
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Theorem 11. Let k ∈ {2, 3, 4, 5, 7} and d > 0 an integer congruent to 0 or 3 modulo 4. Then

∑

Q∈Qd/Γ

1

wQ
Φk(αQ) =

{ −(−d)k/2 · coefficient of qd in γk if k is even,

−(−d)(1−k)/2 · coefficient of qd in γk if k is odd.

The reader can use the formula for Φ3 as a rational function of J and K and the values of J(αQ)
and K(αQ) given earlier to check this theorem for k = 3 and the first few values of d.

The most surprising aspect of the theorem is the dependence on the parity of k, with the traces
of Φk(αQ) being divisible by a power of d (as in (28)) for even k and having a power of d as
denominator for odd k. This dichotomy of course arises because of the definition of the Kohnen
“plus space”, which forces us to look at half-integral weights congruent to 3/2 modulo 2 (since we
want coefficients indexed by integers congruent to 0 or 3 modulo 4) and therefore to choose γk of
weight 3

2 − k or 1
2 + k according whether k is even or odd.

Again, there are results of the same type also for forms of higher level, so long as the weight
and level are such that the corresponding space of Jacobi forms, or of modular forms of integral
weight, contains no cusp forms. In fact, there are also results, though not as clean, when cusp
forms are present. For instance, for level 1 and k = 6, 8 or 10 (so that dimS2k(Γ) = 1), there is no
form in M !

2−2k with a Fourier development beginning q−1+O(1), and similarly no form q−1+O(1)

in M !
−k+3/2 , but there is a form in M !

2−2k with Fourier expansion beginning q−2 + Cq−1 + O(1)

and a form in M !
−k+3/2 with Fourier expansion beginning q−4 + C ′q−1 + O(1), and the traces of

the values at CM points of the (k − 1)st nonholomorphic derivative of the former are expressible
in terms of the Fourier coefficients of the latter. Presumably (although I have not computed any
examples) the twisted trace of the values at CM points of discriminant −Dd will also be given
as a multiple of the dth coefficient of a half-integral weight form with Fourier expansion starting
q−4D +Aq−D +O(1), for all d and D. If this picture is correct, then these correspondences would
constitute a kind of Shimura lifting, compatible with Hecke operators, between nearly holomorphic
modular forms of half-integral and integral weights. I leave this as an open problem. A possible
method of proof would be to use renormalized integrals against a meromorphic theta-function
kernel, as explained in the appendix of [6].
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