RATIONAL PERIOD FUNCTIONS FOR PSL(2,7Z)

YJ. CHOIE AND D. ZAGIER

A rational period function (RPF) of weight 2k (k > 0) for PSL(2,Z) is a rational function
q(z) satisfying the two identities

—1 —1

q(z) + Z*qu(—) =0, q(z) + z*%q(l — l) +(z — 1)’2kq(—

z 2 z—l)zo'

The definition is motivated by the fact that the corresponding identities in negative weight
2 — 2k describe the so-called period polynomials, a space of polynomials closely related to
the space of cusp forms on PSL(2,7Z) of weight 2k. Rational period functions were first
considered by Knopp [6], who gave non-trivial examples (e.g. (22—2—1)"F+ (22 +2—-1)7F
if k is odd) and showed that an arbitrary RPF can have poles only at 0 or at real quadratic
irrationalities. Further work was done by several authors (cf. references in §2.4). Finally,
Ash [1] described the set of RPF’s completely, not only for the full modular group, but also
for subgroups of finite index. In this paper we will give a very explicit construction of all
RPF’s for PSL(2,7), in particular recovering Ash’s result in this case in a more concrete
form than the one he gives, and also give an explicit description of the action of Hecke
operators on RPF’s. The final result on the classification of RPF’s for PSL(2,7Z)is stated
in §2.4, while the discussion of Hecke operators is in Section 3. Some numerical examples
illustrating the theory are given in §4.

1. REVIEW OF REDUCTION THEORY AND OF THE THEORY OF PERIODS

In §1.1 we review the reduction theory of indefinite binary quadratic forms and prove a
lemma which will be used for the classification of rational period functions. In §1.2 we recall
the Eichler-Shimura theory of periods of modular forms for I' =PSL(2,7Z) (as presented,
say, in [10]) and also describe certain complements to this theory proved in [8].

1.1. We consider binary quadratic forms Q(z,y) = Az? + Bay + Cy? with A, B, C € Z;
we will denote such a form by Q = [A, B,C] and its discriminant B2 — 4AC by D =
D(Q). We will consider only forms of positive non-square discriminant. The group I' acts
on the set of forms of discriminant D by (Qv)(z,y) = Q((x,y)7") or more explicitly by
[A, B, C] ]((Z Z) = [Aa®*+Bac+Cc?,2Aab+B(ad+bc)+2Ccd, Ab>+Bbd+Cd?]. The action can
be extended to PGL(2,Z) by letting (Q|7y)(z,y) denote —Q((z,y)7") if det(y) = —1. We
will use the letter A4 to denote a I'-equivalence class of forms Q and A~!, ©.A, and 64! to
denote the classes of the quadratic forms [A, —B,C|, [-A, B, —C] and [-A, —B, —C]. The
notation comes from the fact that the classes of primitive ) with given discriminant D form
a group Cl(D), the strict ideal class group of the order Op = Z+Z%ﬁ, and that A~! and
OA correspond to the inverse of A and to the product of A with © in this group, © being
the class of principal ideals having a generator of negative norm. The element © € CI(D)

has order 1 or 2 depending whether Pell’s equation t2 — Du? = —4 has an integral solution
1
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or not. The smallest D for which there exists an A with A, A=, ©.4 and ©A~! all distinct
is 316.

We call the form Q = [A, B, C] simple if A > 0 > C. Clearly there are only finitely many
simple forms of a given discriminant, since the equation D = B2+4|AC| bounds A, B, and C.
We call @ reducedif A >0, C >0, B> A+C. Themap [A, B,C] — [A,B—2A,C — B+ A]
is a bijection between reduced forms and simple forms [A’, B’,C’] with A"+ B’ + C’ > 0;
in particular, there are exactly half as many reduced forms as simple forms of a given

discriminant. To each form @ = [A, B,C] we associate the real quadratic irrationality

o= ag = 3451\4/57 one of the roots of Q(x,—1) = 0. The correspondence @ + agq is

bijective (of course Q(X, —1) = 0 has a second root af, = 351\4/57 the conjugate of «, but

this corresponds under the bijection to —@Q, not @), so that we can think of classes A as
I'-equivalence classes of quadratic irrationalities and speak of simple and reduced quadratic
irrationalities (denoted z and w, respectively) in the obvious way. We have

w reduced <= w >1>w? >0, x simple <= x>0 > 27,

and the above bijection between reduced forms and half of all simple forms is given by
x =w — 1. (The condition A+ B + C > 0 for a simple form corresponds to % > —1; the
involution [A, B,C| — [-C,—B,—A] or  — 1/x interchanges this half of the set of simple
forms or simple irrationalities with the other half.)

The reduced forms in a given class A can be put into a cycle {Q, | v€Z/rZ} (r=number
of reduced forms) with @, = Q,,H\((l) ;VI) for some integers n, > 2. Then w, = 1/(n, —
wy41), so that each of the finitely many w, has a pure periodic continued fraction expansion
ny,—1/(nys1—1/(npso—...)) = ((Nw, Nu41, .- ,Nuyr—1)) = of length r; conversely, any pure
periodic continued fraction of this form except ((2)) = 1 is a reduced quadratic irrationality.
The simple irrationalities in the class A are the numbers w, — I, v € Z/rZ, 1 <1 <n, — 1.
They also form a cycle; more precisely, one has:

Lemma. Define a map ® : Ry — Ry by
{:c—l if x>1,

T fo<z<l.
1—2z

O(z) =

Then the finite orbits of ® are the set {0} and the sets Z4 = {ag, Q € A simple}, where
A runs over all T'-equivalence classes of primitive indefinite binary quadratic forms with
integral coefficients and non-square discriminant.

Proof. Clearly any cycle except {0} has the form {zi,x1—1,... 21 —mq, 2,20 —1,...,
To-Ma, ..., Tp, T,—1, ..., x,—m, } for some real numbers z1, ... ,z, > 0, where m, = [z,] >0
(greatest integer < z,,) and z,4+1 = (x, —m,)/(1—x,+m,) (here v is to be taken modulo
r). Set w, = x,+1 and n, = m,+2 > 2; then n, = [w,]+1 and w, = n, — ﬁ, so the
w, are a cycle of pure periodic continued fractions and are precisely the cycle of irreduced

irrationalities in some PSL(2,7Z)-equivalence class A as described above. O

1.2. Fix an integer £ > 1 and denote by S = So; the space of cusp forms of weight 2k
on I' and by V = Vg5 the space of polynomials of degree < w := 2k — 2. To each f€S is
associated the period polynomial r(f)€V defined by

w
n

(N0 = [ - xma =3

n=0

>rn(f)Xw‘”, i = [ " i)
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Denote by | = |, ,, the action of I" on V defined by (h|(z Z))(X) = (cX + d)wh(%).
An easy calculation shows that (r(f)|y)(X) for f € S and € ' is just the integral of
f(2)(z — X)* from v 1(0) to v 1(c0). It follows immediately that r(f) belongs to the
subspace W = Wy, o = ker(|(1 + T)) Nker(|(1 + U + U?)) of V, where T and U denote
the two generators ((1) _01) and (1 _01) of I of order 2 and 3, and the definition of “|” has
been extended from I" to the group ring Z[I'| by linearity. The space V splits into the direct
sum of the subspaces VT, V= of even and odd polynomials, and W is the direct sum of

the subspaces W+ = W N V*, since the matrix € = (_01 (1)) € GL(2,Z) commutes with T
and conjugates U into TU?T. Write r(f) for f €S as r*(f) +r~(f) with r* € W*. If
f €S is a normalized Hecke eigenform, then there are non-zero numbers w™(f) € iR and
w™(f) € R with product i(f,f) ( (, ) = Petersson scalar product in S) such that the
polynomials w*(f)~1r*(f) both have coefficients in the algebraic number field generated
by the Fourier coefficients of f. The map r~ is an isomorphism from S~ to W, while r™ is
an isomorphism from S~ onto a codimension 1 subspace of W™ not containing the element
PEo(X) = X% — 1 of Wt. In other words, there is an exact sequence

ot~
0 — Sor D Sop (’—>)W2k_2 L)C — 0,

where A(pr o) # 0. The map A is given explicitly by the formula

w k w
)\(ZO (:)Tan_n) = Zlﬁrﬁk—w ZO (27”71_ 1>7'n7

n even

B2m
(2m)!
both normalized and stated slightly differently there).

The space Way_2/(pk,0) can be identified with H;ar (T, Voi_2), the subspace of the first
cohomology group of I' with coefficients in the representation V given by cocycles which
vanish on the parabolic element S = (1 i) = UT. The isomorphism is given by mapping
g € W to the class of the cocycle ¢ with ¢(T") = ¢ and ¢(S) = 0 (these properties determine
¢ because I' is generated by S and T, and ¢ is a cocycle exactly for ¢ € W). It follows that
we can also canonically identify the space W3, , = Ker (A\) = r*(Sax) ®r~(Sax) C War_o2
with H;ar(F, V2k;_2).

The relation of the period theory with the theory of reduced quadratic forms as reviewed
in §1.1 is as follows. For each I'-equivalence class A of binary quadratic forms, define elements

P4, Qr.4, and Ry of V by

where 3, = (B2 = (2m)'™ Bernoulli number) for m > 0, By = 2 ([8]; the formula is

Poa(X)= Y Q-1 QealX)= > QX -1

QeA QeA
Q simple Q reduced

and Ry 4 = Py a+ (—1)FPy o 4-1 (recall that ©.A7! denotes the class consisting of all forms
—@Q with Q€ .A). Then the relationship between simple and reduced forms as described
in §1.1 implies the equalities

Ry =Pral(1-T) = (Qra+ (-1)*Qreoa1)I(-U +U?).
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From these and the equations 7% = 1, U3 = 1 it follows that Ry 4 belongs to the subspace
W of V. Therefore by the decomposition Wop_o = ng—2 @D Cpy o we must have

R4 = 7’+(f1j7,4) + r_(fk_,A> + pk(A) Pr,o
for some cusp forms f,;t 4 €S and number p(A); in fact,

Dk: 1/2 1—k
foalz) = 2mi(P2) (ZQ (z, 1)F ZQ ) Pl ) = %?1(—2]‘3))7

where ((s) is the Riemann zeta function and (4(s) the partial zeta function of the ideal
class A. For all of this, see sections 2.1-2.3 of [8], esp. Theorem 5 (where, however, the
normalizations are slightly different and the factor (—1)* before Qg 4-1 was omitted). We
denote by R%A = Ri.a — pr(A) pro the component of Ry 4 in W9, .

2. CLASSIFICATION OF RATIONAL PERIOD FUNCTIONS FOR PSL(2,7)

We now turn from negative weight 2 — 2k to positive weight 2k, so that we consider the
action (hl,, (¢ Z))(X) = (X +d)~*h (%) on rational functions (here we must consider
rational functions rather than polynomials because the action ]%, unlike |272k, never maps
polynomials to polynomials). We define the space of rational period polynomials of weight

2k in analogy to Woi_o by
RPF = RPF5;, = {rational functions q(z) | ¢l,, (1 +T) = ¢|,, (1 + U + U?) = 0}.

(This is the same as the formula in the introduction.) Our object is to obtain a complete
description of this space.

2.1. Suppose ¢ € RPF, and denote by S C C the pole set of ¢q. The definition of RPF
clearly implies

acS, a#0 = Ta(z%l) €S,

a €S, 047é0,1:>Ua(:1—é) or U2a(: )ES.

In this subsection we will deduce from this the possible structure of the set S.
Lemma 1. S C R.

Proof. Suppose a € S, a ¢ R. By what we have just said, at least one of UTaw = o + 1 and
U?Ta = a/(a+ 1) belongs to S, so we get a sequence ag = «, ai, ... of elements a,, € S
with ay,41 equal to ay, + 1 or au,/(ay, + 1). But it is obvious that the argument (taken in
the interval (—m, 7)) of a non-real complex number « decreases strictly in absolute value
when « is replaced by either o + 1 or a/(a + 1). It follows that |arg(ag)| > |arg(ay)| >
|arg(az)| > ... > 0. This is impossible since S is a finite set. [J
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Lemma 2. The set S~ {0} is the (disjoint) union of sets Z4UT Z 4, where Z 4 is the cycle
associated to a I'-equivalence class of binary quadratic forms A as in §1.1.

Proof. The proof is similar to that of Lemma 1. We may assume (by replacing a by T«
if necessary) that a > 0; then T'aw # 0, 1 and therefore S contains either UTaw = av + 1 or
U?Ta = a/(a + 1), which is again positive. This again gives a sequence ag = a, ay, ...
of elements «,, € S where for each n either a1 = @, +1 or a1 = ap/(ay, +1). In
the first case a,4+1 > 1 and in the second case, 0 < a,41 < 1, so in both cases one finds
®(apt1) = ap, where @ : R — R is the map defined in §1.1. But «,, = «, for some
m > n > 0 by the finiteness of S, so we get a finite orbit {,, m_1,...,an+1} of . By
the Lemma of §1.1, it follows that a,,, and hence a = ag = ®" (), belongs to a cycle Z4
of simple real quadratic irrationalities, and that all of Z 4 is contained in S. [J

Lemma 3. If a # 0 € S, then exactly one of Ua and U2« belongs to S.

Proof. By what we have just proved, any non-zero element of S is a quadratic irrationality
of negative norm. But it is easily checked that if 1 > a >0 > a” or 1 > a > 0 > «, then
U?a and U%a° are both positive, while if &« > 1> 0> a® or a® > 1 > 0 > a, then Ua and
Ua? are both positive. Thus in all cases one of Ua and U2« has positive norm and cannot
belong to §. UJ

2.2 The results of §2.1 describe the pole set S of an RPF ¢q. We now consider the principal
part of ¢ at its pole. We use the notation PP,[f] to denote the principal part of a rational
function f(z) near a point 2 = a € C, i.e., the unique polynomial in (2 — a)~! without
constant term such that f — PP,[f] is regular at o. We first show:

Lemma 4. Suppose that o # 0 is a pole of ¢ € RPF. Then the order of the pole of q at «
1S exactly k.

Proof. The equation g|,, (1+7") = 0 implies that PPr4[q] = —PP.[q][,, T, and the equation
dly,(1 + U 4+ U?) = 0 together with Lemma 3 implies that PPyo[g] = —PP4[g]],, V1,
where V is that one of U and U? for which Va € S. We also know that o belongs to a
cycle {og = a = ay, a1,... ,q,_1} with a1 = UTa, or U*Ta,, for each n, i.e. with
an = Ypa for some v, €', vo =1, ypg1 = UﬂT*yn (n > 0). By induction on n we obtain
PP, [q] = PP4[g]], 7, ! and in particular PP,lg] = PPolg]l,, 7, t. Write 4, = (‘; Z) and
suppose that PP,[¢](z) = (z — a)™™ + -+ where “.--” denotes an expression with a pole
of order < m at . Then

(PPa[qHQk'y*l)(z) = (cz— a)*y€ PPQ[Q](%)
= (cz—a)_zk (—_ij;g —oz)im + -
_ (—cz + a)~2ktm (z—a)™ + ...

(ca+ d)™
= (ca+d)* M (z—a)™ + ...

since ca+d = (—ca+a)~!. But ca+d is clearly irrational (it is in fact a fundamental unit
of the quadratic order associated to «), so we must have k = m. 0J
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Lemma 4 implies that for each o # 0 which can occur as a pole of a rational period

function ¢ of weight 2k there is a (unique) function of the form
B 1 ay (o) ak
o) = T T ot Tt I,

such that the PP,[q] is a multiple of g, , for any ¢ € RPFy.

Lemma 5. Let o be a stmple quadratic irrationality, o its conjugate. Then

_ o\k Dk/2
S ey vy it
(z —a)k(z—a”)t Q(z, —1)F
where Q is the quadratic form associated to o and D the discriminant of Q).
Proof. 1t is easily checked that Q(z,—1)7%|, v = Q(z,—1)"% for any v € T’ with ya = «v.
But the proof of Lemma 4 shows that this property characterizes qkya(z) up to a constant

qk,a(z) = Ppa

(since any function satisfying it has a pole of order ezactly k at «). Since the leading term
of Q(z,—1)"* is D=*/2 the proportionality constant is as given in the lemma. [J

It follows from Lemma 5 that any function in RPF has the form

9(2) =D Cagya(2) + qh(2)

for some constants C, € C and some function ¢} (2) € C[z,27!], where the sum ranges
over finitely many cycles of real quadratic irrationalities o with e’ < 0. The first sentence
of the proof of Lemma 4 makes it clear that the coefficients C, alternate as we go around
any cycle a, Tae, U T, TU'Tx, - - -, i.e., that C,, equals sgn(a) C4 where C4 depends
only on the class A corresponding to a. Finally, we apply the operator |,, (1 —T) to the
decomposition of ¢, observing that ¢|(1 — T') = 2¢ and that the function ¢, = ¢ |(1 = T)
still belongs to C[z, 27 !]. This gives a representation

4(2) =Y Cadpa(z) + a0(2),  ao(2) € Clz, 27|, (1= T)
A

where
Ga(2) = 3 (Gha(2) — a2y (1-T)
aEZ
and the coefficients C 4 are non-zero for only finitely many classes A.

2.3. It remains to determine which linear combinations of the functions g, 4 can be
corrected by a function g, having a pole only at z = 0 in such a way as to become rational
period functions. Since g; 4|(1 + T') vanishes by construction, the condition ¢|(1+7') =0
is automatic if ¢, is chosen to be anti-invariant under the involution 7". We must therefore
compute the image of g, 4, under 1 +U +U 2. The poles of dx, 4 at quadratic irrationalities
in Z4 UTZ,4 cancel out when we slash with 1 4+ U + U? by construction, but there are
new poles at z = 0 and z = 1 coming from the automorphy factors z=2* and (z — 1)72*
which arise from the operations |, U and |,, U 2. These poles have order at most 2k. By
subtracting from ¢ a multiple of 1 — 272* which can easily be checked to be an RPF, we can
assume that the pole at 0 has order < 2k — 1. The pole at 1 then also has order < 2k — 1
because g, 4|(1+U + U?) is annihilated by 1 — U (since (14U +U?)(1-U)=1-U? =0
in the group ring of T'). Thus g, 4|(1 4 U + U?) belongs to the space

H=Hy, ={¢ € 27 (2 - 1)'**C[z] | ¢|,,(1 - U) = 0}.

Our first goal is to determine the structure of H.
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Lemma 6. There is an isomorphism p : Hop — Ker (1 +U +U?, ng_g) gien as follows:
if

is an element of H, and A(X) =37 o (Y)anX™, B(X) =% 1 _o (¥)bnX™ € Vop_a, then
u(h) = Al, ,, TU = B|, ,, U?.

Proof. If h(z) € H, the property h(z) = 27?*h(1 — 1) shows that h tends to 0 as z tends to
infinity, so h has the form given in the lemma. Then by partial fractions

(RU)(z) =3 anz_ﬁ_l(z — 1)_”—1 — Z(—l)"bnz_ﬁ_l

=2 (0 = S (o

m>n

FDE- D () an ).

m>n

where n in the summations goes from 0 to w and n, m denote w — n, w —m. The condition
h = h|U is thus equivalent to the properties

an = (_1)n+1bﬁ - Z (_1)m (ﬁfin)a’m’ b” = g (_1)m_n (min)am

m>n
or
(an = (=" ()ba = Z(=1)" () am ()
Multiplying by X™ and summing from 0 to w, we find
w 1 w -1 _ .
h=hU +— AX)=-X B(—X) — (X +1) A(—X - 1), B(X)=A(X -1)

or A= B|UT, B|(1+U+U?) = 0. Thus H is isomorphic to Ker (1+U +U?, V) via h — B
or alternatively via h +— B|U? = u(h). O

The following result is the key to the solution of our problem.

Lemma 7. Let A be a I'-equivalence class of forms as usual. Then

2k — 2 1k
it al 140+ 0%) = 0 (7 0) 0 R

where Ry, 4 is the element of Way_o defined in §1.2.

Proof. Write ¢ for the map o<, <, Cz7"7! — V defined by 277! — () X™, so that the
p of Lemma 6 is given by u(h) = ¢(PPo[h])[TU. (We use | to denote |,, when applied to
rational functions of z and |, ,, when applied to polynomials in X.) We begin by calculating

¥(PPogy, ,|T]). By Lemma 5 and the binomial theorem,

k—1 _
hal®) = PPal(e - @) (1= 22 M = () (T ) e

oa —
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where n = w — n as before. On the other hand,

PPy [ (= — o) 7] = PPy o ] = 3 (1) (m)z‘m‘l

2" (1 + az)ntl

(binomial theorem again), so

$(PPo[ (2 — ) " 1[T]) = §<—1>m+1aﬁ—m(m) (1)xm == (M) @2

Therefore
Rl 1) == S =) (1) (8 - "
() e S (e

where Q. (X, —1) is the quadratic form associated to .
On the other hand, we have

PPO[ka,al(l —T)(:H‘U'*‘UQ)} = PPO[qk,a|(_T+U)] = PPO[(_Qk,a +qkz,a71>|T]

because the function qk’ah has a pole at 0 only for those v with (0) = oo and qk7a|S =
Qg o—1- Consequently

PPO[qk,A’(l +U + Uz)] = Z PPy [ (—Qk,a T Qa—1 T G Ta — qk,Ta—l)‘T}

aGZA
and hence by the computation above

w

(e al(1+U +U?)) = (1" (k B 1) DUMR P 4|(-1+ S+ T —T8)|TU

with P, 4 = ZaEZA Qa(z,—1)F¥ 1 asin §1.2. For the last equality we used the easily checked
fact that Qa (X, —1)*"1 = Q. (X, —1)k"1|y~1 for any v € T'. The lemma now follows since

Peal(-1+8+T —TS)|TU = Ry 4|(U> = TU) = Re4|(U* + U) = —Ri 4

because Ry 4 € Wap_o. [
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Lemma 8. For 0 <n <w we have

p(z" A -T) A+ U +U?) = (::) X", o (1+T)(U - TU?).

Proof. Let h(z) = z=""*|, (1= T)(1+U + U?). By partial fractions, we find

hz) = 27" (C) T T T (e = )T () T = )T

n

(= 5 (e
0 m=0

::Z—n—l%_(_l)nz—n—l__(_1)n

M

where --- denotes terms regular at z = 0. A short calculation now shows that the “A(X)”
of Lemma 6 is () X"|(14+ T — UT — TUT), so pu(h) = (V) X"|,_,, (L +T)(U - U?). O

The proof of the following result, though simple, cost us a considerable effort to find.

Lemma 9. The intersection of V|, ,, (1+T)(U—U?) with W is one-dimensional, spanned
by X* — 1.

Proof. Suppose A € V with B = A|(1+T)(U —U?) € W (where | denotes |, ., ). Since B
is automatically in Ker (1 + U + U?), this is equivalent to B|(1 +7T) = 0. But B|(1+T) =
A(1+T)1-U+U?)(S—1)since 1+T)(U-U*(1+T)=(1+T)(1-U+U?)(S—1) in
Z[I') (S =UT). Since the kernel of S — 1 in V is the one-dimensional space spanned by the
constant function 1 (a periodic polynomial is constant!), and since (1 —U +U?): V — V
is an isomorphism with inverse 1(1 4 U), this says that A|(1 + T) belongs to the one-
dimensional space spanned by 1|(1+U) =1+ X", and consequently that B belongs to the

one-dimensional space spanned by 1|(1+ U)(U — U?) = X% — 1. [
2.4. We can now give a complete description of RPF’s of arbitrary positive weight:

Theorem 1. For each I'-equivalence class A of indefinite binary quadratic forms of non-
square discriminant D and each integer k > 0 define

_ VD
Tk,A(Z) = (gk—_2>

S (@ha(2) = G 7a(2)lap (1 = T) — pr(A) (=71 + 27241,
a€EZ o

where the summation runs over the cycle of simple quadratic irrationalities o corresponding
to A, g, (2) denotes the principal part at a of D*2Q,(2)7F, Qa(z) being the quadratic
polynomial of discriminant D with root o, and pr(A) = (a(1—k)/C(1—2k) as in §1.2. Also
define ry, o(2) =1 — 272F. Then

i) Any rational period function of weight 2k has the form

a(2) =) carf alz) + o rip(2)
A

for some complex constants c 4 (almost all zero) and c,.
i) Conversely, a sum as in i) is an RPF if and only if Y c 4 R%A = 0, where

Ry A(X)= Y sign(A) (AX® = BX +C)" ' — pp(A) (X2 —1) e WY,

[A,B,CleA
AC<0
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s the rational period polynomial defined at the end of §1.

Proof. We already know that any RPF ¢ has the form ) C' Aqy 4Tqo where g, 1s a polynomial
of degree < 2k in 27! satisfying ¢|/T = —q. Equivalently, we can write ¢ as ZCATQ,A +
coTk,0 —7ol(1=T) where 1y € By, <., Cz~" 1. This expression is automatically annihilated
by 1+ T, while its image under 1 + U 4 U2 belongs to Hay, so Lemma 6 implies that g is
an RPF if and only if > CAN(TQ,ABk(l +U+U?)) equals pu(rl,, (1-T)(1+U+U?)). But
,u(r%A]%(l +U + Uz)) equals R%A € W), , by Lemma 7 and the special case n = 0 of
Lemma 8, while (7|, (1=T)(1+U+U?)) € V|,_,, (1+T)(U —U?) by Lemma 8. Lemma
9 now implies that ¢ is an RPF iff Y ¢ R} 4, = 0 and w(roly, (1 —=T)(1 4+ U +U?)) = 0.
But the latter equation implies that already ry|,, (1 —7") = 0. [Proof: by Lemma 8, this
statement is equivalent to the assertion that if R|, ., (1+7)(U —U?) = 0 for some R € V,
then already R|, ,, (1 +T) = 0, and this is true because R|, ., (14 T) is invariant under
both T and U and hence under the whole group PSL(2,7).] Hence g has the form given in
the theorem. [

An equivalent formulation of Theorem 1 is that there is an exact sequence

0 — RPFy — HCoC — WY , —0,
A

where the maps are defined by sending Y- ¢, 7} 4 + ¢ory o tO ({ca}a, ¢) and ({c4}a, )
to Y- c4 R). 4, the latter map being surjective because the functions Ry 4 span Wg,_, [9].
We also have the following

Corollary. For every class of forms A and integer k > 0 the function Qeoa — (—1)qu OA-1
belongs to RPF5y.

Proof. This follows immediately from the theorem since Ry 4 = (—1)¥ R}, g.4-1 and py(A) =
(=1)*pr(©.A~1). However, a direct proof is easier. The function D*/2Q,(z)~* has poles
only at o and o’ and is small at infinity, so it is the sum of its principal parts 0y o(2) and

(—1)*g, o (2). On the other hand,

Gra(z)= Y sign(a) gy a(2)ly(1-1),

a+QeA
aa’ <0

and under the correspondence we are using, if a <+ Q € A, then o/ <+ —Q € ©.A47!. Hence

Goa(2) = (Vg oa1(2) = D sign(4) (42 = Bz+0) 7",
[A,B,Cle A
AC<0

and this is automatically a true RPF because it is a sum of terms Q% and Q_k|272k'y =

(Q o ~)~F for any v € I': the problems of §2.3 were caused entirely by the fact that this
identity breaks down when Q~F is separated into its two principal parts. [J

Finally, we should comment on the overlap between the presentation given in this section
and previous work. As already mentioned in the introduction, the notion of rational period
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function was introduced by M. Knopp in [6]. Lemma 1 and part of Lemma 2 (namely, that
any non-zero pole of an RPF is a real quadratic irrationality) were proved by him in the
later paper [7]. The existence of RPF’s with poles in an arbitrary real quadratic field was
shown in [2]. Lemma 4 is due to J. Hawkins [4], who also found the cycle structure of the
poles of an RPF and observed that there is a relation between the obstructions to the RPF
property for sums over cycles and the existence of cusp forms of weight 2k. The construction
of special RPF’s given in the above corollary was obtained in [3]. We have preferred to give
our own proofs of these results because they are shorter and in order to keep our treatment
self-contained. The general result of Ash mentioned in the introduction is the analogue of
the exact sequence given above for IV C I': the space W9, _, replaced by H} (I, Vai_2), the
space RPFy; replaced by a similarly defined first cohomology group of IV with coefficients in
the I-module of rational functions, and the summation ranging over I''-equivalence classes
of indefinite quadratic forms of non-square discriminant. However, this more general result,
whose proof relies on cohomological methods, does not give an explicit description of the
generalized rational period functions.

3. HECKE OPERATORS

A definition of Hecke operators on rational period functions was given by Knopp [6],
based on the modular integrals (Eichler integrals) which he had introduced earlier [5]. In
63.1. we recall the definition of modular integrals and use it to motivate a purely algebraic
definition whose main properties we then investigate.

It will be convenient to introduce the following notation. For each integer n > 0 we set
M, = {M € My(Z)/{£1}} | det(M) = n}, so that My = T'. We write M for |JM,,
= {M € My(Z)/{£1}} | det(M) > 0} and R,, = Z[M,], Ry = Z[M,] = @, M,, for the
sets of finite integral linear combinations of elements of M,, and M, respectively. Thus
R+ is a (non-commutative) ring with unit and is “multiplicatively graded” in the sense that
RoRm € Ryp for all m, n > 0; in particular, each R,, is a left and right module over the
group ring Ry = Z[I'] of I'. We denote by J the right ideal (1 +T)R1 + (1+ U + U?)R; of
Ri. Finally, the slash operator | will always mean [,, unless otherwise specified, the action

being extended from I" to M4 by (h|M)(z) = n%(cz—f—d)_%h(%) for M = (CC” Z) e M,.
Thus R,, and R4 act on the spaces of rational or meromorphic functions in the upper half
plane, and RPF = RPFy; is simply the space of rational functions annihilated by the ideal
J.

3.1. A modular integral of weight 2k is by definition a meromorphic function F on the
upper half plane H, small at infinity, satisfying

F|S=F and FIT=F+q

for some rational function ¢. In other words, F' is periodic of period 1 and the difference
272FF(—~1/2) — F(z) is a rational function of z; the condition “small at infinity” means
that F(z) has a Fourier expansion ) _a(n)e*™"* for I(z) > 0. The definition implies
immediately that ¢ satisfies ¢|(1+7) = q|(1+U +U?) = 0, i.e., that q is an RPF. Conversely
Knopp proved that every ¢ € RPF comes in this way from a modular integral F'. This F
is obviously not unique: we can add to F' any meromorphic cusp form of weight 2k without
changing ¢, and even if we specify the principal parts of F' at every point of H, then F' is
still only well-defined up to the action of a cusp form f € S. The terminology “modular
integral,” by the way, comes from the analogous definition for the action of I" by |, ,,, where
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q is now a polynomial; here F' can be obtained as an integral of a cusp form with period
polynomial q.

On S we have Hecke operators defined by f|T, =>_,, erm, J |M. This definition cannot
be applied to F' because F' is not I'-invariant (with respect to the action | ), but F' is invariant
under the action of the stabilizer I, = (S) of infinity, so the operator

= ¥ M= X (5 0) e (5-vRNR,

MET oo\ M, ad=n,a,d>0
M (o00) =00 b (mod d)

has a well-defined effect on F. It is easy to see that F|T:° is again periodic with period
1, and in fact it is a new modular integral whose associated rational function depends only
on ¢ (and n), and this defines Knopp’s Hecke operator. To phrase this more algebraically,
suppose that there are elements X,,, T, and Y,, in M,, satisfying

TS -1)=(S—1)X,, TX(T—-1)=(T—-1)T,+(S—-1)Y,;

then

(FIT) | (S = 1) = (FI(S = 1)) | X, =0,

(FIT2) [(T=1) = (F(T-1) | Tn+ (FI(S = 1)) | Yo = q| T,
which shows that F' ]7};’0 is a modular integral with associated rational flmction q]Tn. We
now show that X,, 7, and Y,, exist and that the image of ¢ under T,, is independent
of the choice of these three operators and is again an RPF, and moreover that the various
T, : RPF — RPF commute. This gives a purely algebraic definition of the Hecke operators,

independent of the existence of modular integrals for arbitrary RPF’s, which is a non-trivial
analytic fact.

Theorem 2. For each integer n > 1,
TS -1)=0, T®T-1)=(T-1T, (mod(S—1R,)
for a certain element T,, € R,. This element is unique modulo TR, and satisfies TpnJ C

TRn. If m is a second positive integer, then the elements Tp,, Ty, € Ry satisfy the product
formula

L (d 0\
> at (0 d)Tmn/dz (mod T Rymn).-

d|(m,n)

&.

Corollary. If ¢ € RPF, then q|Tn is well-defined (independent of the choice ofT
again belongs to RPF. The operators T, : RPF — RPF satisfy ToT, = T,

Zd|(m n) d* Lo yaz-
Proof. For the assertion T,.°(S—1) € (S—1)R,, we compute (for given a, d > 0 with ad = n)

S ()= (5 3) - o)
N R B SR CEA R SN (i

0<b<a+d 0<b<a 0<b<d

-2 (GG )= e a)

'ﬂe\,
I
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For the assertion T;°(T — 1) = (T — 1)), (mod (S — 1)R,,) we need the following lemma.
Lemma 1. y—1€ (T —1)R1 + (S — 1)Ry for any element v € T'.

Proof. Suppose that this property holds for some v € I'. Then the elements Ty — 1 =
(T=Dy+(v=1),8y-1=(S-1y+(y-Dand Sty —1=(S-1)(=5 ") +(y—1)
also belong to (T'— 1)Ry + (S — 1)R;. Since T (= T~ 1) and S generate T, the lemma now
follows by induction on the word length. [

Now write T.>° as Y . M;. For each index i there is a unique index i’ such that M; T = ~; M
with 7; € T. Then T5°(T — 1) = >, (vsMy — M;) = >,(v — 1)M;s, and this belongs to
(T'-1)R,+ (S —1)R,, by Lemma 1. O

To prove the other assertions of the theorem, we need a characterization of the elements
of JM,,. To get this, we introduce the following concept. Suppose V is an abelian group
on which I' acts on the left. Then V is a left Ri-module. For X € R; we write Ker (X) for
{veV|Xv=0}and Im(X) for XV = {Xv|v € V}. The intersection of Ker (1 + 7" and
Ker (1 4+ U + U?) has an interpretation in terms of the cohomology of I with coefficients in
the module V; we call V' acyclic if this intersection is zero and if, furthermore Ker (1 —-T7') =
Im (1+7) and Ker (1 —U) =1Im (1+U +U?). (The second hypothesis can be omitted if we
work over Q, since (1-T)v =0 = v = (14+7)(3v) and (1-U)v =0 = v = (14+U+U?)(3v).)

Lemma 2. R, is an acyclic Ri-module for all n.

Proof. Suppose X = > n,, M (n,, € Z, M € M,,) is an element of R,,. If X € Ker(1+
T)NKer (1+ U + U?), then the function ¢ = 7| X is an RPF for any rational function r(z).
Choose 7(2) = (2 — A\)~! where A € C is not rational or quadratic; then ¢(z) has a pole
at each point M~ with n,, # 0 (these cannot cancel since M; '\ = M; '\ would lead
to a quadratic equation for \), and this contradicts the fact proved in §2 that an RPF can
have poles only at rational or quadratic irrational points. On the other hand, if X is left
invariant under 7', then n,,, = n,, for all M, and since M # T'M this means that X can be
written as an integral linear combination of elements M +TM = (14+T)M € R,,. Similarly,
X = UX implies ny; = nyp; = nyz,, for all M and hence X € (1 + U + U?)R,,. This
proves the second hypothesis in the definition of acyclicity. [

Lemma 3. IfV is an acyclic I'-module and v € V', then

1-Twe(1-9)YV = ve(l+TV+A+U+UHV =JV.

Proof. The direction “<” is true for any I'-module, since v = (1 + T)x + (1 + U + U?)y
implies

1-Thw=>01-ST0)1+U+U>)y=(S—1DS 1 +U+U?y.
Conversely, assume that V' is acyclic and (1 — T)v = (1 — S)w for some w € V. Then
1-T)Yv—w)=T—-Sw=»1-U)Tw.
This element must vanish since Im (1—-7T)NIm (1-U) C Ker (1+T)NKer (1+U+U?) = {0}.

But then v —w € Im(1 +7) and Tw € Im(1 + U + U?) by the second hypothesis in the
definition of acyclicity, sov = (v —w)+ (1 +T)w —-Twe (1+T)V +(1+U+U?)V. O
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Lemmas 2 and 3 give a characterization of 7R, as {X € R,, | (1-T)X € (1-S)R,}. The
uniqueness of T,, modulo JR,, (and consequently of the image q\T for an RPF q) follows
immediately from this characterization and the definition of T,,. The fact that T,,.7 € TR,
(and consequently that q|T » is again an RPF) also follows easily, since the equations

TS —-1)=0, TX(T-1)=(T-1T, (mod(S—1)R,)
imply (1 —T)T,(14T) =0 and
(1-T,A+U+U) =T 1 -ST'U)A+U+UH =TS - 1)S 1+ U+U?) =0

modulo (S — 1)R,,. Finally,

(T -1) < - ) d mn/dQ)

dimm)
=TT - 1)T, = > d ' ( — DTy a2
ET,‘,’;’[T;;O(T—l)— —1)Y, —Zd—l(gg) o2 (T = 1)

E(Tm—zd—ww S )1 (mod (5~ DRy,

and
T — Y d 7 (29) T, /2 =0 (mod (S — 1)Ronn)
d|(m,n)

by the usual calculation for the commutation properties of Hecke operators. This completes
the proof of Theorem 2. [J

3.2. In this section we give an explicit combination T,, of matrices of determinant n which
has the property used in §3.1. to define the Hecke operators on rational period functions. This
operator was given in [12], where it was shown that it preserves the space Wy _o of period
polynomials of degree 2k —2 and corresponds under the isomorphism Wy _o = So,. B So, BC
to the usual action of Hecke operators on cusp forms, generalizing the description given by
Manin [11] of the action of Hecke operators on the constant terms of the period polynomials
of cusp forms. However, the proof in [12] relied on an explicit knowledge of a generating
function for the period polynomials of Hecke eigenforms of weight 2k, while the construction
here is purely algebraic (and thus shows that the T,, we construct preserves the period
subspace Ker (1 +7) N Im (1 + U + U?) of any I'-module).

Theorem 3. Let n be a positive integer. Then the element T, € R,, defined by

R N [ Y A0 | B SIR R T o G

ad—bc=n ad=n ad=n
a>c>0 —3d<b<id —3a<c<ia
d>—b>0 c#0

has the properties given in Theorem 2.

Proof. Define T}, by the formula given. We must show that (7' — 1)T,, = T°°(T — 1), where
(and throughout the proof) = denotes congruence modulo (S — 1)R,.)
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The maps

A— (CCL Z) = TS/ A = <_(a _cc[a/c]) —b+cfz[a/0]> ’

B_ (CCL Z) ~ glamlrp _ (—C‘l‘:[d/b] —(d —bb[d/bb)’

where [ | denotes integral part, are easily checked to give inverse bijections between the sets

An:{(i Z) eEM, | a>c>0,d>—b20,b:0:>a220}

and

Bn:{<z 2) eM, | a>—020,d>b>0,c=0=>d225}-

Since S"A = A for any integer r, this gives >, 4 A=T) 5. Bor
a b a —b o 0 —d a O
L GOz )2 ()

1d>b>0 La>e>0
2 7= 277 =
ad—bezn = e

Conjugating this equation by (_01 (1)) changes the sign of all the off-diagonal coefficients and

preserves the property “=”. Adding the result to the original equation, we get
a b a —b . 0 —d d 0
e 2 (a5 W)= 2 (G ) -60)
dZ>>—Zb>z0 0 <a|2\:§n§ d

(Recall that we are working with matrices modulo +1.) Hence

L-1)Tu= Y (8 Z) (G-17)+ Z((g —_%dd)‘<—0id 2))’

2

—3d<b<id a,d>0
ad=n ad=n
d even
as we see after a short calculation. The first sum on the right is = 7,;°(1 — T'), while the

second equals

Z ((0 2y>_<2:1: o)): Z(Sz_l)(zp 0)50‘ O
zy=n/2 T Ty zy=n/2 T
z,y>0 z,y>0

3.3 Finally, we mention a problem which we have not been able to solve and which seems
to be of interest, namely that of writing down explicit modular integrals. Specifically, we
would like to find functions Fj, 4, holomorphic in the upper half-plane and small at infinity,
such that Y- 4 ¢4 Fi a(z) is a modular integral for q(z) = Y- 4 477 4(2) whenever the latter
is an RPF, i.e. (according to Theorem 1), whenever »_ , cAR%A(z) =0in WY, ,. For the
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special case of the RPF ¢, 4 — (—l)qu o1 of the Corollary to Theorem 1, the answer was

found by A. Parson: an explicit modular integral is given by (a multiple of) >~ Q(z, —1)~*,
where the sum ranges over quadratic forms @ = [a,b,c] € A with @ > 0. This can be
checked easily: the sum is S-invariant and when one applies (1 — T") all the terms with
ac > 0 drop out, so that one is left with a sum over simple forms. A similar calculation
shows that the sum of the principal parts g, ,, where a ranges over the roots of forms in A
with @ > o' (corresponding to Parson’s condition a > 0) formally is a modular integral for
qg,4- However, this sum diverges because g, , grows like a1 as [a, b, c] runs over the class
A (cf. the formula for g, , given in the proof of Lemma 7), and it is not clear how to write
down an expression which makes sense.

4. NUMERICAL EXAMPLES

For the discriminant D = 5 there is only one class of forms I, represented by the simple

1 -1
\/524_ , V5 }. For k odd, both g, ;(z) and r) ;(z) are

form [1,1,—1], with Z; = { )

multiples of

5 o)~ are) = (52 ) + (522)

QGZI

and belong to RPFy;. (Note that Ry ; = (1 + (—l)k)PkJ = 0 in this case.) For k = 2 we
have

1 423 — 622 —1224+7 423 +622—-122—7
Z (‘b,a(z) - q2,Ta(Z)) = _E (22— 2—1)2 (22 +2—1)2

OzEZ[

Applying [4(1 —T) gives

2 (423 —622—1224+7 4224622 -122—-7 4 4
G2,1(2) = ——= 5 s + 5 ——+ = ;
’ V5 (22 —2-1) (2242 —1)2 x3

and since po(I) = 4 we find

423 — 622 — 12247 4234622 —-122—7 8
0

= — — ¢ RPF
7‘271(2) (22—2—-1)2 + (2242 —1)2 x < 4

corresponding to the fact that the polynomial
Ry ((X) = 2P, 1(X) = p2(I) p2o(X) = 2[(X* = X — 1) + (X* + X — 1)] — 4(X* - 1)
vanishes (as of course it must, since W = {0}). Similarly, for k = 4 we find that

427 —142° 43521 — 4222 — 2824 N 427 + 1425 — 352% + 4222 — 282 — 2 8

0
T4 (2) = (22— z— 1) (224 2—-1)4 x

is again an RPF, corresponding to the identity

Ry =2[(X*-X -1+ (X*+X-1)%] —4(X°-1)=0 € W§ = {0}.
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For k£ = 6, however, r,g’ ; no longer has to be, and no longer is, an RPF, because of the
existence of cusp forms of weight 2k on PSL(2,7Z). Here we find

O (o MAE) M) 1 11 1 1 1Y (1
GCIVIT (22— 2 —1)6 (224 2—1)6 v 923 Tz5 727 920 1) P\ )0

3484

where p = p5(I) = oL and h(z) denotes the polynomial
h(z) = 2,10 n 529 n 528 1527 1126 4345 524 5z3 522 6227
T2 T2 Ta 7 6 2 3 2 5544

o la(L+U+U?) = 4k() Ak (—— —|—pz< 1_Z)>

with k(z) = 210429+ 328 + 227 4 221 26 4 0T 25 4 224 + 1023 4 22 + 2. This belongs to
H,> and is mapped by the isomorphlsm i of Lemma 6 to the element

36

RY; = 2[(X2 =X 1) +(X2+X-1)°] —p (X1°-1) = 20(X®-3X°+3X*- X2~ o

( XlO 1))
of the 2-dimensional space W,

Other discriminants work similarly. For D = 12, for example, there are two classes [
and O, represented by the simple forms [1,0,—3] and [3,0,—1], respectively, with cycles

1 3+1 3—1
Zr = {\/§, V3—1,V3+ 1} and Zg = {ﬁ’ \/_;— , \/_2 }. Here for each k the rational
function 77 ;(2) — (—1)* ) o(2) is a multiple of
1 n 1 n 1
(22 =3)F (22 —=2z—-2)F  (22+4+2z—2)k
1 1 1

C(1-322)F  (1—2z—222)F (1422 —222)F

and is an RPF. For k = 2, 3, 4, 5 or 7, where So;, = {0}, the two fuctions 1"271 and Tg’@
are individually RPF’s. For k = 6 this is no longer true, but subtracting from 7“8, 7 six

times the function 7“8’ ; for D =5 as given above, we do get a function belonging to RPF,
corresponding to the fact that the polynomial

Rgp=(X?=3)° + (X? +2X —2)° + (X? - 2X — 2)° 4+ (3X? - 1)°

+(2X2 +2X —1)° + (2X%? - 2X —1)° — 216895130 (X1 —1).

is 6 times what it was for D = 5. However, the coefficients of this rational function are
already fairly complicated and we do not give them or any further numerical examples.
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