
RATIONAL PERIOD FUNCTIONS FOR PSL(2,Z)

YJ. Choie and D. Zagier

A rational period function (RPF) of weight 2k (k ≥ 0) for PSL(2,Z) is a rational function
q(z) satisfying the two identities

q
(

z
)

+ z−2kq
(−1

z

)

= 0, q
(

z
)

+ z−2kq
(

1− 1

z

)

+ (z − 1)−2kq
( −1

z − 1

)

= 0.

The definition is motivated by the fact that the corresponding identities in negative weight
2 − 2k describe the so-called period polynomials, a space of polynomials closely related to
the space of cusp forms on PSL(2,Z) of weight 2k. Rational period functions were first
considered by Knopp [6], who gave non-trivial examples (e.g. (z2− z−1)−k+(z2+ z−1)−k

if k is odd) and showed that an arbitrary RPF can have poles only at 0 or at real quadratic
irrationalities. Further work was done by several authors (cf. references in §2.4). Finally,
Ash [1] described the set of RPF’s completely, not only for the full modular group, but also
for subgroups of finite index. In this paper we will give a very explicit construction of all
RPF’s for PSL(2,Z), in particular recovering Ash’s result in this case in a more concrete
form than the one he gives, and also give an explicit description of the action of Hecke
operators on RPF’s. The final result on the classification of RPF’s for PSL(2,Z)is stated
in §2.4, while the discussion of Hecke operators is in Section 3. Some numerical examples
illustrating the theory are given in §4.

1. Review of reduction theory and of the theory of periods

In §1.1 we review the reduction theory of indefinite binary quadratic forms and prove a
lemma which will be used for the classification of rational period functions. In §1.2 we recall
the Eichler-Shimura theory of periods of modular forms for Γ =PSL(2,Z) (as presented,
say, in [10]) and also describe certain complements to this theory proved in [8].

1.1. We consider binary quadratic forms Q(x, y) = Ax2 +Bxy+Cy2 with A, B, C ∈ Z;
we will denote such a form by Q = [A,B,C] and its discriminant B2 − 4AC by D =
D(Q). We will consider only forms of positive non-square discriminant. The group Γ acts
on the set of forms of discriminant D by (Q|γ)(x, y) = Q((x, y)γt) or more explicitly by

[A,B,C] |
(

a b

c d

)

= [Aa2+Bac+Cc2, 2Aab+B(ad+bc)+2Ccd,Ab2+Bbd+Cd2]. The action can

be extended to PGL(2,Z) by letting (Q|γ)(x, y) denote −Q((x, y)γt) if det(γ) = −1. We
will use the letter A to denote a Γ-equivalence class of forms Q and A−1, ΘA, and ΘA−1 to
denote the classes of the quadratic forms [A,−B,C], [−A,B,−C] and [−A,−B,−C]. The
notation comes from the fact that the classes of primitive Q with given discriminant D form

a group Cl(D), the strict ideal class group of the order OD = Z+ZD+
√
D

2 , and that A−1 and
ΘA correspond to the inverse of A and to the product of A with Θ in this group, Θ being
the class of principal ideals having a generator of negative norm. The element Θ ∈Cl(D)
has order 1 or 2 depending whether Pell’s equation t2 −Du2 = −4 has an integral solution
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or not. The smallest D for which there exists an A with A, A−1, ΘA and ΘA−1 all distinct
is 316.

We call the form Q = [A,B,C] simple if A > 0 > C. Clearly there are only finitely many
simple forms of a given discriminant, since the equationD = B2+4|AC| bounds A, B, and C.
We call Q reduced if A > 0, C > 0, B > A+C. The map [A,B,C] 7→ [A,B−2A,C−B+A]
is a bijection between reduced forms and simple forms [A′, B′, C ′] with A′ + B′ + C ′ > 0;
in particular, there are exactly half as many reduced forms as simple forms of a given
discriminant. To each form Q = [A,B,C] we associate the real quadratic irrationality

α = αQ = B+
√
D

2A , one of the roots of Q(x,−1) = 0. The correspondence Q ↔ αQ is

bijective (of course Q(X,−1) = 0 has a second root ασ
Q = B−

√
D

2A , the conjugate of α, but

this corresponds under the bijection to −Q, not Q), so that we can think of classes A as
Γ-equivalence classes of quadratic irrationalities and speak of simple and reduced quadratic
irrationalities (denoted x and w, respectively) in the obvious way. We have

w reduced ⇐⇒ w > 1 > wσ > 0, x simple ⇐⇒ x > 0 > xσ,

and the above bijection between reduced forms and half of all simple forms is given by
x = w − 1. (The condition A + B + C > 0 for a simple form corresponds to xσ > −1; the
involution [A,B,C] 7→ [−C,−B,−A] or x 7→ 1/x interchanges this half of the set of simple
forms or simple irrationalities with the other half.)

The reduced forms in a given class A can be put into a cycle {Qν | ν∈Z/rZ} (r=number

of reduced forms) with Qν = Qν+1|
( 0 −1

1 nν

)

for some integers nν ≥ 2. Then wν = 1/(nν −
wν+1), so that each of the finitely many wν has a pure periodic continued fraction expansion
nν−1/(nν+1−1/(nν+2−. . . )) = ((nν , nν+1, . . . , nν+r−1)) = of length r; conversely, any pure
periodic continued fraction of this form except ((2)) = 1 is a reduced quadratic irrationality.
The simple irrationalities in the class A are the numbers wν − l, ν ∈ Z/rZ, 1 ≤ l ≤ nν − 1.
They also form a cycle; more precisely, one has:

Lemma. Define a map Φ : R+ → R+ by

Φ(x) =

{

x− 1 if x ≥ 1,
x

1− x
if 0 ≤ x < 1.

Then the finite orbits of Φ are the set {0} and the sets ZA = {αQ, Q∈A simple}, where
A runs over all Γ-equivalence classes of primitive indefinite binary quadratic forms with
integral coefficients and non-square discriminant.

Proof. Clearly any cycle except {0} has the form {x1, x1−1, . . . , x1−m1, x2, x2−1, . . . ,
x2−m2, . . . , xr, xr−1, . . . , xr−mr} for some real numbers x1, . . . , xr > 0, wheremν = [xν ] ≥ 0
(greatest integer ≤ xν) and xν+1 = (xν−mν)/(1−xν+mν) (here ν is to be taken modulo
r). Set wν = xν+1 and nν = mν+2 ≥ 2; then nν = [wν ]+1 and wν = nν − 1

wν+1
, so the

wν are a cycle of pure periodic continued fractions and are precisely the cycle of irreduced
irrationalities in some PSL(2,Z)-equivalence class A as described above. �

1.2. Fix an integer k > 1 and denote by S = S2k the space of cusp forms of weight 2k
on Γ and by V = V2k−2 the space of polynomials of degree ≤ w := 2k− 2. To each f ∈S is
associated the period polynomial r(f)∈V defined by

r(f)(X) =

∫ ∞

0

f(z)(z −X)w dz =

w
∑

n=0

(−1)n
(

w

n

)

rn(f)X
w−n, rn(f) =

∫ ∞

0

f(z)zn dz.
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Denote by | = |
2−2k

the action of Γ on V defined by
(

h|
(

a b

c d

))

(X) = (cX + d)wh
(

aX+b
cX+d

)

.

An easy calculation shows that (r(f)|γ)(X) for f ∈ S and γ ∈ Γ is just the integral of
f(z)(z − X)w from γ−1(0) to γ−1(∞). It follows immediately that r(f) belongs to the
subspace W = W2k−2 = ker(|(1 + T )) ∩ ker(|(1 + U + U2)) of V, where T and U denote

the two generators
( 0 −1

1 0

)

and
( 1 −1

1 0

)

of Γ of order 2 and 3, and the definition of “|” has

been extended from Γ to the group ring Z[Γ] by linearity. The space V splits into the direct
sum of the subspaces V+, V− of even and odd polynomials, and W is the direct sum of
the subspaces W± = W ∩V±, since the matrix ǫ =

(−1 0

0 1

)

∈ GL(2,Z) commutes with T

and conjugates U into TU2T . Write r(f) for f ∈ S as r+(f) + r−(f) with r± ∈W±. If
f ∈ S is a normalized Hecke eigenform, then there are non-zero numbers ω+(f) ∈ iR and
ω−(f) ∈ R with product i(f, f) ( ( , ) = Petersson scalar product in S) such that the
polynomials ω±(f)−1r±(f) both have coefficients in the algebraic number field generated
by the Fourier coefficients of f . The map r− is an isomorphism from S− to W−, while r+ is
an isomorphism from S− onto a codimension 1 subspace of W+ not containing the element
pk,0(X) = Xw − 1 of W+. In other words, there is an exact sequence

0 −→ S2k ⊕ S2k
(r+,r−)−→ W2k−2

λ−→ C −→ 0 ,

where λ(pk,0) 6= 0. The map λ is given explicitly by the formula

λ

( w
∑

n=0

(

w

n

)

rnX
w−n

)

=
k

∑

r=1

βrβk−r

w
∑

n=0

n even

(

2r − 1

n

)

rn,

where βm =
B2m

(2m)!
(B2m = (2m)th Bernoulli number) for m > 0, β0 = 2 ([8]; the formula is

both normalized and stated slightly differently there).
The space W2k−2/〈pk,0〉 can be identified with H1

par(Γ,V2k−2), the subspace of the first
cohomology group of Γ with coefficients in the representation V given by cocycles which
vanish on the parabolic element S =

( 1 1

0 1

)

= UT . The isomorphism is given by mapping

q ∈ W to the class of the cocycle φ with φ(T ) = q and φ(S) = 0 (these properties determine
φ because Γ is generated by S and T , and φ is a cocycle exactly for q ∈ W). It follows that
we can also canonically identify the space W0

2k−2 = Ker (λ) = r+(S2k)⊕ r−(S2k) ⊂ W2k−2

with H1
par(Γ,V2k−2).

The relation of the period theory with the theory of reduced quadratic forms as reviewed
in §1.1 is as follows. For each Γ-equivalence classA of binary quadratic forms, define elements
Pk,A, Qk,A, and RA of V by

Pk,A(X) =
∑

Q∈A

Q simple

Q(X,−1)k−1, Qk,A(X) =
∑

Q∈A

Q reduced

Q(X,−1)k−1

and Rk,A = Pk,A+(−1)kPk,ΘA−1 (recall that ΘA−1 denotes the class consisting of all forms
−Q with Q∈A). Then the relationship between simple and reduced forms as described
in §1.1 implies the equalities

Rk,A = Pk,A|(1− T ) = (Qk,A + (−1)kQk,ΘA−1)|(−U + U2).
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From these and the equations T 2 = 1, U3 = 1 it follows that Rk,A belongs to the subspace
W of V. Therefore by the decomposition W2k−2 = W0

2k−2

⊕

Cpk,0 we must have

Rk,A = r+(f+k,A) + r−(f−k,A) + ρk(A) pk,0

for some cusp forms f±k,A∈S and number ρk(A); in fact,

f±k,A(z) =
Dk−1/2

2πi
(

2k−2
k−1

)

(

∑

Q∈A

1

Q(z, 1)k
±

∑

Q∈A

1

Q(z,−1)k

)

, ρk(A) =
ζA(1− k)

ζ(1− 2k)
,

where ζ(s) is the Riemann zeta function and ζA(s) the partial zeta function of the ideal
class A. For all of this, see sections 2.1-2.3 of [8], esp. Theorem 5 (where, however, the
normalizations are slightly different and the factor (−1)k before QΘA−1 was omitted). We
denote by R0

k,A = Rk,A − ρk(A) pk,0 the component of Rk,A in W0
2k−2.

2. Classification of rational period functions for PSL(2,Z)

We now turn from negative weight 2− 2k to positive weight 2k, so that we consider the
action

(

h|
2k

(

a b

c d

))

(X) = (cX + d)−2kh
(

aX+b
cX+d

)

on rational functions (here we must consider

rational functions rather than polynomials because the action |
2k
, unlike |

2−2k
, never maps

polynomials to polynomials). We define the space of rational period polynomials of weight
2k in analogy to W2k−2 by

RPF = RPF2k =
{

rational functions q(z)
∣

∣ q|
2k
(1 + T ) = q|

2k
(1 + U + U2) = 0

}

.

(This is the same as the formula in the introduction.) Our object is to obtain a complete
description of this space.

2.1. Suppose q ∈ RPF, and denote by S ⊂ C the pole set of q. The definition of RPF

clearly implies

α ∈ S, α 6= 0 =⇒ Tα
(

=
−1

α

)

∈ S ,

α ∈ S, α 6= 0, 1 =⇒ Uα
(

= 1− 1

α

)

or U2α
(

=
1

1− α

)

∈ S .

In this subsection we will deduce from this the possible structure of the set S.

Lemma 1. S ⊂ R.

Proof. Suppose α ∈ S, α /∈ R. By what we have just said, at least one of UTα = α+ 1 and
U2Tα = α/(α + 1) belongs to S, so we get a sequence α0 = α, α1, . . . of elements αn ∈ S
with αn+1 equal to αn + 1 or αn/(αn + 1). But it is obvious that the argument (taken in
the interval (−π, π)) of a non-real complex number α decreases strictly in absolute value
when α is replaced by either α + 1 or α/(α + 1). It follows that | arg(α0)| > | arg(α1)| >
| arg(α2)| > . . . > 0. This is impossible since S is a finite set. �
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Lemma 2. The set Sr{0} is the (disjoint) union of sets ZA∪TZA, where ZA is the cycle
associated to a Γ-equivalence class of binary quadratic forms A as in §1.1.

Proof. The proof is similar to that of Lemma 1. We may assume (by replacing α by Tα
if necessary) that α > 0; then Tα 6= 0, 1 and therefore S contains either UTα = α + 1 or
U2Tα = α/(α + 1), which is again positive. This again gives a sequence α0 = α, α1, . . .
of elements αn ∈ S where for each n either αn+1 = αn + 1 or αn+1 = αn/(αn + 1). In
the first case αn+1 > 1 and in the second case, 0 < αn+1 < 1, so in both cases one finds
Φ(αn+1) = αn, where Φ : R → R is the map defined in §1.1. But αm = αn for some
m > n ≥ 0 by the finiteness of S, so we get a finite orbit {αm, αm−1, . . . , αn+1} of Φ. By
the Lemma of §1.1, it follows that αn, and hence α = α0 = Φn(αn), belongs to a cycle ZA
of simple real quadratic irrationalities, and that all of ZA is contained in S. �

Lemma 3. If α 6= 0 ∈ S, then exactly one of Uα and U2α belongs to S.

Proof. By what we have just proved, any non-zero element of S is a quadratic irrationality
of negative norm. But it is easily checked that if 1 > α > 0 > ασ or 1 > ασ > 0 > α, then
U2α and U2ασ are both positive, while if α > 1 > 0 > ασ or ασ > 1 > 0 > α, then Uα and
Uασ are both positive. Thus in all cases one of Uα and U2α has positive norm and cannot
belong to S. �

2.2 The results of §2.1 describe the pole set S of an RPF q. We now consider the principal
part of q at its pole. We use the notation PPα[f ] to denote the principal part of a rational
function f(z) near a point z = α ∈ C, i.e., the unique polynomial in (z − α)−1 without
constant term such that f − PPα[f ] is regular at α. We first show:

Lemma 4. Suppose that α 6= 0 is a pole of q ∈ RPF. Then the order of the pole of q at α
is exactly k.

Proof. The equation q|
2k
(1+T ) = 0 implies that PPTα[q] = −PPα[q]|2kT , and the equation

q|
2k
(1 + U + U2) = 0 together with Lemma 3 implies that PPV α[q] = −PPα[q]|2kV −1,

where V is that one of U and U2 for which V α ∈ S. We also know that α belongs to a
cycle {α0 = α = αr, α1, . . . , αr−1} with αn+1 = UTαn or U2Tαn for each n, i.e. with
αn = γnα for some γn ∈ Γ, γ0 = 1, γn+1 = U±1Tγn (n ≥ 0). By induction on n we obtain

PPαn
[q] = PPα[q]|2kγ−1

n and in particular PPα[q] = PPα[q]|2kγ−1
r . Write γr =

(

a b

c d

)

and

suppose that PPα[q](z) = (z − α)−m + · · · where “· · · ” denotes an expression with a pole
of order < m at α. Then

(

PPα[q]|2kγ
−1

)

(z) = (cz − a)−2k PPα[q]
( dz − b

−cz + a

)

= (cz − a)−2k
( dz − b

−cz + a
− α

)−m
+ · · ·

=
(−cz + a)−2k+m

(cα+ d)m
(z − α)−m + · · ·

= (cα+ d)2k−2m(z − α)−m + · · ·

since cα+ d = (−cα+ a)−1. But cα+ d is clearly irrational (it is in fact a fundamental unit
of the quadratic order associated to α), so we must have k = m. �
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Lemma 4 implies that for each α 6= 0 which can occur as a pole of a rational period
function q of weight 2k there is a (unique) function of the form

qk,α(z) =
1

(z − α)k
+

a1(α)

(z − α)k−1
+ · · ·+ ak

z − α

such that the PPα[q] is a multiple of qk,α for any q ∈ RPF2k.

Lemma 5. Let α be a simple quadratic irrationality, ασ its conjugate. Then

qk,α(z) = PPα

[

(α− ασ)k

(z − α)k(z − ασ)k

]

= PPα

[

Dk/2

Q(z,−1)k

]

,

where Q is the quadratic form associated to α and D the discriminant of Q.

Proof. It is easily checked that Q(z,−1)−k|
2k
γ = Q(z,−1)−k for any γ ∈ Γ with γα = α.

But the proof of Lemma 4 shows that this property characterizes qk,α(z) up to a constant

(since any function satisfying it has a pole of order exactly k at α). Since the leading term
of Q(z,−1)−k is D−k/2, the proportionality constant is as given in the lemma. �

It follows from Lemma 5 that any function in RPF has the form

q(z) =
∑

α

Cαqk,α(z) + q′0(z)

for some constants Cα ∈ C and some function q′0 (z) ∈ C[z, z−1], where the sum ranges
over finitely many cycles of real quadratic irrationalities α with αα′ < 0. The first sentence
of the proof of Lemma 4 makes it clear that the coefficients Cα alternate as we go around
any cycle α, Tα, U±1Tα, TU±1Tα, · · · , i.e., that Cα equals sgn(α)CA where CA depends
only on the class A corresponding to α. Finally, we apply the operator |

2k
(1 − T ) to the

decomposition of q, observing that q|(1 − T ) = 2q and that the function q0 = q′0 |(1 − T )
still belongs to C[z, z−1]. This gives a representation

q(z) =
∑

A
CAqk,A(z) + q0(z), q0(z) ∈ C[z, z−1]|

2k
(1− T )

where
qk,A(z) =

∑

α∈ZA

(

qk,α(z)− qk,Tα(z)
)

|
2k
(1− T )

and the coefficients CA are non-zero for only finitely many classes A.
2.3. It remains to determine which linear combinations of the functions qk,A can be

corrected by a function q0 having a pole only at z = 0 in such a way as to become rational
period functions. Since qk,A|(1 + T ) vanishes by construction, the condition q|(1 + T ) = 0

is automatic if q0 is chosen to be anti-invariant under the involution T . We must therefore
compute the image of qk,A under 1 + U + U2. The poles of qk,A at quadratic irrationalities

in ZA ∪ TZA cancel out when we slash with 1 + U + U2 by construction, but there are
new poles at z = 0 and z = 1 coming from the automorphy factors z−2k and (z − 1)−2k

which arise from the operations |
2k
U and |

2k
U2. These poles have order at most 2k. By

subtracting from q a multiple of 1−z−2k, which can easily be checked to be an RPF, we can
assume that the pole at 0 has order ≤ 2k − 1. The pole at 1 then also has order ≤ 2k − 1
because qk,A|(1 +U +U2) is annihilated by 1−U (since (1 +U +U2)(1−U) = 1−U3 = 0

in the group ring of Γ). Thus qk,A|(1 + U + U2) belongs to the space

H = H2k =
{

φ ∈ z−2k+1(z − 1)1−2k C[z]
∣

∣ φ|
2k
(1− U) = 0

}

.

Our first goal is to determine the structure of H.
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Lemma 6. There is an isomorphism µ : H2k → Ker
(

1 +U +U2,V2k−2

)

given as follows:
if

h(z) =
w
∑

n=0

an
zn+1

+
w
∑

n=0

bn
(z − 1)n+1

(w = 2k − 2)

is an element of H, and A(X) =
∑w

n=0

(

w
n

)

anX
n, B(X) =

∑w
n=0

(

w
n

)

bnX
n ∈ V2k−2, then

µ(h) = A|
2−2k

TU = B|
2−2k

U2.

Proof. If h(z) ∈ H, the property h(z) = z−2kh(1− 1
z ) shows that h tends to 0 as z tends to

infinity, so h has the form given in the lemma. Then by partial fractions

(h|U)(z) =
∑

anz
−ñ−1(z − 1)−n−1 −∑

(−1)nbnz
−ñ−1

=
∑

z−n−1

(

(−1)n+1bñ − ∑

m̃≥n

(−1)m
(

ñ
m̃−n

)

am

)

+
∑

(z − 1)−n−1

(

∑

m≥n

(−1)m−n
(

ñ
m−n

)

am

)

,

where n in the summations goes from 0 to w and ñ, m̃ denote w−n, w−m. The condition
h = h|U is thus equivalent to the properties

an = (−1)n+1bñ − ∑

m̃≥n

(−1)m
(

ñ
m̃−n

)

am, bn =
∑

m≥n

(−1)m−n
(

ñ
m−n

)

am

or

(

w
n

)

an = (−1)n+1
(

w
n

)

bñ −
∑

m
(−1)m

(

w
m

)

am
(

m̃
n

)

,
(

w
n

)

bn =
∑

m
(−1)n−m

(

w
m

)

am
(

m
n

)

.

Multiplying by Xn and summing from 0 to w, we find

h = h|U ⇐⇒ A(X) = −XwB
(

− 1

X

)

− (X + 1)wA
( −1

X + 1

)

, B(X) = A(X − 1)

or A = B|UT , B|(1+U +U2) = 0. Thus H is isomorphic to Ker (1+U +U2,V) via h 7→ B
or alternatively via h 7→ B|U2 = µ(h). �

The following result is the key to the solution of our problem.

Lemma 7. Let A be a Γ-equivalence class of forms as usual. Then

µ
(

qk,A|2k(1 + U + U2)
)

= (−1)k−1

(

2k − 2

k − 1

)

D
1−k
2
Rk,A,

where Rk,A is the element of W2k−2 defined in §1.2.
Proof. Write ψ for the map

⊕

0≤n≤w Cz−n−1 → V defined by z−n−1 7→
(

w
n

)

Xn, so that the

µ of Lemma 6 is given by µ(h) = ψ(PP0[h])|TU . (We use | to denote |
2k

when applied to
rational functions of z and |

2−2k
when applied to polynomials inX.) We begin by calculating

ψ(PP0[qk,α|T ]). By Lemma 5 and the binomial theorem,

qk,α(z) = PPα

[(

z − α
)−k(

1− z − α

α′ − α

)−k]
=

k−1
∑

n=0

( 1

α′ − α

)k−1−n
(

ñ

k − 1

)

(z − α)−n−1,
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where ñ = w − n as before. On the other hand,

PP0

[

(z − α)−n−1|T
]

= PP0

[ (−1)n+1

zñ+1(1 + αz)n+1

]

=

ñ
∑

m=0

(−1)m+1αñ−m

(

m̃

n

)

z−m−1

(binomial theorem again), so

ψ
(

PP0

[

(z − α)−n−1|T
])

=
ñ
∑

m=0

(−1)m+1αñ−m

(

m̃

n

)(

w

m

)

Xm = −
(

w

n

)

(

α−X
)ñ
.

Therefore

ψ
(

PP0

[

qk,α |T
])

= −
k−1
∑

n=0

( −1

α− α′
)k−1−n

(

ñ

k − 1

)(

w

n

)

(

α−X
)ñ

= −
(

w

k − 1

)

(α−X)k−1

(α− α′)k−1

k−1
∑

n=0

(

k − 1

n

)

(X − α)k−1−n(α− α′)n

= (−1)k
(

w

k − 1

)(

(α−X)(α′ −X)

α− α′

)k−1

= (−1)k
(

w

k − 1

)

D(1−k)/2Qα(X,−1)k−1,

where Qα(X,−1) is the quadratic form associated to α.
On the other hand, we have

PP0

[

qk,α|(1− T )(1 + U + U2)
]

= PP0

[

qk,α|(−T + U)
]

= PP0

[ (

−qk,α + qk,α−1

)

|T
]

because the function qk,α|γ has a pole at 0 only for those γ with γ(0) = ∞ and qk,α|S =

qk,α−1. Consequently

PP0

[

qk,A|(1 + U + U2)
]

=
∑

α∈ZA

PP0

[ (

−qk,α + qk,α−1 + qk,Tα − qk,Tα−1

)

|T
]

and hence by the computation above

µ
(

qk,A|(1 + U + U2)
)

= (−1)k
(

w

k − 1

)

D(1−k)/2 Pk,A|(−1 + S + T − TS)|TU

with Pk,A =
∑

α∈ZA
Qα(z,−1)k−1 as in §1.2. For the last equality we used the easily checked

fact that Qγα(X,−1)k−1 = Qα(X,−1)k−1|γ−1 for any γ ∈ Γ. The lemma now follows since

Pk,A|(−1 + S + T − TS)|TU = Rk,A|(U2 − TU) = Rk,A|(U2 + U) = −Rk,A

because Rk,A ∈ W2k−2. �
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Lemma 8. For 0 ≤ n ≤ w we have

µ
(

z−n−1|
2k
(1− T )(1 + U + U2)

)

=

(

w

n

)

Xn|
2−2k

(1 + T )(U − U2).

Proof. Let h(z) = z−n−1|
2k
(1− T )(1 + U + U2). By partial fractions, we find

h(z) = z−n−1 + (−1)nz−ñ−1 + z−ñ−1(z − 1)−n−1 + (−1)nz−n−1(z − 1)−ñ−1 + · · ·

= z−n−1 + (−1)nz−ñ−1 − (−1)n
ñ
∑

m=0

(

m̃
n

)

z−m−1 −
n
∑

m=0

(

m̃
ñ

)

z−m−1 + · · · ,

where · · · denotes terms regular at z = 0. A short calculation now shows that the “A(X)”
of Lemma 6 is

(

w
n

)

Xn|(1 + T − UT − TUT ), so µ(h) =
(

w
n

)

Xn|
2−2k

(1 + T )(U − U2). �

The proof of the following result, though simple, cost us a considerable effort to find.

Lemma 9. The intersection of V|
2−2k

(1+T )(U−U2) with W is one-dimensional, spanned
by Xw − 1.

Proof. Suppose A ∈ V with B = A|(1 + T )(U − U2) ∈ W (where | denotes |
2−2k

). Since B

is automatically in Ker (1 + U + U2), this is equivalent to B|(1 + T ) = 0. But B|(1 + T ) =
A|(1+T )(1−U +U2)(S− 1) since (1+T )(U −U2)(1+T ) = (1+T )(1−U +U2)(S− 1) in
Z[Γ] (S = UT ). Since the kernel of S − 1 in V is the one-dimensional space spanned by the
constant function 1 (a periodic polynomial is constant!), and since (1 − U + U2) : V → V

is an isomorphism with inverse 1
2 (1 + U), this says that A|(1 + T ) belongs to the one-

dimensional space spanned by 1|(1 +U) = 1+Xw, and consequently that B belongs to the
one-dimensional space spanned by 1|(1 + U)(U − U2) = Xw − 1. �

2.4. We can now give a complete description of RPF’s of arbitrary positive weight:

Theorem 1. For each Γ-equivalence class A of indefinite binary quadratic forms of non-
square discriminant D and each integer k > 0 define

r0k,A(z) =
(−

√
D)k−1

(

2k−2
k−1

)

∑

α∈ZA

(

qk,α(z)− qk,Tα(z)
)

|
2k
(1− T ) − ρk(A)

(

z−1 + z−2k+1
)

,

where the summation runs over the cycle of simple quadratic irrationalities α corresponding
to A, qk,α(z) denotes the principal part at α of Dk/2Qα(z)

−k, Qα(z) being the quadratic

polynomial of discriminant D with root α, and ρk(A) = ζA(1−k)/ζ(1−2k) as in §1.2. Also
define rk,0(z) = 1− z−2k. Then

i) Any rational period function of weight 2k has the form

q(z) =
∑

A
cA r

0
k,A(z) + c0 rk,0(z)

for some complex constants cA (almost all zero) and c0.
ii) Conversely, a sum as in i) is an RPF if and only if

∑

cAR
0
k,A = 0, where

R0
k,A(X) =

∑

[A,B,C]∈A
AC<0

sign(A)
(

AX2 −BX + C)k−1 − ρk(A)
(

X2k−2 − 1
)

∈ W0
2k−2



10 YJ. CHOIE AND D. ZAGIER

is the rational period polynomial defined at the end of §1.
Proof. We already know that any RPF q has the form

∑

CAqk,A+q0 where q0 is a polynomial

of degree ≤ 2k in z−1 satisfying q|T = −q. Equivalently, we can write q as
∑

cAr
0
k,A +

c0rk,0 −r0|(1−T ) where r0 ∈
⊕

0≤n≤w Cz−n−1. This expression is automatically annihilated

by 1 + T , while its image under 1 + U + U2 belongs to H2k, so Lemma 6 implies that q is
an RPF if and only if

∑

cAµ
(

r0k,A|2k(1+U +U2)
)

equals µ
(

r0|2k(1−T )(1+U +U2)
)

. But

µ
(

r0k,A|2k(1 + U + U2)
)

equals R0
k,A ∈ W0

2k−2 by Lemma 7 and the special case n = 0 of

Lemma 8, while µ
(

r0|2k(1−T )(1+U+U2)
)

∈ V|
2−2k

(1+T )(U−U2) by Lemma 8. Lemma

9 now implies that q is an RPF iff
∑

cAR
0
k,A = 0 and µ

(

r0|2k(1 − T )(1 + U + U2)
)

= 0.

But the latter equation implies that already r0|2k(1 − T ) = 0. [Proof: by Lemma 8, this

statement is equivalent to the assertion that if R|
2−2k

(1 + T )(U −U2) = 0 for some R ∈ V,

then already R|
2−2k

(1 + T ) = 0, and this is true because R|
2−2k

(1 + T ) is invariant under

both T and U and hence under the whole group PSL(2,Z).] Hence q has the form given in
the theorem. �

An equivalent formulation of Theorem 1 is that there is an exact sequence

0 −→ RPF2k −→
⊕

A
C ⊕ C −→ W0

2k−2 −→ 0 ,

where the maps are defined by sending
∑

cA r
0
k,A + c0rk,0 to

(

{cA}A, c0
)

and
(

{cA}A, c0
)

to
∑

cAR
0
k,A, the latter map being surjective because the functions R0

k,A span W 0
2k−2 [9].

We also have the following

Corollary. For every class of forms A and integer k > 0 the function qk,A − (−1)kqk,ΘA−1

belongs to RPF2k.

Proof. This follows immediately from the theorem since Rk,A = (−1)kRk,ΘA−1 and ρk(A) =

(−1)kρk(ΘA−1). However, a direct proof is easier. The function Dk/2Qα(z)
−k has poles

only at α and α′ and is small at infinity, so it is the sum of its principal parts qk,α(z) and

(−1)kqk,α′(z). On the other hand,

qk,A(z) =
∑

α↔Q∈A
αα′<0

sign(α) qk,α(z)|2k(1− T ),

and under the correspondence we are using, if α↔ Q ∈ A, then α′ ↔ −Q ∈ ΘA−1. Hence

qk,A(z)− (−1)kqk,ΘA−1(z) =
∑

[A,B,C]∈A
AC<0

sign(A) (Az2 −Bz + C)−k,

and this is automatically a true RPF because it is a sum of terms Q−k and Q−k|
2−2k

γ =

(Q ◦ γ)−k for any γ ∈ Γ: the problems of §2.3 were caused entirely by the fact that this
identity breaks down when Q−k is separated into its two principal parts. �

Finally, we should comment on the overlap between the presentation given in this section
and previous work. As already mentioned in the introduction, the notion of rational period
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function was introduced by M. Knopp in [6]. Lemma 1 and part of Lemma 2 (namely, that
any non-zero pole of an RPF is a real quadratic irrationality) were proved by him in the
later paper [7]. The existence of RPF’s with poles in an arbitrary real quadratic field was
shown in [2]. Lemma 4 is due to J. Hawkins [4], who also found the cycle structure of the
poles of an RPF and observed that there is a relation between the obstructions to the RPF
property for sums over cycles and the existence of cusp forms of weight 2k. The construction
of special RPF’s given in the above corollary was obtained in [3]. We have preferred to give
our own proofs of these results because they are shorter and in order to keep our treatment
self-contained. The general result of Ash mentioned in the introduction is the analogue of
the exact sequence given above for Γ′ ⊂ Γ: the space W0

2k−2 replaced by H1
0 (Γ

′,V2k−2), the
space RPF2k replaced by a similarly defined first cohomology group of Γ′ with coefficients in
the Γ′-module of rational functions, and the summation ranging over Γ′-equivalence classes
of indefinite quadratic forms of non-square discriminant. However, this more general result,
whose proof relies on cohomological methods, does not give an explicit description of the
generalized rational period functions.

3. Hecke operators

A definition of Hecke operators on rational period functions was given by Knopp [6],
based on the modular integrals (Eichler integrals) which he had introduced earlier [5]. In
§3.1. we recall the definition of modular integrals and use it to motivate a purely algebraic
definition whose main properties we then investigate.

It will be convenient to introduce the following notation. For each integer n > 0 we set
Mn = {M ∈ M2(Z)/{±1}} | det(M) = n}, so that M1 = Γ. We write M+ for

⋃Mn

= {M ∈ M2(Z)/{±1}} | det(M) > 0} and Rn = Z[Mn], R+ = Z[M+] =
⊕

n Mn for the
sets of finite integral linear combinations of elements of Mn and M+, respectively. Thus
R+ is a (non-commutative) ring with unit and is “multiplicatively graded” in the sense that
RnRm ⊆ Rmn for all m, n > 0; in particular, each Rn is a left and right module over the
group ring R1 = Z[Γ] of Γ. We denote by J the right ideal (1 + T )R1 + (1+U +U2)R1 of
R1. Finally, the slash operator | will always mean |

2k
unless otherwise specified, the action

being extended from Γ to M+ by (h|M)(z) = n2k(cz+d)−2kh
(

az+b
cz+d

)

for M =
(

a b

c d

)

∈ Mn.
Thus Rn and R+ act on the spaces of rational or meromorphic functions in the upper half
plane, and RPF = RPF2k is simply the space of rational functions annihilated by the ideal
J .

3.1. A modular integral of weight 2k is by definition a meromorphic function F on the
upper half plane H, small at infinity, satisfying

F |S = F and F |T = F + q

for some rational function q. In other words, F is periodic of period 1 and the difference
z−2kF (−1/z) − F (z) is a rational function of z; the condition “small at infinity” means
that F (z) has a Fourier expansion

∑

n>0 a(n) e
2πinz for ℑ(z) ≫ 0. The definition implies

immediately that q satisfies q|(1+T ) = q|(1+U+U2) = 0, i.e., that q is an RPF. Conversely
Knopp proved that every q ∈ RPF comes in this way from a modular integral F . This F
is obviously not unique: we can add to F any meromorphic cusp form of weight 2k without
changing q, and even if we specify the principal parts of F at every point of H, then F is
still only well-defined up to the action of a cusp form f ∈ S. The terminology “modular
integral,” by the way, comes from the analogous definition for the action of Γ by |

2−2k
, where
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q is now a polynomial; here F can be obtained as an integral of a cusp form with period
polynomial q.

On S we have Hecke operators defined by f |Tn =
∑

M∈Γ\Mn
f |M . This definition cannot

be applied to F because F is not Γ-invariant (with respect to the action | ), but F is invariant
under the action of the stabilizer Γ∞ = 〈S〉 of infinity, so the operator

T∞
n =

∑

M∈Γ∞\Mn

M(∞)=∞

M =
∑

ad=n, a,d>0
b (mod d)

(

a b
0 d

)

∈
(

(S − 1)Rn

)

\Rn

has a well-defined effect on F . It is easy to see that F |T∞
n is again periodic with period

1, and in fact it is a new modular integral whose associated rational function depends only
on q (and n), and this defines Knopp’s Hecke operator. To phrase this more algebraically,

suppose that there are elements Xn, T̃n and Yn in Mn satisfying

T∞
n (S − 1) = (S − 1)Xn, T∞

n (T − 1) = (T − 1) T̃n + (S − 1)Yn;

then
(

F |T∞
n

)

| (S − 1) =
(

F |(S − 1)
)

| Xn = 0,
(

F |T∞
n

)

| (T − 1) =
(

F |(T − 1)
)

| T̃n +
(

F |(S − 1)
)

| Yn = q | T̃n,

which shows that F |T∞
n is a modular integral with associated rational function q|T̃n. We

now show that Xn, T̃n and Yn exist and that the image of q under T̃n is independent
of the choice of these three operators and is again an RPF, and moreover that the various
T̃n : RPF → RPF commute. This gives a purely algebraic definition of the Hecke operators,
independent of the existence of modular integrals for arbitrary RPF’s, which is a non-trivial
analytic fact.

Theorem 2. For each integer n ≥ 1,

T∞
n (S − 1) ≡ 0 , T∞

n (T − 1) ≡ (T − 1)T̃n (mod (S − 1)Rn)

for a certain element T̃n ∈ Rn. This element is unique modulo JRn and satisfies T̃nJ ⊆
JRn. If m is a second positive integer, then the elements T̃m, T̃n ∈ R+ satisfy the product
formula

T̃mT̃n =
∑

d|(m,n)

d−1

(

d 0
0 d

)

T̃mn/d2 (mod JRmn).

Corollary. If q ∈ RPF, then q|T̃n is well-defined (independent of the choice of T̃n) and

again belongs to RPF. The operators T̃n : RPF → RPF satisfy T̃mT̃n = T̃nT̃m =
∑

d|(m,n) d
2k−1T̃mn/d2 .

Proof. For the assertion T∞
n (S−1) ∈ (S−1)Rn we compute (for given a, d > 0 with ad = n)

∑

0≤b<d

(

a b
0 d

)

(

S − 1
)

=
∑

0≤b<d

((

a a+ b
0 d

)

−
(

a b
0 d

))

=
∑

0≤b<a+d

(

a b
0 d

)

−
∑

0≤b<a

(

a b
0 d

)

−
∑

0≤b<d

(

a b
0 d

)

=
∑

0≤b<a

((

a b+ d
0 d

)

−
(

a b
0 d

))

=
∑

0≤b<d

(

S − 1
)

(

a b
0 d

)

.
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For the assertion T∞
n (T − 1) ≡ (T − 1)T̃n (mod (S − 1)Rn) we need the following lemma.

Lemma 1. γ − 1 ∈ (T − 1)R1 + (S − 1)R1 for any element γ ∈ Γ.

Proof. Suppose that this property holds for some γ ∈ Γ. Then the elements Tγ − 1 =
(T − 1)γ + (γ − 1), Sγ − 1 = (S − 1)γ + (γ − 1) and S−1γ − 1 = (S − 1)(−S−1γ) + (γ − 1)
also belong to (T − 1)R1 + (S − 1)R1. Since T (= T−1) and S generate Γ, the lemma now
follows by induction on the word length. �

Now write T∞
n as

∑

Mi. For each index i there is a unique index i′ such thatMiT = γiMi′

with γi ∈ Γ. Then T∞
n (T − 1) =

∑

i

(

γiMi′ −Mi

)

=
∑

i(γi − 1)Mi′ , and this belongs to
(T − 1)Rn + (S − 1)Rn by Lemma 1. �

To prove the other assertions of the theorem, we need a characterization of the elements
of JMn. To get this, we introduce the following concept. Suppose V is an abelian group
on which Γ acts on the left. Then V is a left R1-module. For X ∈ R1 we write Ker (X) for
{v ∈ V |Xv = 0} and Im (X) for XV = {Xv | v ∈ V }. The intersection of Ker (1 + T ) and
Ker (1 + U + U2) has an interpretation in terms of the cohomology of Γ with coefficients in
the module V ; we call V acyclic if this intersection is zero and if, furthermore Ker (1−T ) =
Im (1+T ) and Ker (1−U) = Im (1+U +U2). (The second hypothesis can be omitted if we
work over Q, since (1−T )v = 0 ⇒ v = (1+T )( 12v) and (1−U)v = 0 ⇒ v = (1+U+U2)( 13v).)

Lemma 2. Rn is an acyclic R1-module for all n.

Proof. Suppose X =
∑

nM M (nM ∈ Z, M ∈ Mn) is an element of Rn. If X ∈ Ker (1 +
T ) ∩Ker (1 + U + U2), then the function q = r|X is an RPF for any rational function r(z).
Choose r(z) = (z − λ)−1 where λ ∈ C is not rational or quadratic; then q(z) has a pole
at each point M−1λ with nM 6= 0 (these cannot cancel since M−1

1 λ = M−1
2 λ would lead

to a quadratic equation for λ), and this contradicts the fact proved in §2 that an RPF can
have poles only at rational or quadratic irrational points. On the other hand, if X is left
invariant under T , then nTM = nM for allM , and sinceM 6= TM this means that X can be
written as an integral linear combination of elementsM+TM = (1+T )M ∈ Rn. Similarly,
X = UX implies nM = nUM = nU2M for all M and hence X ∈ (1 + U + U2)Rn. This
proves the second hypothesis in the definition of acyclicity. �

Lemma 3. If V is an acyclic Γ-module and v ∈ V , then

(1− T )v ∈ (1− S)V ⇐⇒ v ∈ (1 + T )V + (1 + U + U2)V = J V.

Proof. The direction “⇐” is true for any Γ-module, since v = (1 + T )x + (1 + U + U2)y
implies

(1− T )v = (1− S−1U)(1 + U + U2)y = (S − 1)S−1(1 + U + U2)y.

Conversely, assume that V is acyclic and (1− T )v = (1− S)w for some w ∈ V . Then

(1− T )(v − w) = (T − S)w = (1− U)Tw.

This element must vanish since Im (1−T )∩Im (1−U) ⊆ Ker (1+T )∩Ker (1+U+U2) = {0}.
But then v − w ∈ Im(1 + T ) and Tw ∈ Im(1 + U + U2) by the second hypothesis in the
definition of acyclicity, so v = (v − w) + (1 + T )w − Tw ∈ (1 + T )V + (1 + U + U2)V . �
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Lemmas 2 and 3 give a characterization of JRn as {X ∈ Rn | (1−T )X ∈ (1−S)Rn}. The
uniqueness of T̃n modulo JRn (and consequently of the image q|T̃n for an RPF q) follows

immediately from this characterization and the definition of T̃n. The fact that T̃nJ ⊆ JRn

(and consequently that q|T̃n is again an RPF) also follows easily, since the equations

T∞
n (S − 1) ≡ 0 , T∞

n (T − 1) ≡ (T − 1)T̃n (mod (S − 1)Rn)

imply (1− T )T̃n(1 + T ) ≡ 0 and

(1− T )T̃n(1 + U + U2) ≡ T∞
n (1− S−1U)(1 + U + U2) ≡ T∞

n (S − 1)S−1(1 + U + U2) ≡ 0

modulo (S − 1)Rn. Finally,

(

T − 1
)

(

T̃mT̃n −
∑

d|(m,n)

d−1
(

d 0

0 d

)

T̃mn/d2

)

≡ T∞
m (T − 1)T̃n −

∑

d−1
(

d 0

0 d

)

(T − 1)T̃mn/d2

≡ T∞
m

[

T∞
n (T − 1)− (S − 1)Yn

]

−
∑

d−1
(

d 0

0 d

)

T∞
mn/d2(T − 1)

≡
(

T∞
m T∞

n −
∑

d−1
(

d 0

0 d

)

T∞
mn/d2

)

(

T − 1
)

(mod (S − 1)Rmn),

and
T∞
m T∞

n −
∑

d|(m,n)

d−1
(

d 0

0 d

)

T∞
mn/d2 ≡ 0 (mod (S − 1)Rmn)

by the usual calculation for the commutation properties of Hecke operators. This completes
the proof of Theorem 2. �

3.2. In this section we give an explicit combination T̃n of matrices of determinant n which
has the property used in §3.1. to define the Hecke operators on rational period functions. This
operator was given in [12], where it was shown that it preserves the space W2k−2 of period
polynomials of degree 2k−2 and corresponds under the isomorphism W2k−2

∼= S2k⊕S2k⊕C

to the usual action of Hecke operators on cusp forms, generalizing the description given by
Manin [11] of the action of Hecke operators on the constant terms of the period polynomials
of cusp forms. However, the proof in [12] relied on an explicit knowledge of a generating
function for the period polynomials of Hecke eigenforms of weight 2k, while the construction
here is purely algebraic (and thus shows that the T̃n we construct preserves the period
subspace Ker (1 + T ) ∩ Im (1 + U + U2) of any Γ-module).

Theorem 3. Let n be a positive integer. Then the element T̃n ∈ Rn defined by

T̃n =
∑

ad−bc=n
a>c>0
d>−b>0

[(

a b
c d

)

+

(

a −b
−c d

)]

+
∑

ad=n
− 1

2
d<b≤ 1

2
d

(

a b
0 d

)

+
∑

ad=n
− 1

2
a<c≤ 1

2
a

c 6=0

(

a 0
c d

)

,

has the properties given in Theorem 2.

Proof. Define T̃n by the formula given. We must show that (T − 1)T̃n ≡ T∞
n (T − 1), where

(and throughout the proof) ≡ denotes congruence modulo (S − 1)Rn.)
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The maps

A =

(

a b
c d

)

7→ TS−[a/c]A =

(

c d
−(a− c[a/c]) −b+ d[a/c]

)

,

B =

(

a b
c d

)

7→ S[d/b]TB =

(

−c+ a[d/b] −(d− b[d/b])
a b

)

,

where [ ] denotes integral part, are easily checked to give inverse bijections between the sets

An =

{(

a b
c d

)

∈ Mn | a > c > 0, d > −b ≥ 0, b = 0 ⇒ a ≥ 2c

}

and

Bn =

{(

a b
c d

)

∈ Mn | a > −c ≥ 0, d > b > 0, c = 0 ⇒ d ≥ 2b

}

.

Since SrA ≡ A for any integer r, this gives
∑

A∈An
A ≡ T

∑

B∈Bn
B or

∑

a>c>0
d>−b>0
ad−bc=n

[(

a b
c d

)

− T

(

a −b
−c d

)]

≡
∑

1
2
d≥b>0
ad=n

(

0 −d
a b

)

−
∑

1
2
a≥c>0
ad=n

(

a 0
c d

)

.

Conjugating this equation by
(−1 0

0 1

)

changes the sign of all the off-diagonal coefficients and
preserves the property “≡”. Adding the result to the original equation, we get

(

1− T
)

∑

a>c>0
d>−b>0
ad−bc=n

((

a b
c d

)

+

(

a −b
−c d

))

≡
∑

0<|b|≤ 1
2
d

ad=n

((

0 −d
a b

)

−
(

d 0
b a

))

.

(Recall that we are working with matrices modulo ±1.) Hence

(

1 − T
)

T̃n ≡
∑

− 1
2
d<b≤ 1

2
d

ad=n

(

a b
0 d

)

(

1− T
)

+
∑

a,d>0
ad=n
d even

((

0 −d
a − 1

2d

)

−
(

d 0
− 1

2d a

))

,

as we see after a short calculation. The first sum on the right is ≡ T∞
n (1 − T ), while the

second equals

∑

xy=n/2
x, y>0

((

0 2y
−x y

)

−
(

2x 0
−x y

))

=
∑

xy=n/2
x, y>0

(

S2 − 1)

(

2x 0
−x y

)

≡ 0. �

3.3 Finally, we mention a problem which we have not been able to solve and which seems
to be of interest, namely that of writing down explicit modular integrals. Specifically, we
would like to find functions Fk,A, holomorphic in the upper half-plane and small at infinity,
such that

∑

A cAFk,A(z) is a modular integral for q(z) =
∑

A cAr
0
k,A(z) whenever the latter

is an RPF, i.e. (according to Theorem 1), whenever
∑

A cAR
0
k,A(z) = 0 in W0

2k−2. For the
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special case of the RPF qk,A− (−1)kqk,ΘA−1 of the Corollary to Theorem 1, the answer was

found by A. Parson: an explicit modular integral is given by (a multiple of)
∑

Q(z,−1)−k,
where the sum ranges over quadratic forms Q = [a, b, c] ∈ A with a > 0. This can be
checked easily: the sum is S-invariant and when one applies (1 − T ) all the terms with
ac > 0 drop out, so that one is left with a sum over simple forms. A similar calculation
shows that the sum of the principal parts qk,α, where α ranges over the roots of forms in A
with α > α′ (corresponding to Parson’s condition a > 0) formally is a modular integral for
qk,A. However, this sum diverges because qk,α grows like ak−1 as [a, b, c] runs over the class

A (cf. the formula for qk,α given in the proof of Lemma 7), and it is not clear how to write
down an expression which makes sense.

4. Numerical examples

For the discriminant D = 5 there is only one class of forms I, represented by the simple

form [1, 1,−1], with ZI = {
√
5 + 1

2
,

√
5− 1

2
}. For k odd, both qk,I(z) and r0k,I(z) are

multiples of

∑

α∈ZI

(

qk,α(z)− qk,Tα(z)
)

=

(
√
5

z2 − z − 1

)k

+

(
√
5

z2 + z − 1

)k

and belong to RPF2k. (Note that Rk,I = (1 + (−1)k)Pk,I = 0 in this case.) For k = 2 we
have

∑

α∈ZI

(

q2,α(z)− q2,Tα(z)
)

= − 1√
5

(

4z3 − 6z2 − 12z + 7

(z2 − z − 1)2
+

4z3 + 6z2 − 12z − 7

(z2 + z − 1)2

)

.

Applying |4(1− T ) gives

q2,I(z) = − 2√
5

(

4z3 − 6z2 − 12z + 7

(z2 − z − 1)2
+

4z3 + 6z2 − 12z − 7

(z2 + z − 1)2
− 4

x
+

4

x3

)

;

and since ρ2(I) = 4 we find

r02,I(z) =
4z3 − 6z2 − 12z + 7

(z2 − z − 1)2
+

4z3 + 6z2 − 12z − 7

(z2 + z − 1)2
− 8

x
∈ RPF4 ,

corresponding to the fact that the polynomial

R2,I(X) = 2P2,I(X)− ρ2(I) p2,0(X) = 2
[

(X2 −X − 1) + (X2 +X − 1)
]

− 4(X2 − 1)

vanishes (as of course it must, since W 0
2 = {0}). Similarly, for k = 4 we find that

r04,I(z) =
4z7 − 14z6 + 35z4 − 42z2 − 28z + 45

2

(z2 − z − 1)4
+

4z7 + 14z6 − 35z4 + 42z2 − 28z − 45
2

(z2 + z − 1)4
− 8

x

is again an RPF, corresponding to the identity

R4,I = 2
[

(X2 −X − 1)3 + (X2 +X − 1)3
]

− 4(X6 − 1) = 0 ∈W 0
6 = {0} .
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For k = 6, however, r0k,I no longer has to be, and no longer is, an RPF, because of the

existence of cusp forms of weight 2k on PSL(2,Z). Here we find

r06,I(z) =
44h(z)

(z2 − z − 1)6
− 44h(−z)
(z2 + z − 1)6

−4

(

1

x
+

1

9x3
− 1

7x5
+

1

7x7
− 1

9x9
− 1

x11

)

−ρ
(

1

x
+

1

x11

)

,

where ρ = ρ5(I) =
3484

691
and h(z) denotes the polynomial

h(z) =
z11

11
− z10

2
+

5z9

2
+

5z8

4
− 15z7

7
− 11z6

6
+ 3z5 +

5z4

2
− 5z3

3
− 5z2

2
− z +

6227

5544
.

We have r06,I |12(1 + T ) = 0 but

r06,I |12(1 + U + U2) = −4k
(1

z

)

− 4k
( 1

1− z

)

+ ρ
10
∑

n=1

(

1

zn
+

1

(1− z)n

)

with k(z) = z10 + z9 + 4
3 z

8 + 5
3 z

7 + 221
126 z

6 + 67
42 z

5 + 4
3 z

4 + 10
9 z

3 + z2 + z. This belongs to
H12 and is mapped by the isomorphism µ of Lemma 6 to the element

R0
6,I = 2

[

(X2−X−1)5+(X2+X−1)5
]

−ρ
(

X10−1
)

= 20
(

X8−3X6+3X4−X2− 36

691
(X10−1)

)

of the 2-dimensional space W 0
10.

Other discriminants work similarly. For D = 12, for example, there are two classes I
and Θ, represented by the simple forms [1, 0,−3] and [3, 0,−1], respectively, with cycles

ZI = {
√
3,

√
3−1,

√
3+1} and ZΘ = { 1√

3
,

√
3 + 1

2
,

√
3− 1

2
}. Here for each k the rational

function r0k,I(z)− (−1)k r0k,Θ(z) is a multiple of

1

(z2 − 3)k
+

1

(z2 − 2z − 2)k
+

1

(z2 + 2z − 2)k

− 1

(1− 3z2)k
− 1

(1− 2z − 2z2)k
− 1

(1 + 2z − 2z2)k

and is an RPF. For k = 2, 3, 4, 5 or 7, where S2k = {0}, the two fuctions r0k,I and r0k,Θ
are individually RPF’s. For k = 6 this is no longer true, but subtracting from r06,I six

times the function r06,I for D = 5 as given above, we do get a function belonging to RPF12,
corresponding to the fact that the polynomial

R0
6,I =(X2 − 3)5 + (X2 + 2X − 2)5 + (X2 − 2X − 2)5 + (3X2 − 1)5

+ (2X2 + 2X − 1)5 + (2X2 − 2X − 1)5 − 218530

691

(

X10 − 1
)

.

is 6 times what it was for D = 5. However, the coefficients of this rational function are
already fairly complicated and we do not give them or any further numerical examples.
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