PERIOD FUNCTIONS FOR MAASS WAVE FORMS AND COHOMOLOGY

R.BRUGGEMAN, J. LEWIS, AND D.ZAGIER

AsstracT. We construct explicit isomorphisms between spaces of Maase forms
and cohomology groups for discrete cofinite grolips PSLy(R).

In the case thdt is the modular group PS(Z) this gives a cohomological frame-
work for the results inPeriod functions for Maass wave forms.of, J. Lewis and
D. Zagier in Ann. Math.153(2001), 191-258, where a bijection was given between
cuspidal Maass forms and period functions.

We introduce the concepts ofixed parabolic cohnomology growgmdsemi-ana-
lytic vectorsin principal series representation. This enables us tordescohomol-
ogy groups isomorphic to spaces of Maass cusp forms, sppaeaed by residues of
Eisenstein series, and spaces of alhvariant eigenfunctions of the Laplace operator.

For spaces of Maass cusp forms we also describe isomorphisp@gsabolic co-
homology groups with smooth cfieients and standard cohomology groups with
distribution codicients. We use the latter correspondence to relate thed3eter
scalar product to the cup product in cohomology.
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Introduction

These notes proceed from the ideas and results of [21], ichMMiaass forms for
the full modular group were studied, but now treating admitrFuchsian groups and
stressing the cohomological interpretation. They can bd nedependently of [21].

The classical theory linking holomorphic automorphic feritn cohomology starts
with Eichler [10], and Shimura [31]. To an automorphic foffmon the upper half-
plane with even weighk > 2 one associates a cocycle with values in the space of
polynomial functions of degree at mdst- 2 by v, (t) = fy Z_Olzo(t — 1) 2 F(7) dr, with
a base poing in the upper half-plane. IF is a cusp form, one can put the base point
atco. The codficients of the resulting polynomials are then values ofltHenction
of F. All this has important number theoretical consequencgse(e.g., Manin [23].)

With the base point ato, the cocycle is, in the case of the modular group (&),
determined by its value 08 = (973),

ys(t) = fo Oo(t—T)k_zF(T)dT,

called theperiod function(or period polynomigl of F, and the condition of being a
cocycle is equivalent to the two functional equations

WO+ P20 = 0, O+t 2= D+ (L= Pu(e) = 0. (1)



4 R.BRUGGEMAN, J.LEWIS, AND D. ZAGIER

In this case, it is also known that the map assigning to a cmsp F(7) the odd part
of the polynomialys is an isomorphism between the space of cusp forms of wéight
and the vector space of odd polynomig&) satisfying (1). An elementary argument
shows that this latter space can be characterized by a singtéonal equation

w(t) = yt+1) + 2y +1/1).

The starting point of [21] (see also the survey paper [20] &hdf [33]) is the obser-
vation that this functional equation is identical in formthe relation

Y(t) = y(t+1) + 2y + 1Y) )

that occurred in the work of the second author [19], whichegawijection between
the space of even Maass wave forms with spectral pararsaiarthe full modular
group and a class of holomorphic functions satisfying (2)c& (1) is just the cocycle
condition for Sly(Z), this immediately suggests the possibility of describigass
forms for arbitrary Fuchsian groups by an appropriate gaigation of the functional
equation (2) having an interpretation in terms of cohomgplog

The principal goal of these notes is to carry out this gemstbn by constructing
explicit isomorphisms between, on the one hand, spaces a§$Aaave forms on dis-
crete cofinite groupk c G := PSLy(R) and, on the other, certain conomology groups
of I. Recall that aMaass wave fornfor simply Maass form on I" is aTI-invariant
function on 9 satisfyingAu = Au for somea € C, with polynomial growth. Here
$ is the complex upper half-plane with the usual actiotaind A is the hyperbolic
Laplace operaton = —y%(93 + 82). The Maass wave forms which are small at the

cusps (this is relevant only fdf\$ non-compact) we calMaass cusp forms The
eigenvaluel is most naturally written as(1 — s) for somes € C (spectral parametgr
and our cohomological description of Maass wave forms véfpehd on picking one
of the two roots of this equation. We assume throughout thaRe (s) < 1.

In [21] we studied the case of the full modular grobip:= PSLy(Z) in detail and
showed that the Maass cusp forms with eigenvallde- s) are canonically in one-to-
one correspondence with the real-analytic functigns (0, ) — C which satisfy

WO = Yix+ D)+ (xr DEY(=5) (x> 0) ©)

and for which bothy(x) andx?Sy(x) are bounded. It turns out that any such function
can be written (non-uniquely) as

Y(x) = h(X) — x*h(-1/%) (x> 0) (4)
for some real-analytic functio : R — C and that, when we do this, the map
0-1 11
(1 o) - 0, (01) - (X h(x+1)— h(x) , 5)

extends to a cocycle oy with values in the analytic vectords’ of a model of the
principal series representatiovi. Changing the choice df changes this cocycle by a
coboundary, and we get an isomorphism between the dpaass2(I;) of Maass cusp
forms onI; and a specific subspace laf(I';; V). Our goal in these notes is to give
an analogous result for dil.

Iin [21] the word “wave form“ was used for cusp forms only.
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To achieve this, we will use several descriptions of theqpial series: The model
indicated above consists of functions on the boun@%rpf the upper half-plane. We
shall also use models of the principal series in function)otself. The relevant in-
vestigations led to the paper [4]. We shall recapitulateréisailts we need in Sections
2 and 3. Specifically, the well knowPoisson transformatiorealizes the principal se-
ries representation with spectral parametas the spacés of all solutions or of the
differential equatiohu = s(1- s)u. For the construction of the map from cohomology
to Maass forms, we introducet@nsverse Poisson transformati®, which provides
us with a model of the principal series in a space of solutiminsu = s(1 — s)u near
the boundary ofy in ]P(l:. Both Poisson transforms are given by integration agalvest t
kernel functionR(-; )15, whereR(t; 2) = Im (2)/(t — 2)(t — 2), the integration being
overIP’]%R for the usual Poisson transformation, and frota zfor the transverse one. We
also need the inverse of the Poisson transform. It can ba gixplicitly by integration
of the diferential form [, R(t; -)°], where [, 0] = $vdz+ udt dzis theGreen’s form
already used in [21], which is closedufandv are eigenfunctions ot with the same
eigenvalue.

These facts are reviewed in Chapter I. $&€3 for the Green’s form and Section 2
for the principal series. The Poisson transformation islted in§2.2, and the trans-
verse Poisson transformation is defineg®?2.

In Chapter Il we suppose that the discrete subgrbup G is cocompact. Here,
Maass(I') is just the spac&} of all [-invariant solutions ofAu = s(1 — u. Our
first main result relates it to cohomology groups with valirethe spaces of analytic,
infinitely-often, and finitely-often dierentiable functions if/:

Theorem A. For cocompacil” c G and se C, 0 < Res < 1, the spaceﬁg is canon-
ically isomorphic to the cohomology groups-(d; V&), HY(; V<), and HY(I; V)
forpeN, p>2

To describe this isomorphism we associate to a given Maass tiothe analytic
cocycle

20
n® = [ RG], ©
y 1z

depending on a base poing 2 9. In the other direction, the value of the Maass form
u(2) associated to a given analytic cocy¢lg,} is given in any compact subsetsby

an explicit finite sum of terms of the fomﬁ(goy) |y withy, v €T.

Bunke and Olbrich, [6], [7], proved tha&f = HYT; V&) = HY(T; V<) in a more
general setting (for automorphic forms on rank 1 symmetpacges and torsion-free
discrete cocompact groups). Our approach is more conanetgiges the isomorphism
&L = HY(T; V&) much more explicitly. The integral in (6) gives the map frosaass
forms to cohomology. For the map from cohomology to Maasmfprthe starting
point is the modefWy’ of the principal series in the solutions &fi = S(1 — s)u near
the boundary. We use a spag€ of functions on the whole of) such thatgy —
W¢ is surjective. The kerne\® of this morphism consists of compactly supported
functions. A 1-cocycle o with values inWg’ gives rise to a 2-cochain with values
in N“. Evaluation of this 2-cochain on a 2-cycle that represenésfundamental
class inH»(I'; Z) provides us with an elemeriy € N, which is unique up to linear
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combinations of the fornf | (1 — v) with f € N“ andy € I'. The locally finite sum
U = 2,er fo(y2) is independent of all choices, and is the Maass form we béée

The construction of maps in both directions betwé&&randH(I'; V¢) is the main
result of Chapter II.

Chapter lIl presents results concernidg(A; V<) and related cohomology groups
for infinite cyclic subgroupd c PSLy(R). It turns out, for instance, that the restriction
map fromH(; V) to HY(A; V) in the theorem above, where is the subgroup
generated by any elemepy € I' of infinite order, is injective, so that a Maass wave
form u e E can be reconstructed from the single elemgpE V<, without knowing
the rest of the cocycle. The results for the case tha generated by a parabolic
(rather than a hyperbolic) element of P&R) are used in the following chapter.

In Chapter IV we consider grouds with cusps. Here the spacmassg(r) c
Maasss(I') ¢ EL of, respectively, Maass cusp forms, Maass forms (at moghpatial
growth), and arbitrary invariant eigenfunctions, are affetent. The dimension &%
is infinite, while the other two are finite dimensional. Th@agch used for cocompact
groups has to be modified in several ways, as follows.

We have to look at more general cohomology groups. IForodulesV, the par-
abolic cohomology group ;,jr(r; V) c HY(I; V) is given by cocyclesy, } that are of
the formy,, = a, | — a, for all parabolicr € I', with a; € V. For themixed parabolic
cohomology group ggr(r;v,v\/) the cocycle{y,} has values iV and thea, are in a
I'-moduleW > V.

The example of the period functions fbr = PSLy(Z) leads us to the spacfb'g’*"x’
of “semi-analytic vectors” in the principal series. Thisai§-module satisfyingVy’ c
Y Vg°, consisting, in the standard model of the principal sergsasentation
(functions onPﬁ), of smooth C*) functions onPI%& that are real-analytic except for
finitely many points.

With these modifications one has the following analogue aforem A for cusp
forms on non-cocompact groups:

Theorem B. For cofinite discrete subgrougs c ‘PSLQ(R) and0 < Res < 1, the
spacesMaass(I), Hi ([ V&, Ve ), Haa([; V&™), Hi (T V), and Hip (T VE)
with p € N, p > 3, are canonically isomorphic. The relation between Maasspcu
forms and the associated analytic cocycle has the sametsteuas in Theorem A.

e Example. In the casd); = PSLy(Z), the cocycle determined by (5) represents a
class in the mixed parabolic cohomology grdtlba,(l“l; Ve, Y- “): its values are in
V&, and its value on the parabolic generafor +(57) € I1 is of the formh|T - h,
with h € fv;“*""’. The period functiony, on the other hand, is related to a class in
Héar(l“; ‘VS“’*""’). It determines a cocycle with values”rrg“’*’“’, defined on the standard
generators by

0-1 WU(X) if x>0, 11
i(l o) "~ { Xy(=1/%)  if x<O0: * (o 1) = 0. 0

This cocycle vanishes on the parabolic elemﬁ@}i). Finally, the last isomorphism
in Theorem B, applied to the modular group, implies that @fi+function on (Q o)
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satisfying (3) and the growth conditions given there is ict fieeal-analytic, giving a
strengthening of the main result of [21].

We prove most of the isomorphisms in Theorem B in Chapter IMe iBomorphism
with H2, (T Ve®) andHZ,(; V2) is established in Chapter V.
If s+ % the correspondence between Maass forms and cohomolaggeslan the

Theorems A and B can be extended to the whol&lofTo do this, we introduce two

further spacesV"®*° > 2 and puLexc o V. The first consists of functions on

PL which are real analytic except for finitely many points angehaingularities of a
special type (Definition 9.17) at these points, and the si®the same except that
the finitely many singularities must all be at cusps. Then aesh

Theorem C. For cofinite discrete subgrouds c PSL(R) and0 < Res< 1, s# %
the spaces, H3,(T; Ve, V&) and HiadT; V&) are canonically isomorphic.

For the modular group we show in Proposition 14.1 Hdﬁ\ég(l"l;(\/g’o’exﬁ can be
described as a quotient of the space of all holomorphic fonstonC \ (-0, 0] that
satisfy the three term equation (3). In Proposition 14.3 hansthat the mixed par-
abolic cohomology groupiz,(I1; Ve, V% is a genuine subspace B (It; V).
We discuss briefly a notion of “quantum Maass forms” whichvites us with a space
of objects with a modular flavor that corresponds bijectiveith H(Iy; V).

If T has no cusps then parabolic cohomology is standard cohgmdldneorems B
and C give no more information than Theorem A in the cocompase.

Bunke and Olbrich have shown that the spitaass(I') (which is equal taE} for
cocompacr’) is isomorphic taH(I'; V), whereV;> denotes the space of distribu-
tion vectors inV;. In Chapter VI we give an explicit realization of the isomleigm on
the cocycle level and use it to express the Petersson scaldugi in cohomological
terms (Theorem 19.1).

e Holomorphic automorphic forms and Maass form3iMe have mentioned at the
start of the introduction that the classical theory of cobtagy classes attached to
holomorphic automorphic forms has similarities to what veein these notes. There
are also many dierences, due in particular to the anomalous behavior ofriheipal
series representation of [R) when the spectral parameter is an integer. We refer to
Chap. 1V,§2 of [21] for a discussion of the similarities andigirences in the modular
case.

One of the diferences is that here we need infinite-dimensional modutdahdaco-
homology, in contrast to the the spaces of polynomials irctassical theory. Infinite-
dimensional modules are also needed by Knopp [16], for tloyates attached to
holomorphic cusp forms of arbitrary real weight.

e Selberg zeta function and transfer operatorAs is well known, the values of
the spectral parameterfor which the space of Maass cusp forms is non-zero occur
among the zeros of thBelberg zeta functionThe relationship between this fact and
the functional equation (2), in the case of the full moduleoup, can be seen using
the transfer operator of Mayer [24]: on the one hand, thee3glbeta function can be
expressed as the product of Fredholm determinants bulitthis operator, and on the
other hand the solutions of (2), i.e., the period functioheven Maass forms, give
rise to eigenfunctions of this operator with eigenvaluerl{(bif the plus signin (2) is
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changed to a minus sign, corresponding to odd Maass wave¥ofifhese connections
are discussed in detail in [20], [21] (Chap. BB), and [34].

For a number of families of other Fuchsian groups, includimg congruence sub-
groupsT'o(p) of the modular group and the Hecke triangle groups, Mddied Pohl
[25] and Pohl [27, 28, 29] have obtained a similar relatigpdietween the more gen-
eral period functions of Maass forms considered in theseshahd eigenfunctions of
appropriate transfer operators. For the case of the fullutasdyroup again, the paper
[5] relates cocycles for the group to the eigenfunctions whasfer operator dierent
from Mayer’s original one. It would be interesting to haveimitar relationship for
general Fuchsian groups between the Selberg zeta funeigemfunctions of transfer
operators and cohomology classes.

e Acknowledgements. The preparation of these notes has taken many years. The
Max Planck Institute in Bonn and the College de France irisP@ve enabled us
many times to work on it together. The two first-named autlioask both institutions

for this support and the excellent working conditions ttmegtyt provided.

e Notations and conventions.We work with the standing assumption thee C
satisfies < Res< 1, and usels = (1 — s). By N we denote the s¢gh e Z : n > 0.

We denote byG the Lie group PSE(R) = SLp(R)/{+ld}, and denote by[f:‘fj’]
the elementi(f:‘g) of G. We shall use various right representations&fand use
g . v v|g as ageneral notation for the action®fin a rightG-module.

Chapter I. Eigenfunctions of the hyperbolic Laplace operabr

This chapter has a preliminary character. It discussesegia@nd results needed
in the next chapters. In Sections 1-3 we recall results aaimgg eigenfunctions of
the Laplace operator and principal series representatitatswe treat in more detalil
in [4]. The averaging operators in Section 4 form anotherdrtgnt tool used in these
notes.

1. Eigenfunctions on the hyperbolic plane.Maass forms are functions on the hyper-
bolic plane that satisfAu = Asu and are invariant under a group of transformations.
We define in this subsection the space of all such eigenfumstf the Laplace oper-
ator and introduce several related spaces. An importaottrissTheorem 1.1, which
plays for eigenfunctions of the role of Cauchy’s theorem for holomorphic functions.

1.1. The hyperbolic planeBy H we denote the hyperbolic plane. We use two realiza-
tions as a subset @% The firstis the upper half-plane modgk {z= x+iy : y > 0},

the other the disk modéd = {weC : |w| < 1}. In the upper half-plane model,
geodesics are Euclidean vertical half-lines and Euclidesdficircles with their center
on the real axis. In the disk model, geodesics are given byidaan circles inter-
secting the boundargD = S = (¢ € C : |¢] = 1} orthogonally and Euclidean
lines through 0. The real projective lifd = R U {oo} is the boundary of the upper
half-plane. See Table 1 for a further comparison betweeh inatdels.

e The space of eigenfunction8y &Es we denote the space of solutions of
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model of H ) D
coordinate zZ=x+iy =132 w=Zl
Laplace operatoA —y?(03 + 02) —(1- [w)?8,05
= (Z - z)zazai

infinitesimal distance L J@%2 5 ()2 | 2V R e,
hyperbolic distanced

_ -z 2w-w'f?
p(',')—COSh(d(‘,‘)) 1+ 2y 1+m
volume elementlu dxdy 4dRewdimu

y (1-|w[?)?
G = PSLy(R) G=PSU(11)

orientation preserving
isometry group

[col=[iTIEala 1" | [Gal:z- 2% | (5l we 822
maximal compact subgroug PSO(2) PSU(1)
point fixed byK i 0
boundarydH 09 =PL oD =¢§1

TasLe 1. Upper half-plane model and disk model of the hyperbolic
planeH.

The Laplace operatok = —?9% — 4?47 is an elliptic diferential operator with real-
analytic codicients. Hence all elements 8t are real-analytic functions. This opera-
tor commutes with the action of the gro@(on the right) given by

(ulg)(@) = ulg2).
(We will use z to denote the coordinate in bothandD when we make statements
applying to both models dfl.) Obviously,&Es = &1-s. If U is an open subset &f, we
denote byEg(U) the space of solutions dfu = Asu on U, thus definingEs as a sheaf
onH. We will refer to elements afs = E5(H) and ofEg(U) asis-eigenfunctions oA.
So&s denotes a sheaf as well as the space of global sections chibat For other
sheaves we will allow ourselves a similar ambiguity.

1.2. Examples.The functionsisp(z) = y° on $ is an element oE that occurs in the
constant term of Fourier expansions of Maass forms. That iga linear combination
of igo andii_gg, Or of i1/20 andf1/20(2) = y*?Iny if s = 1. This functiontyzp is
the value ats = % of the familyfs,o_: Fl—l (is,q —i1-g0) Of N-iqvarian_t elements of
&Es. The other terms of those Fourier expansions may contaifiotteving elements
of & _

Vy Ks-1/2(laly) €%,

r(s+3) . (1.2)
—== Wyl aly) €,

|CY/2|S_1/2 \/y S—1/2(| |y)

kS,(t (Z)

iS,(t (Z)
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for @ € R \ {0}, with the modified Bessel functiorig(-) andK,(-). These functions
on $ transform according to the characfgr] - €2 of N = {[5;]} ¢ G.
The groupK = PSO(2) c G has character§ % SN9] , 2 with n € Z.

sing cosd
Functions transforming according to such a character aiestadescribed in the disk

model, with Legendre functions or with hypergeometric fiimrs:

i 1+7r?

(1.3a)
F(s+ n) n ) . r2
" e s st )
. 2 :
Qsn(re’) = ns-l(%) C (1.3b)
_ 21)n r(s)rr(éss; n) N (L 12 F(s—n. s 251 r2).

(Note the shift in the spectral parameterffy, andPsn.) We havePs, = Pr_gp € Es
andQsp € Es(D \ {0}).

Section A.1.3 in the appendix of [4] gives also formulas flamgents of&g that
1/2
transform according to a character of the grolp- {[”0/ y_?/z] . y>0}cG. Of
these functions we will usg and féa See (4.2).

Starting from thels-eigenfunctions ofA considered up till now, we can produce
other ones by translating them. ¢f- 0 = w’ for g € G andw’ € D, thenr = |g~1w|

satisfiesij—:i = p(w, w’), with p as in Table 1. The functions

ps(w,w’) = Psolg~'w) = P (o(w,u)),
As(w,w’) = Qsolgw) = QL ;(o(w,w)),

arepoint-pair invariants i.e., they depend only on the hyperbolic distance between
andw’. Hence they are symmetric inandw’, and satisfy for aly € G:

Ps(9z 97) = ps(2Z), as(9z 9Z) = as(z Z). (1.5)

They arels-eigenfunctions oA in both variables. One caltg thefree-space resolvent
kernel We haveps(-,w’) € E, andgs( -, w’) € E¢(D \ {w'}) for fixedw’ € D.

Shiftingiso : z— y° by [_ﬁ], witht € R, gives

(1.4)

1 s yS
- AS _ _
R(t;2)° = (|m—t_z) = T (1.6)
We haveR(t; -)° € E. Movingt off the real line gives rise to a multivalued function
S
R(;2)° = y— 17
D = T (1.7)

For € Citis an element oEg(U) for S|mply connected) c $ not containing? orZ.
We choose the branch such that drg(2) + arg¢ —2) = 0 for/ e R.
Fora € R and Res > 2, we can integrate®!R(t; 2)S overR to obtain

dox f ga_vdt [ VAP )'Jl/f"@ @=9."" (19
o P+ Vr 22 sl k(@ (a2 0).
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This continues meromorphically, holomorphically snif @ # 0, and having in the
region Res > 0 only a first order singularity a = % if a =0.

1.3. Green’s form.We recall the bracket operation from [21], already mentibire
the introduction. There are two versions, whiclfel by an exact form:
[uv] = uvdz + uvzdz, {uv} = 2i[u,v] — id(w). (2.9)

These formulas make sense in both the upper half-plane ardisk model oft, and
have the properties

[uog,vog] = [uv]og foreachgeG, (1.10a)
[u, 0] +[v,u] = d(w), (1.10b)
dlu,v] = %(u Av—vAu)du, (1.10c¢)

{fo,ul = —{u,v}. (1.10d)

So [u,v] is a closed 1-form otJ if u,v € Eg(U) for an openJ c H.
The bracket withgs gives for elements afs a substitute for Cauchy’s theorem:

Theorem 1.1. Let C be a piecewise smooth simple closed curig&amd u an element
of Es(U), where U c H is some open set containing C and its interior. Then for
w € H \ C we have

. _ | #miu(w) if wisinside G
j;[u, Gl o)l = { 0 if w isoutside C, (1.11)

where the curve C is traversed in the positive direction.

See Theorem 2.1 in [4].

2. Principal series. All the codficient modules used in the cohomology groups men-
tioned in the introduction are spaces of vectors in the [paicseries representation
associated to the spectral parametefhe standard realizations of the principal series
representation use spaces of functions on the bounilédrgf the hyperbolic plane.
With the Poisson transform we can also use a realizati@y.in

We write V; to denote “the” principal series representation when we alowant
to specify precisely the space under consideration. SpigeandVy’ of smooth and
analytic vectors are identified with the appropriate supgrs

In [4] we treat the material in this section in more depth. émtjgular, we study the
various models more systematically. Each of the modef¥dias its advantages and
disadvantages.

2.1. Models of the principal series on the boundary of the hyperhmane. We list
some standard models of the principal series.

e Line model. In the introduction we already mentioned the well known made
Vs, consisting of functions oR with the transformation behavior

ab ax+b
o —) (2.1)

](x) = lex+ d|_23¢(cx+d

(’0|25[
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under[gg] € G. To get a sensible result at= —%, we need to require that behaves
well as|x| — co. By V¢°, the space o$mooth vectorm Vs we denote the space of
¢ € C*(R) that have an expansion

1) ~ 172 cyt™ (22)
n=0

asl|tf — oo. Similarly, the spacely’ of analytic vectorsconsists of thep € C“(R)
(real-analytic functions oiR) for which the series appearing on the right-hand side
of (2.2) converges ta(X) for |x| > xo for somexg. Analogously, we defing’?, p e N,

as the space af € CP(R) satisfying (2.2) with the asymptotic expansion replacgd b
a Taylor expansion of ordep.

We call this thdine modelof V. It is well known and has a simple transformation
formula (2.1) that reminds us of the transformation behagfdolomorphic automor-
phic forms. It has the disadvantages that we need to spéwfpehavior ag| — o«
separately, and that it requires some work to check thatpheesV¢, Ve, ... are
preserved under the action Gf

Often we shall writep | g instead ofy|,s g if there is no danger of confusion.

e Projective model.The relation

) = (1+1)%() (2.3)
gives a model for whichV®, Vo, and the'V¥ correspond to respectivelg® (PL),
C“(PI}&) and Cp(P%&) of respectively real analytic, smooth apdtimes continuously

differentiable functions oﬁ%R. The action ofG is described by the more complicated
formula

t?2+1 at+b
fl?S[cd]() - ((at+b)2+(ct+d)2) (ct+d)'

The factor((alﬂb)tf.%) is real-analytic on t.h(.a whole d‘%\. Thus it is immeQiater
clear that the action @b preserves real-analyticity, smoothness anitdnes continuous
differentiability. A drawback is that the poiintcorresponding to the choice &f as

maximal compact subgroup, plays a special role§1ri, [4], we mention the plane

model of the principal series that does not have this draiubac
e Circle model. The circle model is directly related to the projective mobgl

the inverse transformations = & andt = |i+§, in PL, identifying the projective

line P to the unit circlest in C. This leads to the circle model oF;, in which

the action ofg = [20] € PSL(R) is described by = [17'1g[17] = [45]in

PSU(11) c PSLy(C), with A= 3(a+ib—ic+d), B= (a-ib—ic—d):
-2s Af +B —
fl00(6) = IA¢ + B W%+Q (1 =1). (2.5)
The factor|A¢ + B| is hon-zero on the unit circle, sin¢al?> — |B|?> = 1. The relation
with the previous models is given by
(€29 = ¢P(cotd) = |sing|= p(coth). (2.6)

e Realization of V¢ in holomorphic functions. The restriction of a holomorphic
function on a neighborhood & in C to S! is real-analytic, and since every real-
analytic function ors? is such a restrictionC®(S1) can be identified with the space

(2.4)
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lim O(U), whereU in the inductive limit runs over all open neighborhoodsSéfand
ﬁ

whereO(U) denotes the space of holomorphic functionslbnOne can rewrite the
automorphy factor in (2.5) a§A + B£)(A + Bg‘l))_s, which is holomorphic neag’.
It can be extended to a holomorphic and one-valued functioa eighborhood af*
in Pg-j, in fact, outside a path from 0 teB/A and a path fromo to —A/B. In other
words, in the description oV’ asli_r)nO(U), the action ofG becomes

u

¢losg ) = [(A+Buw)(A+B/w)]*¢(Gw) . (2.7)

In the projective model, we have similar descriptions. Ndwuns through neigh-
borhoods of’} in PL. The action (2.4) can be rewritten as

Z—i s Z+i s az+b
- g‘l(i)) (Z— g—l(—i)) (CZ+ d)'
This unwieldy formula shows that the automorphy factor ihwrphic on]Pé minus
a path fromi to g~1i and a path from-i to g~1(~i).

e Topology. We have not yet discussed topologies on the spacég.inFor the
cohomology groups, we will us&g’, Vs°, and other spaces i, algebraically.

The natural topology o’ is given by the finitely many seminorniig|l;, 0 < j <
p, where

f|§s[ig](z) = @+ (2.8)

lell; = suplilas W ()] (2.9)
XedH
and whereW = [ 2] in the Lie algebra of5. By ¢ — ¢l»sW we denote the corre-
sponding action irV;. In the circle model\W corresponds to the fierential operator
2i £ ¢, in the projective model to (£t2) d;, and in the line model to (£ X?) dx + 2s x
The natural topology on the spad&” = (e VP is given by the collection of all
seminormg| - [|p, p € N.
The topology onV¢ = lim O(U) can be defined as the inductive limit topology

—
given by the supremum norms on the ddtsThe inclusionVg’ — V¢° is continuous
with dense image. With these topologieBy’ and Vg are irreducible continuous
representations db. Here the restriction & Res < 1 is essential. Irreducibility does
not hold whens € Z.

e Hyperfunctions. We put
HESY = lim o \ §Y), H(Pﬁ) = lim O(V \ P%&) (2.10)
u v

whereU runs over the neighborhoods &t in C andV over the neighborhoods &
in PZ. The spgceét‘“’(Sl) andC(P3) of hyperfunctionn S?, respectivelyP:, are
the quotients in the exact sequences

0 — C¥(sY) — H(sH — csY) — 0,

0 — C¥(PL) — H(PL) — C“(PL) — 0. (2.11)

See, e.g.§1.1 of [30]. Actually, the quotient®(U \ S1)/0(U) andO(V \ P)/O(V)
do not depend on the choice Of respectivelyV, so they give models fa€~“(S1) and
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C“”(P%R) for any choice olU, respectivelyV. Intuitively, a hyperfunction is the jump
acrosss?, respectivelyP}.

The actions in (2.7) and (2.8) make sense on the spaces ahbrgbic functions
in deleted neighborhood§(U \ St) andO(V \ Pﬁ). This gives an action o& on
H(SY andH(P]%R), and hence on the corresponding spaces of hyperfunctitescall
Hs the spaceH with this action, in the realizationsl(SY) and H(P%&), andV;“ the
resulting representation @ in the hyperfunctions. Thus we have an exact sequence
of G-modules

0— V¢ —>Hs— V,“ —0, (2.12)

realized in the circle model and in the projective model. Titemodel is inconvenient
for hyperfunctions.
We can embed the spa€¥(S?) of analytic functions org® in the following way:

ew) fwel, lw<1,

2.13
0 ifweU, lw>1. ( )

peolU) — we {
Let [f] € C™(SY) be the hyperfunction represented bye O(U \ SY). Then [f]
Cce(sY) if and only if the restrictions off to U N {jw| < 1} andU N {lw| > 1} both
extend holomorphically across the circle. In the projectimodel we have a similar
embedding.
e Duality. Letg,y € H(S?) be represented bf;, h € O(U \ S?) for some neighbor-
hoodU of St. There is an annulus? < |w| < €® contained inJ. LetC, be a contour
lw| = ¢, € [€?,1) encircling 0 once in the positive direction, and @&t be a similar
contourlw| = c_ € (1, €%]. Then the integral

i = 5[ - [ ) fenm S 219

is independent of the choice of the contours, as long as tiesyomtinuously deformed
within U \ S. So the actual neighborhood is not important. Moreovef,ahdh are
both inO(U), then Cauchy’s theorem givésg, ) = 0. Thus, we get an induced pairing
Cce(sh) x C«(sY) — C, which we denote also by, - ).

The description in the projective model is

w9y = %(fc—fc)
dz

(2992

(2.15)

1+2°

whereg € O(U) for some neighborhood
U of P; in PL, andg € O(U \ P3)
representsy € C‘“’(]Pﬂla). The contours
Ci,coHnUandC_ c 9 nU are ho-
motopic withP%. The orientation irC of
C, is positive and the orientation &_
negative. It turns out that for ajl € G

(Plo-259, Ylasg) = (@, ¥). (2.16)
Thus, we have a bilinear invariant pairifig” . x Vg — C.
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From (2.14) we see that for fixdde O(U \ S?) the mapf ~ (f,h) is continuous
with respect to the supremum norm bbnU. Thuse — (¢, ) is a continuous linear
form onV}’ _ for fixed ¢ € V. It turns out that this gives an identification o
with the continuous dual oV} .

It may happen thag — (¢, i) can be continuously extendedi° for the topology
onVg°. Such linear forms are distribution vectorsy. The spacel;* consists of
the distribution subspace 9f;“. It can be identified with the continuous dualgf° ..

e Basis. There are elements, € VY, n € Z, such thatey_sn, €sm) = on—m:

esn(t) = (thl)*(%)”, (2.17a)
n() = (E)n, (2.17b)
en@) = &". (2.17¢)

Fourier theory gives an expansign= Y ,._., Cn€sn Of each elemenp € V. We
have

Ve = {Z Chesn © Cn = O(e¥) for somea > 0},

Ve = {Z Cn€sn @ Ch=O((1+|n)™) forall A> 0}, 2.18)
V* = {Z Ch€sn : Cn = O((1 + |n|)®) for somea > 0O}, '
Vi = {Z Chesn : Cn =0 forall A> 0}.

e Isomorphism. For 0 < Res < 1, theG-modulesV;“ andV[“ are isomorphic.

The intertwining operatols : Vo — V,“ can be given on the basis vectors in (2.17):

| _ I(9I(1-s+n)
s FA-9T(s+n) S

(2.19)

e Sheaves. The definitions of V¥, V¢ and theVY, are local. We can form the

corresponding sheaves. We shall use this ofterr¥#fgr We formulate this for the

projective model and leave the analogous definitions in theranodels to the reader.
For each open sétc P, we define

V(1) = lim O(), (2.20)
U

whereU runs through the neighborhoods loin ]P(l:. Note that we allow ourselves to
write V¢ instead of VO(P3).
We also use the notation

VeIF] = Ve (PENF) (2.21)

where F is a finite subset o%. We will simply write V¢[&1,...,&n] instead of
V€, ..., &n)]. If we impose a condition on the sections 9’ at the pointss;

we write VO ey . & Forinstancep € VE®[é1,. .., & is an element of Vo

with analytic restriction t&®1 \ {£1, ..., &).
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TheG-moduleVy’ is naturally included in th&-module

Vo= lim Ve (PE\F). (2.22)
F

whereF runs through the finite subsets Bf. SoV¢" can be viewed as the union of
all V¢[F], with identification of f € Vg’[F1] with its image inVg’[F] if F1 c F. The
space’V¢" is not a subspace oF;“. We call'V¢" the space oemi-analytic vectors
in the principal series representation. With an additiaraidition we write

(V;u*,cond _ "_m)(‘/-g),cond(]PHZEQ CF). (2.23)
F

By BdSing (f) for f € V¢ we denote the minimal finite s¢41, ..., &) c P3 such
that f € V¢[£1, ..., én]. We call thesej thesingularitiesof f.

e Terminology. Usually one denotes b? the space ofp times diferentiable
vectors in a Hilbert spacG/'sL2 in Vg, for which thees, form a complete orthogonal
system. We usé/? to denotefunctionsthat arep times continuously dierentiable
in the projective of circle model. This space is smaller thla@ space ofp times
differentiable vectors if/L".

Our spaced/y, Vg° coincide with the spaces of analytic and smooth vecto?ﬂéiﬁ
and similarly forVg> andVg“. It seems hard and hardly interesting to characterize
spaces likeV¢" in terms of the Hilbert spac@fs'-z. To summarize: our upper indices
in Vg refer to the behavior dfunctionsin the circle and projective model, not to the
behavior ofvectorsin a representation.

2.2. Poisson transform.The Poisson transform in this section provides us \itlas
a realization ofV;¢. It and its inverse can be described with the funciRfh 21 in
(1.6) as the kernel function. (For more details §2€63 of [4].)

On?2 the Poisson transformation is the lingaequivariant map given in the line
model by the simple formula

Psa(2) = % I :((t_TX)Z+l)S_1y‘1+Sa(t)dt = f : R(t; Z)l_sa(t)%. (2.24)

The image is irEs, sinceR(t; - )1 Sisin&sforallt € R. SinceR(-;2)Sis an element
of V¢ (line model), theG-equivariance follows from

R(-;92lsg = R(-;2)° forallgeT. (2.25)

A comparison of this invariance property with (1.5) showattR(-; -)® is similar to

ps andgs.
We can write the Poisson transform as

Psa(2) = (R(-; Y5, a). (2.26)

This can be used to define the Poisson transformation asaa lima&pPs : V¥ — &s,
satisfyingPs(a | g) = (Psa)|g for all g € G. The following diagram, involving the
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isomorphismlgin (2.19), commutes:

Vs _ g,
lls Pl/\sfs =815 (2.27)
Vs
We also have
(PR(-:2)°)(@ = ps(z2); (2.28)
IsR(-;Z)% = R(-;Z)YS. (2.29)
(See (2.25) and (2.32) in [4].) In the other models, the Poigernel has the form:
RCD™* = y“(g"z)l (&7 - (Regy™, (2.30a)
R = () (2.300)
(1- w/f)(l - we)

e Bijectivity. Crucial for these notes is th&t : Vs — &g is an isomorphism of
G-modules. This follows from the next result of Helgason (@iteen 4.3 in [13]) and
the G-equivariance ofs.

Theorem 2.1. The Poisson transformatioRs : Vs — &s is an isomorphism of G-
modules for all = C with0 < Res< 1.

Thus,Es is a model of the principal series representation. This rhbds several
advantages: the action @ involves no automorphy factor at all, the model does
not give a preferential treatment to any point, and all vecorrespond to actual
functions, with no need to work with distributions or hyperttions.

Theorem 3.2 in [4] and the discussion preceding it give atigkmay to describe
the inverse of the Poisson transformation:

Theorem 2.2. Letue &, and 3 € $. Then the hyperfunctioa on 9% = Pﬂg repre-
sented by the following functianon U \ P} for a neighborhood U oP} in PL

o = | BURE Y - w@REGwe  ifces,
LR )5 ul if £ €%
is independent of the choice of the base paintad u= P .

e Polynomial growth. We defineS;*®, £ and&Y as the images undéx of V>,

Vso andVy¢, respectively. FOE;* we can indicate here an independent characteriza-
tion: We say that a functiori on D haspolynomial growthif (1 — |w|2)a f(w) = O(2)
as|w| T 1 for somea € R. For functions or, this corresponds ta (|z+yi|2)af(z)
being bounded for some

Theorem 2.3. (Lewis; Theorem 4.1 and Theorem 5.3 in [18Det 0 < Res < 1.
The spaceS;™ = Py(Vs®) consists of the functions ifis having at most polynomial
growth.
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3. Boundary germs and transverse Poisson transformin a comparison of the
eigenfunctionsPs, and Qs introduced in (1.3), a nice property &% is that it is
defined on the whole db, whereasQs, has a singularity at 0. On the other hand,
near the boundargD the expression in (1.3b) ds,, in terms of a hypergeometric
function implies a simple asymptotic relati@®sn(re'’) ~ c(1 - r?)3e" asr 1 1,
whereasPs,(re'?) has a more complicated behavior at the boundary. We camabae
similar distinction between the eigenfunctiong andks,, with @ # 0, in (1.2). The
asymptotic behavior of the modified Bessel functions ingpligatks,(2) is quickly
decreasing ag — oo, Whereass,(2) has exponential growth. Ne&r c 0% however
we haveis,(2) ~ €7 yS asy | 0, whereaks, has a more complicated behavior.

We capture the special boundary behavioii Qf and Qs by defining in Subsec-
tion 3.1 a space of eigenfunctions &nn $ for a neighborhood? of §H in P(lj with
a special behavior near the boundary. Actually, we use gefrsach eigenfunctions
by taking an inductive limit over all such neighborhodads In this way we define a
space of boundary gernmid’s’ isomorphic toV¢. The isomorphisnVy’ — W¢ is de-
scribed explicitly in Subsection 3.2 by an operator that aietbe “transverse Poisson
transformation”. In our study of cohomology groups the su#i’ will turn out to be
an excellent model oV¢’.

For cohomology with ca@cients inVg® we shall also need an isomorphic space
Wg°. This cannot be a space of germs of eigenfunctions. In Stibee®.3 we will
define it as a space of expansions.

This whole section is a brief presentation of results disedsn much more detalil
in §4 and§6 of [4].

3.1. Boundary germsWe turn toAs-eigenfunctions only defined near the boundary
OH of the hyperbolic plane. Our aim is to use such functions tiindea spaceWy’
isomorphic toVy’.

e The space of all boundary germ&ut

Fo = lim Es(QNH) , (3.1)
o

whereQ runs over the neighborhoods @l in Pé. This is a large space. The action of
the groupG is induced byf | g(2) = f o g(2) = f(g2) on representatives. We identify
&Es with its image inFs.

Functions representing an element#®f may grow fast near the boundary. We
define a subspac®’y’ by prescribing the boundary behavior:

Definition 3.1. The spaceWy’ is the subspace ofs represented by functionf e
&s(QND) for some neighborhoo of St in P such thatf (w) = 2725(1 - |w|?)*f* (),
wheref® € C*(Q).

In the projective model there is a similar definition, witfg) = (lzfilz)sfp(z) where
f¥ is real analytic on a neighborhood Bf in Pé. The spaceWy’ is invariant under
the action ofG in Fs.

The definition can be localized to defiri’(l) for open setd c gH. Then f*
or f¥ is real analytic on a neighborhodd of | in Pé. Forl c R, the line model is

most convenient. Then each elementl®}’(1) is represented by € Es(Q N H) for a
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neighborhood of I in C, andf(2) = ysf(z) onQ N $ for some real analytic function
f onQ.
We use the notatioWs’[F] = W (H \ F) for finite subset$ c dH, and define

W = lim WEGHNF), (3.2)
—
F

like in (2.21) and (2.22). For a giveh € W', the set of singularitie8dSing f is
the minimal finite seF c dH such thatf € W¢[F]. The Bd in this notation reminds
us that we consider singularities @i, and not at points ofl neardH where the
functions f* or f¥ may have a singularity.

e Decomposition. Supposef € Eg(U), withU ={weD : 1-6 < |w| < 1},
represents a germ iAs. Taking a closed curv€ in the annulugJ going round once
in the positive direction, with the Green’s form in (1.9) warh the integral

fC[f,qs<-,w)].

This integral represents functions e Eg(l) andv € E¢(E), wherel is the region
inside the curveC, and E the annulus outsid€. In Proposition 4.2, [4], we show
thatov represents an element 8¢, which vanishes iff € Es. Moving the curveC
closer and closer t681 = 9D, we see thati extends tdD and is an elemeni € &Es.
Theorem 1.1 shows the;}f = U—v. Thus we have obtainefis = Es + W, If
the original functionf is in &, thenv = 0 andu = %f, also by Theorem 1.1. So
EsN Wy =10}, and

Fo = Es®WY. (3.3)

e Restriction to the boundary. If w represents an element 6¥’¢, then f(w) =
(1-|w[?)3t%(w) near the boundary, with® extending analytically across the boundary.
Thuspsf(¢) = 5(¢) is a well defined analytic function o§t', which is an element of
the circle model of V. This restriction maps intertwines the actions db in ‘W’
andV¢. We should note that® is real analytic on a neighborho@of s*in P, and
thaty = psf is a real analytic function of? extending as a holomorphic function on
some neighborhoo®; of S in PL. These functiong and f coincide ons?, not on
the whole intersectio®; N Q.

In the upper half plane model &f, we obtainpsf = ¥ in the projective model of
V¢ on P%R. The restrictiornps also gives linear mapss : Wg(l) — V(1) for open
| ¢ OH. In particular, forl c R, we obtainosf = f in the line model.

3.2. Transverse Poisson maf.he restriction maps : W — V¢ is bijective. In
§4.2 of [4] we explicitly describe the inverse, in twdidirent ways.

One way is by an integral transform, with the following exgs®n in the three
models:

(Plp)(@

1 ‘ . —S
56 | RGP, (3.42)

(Pl

1 ’ - 5\1-s d§
G L RE O @
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1/w d
F) = g5 [ R Em T, (3.40)
where  b(s) = B(s %) = % (3.4d)
2

An elementy € V(1) for some open c dH extends holomorphically to some neigh-
borhoodQ of | in Pé. The integrals in (3.4) defingle onQ N QN H, representing a
germ that can be shown to be an elemer/df(1). (By Q we denote the image under
complex conjugation.) On the other hand, Theorem 4.7 in Mggalso an integral
representation of in terms ofu = Py, showing that if (in the line model) = y°A
with A real analytic on a simply connected open Qet Q intersectingR theng is
holomorphic orQ.

The integral transformation in (3.4) has the same kernadtfan as that in the Pois-
son transformation. The path of integration isfeient. We caIIPl the transverse
Poisson transformatian

Theorem 3.2. The restriction maps : WZ(l) — V(1) is an isomorphism for each
open set Ic JH. Its inverse is given b?@.

The other way to describe the transverse Poisson transfiomaorks locally with
the line model. The action @ allows restriction to an intervdlc R. Any f € ‘Wg(1)
is of the form f(2) = y°A(2), with A real-analytic on a neighborhodd of | in R. Let
¢ = psf. Then it turns out that the fact thdt € E5(Q N ) implies thatA has the
expansion

S\ (~1/4%T(s+ 3)

A@) = kZ::‘) KIT(s+ 3 +k)

e (x) . (3.5)

(See Theorem 4.6 in [4].) ©2x c Q is an open neighborhood a&fe | on which the
power series op at x converges, then (3.5) converges@gpas well.

This relation between the expansionsfhoand illustrates that being ds-eigen-
function of A is a very strong property. Note that the description in (3lQws that if
¢ is holomorphic onQ, thenA is real-analytic orf2, but that conversely iA is real-
analytic onQ1, we know only thaty is holomorphic on some neighborho@dof | that
may be much smaller than;.

e Examples.For the functions in (1.2), (1.3a), (1.6) and (1.4) we have:

Ple™ = g, onR inthe line mode]  (3.6a)
(-1)"T(s+ 3)

Plegn = ———— =<~ OnoH, 3.6b

s€sn VEl(s+n) sn ( )

PIR(-;2%(Z) = b(9tas(z2) onR in the line model  (3.6¢)

The first two examples are easily checked by computing theigtsn ps of the left
hand side. The third example is equation (4.19) in [4]. $&& in the appendix of [4]
for more examples.
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e Splitting of8%. Fors # % Proposition 6.3 in [4] gives the following description
of &Y = PsVg:

Psp = (9 Plp+c(1- 9P lsp,
3.7
o9 = tannsb(s)’ (3.7
T

with the intertwining operatolks in (2.19), andy(s) as in (3.4d). This implies that each
of the isomorphicG-spacesSy, W¢ and W}’ is contained in the sum of the other
two, and that each two of these spaces have interse@jon

e Duality. TheG-invariant duality of Vg’ x V% — Cin (2.14) can be transported
to aG-invariant dualityW¢ x &1-s — C by

(Plp,Prs) = (p,a) (@ €V“ peVe). (3.8)

In Proposition 4.8 in [4] it is shown that fare &1_sand f € ‘W we can describe
this duality with the Green’s form df1.3:

(f,uy = ?L[f,u] = —?L[u, f], (3.9)

whereC is homotopic t@H in the domain of a representative tifgoing around once
in the positive direction. Actuallyfc[f, u] is well defined forf € ¥, u € &1, being
zero for f in the componengs = &;_s of the splittingF1-s = E1-s ® W’ in (3.3).
The second equality in (3.9) follows from (1.10b) and the thatC is a closed curve.

3.3. Boundary jets.In Chapter V we study cohomology withftirentiable cofi-
cients. We need a substitut¢’? for p = 2,3, ..., c for the spaceW? of boundary
germs. In§4.4 of [4] we have constructed these spaces as a quotient.eds# the
definitions and main results. Fpr= 2,..., o, w we consider the space of functions
f € C3(D) for which f(w) = (1 - [w[?)~Sf(w) extends to &£P function on some neigh-
borhood ofS in C. By As we denote the dlierential operator orf corresponding to
A — Ason f. We defineg? and ¥ as the subspaces of functiofis= (1 — |w|?)Sf that
satisfy the conditions

o((1-wP)P) if peN,

Asfw) = { o((1-wP)?) forallqeNif p=oo, (3.10a)
0 ifp=w,
respectively
o((1-|wP)P) if peN,
fw) = { o((1-w?)¥ forallqeNif p=oo, (3.10b)
0 ifp=w,

as|w| — 1in some annulus + ¢ < |w| < 1. In [4], Lemma 4.10 it is shown that
NP c GP. We define the space dioundary jetsW? as the quotieng2/N?® for
p=23,...,,s0 that the following sequence is exact by definition:

0—- N g -wP —o. (3.11)

For p = w this agrees with our previous definition @z’ because a functiof € G¢
is in N = C2(D) if and only if it represents the zero element®¢. The groupG
acts ong? and NP by (f | g)(w) = f(gw). This induces an action 1P,
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These definitions also work locally. Férc S! open we defin@é’(l), Nsp(l) as
above (withf still defined on all ofD) but with the extendability acros$' and the
growth conditions (3.10) nedt* required only neat. Thus,gg andNSIo are sheaves
onst. We defineW? as the quotient sheaf. One can show thHal(1) = gG2(1)/NE(1)
for all 1. In the upper half plane model we have corresponding defirstiwith the
factor (1— |w[?)S replaced bx#)s (or simply byySon| C P with oo ¢ 1).

We defineG-equivariant sheaf morphisms : G5 — VP by sendingf € g¥(1) to
the restriction td of aCP extension of 25(1 — |w|?)~Sf (w) (resp. of(y/|z + i[?)">f(2)).
In Theorem 4.11 of [4] we prove:

Theorem 3.3. The restrictionps induces a sheaf isomorphispg : WP — VP for
p=2...,0,w.

Notice that we have global representativegli{l) c C%(H) of elements of W(1),
evenifl c dH s atiny interval. We impose twice filerentiability in all of H in order to
be able to apply freely. Even in the analytic cage= w the representativebe G¢(1)
need not be analytic on all &f, and satisfyAf = Asf only near the boundary.

Definition 3.4. For anyf : H — C the set ofsingularitiesSing f of f is the comple-
ment of the maximal open st c H such thatf € E5(U).

This is a rather broad notion of singularity. It depends angpectral parametey
and even an analytic function may have singularities in eass. Forf € G¢ the set
Sing f is a compact subset &f. This set may be empty. The functiag(2) = y°is an
element ofEs and of G¢(R), with Singiso = 0. Note thatiso represents an element of
W(R) which can be considered as an elementdf”, as defined in (3.2). As such
BdSingisp = {co}.

4. Averages.For v in any G-moduleV all finite sumsv| i gi = X v|gi converge.
Some infinite sums converge as well, for certain moduleshiggection we discuss
infinite sums that will be used in the next chapters. It hasddrout that these operators
form a useful tool when dealing with transfer operators.e(f4, [21].)

The infinite sums that we discuss in this section are

0 -1 0
+ n - n n + -

A = nzz(:)g LA = —n;mg A = n;mg = A-ACL (4)
for g € G with infinite order. If we can make sense of the convergencguoh sums,
the one-sided averageé‘nlg+ and A\g provide us with a substitute for & ¢g)~X. The
averageAvg produces @-invariant vector.

The elements db of infinite order are either hyperbolic or parabolic. We trieese
two cases separately, and consider the one-sided avenagi¢iseaspaces of invariants
for spaces inV;, in particular forvg’.
¢ Notation. We shall use bott |Avg and A\é(f) to denote the average dfover the
powers ofg. The latter notation emphasizes the average as an opesdtereas the
former stresses that ébws an element of the completion of the group ringof

4.1. Invariants and averages for hyperbolic elemenifge start with the easiest case,
whereg is hyperbolic.
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Any hyperbolicy € G leaves fixed two points df, which are situated ofl: The
repelling fixed pointr(n) and theattracting fixed pointu(n). The latter is characterized
by limy_. "X = w(n) for all x € P]%R \ {a(n)}. By conjugation inG, we can arrange
n=[3, g with t > 1. Thena(y) = 0, w(y) =

By VY we denote the elements dfinvariant undeg € G for any G-moduleV.

Proposition 4.1. The space$V>)" are {0} for p = 2, ..., »,w, and also the spaces
(V&[0]" and (‘V¢[eo])" are zero.

See (2.21) for the definition oV’ [£].

Proof. It suffices to considefV(R) = V9[co] and VI(PL \ {0}) = VI[0]. Let f €
VI(R) be given in the line model. Thet¥f(tx) = f(x) for all x € R. There is
a periodic functionp on R with period logt such thatf(x) = xSp(log x) for x €
(0, ). This implies that ling_,_., p(u) = limy_,_,, eUf(e") = 0. Hencef = 0 on
(0, ), and analogously on-o, 0). Conjugate Wiﬂ{g_é] to obtain the statement for
VIPLIN{0}). =

With the isomorphisrrPl, we obtain also that the corresponding spacg€)” all
vanish.
For larger spaces in the principal series, the spacesimfariants are Iarge They

contain the spaces of functions transforming accordlnghmdqaracte[ 0 1/ ‘f]
y forall a € Ioth For eachy € R we give in (A.20) of [4] functlonsz and f'-

|n &s that form a basis for the invariant functions for the chaeas’pemfled byr. We
have forz=p€? € $,p > 0,0< ¢ < 2r:

Val(s+3)
(S+i(21+1) F( S—i(21+l)
2VrI(s+3)
33
S+id+1 s— Ia/+l 3
(. i 53 (cosp)?).
and we obtairfg - by taking the sum of the two terms instead of th@tence. We have
chosen the baS|s such tHéL represents an element o’ (0, o) andfL an element
of W¢(—e0,0). We haveBdSing fsﬂ = {oo}U (=00, 0], andBdSmg fsﬂ [0, c0) U {0

Note that the first term in (4.2) is mvarlant under» -z, and the second term anti—
invariant.

S+Ia/ S— Ia

1
~—— 5 (cos¢)’)

S,(z(p ¢)

P (sing)® 1=

p'“ cosg (sing)® (4.2)

Letp € V&, For large|x| it is of the formg(x) = [X"%5¢w(1/X) with ., the real-
analytic function on a neighborhood of 0 given in (2.2). ket 0 we have

elos1"(X) = t"p(t"X) = t"IX Epe ("X )

asn — oo. Since Res > 0 andt > 1, the series” ,t"%(t"x) defining Av (@)X

converges with exponential rapidity far# 0, so that this function is deflned and real-
analytic on]Pﬁ \ {0}. It may have a singularity at 0, so in general it will belonghe
larger spaceV¢’[0]. In fact, we may allowy itself to belong to this larger space, since
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then the convergence goes through. Fq;r(éx) we proceed similarly. Now the point
oo may be a singularity. We have obtained the following lefeirses of 1 »:

Avn+ :VS[0] — V¢[0] and A\;}‘ D Ve [oo] — Ve'[e0]. 4.3)
If ¢ € V¢, then the total average ;]l(‘«p) = Av;(go) - Avn_(go) is defined and belongs to
V[0, o] .
Proposition 4.2. The following three statements are equivalentge V¢’:
1: Av;(<p) eV, 2: Av”‘(go) eV, 3: AVn(go) = 0. (4.4)
Proof. (1) = (3): If Av;(go) e V¢, then A\/](go) = Av;(go) - AV”_((,D) € V¢[oo]" = {0},

by Proposition 4.1. (2= (3) goes similarly. (3)= (1)&(2): If AV”((,D) = 0, then
A(e) = A () € VR0l N Veeo] = Ve m

Corollary 4.3. The kernel oi?l\v77 t Ve — VY[0, 0] is equal toVe’ [ (1 - n).
Proof. Clearly, V¢ | (1 - 1) c Ker Av. If Avn(go) = 0, theny = ¢|Av’;r|(l— n) €
Vll-n). =

For other hyperbolic elements we have

+ . + + - — _pn
Avgngfl e f|gAv” g, Avni1 = nAv77 Av” n. (4.5)

e Averages inG2. With the transverse Poisson transformation these statsncan
be transformed into analogous statementgr

For f € G2, with p = 2,...,,w, we use that, in the line model(2) = 4572
fw(1/2) onQ N H wheref,, € CP(Q) for some neighborhoof of 0 in C. This implies
that A\gf(z) =yS472 3> "5, (1/t"2) converges absolutely, uniformly on compact

sets inH. We see that for each neighborhoQg of oo in Pé not containing O there is
A € N such that forz € C the function

z- T, (1/1"2)
is in CP(Qy). This shows that Auf € GE(PL \ {0}). Similarly we get ATt e GR(R).
Observe that AVf is in general not an element g€ = GE(PL).

The following lemma will be needed for the proof of Theoremské¢ Lemma 7.7).
Lemma 4.4. Suppose that for fe G¢ the setSingAv;f is compact in$. Then
Av;f €gGy.

Proof. The singularities of Aﬁvf (see Definition 3.4) are contained in

U n "Sing f .

n<-1

SinceSing f is compact there exists> 0 such that

SingAv”‘f c S;={ze9 1 y>¢e, e<argz<m-—&}.
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Se

—g/tane 0 g/ tang

Decreasings > 0 if necessary, we arrange that the compactSeg Av*f is also
contained inS,. So then-invariant function Avf = Av*f - Av f determlnes an
elementh € E4(H \ S;), which satisfieh(tz) = h(2) wheneverz, tz ¢ S.. Hence

h extends as an element 8{(9)7. Thus,h has a Fourier expansion with running

throughIogt

logt |
2 = > h(@. @ = Io; t f e *%h(e"2) du. (4.6)

For each suclr, the functionh, is a linear combination of the functiorf§, and f¢,
in (4.2).

The functionh represents an element 9f5’[0, co]. Hence neaR it has the form
h(2) = y*h(2), with h real analytic on a neighborhood Bf\ {0} in C. Forx > 0 and
small values ob > 0:

. 1 logt | .
h,(xd?) = (xsine)s—f e 'h(e"xe% du
logt Jo

(xsing)® - (real-analytic on a neighborhood of, (9)) .

Soh, represents an element ®f’(0, o), and the cogicient off'— is zero. Proceed-
ing similarly near £c0, 0) we obtain that the cdigcient of fR vanlshes as well. This
works for alla € Iggtz and hencé = 0. This means that A\f € G¢(R). Since AT fe

G“(R), we have also AV € GYR). Forall f € g¢, we have A\ff gg(}?ﬁ N {0}).
Hence A\ff € GY(PY) = gw [

4.2. Invariants and averages for parabolic elemenEor parabolic elements @& the
invariants in subspaces o with high regularity vanish, like for hyperbolic elements.
The convergence of the averages is more delicate than irypreztholic case.

Each parabolic element @ is conjugate in PSR) to T = [é i] orto TL. Para-
bolic elements have only one fixed point, situated®@nThe elemenT fixesco € P1.

Proposition 4.5. The spacgVP)T is zero for p=2,..., o, w.

Proof. Eachy € VP (line model) satisfies(x) = X 25 (1/X) = 0(1) asx — . If ¢
is also periodic, then it must vanish identically.m

Fory € VP (line model withp = 2, ..., o, w), the averages

-1

A (@)(¥) = z_(])w(xm), AZ@X) = = D ex+n),  (47)

n=—co
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converge if Res > % or if Res > 0 and the numbe€ = ¢F(c0) vanishes. In general
we havep(X) = CIX 725 + O(X721) as|x| — oo and we define (for Re> 0, s # 1)

A = D (elx) - o) + CLG@s),
n=0 (4.8)

A = Y [plx-1) - =) - CL@9).
n=1

Since diferentiation only improves the convergence, we see thatifV?, then Avrtgo
is in CP(R). So we have A7 : V& — V&[eo] = VE(R), and more generally
A VE((b,a)) » VE(b,), A @ VE(ba)) > VE(-,a+1)  (4.9)
for a, b € R with a < b, where we use the convenient notatidna). for the “cyclic
interval” (b, o0) U {co} U (=00, a) C Pﬂla. It is clear that these one-sided averages satisfy
¢|(1—T)|Av$ = ¢|AvTi|(l—T) = . (4.10)

Furthermore, if we denote b9, (0 < m < p) the codficient ofx™ in the Taylor expan-
sion of|zg [g’ ‘é](x), then using the Euler-Maclaurin summation formula or arguas
in [21], Chap. 111,83, we find that the functions 4{\(90) and Av;(go) have the one-sided
asymptotic behavior

p-1
AZ(@X) = I DT Crx™ + O(X>P)  as £x— oo (4.11)
m=-1
(in the line model) with the cd&cientsC}, in both cases given explicitly by
. (™M m+ 28
Ch = —g g BCrmakc| - (4.12)

where By is the kth Bernoulli number. Ifp = o or p = w, then (4.11) must be
interpreted as an infinite asymptotic expansion (not necigsonvergent for any,
even in the analytic case).

For other parabolier € G, we define Ag by conjugation and the relationslgéy =
—nA/- and A7, = —zr_lAv; =-A'r.

Using the transverse Poisson transformalﬁérin §3.2 we can transport the one-
sided averages toW> = GP/NP for p = 2,..., w. But we can also define the maps
AvTi directly at the level ofz? in the obvious way (for instance, Af(z) is defined as
n, f(n+2) if C = fF(c0) vanishes and otherwise &% (f(n+2) - CyS/(n+1)%) +
CZ(2s)y®). We thus obtain maps as in (4.9) withreplaced byW or G, still satisfying
the relations (4.10). The new aspect is that, as partnerseohsymptotic relations
(4.11) onR, we get new asymptotic relations for?ﬁf/(x +iy) asy — oo.

Lemma 4.6. Let f € GE(I), with p= 2,..., o, w, for some interval Ic Pﬂla contain-
ing co. For s# 1, we have

ee o NED(s=3)
AVTf(Z) = iT(S)

asy — oo, uniformly in x.

fP(00) y*% + O(fF(c0) xy™%) + O(y™®) .
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Proof. If f¥(c0) = 0, thenf(2) = O(yS|Z27251) for |7 large, so

S

A1) = io(m:’w) _ o(ySf: dﬁ) - Oy).

n=0

To treat the general case, itfBaes to consider one functiohwith f¥(c0) # 0. We
choosef = Fg, whereFs(2) = 45|27, If Res > % we have

Lt 1 X+n+1 dt
+ _ S _
ArFsd =y é(«x+n)2+y2)s Jr @)

0
+ ysf L + C(S)yl_s.
X (t2 + y2)s

wherec(s) = fow(t2 +1)3dt = Vrl'(s— %)/ZF(S). The sum on the right converges
for Res > 0 and the formula remains true in this domain (fof %) by unigueness of
meromorphic continuation. We then have the uniform esemat

~ IX+n| + 1 fo o
AFFS(2) = (9 ytS < S + 48 Sdt
TFs(2) - c(9)y yé«xm)zwz)sﬂ y ) v

= O(y°) + O(xy ™).

This completes the proof for ’?‘V The estimate for Y is exactly similar. =

Chapter Il. Maass forms and analytic cohomology: cocompacgroups

In this chapter, we define a map from the spa&keof I'-invariant As-eigenfunc-
tions of the Laplace operator to the cohomology grétidl; V). In Section 5 this
is carried out for any discretE c PSLy(R). If T has elements of infinite order, this
map is injective. In Section 7 we prove that the map is a hgedf I" is cocompact,
thus proving part of Theorem A. As mentioned in the introdagt it is known that
&L and HY(I"; V¢) are isomorphic for cocompadt Here we construct a map from
cohomology to Maass forms explicitly. This also forms a argtion for Chapter 1V,
where groups with cusps are considered.

The constructions in Section 7 require a description of thieomology using a
complex based on the geometry of the actiolr ohH. We discuss this description in
Section 6.

5. From Maass forms to analytic conomology.This section starts with a review
of the standard definitions of group cohomology. $;12 we construct a magl —
H(T; V&) for any discretd” ¢ G = PSLy(R).

5.1. Group cohomologySee, e.g., [1], Chap. | and Chap. i, for a general refer-
ence.
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e Resolutions. For the moment lel’ denote an arbitrary group. We recall that the
homology and cohomology groups Bfwith codficients in a (right)Q[I']-moduleV
are defined with help of a projective resolution

03 02 01 &
o —>Fy—>F, —>Fp—>Q—0

of the trivial Q[I']-moduleQ as the (co)homology of the induced complexes
d d
=5 Fregm V — Fo®gm V — 0,

0 — Homgjrj(Fo, V) <, Homgry(F1, V) L ,
namely
H|(F,V) = Ker(ai)/lm(ai+l), H'(F'V) — Ker(di)/h’n(di_l), (51)

We work with codficients inQ because this gives us more freedom in the construc-
tion of projective resolutions (c.§6.1). These cohomology groups do not depend
on the choice of the projective resolution. Afand E are two projective resolutions
of the trivial Q[I']-module Q, the identity mapQ — Q can always be lifted to an
augmentation preserving chain map between the resolutibimis lift is unique up to
homotopy, and induces isomorphisms of the homology androoley groups deter-
mined by the resolutions. The construction of such a chaip Fha> F may depend

on many choices, so it may take work to describe the correipgrisomorphism of
the (co)homology groups explicitly. For this reason it ipwntant for explicit coho-
mological constructions to choose a specific resolutiom wdod properties.

e Standard resolution. The standard model of group cohomology is obtained from
thestandard resolution P, WhereFigr is the freeQ[I']-moduleQ[I"*!]. The boundary
mapsd;, the augmentation, and thel-action are induced by

_1 e T A
§< Do, 75 »n) 52)

S(FO) 1’ (70a ’yl)|y = (')’07’ ”yl’)/)

In this model, ari-cochain is represented bylaequivariant mag : 't — V,
which is then extended by linearity to: Figr — V. The equivariance implies thatis
completely determined by its restrictignto I x {1} c I'*1, and one often uses this
inhomogeneous version. (The last variable is then omittewh the notation and the
definition of the coboundary map is modified in the obvious yay

EachFY is a freeQ[I']-module. In dimensior > 0 the rank is infinite if[| = co.

In dimensioni = 0, the cocycles satisfg(y) = ¢(1)v|y, and hence are determined by
c(1) € VI, and since there are no cochains in dimensi@rwe have

HO; V) = VI = ueV : v|y=vforallyel}. (5.3)

For homology we find thatlo(I'; V) = Vr, whereVr is the submodule ofoinvariants
V/w|(l-y) : veV,yel).

In dimensioni = 1 the standard model gives homogeneous cocyelgsy{) —
c(yo,y1) € V satisfying for ally; e I":

c(yo,v1)ly2 = clyoyz,v1y2) and c(yo,y1) + C(y1,v2) = C(yo0,72) -
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Such a 1-cocycle is a coboundaryc{fyg, y1) = f(yo) — f(y1) for somef . I' - V
satisfying f(y1y2) = f(y1)ly2. Going over to inhomogeneous cocycles— v, =
c(y, 1), we get the following well-known description of the firgttemology group:
HY(; V) = ZYT;V)/BYT; V),
ZNCV) = [T —V gy =yy|d+ysforally,s T}, (5.4)
BYT;V) = {y > v|(y—1) : veV}.

5.2. From invariant eigenfunctions to cohomologyet " c G be an arbitrary sub-
group, provided with the discrete topology. We now shallliexy define a linear
mapr : EL — HY(T;V¥), and show that it is injective if has elements of infinite
order.

 Definition of analytic cocycles associated to invariantegifyinctions. Letu € &L.

We associate to it three inhomogeneous cocyalgse ZXI; VL), (py) € ZX(T; E2)

and @,) € ZY(; W) which correspond to one another under the isomorphisms
V¢ = & = W given by the Poisson transformation and the transverseséis
transformation. These cocycles are obtained by integratieI'-invariant closed 1-
forms

[URE )T, [ups(-.2],  [uas(-,2)].

TheT-invariance follows from (1.10a), (2.25) and (1.5). We cb®@ base poirg
H, and integrate over a path froptlz, to zo:

20

0@ = [ wRG. (5.50)
Y
20

p@ = [ e, (5.5b)
2

4@ = [ a2 (550)

Sor, € V¢, p, € E&. We identify g, with the element of Wy’ represented by it.
Changing the choice of the base point changes the cocyclascbpoundary. Thus,
we find respectivelyu € H(; V), pu € HY(I; &) andqu € HY(I; ‘W), which
depend linearly oni. Relations (2.28) and (3.6c¢) imply that

p = Pg, q = b(s)PLr, (5.6)

with b(s) as in (3.4d).

The Poisson kernd®in (5.5a) is considered to be general. Strictly speakindyab
defines the cocyclg — r, in the line model ofV¢’. In the projective model, work
with RF, and in the circle model witR® and a base point ib. See (2.30).

e Symmetry s> 1-s. Since&g = &7, we can carry out the construction with
sreplaced by - s. Denote the corresponding cocyclesijy p, andd,. Fors # %

we haver, = I4r,, p, = p,, by (2.28) and (2.29), ang, = ta%’fs(qy - @), by (3.6¢)
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and (3.7).

b(1-9) P}
Hl(r;q/f_s) — Hl(l“;‘Wf’_S)

HI(; &2) <2—— &L s ®.7

r
T
HE (0 V) =225 HL (1 w)

e Formulation with hyperfunctions. Another point of view uses the isomorphism
EL = (V;¢)! induced by the Poisson transformation. The short exactesemgu(2.12)
induces a long exact sequence of cohomology groups, whiels giconnecting homo-
morphism (V;©)'' = HO(T; V5) — HY(T; V). To describe this map explicitly, we
choose for a giver € (V;)! a representativg € Hs. This gives the inhomogeneous
cocycley = ¢, = g|(y — 1) with values inf V.

For a givenu € &L leta € (V;“)' be chosen such th&ae = u. Theorem 2.2 gives
an explicit choice (depending anand a base poir, € $) for a representative of a,
in the projective model of the principal series. Using themedase point in (5.5a), we
find for £ € $ nearP} andy €T

¢
G0 = u@ R 2O+ [ ) R Ol
Ve
~ U(20) R (¢ 20)° — f [u.R( )]
V4o
. {
- WD) R0 - DO+ [ RG] [ [uRE )]
Y 2

U(20) RY(+520) 3 (¥ = 1) () + 15,(0) .
where we have used (1.10a), (2.25) and fhimvariance ofu. For / in the lower
half-plane, neaP., we also use (1.9) and (1.10d) to find the following equality.
P 2 P 2
50 = [IRCD% @l [
Y

¥ ¢

(fé“y_lzo - f;o) (—[u, RO -)°] + d(UR'(¢; .)S))

Q) + Uy 20) RE(G Y 20)° - (z0) RE(C; 20)°
() + u(Zo) R(+;20) %5 (v - 1) ).,

which is the same expression as we obtained fer$. By holomaorphic continuation
this description also holds far € Pﬂla. Thus, the cocycle — v, represents the same
cohomology classuasy - r,.

RE(Z )% u]

Proposition 5.1. If the discrete subgroup c G is infinite, therr, p andq are injective.
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Proof. For the injectivity it sdfices to consider only, sincep andq are isomorphic
transforms of. The formulation with hyperfunctions shows thiatorresponds to the
connecting homomorphisihin the part

— HE— (V)" =5 B 2) —
of the long exact sequence associated to (2.12). Hencédtesito show thatll = {0}.

We use the circle model. Let= g° € HL \ {0}. Interchanging if necessary the roles

of the interior and exterior af, we can assume thaiis holomorphic and non-zero on
the annuluR = {c < |w| < 1} for somec < 1. Then the 1-formw = dlogg = -‘2'((;)”)) dw
is meromorphic orR, with integral residues. Sind@ \ Ris compact and" is infinite
and discrete, we can chooge= [%%] € I' such thalRU yR = D. TheTl-invariance
impliesg(yw) = g(w)((A + Bw)(A + Bw1)), and hence
1 1 1

)

_ +
w+A/B w w+B/A

neardD. It follows thatw has a meromorphic continuation to allbfand has integral

residues everywhere exceptuat= 0, where its residue equass (Note that the point
| . . . « g . _ 1

-B/A = y~10liesinR) This is a contradiction sincg- flwl:cw = 5 flw dlogg € Z

ands¢Z. m=m

Woy—w = S(

|=c

6. Cohomology for cocompact groups.The description of group cohomology in
§5.1 with the standard resolutidf?" does not use the fact thBiacts on the hyperbolic
plane. We will mention ir§6.1 and§6.2 several resolutions of geometrical nature, and
describe group cohomology with these resolutiong§6r8. There we also formulate
the linear maps, p andq in terms of these geometrical resolutions.

6.1. Projective resolutions of geometric natur&roup cohomology can be computed
based on a free action of the group on a contractible set. Wemnsider cocompact
discretel’ c G, i.e., discrete subgroups for which the quoti&\H is compact. The
spaceH is contractible. However the action ©fon H is not free if " has elliptic
elements, which have finite order. We circumvent this pnwbley working only with
I'-modules that are vector spaces o@er

First we discuss a resolution that is similarR8" in §5.1, but rather large. More
practical are smaller resolutions, based dritasselation oH.

e Chain complex oril. The action ofl" on the contractible spadé is taken into

account in the comple™P defined byFihylo = Q[H'*], with boundary maps;,
augmentatiorz, and group action determined by

0i(Po, -+, Pi)

Z(—l)j(Po,“' ,|5j,“‘ P,
j=0
S(Po) = 1,

(P07”' ,P|)|')/ = (y_1P07"' ’7’_1Pi)~

In low dimensions, we can think of the generatorsQjf 1] as geometric objects:
(P) corresponds to the poifl® € H, and @, Q) corresponds to the geodesic segment
oriented fromP to Q (degenerate iP = Q). The generatorK Q, R) corresponds to a
(possibly degenerate) triangle with a numbering of it werdi

(6.1)
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The Q[I'-modulesQ[H'*!] need not be free if" has elliptic elements, which fix
points inH. To see thaQ[H'*'] is a projectiveQ[I']-module, we have to show that
there is aQ[[']-linear lift s : Q[H'*'] — B for each givert : Q[H*1] — C in each
exact sequence @f[I']-modules:

0 A B C 0

ST / (6.2)

Q[Hi+1]

This is done by taking liftd, € B of t(x) € C for a set ofx € H'*! generating the
Q[I']-module Q[H'*], and determinings by S(x) = 5 3yer, bx|y, whereT is the
stabilizer ofx in I'. Thens can be extende@[I']-linearly. See [1], Chap. I§8, for a
further discussion of projective modules.

There are augmentation preserving chain ma@is— F™P andF™P — F9' that
induce isomorphisms in the cohomology groups. The lattgquires uncountably
many choices to be made. The former can be obtained with amdychoice: Take
a base poinPy € H. This leads to the explicit chain map induced by, (- - ,yi) —
(vg*Po. - -+ ¥, *Po).

This description of (co)homology, with the chain complexéras the projective
resolution, can be used to describe group cohomology fodatyete subgroup c G
for which the isotropy groups of elementsidfare finite.

The symmetric groupSi,1 acts onFihylo by 7(Po,...,P;) = (Pxo,...,Ps). Let
Fihy‘* be the subspace on whick,; acts by the sign character. These spaces form
a subcomplesE™P- ¢ F'YP, which is also a projective resolution @f. A chain map
FYp _, FhYP- js theantisymmetrization Adetermined by

A (Po... P > sign) (Pro, - Pri) - (6.3)

(i +1)! =
This variantF™P~ (in which, for example, R, Q,R) now corresponds to a triangle
which is still oriented, but no longer has a numbering of istices) is often more
convenient than the resolutidfP itself. (One could avoid introducing denominators
by definingF™P- as a quotient complex rather than a subcomple&'SP, but in any
case they do not disturb us since we work oQer

e Resolutions based on a tesselatiolhe models that we like best are geometrical,
and finite in two ways: Each; is finitely generated as@[I']-module, and~; vanishes
fori > 2. Here we use thdt c G is discrete and cocompact.

By atesselatiorwe mean a locally finitd'-invariant covering/~ of H by compact
polygons with geodesic boundary segments. The polygondagvat most in their
boundaries. Such a covering gives rise to theXset XZT of polygons of7™ (with the
orientation inherited from that dff), the setX; = X] of oriented edges of~ (with
each element oK; arising as a boundary component of two neighboring elements
of X2), and the seiXp = XOT of vertices. For vertice® we haveeg(P) = 1. Each
e € X is the oriented edger g (or &(P, Q) when we want to avoid subscripts) joining
some vertexP of 7~ to a neighboring verteX). Thusegp = —ein Q[Xy], so that
we have chosen only one of the two possible orientationseoetlge in defining{s.
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We then defined; : Q[X1] — Q[Xo] by 91 = (Q) — (P). A polygonV € X, has
verticesPq, - - -, P;, ordered corresponding to the orientationHdf The boundary is
92V = €ep,p, + €p,p, + -+ + €p_,.p + €p p,. Thel-action is induced by +— y~1P

in H. In this way, we have for each tesselatipra resolutionF” :

0— Q[X] 2 Q[Xa] 2 Q[Xe] > Q@ — 0 (6.4)

of the trivial Q[T']-moduleQ. So FiT =Q[X]fori=0,1,2, and:iT = {0} otherwise.
As above, we can check that thi¢X;] are projective.

If f =X ax € F with x, c Bfor all | for some subseB c H, then we say that
f is supportedin B. ThesupportSuppf of f is the intersection of all sucB. Itis a
compact subset @, or empty if f = 0.

It is clear thatF” is a complex. We check the exactness. We pick a base point
P e Xo. Suppose thaf = 2.pex, @p (P) is in the kernel of. If f # 0, takeP € Suppf
with maximal distance td®, where the distance is computed along edgeX;in If
there is a neighbo@ of P with smaller distance tdP subtractd,(ap egp) from f.
This removesP from the support off. Otherwise, choose an ordering of the points
with maximal distance td®, and remove them successively. (Each of them has a
neighbor that has at most the same distance fronThis process stops whein= 0,
or Suppf c {P}, and theref = 0 also impliesf = 0.

We call a Zchainan elemen€C = } .x, @e€ € Z[X1]; so allae € Z. We may viewC
as a (possibly non-connected) patfHiralong edges of ', with integral multiplicities.
If 9:C = 0, we call it a tcycle In this case, the number of times that a pdirg Xg
occurs as the terminal point of an edgeGrn(counted with multiplicities) is equal to
the number of times that it occurs as the initial point of ageethC. Thus, a 1-cycle
corresponds to a combination of closed paths along ed@é%.iﬁ'o eachz € Hnoton
the edges i€ is associated winding number () € Z of C aroundz This function
mc has bounded support, and is constant on the interior of theypoes inXZ. The
2-chainD = }yex, mc(V)V € Z[XZT] satisfiesd,D = C. In particular, the kernel of
01 : Z[X1] — Z[Xg] is equal tod>Z[ X,]. SinceZ[X;] has no torsion, tensoring witt
gives the exactness &f at dimension 1.

If f = Yvex,avV € Q[X7] is non-zero, consider an edgein the boundary of
Suppf. Soeis a boundary segment of only olee X5, anday # 0. In g, f, this edge
occurs with cofficientay or —ay. This shows thad; is injective.

If the tesselatiorS is a refinement of the tesselation, there is an augmentation
preserving chain mag” — FS, where eachx ¢ XiT is mapped to the sum of the
y € XiS into which it is subdivided. This induces an isomorphism @mlogy and
cohomology. Since any two tesselations have a common redinerthis permits an
explicit identification of the (co)homology groups consted using the resolutions
coming from distinct tesselations.

A triangulation is a tesselation for which all polygons € X are triangles. Any
tesselation can be refined to a triangulation. &, Q, R) we denote the triangle with
verticesP, Q andR ordered by the positive orientation Bt
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Let 7 be al-invariant triangulation. An augmentation preservingiohaapa, :
F7 — F"P- can be defined by

a(P) = (P) (P e Xo),
aeng = 5(P.Q) - 5(Q.P) (erq € X0). 65
aA(P,QR) = % > sign@) (rP.7Q.7R)  A(P,Q,R) € Xp).

neS3

Since every tesselation can be refined to a triangulatiés gities explicit chain maps
between any¥” andF WP,

Next we discuss an augmentation preserving chain mapF9 — F” for any
tesselatiory. Choose a base poif € XJ , and definé=3 — F? by fo(y) = y~Po.
In dimension 1, choose for eaghe T a pathp, € Z[X;] from Pg to 1P, along
edges inX?, and extend the definitiofy(1,) = p, to F}' in aQ[I]-linear way. For
(Ly.6) € FJ', the sumC = fy(L,y) + f1(y.6) + f1(6,1) is a 1-cycle ifZ[X]]. Take
De Z[XZT] such that,D = C. The mapf, is determined byf.(e, ye, 6€) = e 1D. For
i >2,putfi=0.

The resolutions coming from tesselations and the chain rbapgeen them work
with codficients inZ instead ofQ. We need the order of elliptic elements as denomina-
tors for the projectivity, and we have used the denomin&asd 3 in the construction
of the chain ma, : F7 — FWP.

6.2. Choices of tesselationd/Ve shall use four special types of tesselations in partic-
ular, leading to four models of cohomology.

Tesselations of type Fd:Let & be a connected closddndamental domaimf
I'\H with finitely many geodesic sides. Use the tesselaffonvith the I'-
translatesy§ as the set of polygonX, = XJ = {yF : y € I'}. If an elliptic
fixed point occurs at the center of an edga 9%, we add this point tay, and
divide the edge into two edges.

In the resulting resolutionQ[X,] is a freeQ[I']-module of rank one, with
basis {§). The fundamental domain has an even numbepfof edges in
its boundary. There exists a detof n of these edges and a set of generators
{ye : e€ E}of I'such that,§ = Y ee(e-yst€). The moduleQ[X ] is a free
Q[I'l-module with thee € E as a basis. If" has elliptic elements, the@[Xo]
is not free.

Tesselations of type Dir: Fix a pointPg € H that is not an elliptic fixed point
of I'. Form theDirichlet fundamental domaify consisting of all point$ € H
for which dP, Pg) < d(yP, Pp) for all v € I". This fundamental domaig¥
shares sides with finitely many translates ¥, « € I'. Thesex's form a finite
setA = A7l generatingl. We takeXo = T'Po, andX; = {y‘ep ,-1p,

v € T; @ € Al. The elements oK; divide H into polygons indexed by the
I'-orbits of the vertices of. This tesselation is dual to the tesselation of type
Fd for the same Dirichlet fundamental domaiB[Xo] is free on the generator
(Pg). The fundamental domaif is not necessarily the union of elements
of Xo.
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Tesselations of type Mix: Start with a tesselatiofi” of type Fd for a Dirichlet
fundamental domaifk with a base poinPy in the interior of§. We add to
Xg theI'-translates oPy, and toXZ" theT-translates of the edges froRy to
the vertices ofy. We call the resulting refineme&tof 7~ a tesselation of type
Mix . It is a triangulation.

Tesselations of type Mix: This is a further refinement of a triangulation of type
Mix. We add thd -translates of the intersection points of the geodesic seg-
ments fromPq to a 1Py, with o € A as above, and the sides®f We also add
thel'-translates of the resulting edges frétmto the new points. The resulting
refinement is a triangulation.

e Fundamental classLet7 be atesselation of typged. SinceV ®g Q = Vr, for the
trivial Q[I']-moduleQ, we have

Ha(I;Q) = Ker((F))r — (F])r) = (F))r = Q,

with the class of §) in (FZT)F as its generator. This element |H(I"; Q) is thefun-
damental classWe denote it byT\H]. If the fundamental domaiff on which7™ is
based is a Dirichlet fundamental domain, we have the chain coastructed above
to the resolutiorF* for the refinementS of 7~ of type Mix or Mix’. This chain map
induces an isomorphism in homology. The fundamental ckasdso represented by
(¥) = Zv€xg,vC;;—(V) in the descriptions of these types. In the description pé®ir,

the fundamental class is not represented by an elemétjal.

6.3. Cocycles.In each of the models, the group cohomologyl'oWith values in a
right Q[I']-moduleV is obtained up to isomorphism as the conomology of the cample
C'(F;V) = Homgry(F, V). If Fj = Q[X], this is equal to the complex MaX(, V)l
where we define Map{, V) as theQ-linear space of all function%; — V, with the ac-
tion f7(x) = f(yX)|y. We denote by (F; V) the kernel off' : C'(F; V) — C*1(E; V),
and byB'(F; V) the imaged~1 C'-1(F; V).

e Dimension0. In all models, it is easy to check thaf(I"; V) = V.

e Dimensionl. Inthe model based on a chain complexHthe 1-cochains are the
mapsc : H2 — V that satisfy

cy P,y Q) =c(P.Q)|y  (I-equivariance) (6.6)
Forcto be a 1-cocycle, the additional condition is
c¢(P,Q) +c(Q,R) =c(P,R (cocycle relation) (6.7)

This implies thatc(P,P) = 0 and thatc(Q, P) = —c(P,Q). The 1-cocyclec is a 1-
coboundary ift(P, Q) = f(P) — f(Q) for somerl-equivariant mag : H — V.

In models built from a tesselation, the description is smilA 1-cochain is deter-
mined by an equivariant map: X; — V. We can define(p) for any pathp along
edges inX; by linearity. If cis a cocycle, ther(p) depends only on the end points
of p, so we get a map : Xg — V satisfying (6.6) and (6.7). There is always a map
f : Xo — V such that(P, Q) = f(P) — f(Q). (Choosef(Pg) € V arbitrarily for some
Po € Xp and definef (P) as f(Pg) + ¢(P, Pg).) The 1-cocyclec is a 1-coboundary if
such anf can be found satisfying(y*P) = f(P)|y forall y € T.
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For a 1-cocyclec in the model using a chain complex & or in a model built
on a tesselation, the choice of a base pélgtgives a corresponding group cocycle
Wy, = c(y1Po, Pg) in the standard model i§5.1.

e Dimension2. Here the most convenient choice is a projective resolutioype
Fd, based on the tesselatiGn derived from a fundamental doma sinceQ[F»] is
free with basis ). Any v € V determines a 2-cochain b§) — v, which is automati-
cally a 2-cocycle sinc€3 = {0}. It is a 2-coboundary if there is€ Map(Xy, V)! such

that
EDICCEIICCICESA)
ecoy ecE

Since thec(e) € V can be chosen arbitrarily and since the elemerdsE generatd’,
we have

HAI;V) = HAF7;V) = Vp = V/ 2, VI -9). (6.8)
The spacé/r is called the space of coinvariants.

For general projective resolutions, the isomorphism (&&btained by evaluating

a 2-cocycleb on a representative of the fundamental class. Witrcteproduct

(-, ) HAT; V) @ Ha(T; Q) — Ho(T3 V) = Vr,
we can formulate this als — ([b],[T\H]). (See, e.g.§3, Chap. V of [1].) This is
a case oPoincaré dualityfor T'\H, which holds sincd\H is a rational cohomology
manifold.
In the model using the chain complex &l a 2-cocycle corresponds tolaequi-
variant magb : H® — V satisfying
b(P,Q,R) +b(P.R S) = b(P,Q,S) +b(Q,RS). (6.9)

Such a cocycle is not necessarily an alternating functiatsdhree arguments. If we
antisymmetrize it by composition with; in (6.3), then we get an alternating cocycle
in the same cohomology class.

e Cocycles associated to Maass form# (5.5) we defined cocycles: I' —» V¢,
p:T — & andq: T — W associated ta € EL in the standard model of group
cohomology. In the model built on the chain complexXtrihe corresponding cocycles
are defined foP, Q € H as follows:

Q
rp(d) = fp [u.RZ; -), (6.10a)

Pro(2) ,ps(+, 2], (6.10b)

Il

T p)
|—|O
c
©
PN

Q
arQ(2) fp [uas(-,2)]. (6.10c)

These cocycles describe the linear meaps andq of §5.2 in terms of the description
of the cohomology groups with a tesselation. We iderdgiy with the element ofW/¢’
represented by it. Note that the functigeg is notinGg¢ c C?() (it may jump across
the path fromP to Q). TheTI-equivariance follows from that of the bracket operator
and that of the kernel functions. The cocycle relation (s®nsured by the fact that
[u,v] is a closed form ifu andv are As-eigenfunctions ofA. See (1.10c). The same
formulas work for models based on a tesselafiarprovidedP, Q € XOT.
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6.4. Algebraic description of cycles and chainghis subsection gives some algebraic
results expressing 1-chains and 1-cycles in terms of thepgrog.

Let Rdenote thayroup ringZ[I'] of an arbitrary groud” andR, c R the augmenta-
tion ideal, consisting of’; nj yj € Rsuch that’; nj = 0. For afinite subseA of I we
consider the map

aa R* > Ry, §+—>Z(1—a/)§(a').
a€eA
SinceRy is spanned by the elements-1y with y € T, the identity 1- ya = (1 — @) +
(1-vy)a and an obvious induction show that the image ©fs the kernel of the natural
map fromRto Z[T'/A], whereA is the subgroup of generated bA. In particular,mp
is surjective if (and only if)A generate§’. As to its kernel, we have:

Lemma 6.1. Suppose that A generatEsandé € Kerza. Then

D Walé(@ =0 (6.12)

acA

holds for allQ[I']-modules V and all cocyclese Z1(I'; V).

Proof. For a coboundary = db, we have} ,ca¥q | € (@) = —Db|7a (£). Soifna(é) =
0, then (6.11) holds for coboundaries. AQj{f’]-module is a submodule of an injective
Z[T']-modulel, for which HY(T'; 1) = {0}. (See [11],§1.4, Théoreme 1.2.2.) So any
cocycley € ZY(I'; V) is a coboundary i8Y(T"; 1), and (6.11) holds for all cocycles. m

Now we again tak€ to be a discrete cocompact subgrougeand choosé = A1
to be the system of generators associated to a Dirichletafmedtal domairy with
base pointP. Let 7 be the tesselation of tydeir associated t@. The edges ir)(Z~
starting fromP are of the formep ,-1p With @ running through the se&. Since every
oriented edge iIXlT is the image unddr of one of these, any 1-cha@h e Z[XlT] can be
Written asy, ,ca €p,-1p | £(@) for somes € RA. ThendiC = 3,ea([Pl-[a72P]) [ () =
[Pl 17ma(é), soC is a 1-cycle if and only it € Kerma,.

7. From cohomology to Maass forms.In §5.2 we constructed an injective map from
&L to HY(I; V) for any infinite discrete subgroupof G. In this section we prove the
bijectivity of this map wher" is cocompact (Theorem A), and give explicit descrip-
tions of the inverse map(T"; V&) — &L.

The fact thatH(I"; V&) and EL are isomorphic for cocompact groupsfollows
from the work of Bunke and Olbrict. Our approach is dierent and more elementary,
and will also form the basis for the proofs in the non-cocootgase.

sz Theorem 1.1 in [6] the hyperfunction cohomology gradp(T"; V;«) has finite dimension for
torsion-free cocompadt. It is the dual of the analytic cohomology gro&ﬁ(r;(vlﬂjs); this is obtained
in Proposition 5.2 with Poincaré duality. Proposition ifh27] gives the same duality for the distribution
cohomology grougH*(; V;>) and the smooth cohomology grotf3(T'; V;>). Corollary 7.3 states the
equalityH(T; Vo) = H(T; V;¢) in all degrees.

Without the assumption of cocompactness the isomorphiski@f; V=) with a space of Maass
forms is derived in [7]. The vector bundin §2 is, in our situation, the constant vector bun@lever
G/K = $. The operatoB in §3 corresponds ta — 1. The spac&y in §6 corresponds t€*(I'\ ). The
spaceSy(B)cusp at the bottom of p. 71 is the spaék of invariant eigenfunctions if is compact. IfT
has cusps it is the spadaass(I') of Maass cusp forms. Proposition 8.1 in [7] gives the isquhizm
betweenSy (B)euspand H(T; Vis=).
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The map from Maass forms to cohomology was given in thregoms®, q andr
in §5.2 (defined by (5.5) for the standard model of cohomology lan¢6.10) for the
model based on a tesselation), depending whether we usedtthel 7, ‘Wg’ or &Y
for the analytic vectors in the principal series represtta For the inverse direction
we will work with ‘W¢ and the mam. We construct an explicit one-sided inverse
of gin §7.1, and give a second description of it§ifn.2. The injectivity of this inverse
map is proved ir§7.3. Most of the proofs use the description of cohomologyhwit
resolutions based on a tesselation discusse§bih; in Theorem 7.2 we also give a
formulation in terms of the standard model of group cohorgglo

7.1. Construction of a Maass form from a given cocycWe start with a cocycle
¥ € ZYF7, ‘W), given in a resolution based on a tesselatioas described i§6.1.
This means that for each edge= XlT the boundary gerng(e) € WY = GS/N® is
given. To make this concrete, we take representat@s in G2 of the y(e). This
can be done in &-equivariant way:#; has a finiteQ[I']-basisB c X7, and we lift
eachy(b) € Wg to w(b) € G¢ and then extend b¥/-equivariance to get a cochain
in CY(F”; g%) = Homgr(X] ; G¥). This is in general not a cocycle, but the cocycle
propertydy = 0 implies that the values aly are in N = C2(H). This defines
an N“-valued 2-cocycle which we still denote o/, although it is now no longer a
coboundary.

We now construct as-eigenfunctionu,, of A on H. Recall that the set of singulari-
tiesSing f of an elemenf € G¢ is defined as the smallest subsetiafutside of which
f is ads-eigenfunction of the Laplace operator, and is compact. ceanpactx c H
we denote byN(X) the r-neighborhood ofk with respect to the hyperbolic distance.
We chooseR such thatSing y(b) is contained inNg(b) for eachb in the finite setB.
Then byT-equivariance it follows thasing y(€) is contained in thdR-neighborhood
Nr(€) of efor every edgee € X]. Forz € H we define

U@ = =IO, (7.1)
7l

whereC is a cycle inZ[XlT] going aroundz once in the positive direction at a distance
greater tharR. We claim that this is independent of the choiceCof Indeed, ifC;

is another 1-cycle with the same propertieCasve can defornC into Cq in finitely
many steps, where in each step we add to or subtract@dne boundary of a polygon
V e XZ whose distance tais greater tharR. The diference between(C)(2) and
¥(C1)(2) is the sum of contributiong(8V)(2) = dy(V)(2). Each functiondy (V) is a
As-eigenfunction outside dfir(V) and is compactly supported, so vanishes identically
outside ofNg(V) (becauseNg(V) is simply connected). In particular, eadi(V)
vanishes neaz, so (7.1) is the same f&¢ andC;. (An alternative argument would
be to choose a large® for which di/(V) vanishes outside the-neighborhood\g(V)

for everyV e X7, which is possible by equivariance sinxér/l" is finite. Then the
vanishing ofdy(V) nearzis immediate.)

The functionuy satisfiesAu; = Asuj, since by the definition oR the pointz lies
outside the singularities aj(e) for everyein C. It is also obviouslyI-invariant,
since we can use the cycleC in defining u;(y2) andy is equivariant. Moreover,
u; is independent of the lifting/, and can hence be denoted simply because any
two choices of} differ by an equivarian€?(H)-valued onX” , so that if we choose the
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cycleC far enough away frorathe two values of/(C) agree. Finallyy, depends only
on the cohomology class ¢f because if we replaagby another cocycle¢, = v +dF
in the same class, wheFeis an equivariant map fror)(g to WY, then we can liftfF
equivariantly to a magp- : XOT — G¥ and hence, choosing in (7.1) suitable fory
andy, find uy (2 — uy, (2 = uz(2d - u;.4e(@ = F(AC) = 0. This completes the
construction of the mapl}(I"; W¢) — EL.

We can also use the isomorphism between the various modeishaimology to
write uy, in terms of the standard model. We first observe that our cactsdn is
independent of the tesselation chosen, since any two #isse are contained in a
common one and a cyclé that works in (7.1) for a given tesselation also works
for any finer one. If we use a tesselation of type, with a setA = A~ c T of
generators of" giving the transition from the Dirichlet fundamental dom&j to the
adjacent fundamental domains'g, then every edge e XlT can be written uniquely
asy 'e,1p, p, With y € I' anda € A, wherePy € % is the base point of the tesselation,
SO we can associate to any group cocycltel” — Wg’ a cocycley on XlT by setting
y(e) = c(a)ly. Italso follows thau, has the property stated in Theorem A that (up to a
constant factor depending on the normalization) it can peesented on any compact
subset oftl by a fixed finiteZ-linear combination of functionB§(¢y)|y’ withy, ¥ €T,
wherey : I' —» V¢ represents the cohomology class.

We now show that the map just constructed is a left inverse ®tart withu € EL.
The clasgyu is represented by the map XlT — W defined by

ww=ﬁwwm.

Notice that the elemerj(e) itself is not inG¢, because it is singular aa We choose
a lifting of q to a mapy : X(lr — G¢ by multiplying q(b) for b € B by a smooth
function that is 1 neaH and O neab and then extending equivariantly. Now we
apply formula (7.1) withC chosen far enough fromthaty(C) andg(C) agree near,
obtaining by Theorem 1.1 the identity

W@ = @ = OO = = [t - wd. (2

In summary, we have constructed an explicit agp: [¢] — uy from H(T; W)
to & such that the restriction of the functiay to any compact subset @f is a finite
linear combination of translates, |y" (y,y" € I'), and such thatly, = uforu e &L

7.2. Construction of a Maass form from a cocycle as an averdgethe previous
subsection, we constructed the Maass figrassociated to a¥¢’-valued cocycley
using the surjective magy — Wy, whereGy is a space of functions defined on
the whole ofH. (Recall thatWy’ is a space of boundary germs.) We now give an
alternative description in which, is represented as the sum of thdranslates of a
compactly supported function. This will be used§in3 for the proof of the injectivity
of the map §/] — uy.

We choose our tesselation so that there is a fundamental domairior I'\H con-
sisting of finitely many elements of;- (This can be done by choosifng of type Fd
or by refining any given tesselation appropriately.) By defimg the 1-cycleC used
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in the definition ofu,, we can assume that it bounds a regidronsisting of finitely
manyTI'-translates of this fundamental domain. Then

7,2 = ¥(C)2 = ¢(@D)@ = (D)@ = Z A () (2).
veT'; y~1§ insideC

Butdé(y 1§ (2 = du(y 1§)(2) = Ofory‘liE outsideC, becaus# is a cocycle. Hence

(2 = Z A (F)0) - (7.3)
yel"
Let us define thaveraging operatoonTI for f : H — C as follows:
AL(f) = flAE = Y fly. (7.4)
yel

(This is not really an average since we do not dividgIthbut the term is convenient.)
If the sum converges absolutely &h the result is d-invariant function. For com-
pactly supportedf the sum Ayf is locally finite, and hence absolutely convergent.
Note that the functiomly(§) is compactly supported. We have obtained:

Proposition 7.1. Suppose that thE-invariant tesselatiory” contains a fundamental
domaing. Then fory € ZY(F”; ‘W) and all lits y € CY(F”; G) of ¢, we have

Uy = —AV (AU (F)) -

It is remarkable that A(di(%)) is an analytic function oril, whereasdy/(%) €
N© = C2(H) is not (unless it is zero). We consider this a little moreaetely.

Let f, be representatives gf(b) for b € B and choose a closed non-selfintersecting
curveC c H (for instance, a circle ' nedit) such that all thef,, are As-eigenfunctions
of A on and outsid€. Now choose(b) € G¢ which agrees witHy outsideC and has
singularities only in thes-neighborhoodN,(C) of C for somee < 1. (For instance,
we can multiply f, by a smooth function which is 1 outside and vanishes on the
bounded component & \ N L(C).) We extendzZ equivariantly as usual. Then all
singularities of allj(e) are contained ifN,(C), and the same holds fdg (&) = ¢(ai§)
and for A\f(dw(g)) Moving € and changing théy, on €, corresponds to adding
a cochain with values i = C2(H). This means fody that we add an element of
2yer N¢1(1-7v), which is annihilated by Ay sou,, = (ni)‘lAvr(dL/?(%)) is unchanged.
Since we can deforr® so thatN,(C) avoids thel-orbit of any given point irH, this
makes it clear whyy, cannot be singular anywhere.

7.3. Injectivity. It remains to show that the mag : [¢] — up of the previous
section is injective. This map fits into the commutative diag

HY(T; We) —2= HY(T; N©)
Elh(%))
ay N = N®/ 2y N1 -7) (7.5)

|

S(H)F <= . c’m)’
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in which ¢ is the connecting homomorphism in the long exact sequence

< — HY(; 69) — HY T W) =5 HAT @) — - (7.6)
corresponding to the exact sequence (3.11) ith w and the vertical isomorphism
is the one given in (6.8). We will show the injectivity of Ain Proposition 7.3 and
the vanishing oH(I"; G¢) (and hence injectivity o) in Proposition 7.4. Together

with what we have already done this gives a proof of the failhgatheorem, which is
a somewhat more detailed statement of Theorem A in the analyse.

Theorem 7.2. LetT be cocompact. There is an isomorphisth: H(I'; V¢) — &L,
given byy — up, as defined if{7.1), invertingq introduced in§5.2.

In the description of cohomology based on a tesseldfiothe function B, asso-
ciated to a giverfVy’-valued cocyclep can be given on each compact seﬁI—Irby a
finite linear combination of-translates ofp(b) where b runs through a finite set of
edges in )1( In the standard description of cohomology the functigsraj associated
to a cocyclep : T — Vg’ can on any compact set i be given as a multiple of a finite
sum of translate®p,ly’ (v, v’ € T).

We prove the injectivity of Avin slightly more generality.
Proposition 7.3. The mapAv,. : CE(H)r — CP(E)" is injective for p=10, 1,...,

Proof. Let f € CE(H) with Av.(f) = 0. We must show that € ¥, CE(H)| (1 - y).
Choosey € CZ(H) such thaty, - xly = 1 onH. (For instance, choosé € CZ(R)
with C # 0, whereC is the constant value of the integrﬂ ®(p(z Z)) du(Z), with
p(-, -) =coshd(, -) asin Table 1 ir§1, and se(2) = & fg ®(p(z,Z)) du(Z).) Then

f=f-A(fy = Dbyt f—x-fhy) = Y by HIA-9).

vell vel

In the last expression we can repldtiy the se{y e T' : y"*Supp §)NSupp @) # 0},
which is finite because boghand f have compact support. m

Proposition 7.4. If T is cocompact, then HI'; %) = {0}

The proof of this proposition will occupy the rest of this sebtion.

Let7 be al-invariant tesselation, as §6. We puth' = XOT UH, whereH c dH is
the orbit of a fixed point of a hyperbolic elementiafA given element oZY(F” ; G¥)
can be viewed as B-equivariant functiorc : Xg X XOT — G¥¢ satisfying the cocycle
relation (6.7). We will extend to a functionc™ on X} x X! with the same properties,
with values in a larger space.

For each¥ € H letn¢ be the generator df, for which¢& = a(r), the repelling fixed
point of ;. We put

Gt = Ger ) AGY. (7.7)
¢éeH ¢
where A\{c is the one-sided average defined§fh.1. This average mapgy into

GY(OH \ {£}). Thus the elements @“S’*’H represent germs in the spad€?” defined
in (3.2). Definition 3.4 givesing (f) forany f : H — C as the smallest set such tHat



42 R.BRUGGEMAN, J.LEWIS, AND D. ZAGIER

is als-eigenfunction orH \ Sing (f). For f € g"s’*’H, the setSing f is not necessarily
compact inH. Its closure iriP’é may contain points of.

Lemma 7.5. The map ¢ Xox Xo — G¥ corresponding to a cocyclee Map(Xy, G¥)"

can be extended to a map'c X x XM — G¢"" satisfying the condition¢6.6)
and (6.7)for aT-cocycle.

Proof. Leté = a(n) € H, withn = as above. FoP € X we set
" (P& = ¢ (&P) = AP P) e GO (7.8)

Since the convergence of f(c(P, 1771P)(2) is absolute for eache H, we have

N
A (P P)D) = N"ELHZ(‘A)C("_"P’ 1P = lim Py IP)D).

where the second equality follows from the cocycle propdfty P, Q € Xo:

N
HRO-QE = lim (et "R"P) i Q" Q) -
n=0 7.9

Iim (e P 7" - Q. P)) = ~c(Q.P) = c(P.Q).
Foré, &1 € H we define

g e) = cPa) - (Re). (7.10)

In (7.9) we see that this does not depend on the choi®X,. This definex™ on
X¢ x Xt satisfying the cocycle relation.
Leté& =y~ ¢ with y € T. Thenng, = y~1ngy. Thel-equivariance follows:

TPy = TPy Ty TR A,

=y Py P Iy Ay = oP P Ay = cM(RE)ly.  m
The construction of™ shows that folP € Xg andé, &1 € H:
Singc(P, &) NoH c {¢}, Singc(é,é1) NAH C {¢,&1). (7.11)

We have definead"(-, -) as ag¥""-valued function with the one-sided averaging
operator. Of course, we think of! (P, £) asc evaluated on an infinite path fromito &.

Lemma 7.6. Let ¢ be as in Lemma 7.5. Thef @1, &) € & for all &1, &, € H.

Proof. Write n; for ¢ (j = 1, 2). We look for a pathp from &; to & consisting of
three pieces:

1) The unionUnso nI”p,ﬂlprl, with a &
chainp,-ip, p, € Z[X1] from nytP1to Py Py
for someP; € Xo.

(2) a chainpp, p, € Z[X4] from P; to

P, e Xo

(3) The union Unzongnppzinilpz for a P2

chainpp, ,-1p, from P to 1n5*P>. &
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Asin §7.1, there exists largR > 0 such thaSing e is contained in th&-neighbor-
hoodNRg(e) for everye € X;. We can choose the paghsuch thalNr(p) = Uecp NR(€)
does not intersect any given compactzeThen the singularities of

c(p) = AV (" P, P1) + C(Pe, p,) + A" o(P2. 7, P2)

do not meeZ. SincecH(p) = c" (&1, £,) does not depend on the pathbut only oné;
andé&,, there are no singularities at all. m

Lemma 7.7. Let ¢! be as in Lemma 7.5. TheRA(P, &) € G¢ for all P € Xo, & € H.

Proof. We haveSing (cH(P,&)) N dH c
{£).  Let & be another point ofH.
Thenc™(P¢) = c"(Ré&r) - (£, &),
soSing (c(P.£)) = Sing (c"(P.£1)) by
Lemma 7.6. Henc8ing (cH (P, &)) N dH
c {&1) N €} = 0. ThusSing (cH(P.¢))
is a compact subset d@i. Now apply
Lemma 4.4, using (7.8) and (4.3).m

Lemma 7.8. We have B(£1, &) = Ofor all £, & € H.

Proof. For P € Xo we havec (¢1,£) = cH(P.&) — c™(P.&1) € Esn G by the two
preceding lemmas. Budis N G¢ = {0} by virtue of the splitting (3.3). =

Proof of Proposition 7.4For a cocyclec € ZY(F”; G¢), we have constructed the ex-
tensionc™ to X{! x X{!. ForP e XJ andé € H we have forally e T

oy 'PP) = "y Ry ) + ey € +cEP) = 0+ (PRI - 1),

Lemma 7.7 shows that'(P,&) € G¢. Thusy — c(y~ 1P, P) is a coboundary, and the
cohomology classq € H(I'; G¢) is trivial.  m

Chapter Ill. Cohomology of infinite cyclic subgroups of PSLy(R)

The general theme of these notes is the relation betWdewariant eigenfunctions
and cohomology with values in the principal series, i.etwieen the cohomology
groupsHO(I", &) and subspaces #11(I"; Es), whereT is a discrete and cofinite sub-
group ofG = PSLy(R).

In this chapter we consider the corresponding question Wrismeplaced by an in-
finite cyclic subgroupA = (y) generated by a hyperbolic or parabolic elemgif G.
This case is of course far easier, since the structurd ahd the geometry oA\H
are much simpler than those BfandT'\$, so that we can get very explicit descrip-
tions of the corresponding cohomology groups. This willgrformation for the case
of real interest, since the natural morphisk&I; &) — H'(A; Es) are injective for
bothi = 0 andi = 1 and we can therefore identify thieinvariant eigenfunctions and
the cohomology groups df with subspaces of explicit vector spaces. In particular,
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we show in§8.3 that a'V¢’-valued 1-cocycle corresponding to Brinvariant eigen-
function inEL can be reconstructed from its value on a single hyperboljgasabolic
element off. And in the Propositions 9.11 and 9.15, and in Theorem 9.2@we
a cohomological characterization of various spaces ofndigretions invariant under
a parabolic element df. These results will be essential in Chapter IV, whEns a
discrete subgroup with cusps. The results in the preseiptehare the technical heart
of these notes.

As in §4, we arrange by conjugation that in the parabolic case (T), with T =
[51] leaving fixedeo, and in the hyperbolic case = (), with » = [§ )], t > 1,
leaving fixeda(n) = 0 andw(n) = c. By conjugation the results that we obtain are
valid for general infinite cycliaA c G. It is convenient to work in the upper half plane

model of H.

8. Invariants. The elements oE4 have a periodicity undez — z + 1 (parabolic
case) oz — tz (hyperbolic case). 1188.1 we discuss the corresponding Fourier ex-
pansions, and i§8.2 we show how to associateinvariant holomorphic functions to
elements o&5. In §8.3 we show how we can recovefrom the valuer, of a cocycle

r representingu, wherer : 5 — HY(A; V¢) is the injection given ir§5.2.

8.1. Fourier expansion.Recall that Propositions 4.1 and 4.5 show thuf)A = {0}.
On the other hand¥;)* = &2 has infinite dimension. We now consider this space
in more detail.

e Parabolic case.Eachu € & has an absolutely convergent Fourier expansion

n=0

with ks,, is, as in (1.2). Fors = 2 the Fourier term of order zero must be replaced
by agisp + bofso with {50 defined as ir§1.2. The terms with a factdB, represent
elements of W¢'(R). We will sometimes writé?, = An(u) andBy, = Bn(u).

The modified Bessel functions have the asymptotic behd€iog»(t) ~ et vr/2t
andls 1/2(t) ~ €/ V2rt ast — oo ([32], §7.23). This implies the following necessary
and stfficient conditions for the convergence of (8.1) in the uppéiriane:

A, = Oy, B, = O@e?) foralle>0. (8.2)

Fors# 3, we write
8-5[- = 7(5@.[5, (83)

where elements af s have only terms withs 2., in their Fourier expansion, and ele-
ments ofKs have onlyks 2., andij_so. The spacg(g inside K is characterized by
the additional conditioBg = 0. Sok? is the space of elements &f that have only
ks2m, N # 0, in their Fourier expansion. This characterization waakso to define
7(3/2, whereaskj , is undefined.

TheK-Bessel function and all its derivatives have exponentaky ato, as follows
from §7.23 and§3.71in [32]. Thisimplies that ifi € K2 thena'zagnu(z) has exponential
decay for all choices df me N.
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e Hyperbolic case. Here we use the eigenfunctior@, and faLa in (4.2). Each
u € &! has an absolutely convergent Fourier expansion

= > (AE + By TS, (8.4)

wherea runs through%tz.

Lemma 8.1. The cogicients in(8.4) satisfy
Ar, By < €72 (la] - o). (8.5)

Proof. It is convenient not to use the basitl,, f<,} of the space of functions trans-
forming according tq } 1/0(] — ' but the basi$fd,, fs,}in (A.17) of [4].

We write the Fourier terms ag, f; s + d. f, . For eachy € (0, 7) the terms in the
Fourier expansion dii(p€¥) are bounded, uniformly in € %Z. The same holds for
the derivatives with respect ta. Then equation (A.18) in [4] implies that thg, and
d. are bounded. We express andB, in p, andq, by inverting relation (A.20) in [4],
and use of Stirling’s formula to obtain (8.5).m

8.2. Holomorphic functions associated to periodic eigenfuordi The growth con-
ditions (8.2) and (8.5) for the céi&ients in the Fourier expansions give the possibility
to encode elements &% by a pair of holomorphic functions or by a holomorphic
function and a hyperfunction.

e Parabolic case.Lets# % Foru e 8; the formula

BUQ) = ) Bae™ (8.6)
nezZ
definesg(u) € O(C)T, and each element @(C)" occurs in this way. Alternatively,
one may us&., B, q" € O(C*), with q = €4, The codficientsA, give rise to

a(u) = > Ael, € CU@}), (8.7)
nezZ
with €, as in (2.17b). Thus, the bijective correspondence> (a(u),3(u)) codes
elements oE] as pairs consisting of a hyperfunction (D’T“’(P]E) and a holomorphic
function in O(C)". The following proposition shows that the functigu) can be
related independently to th&’-valued cocycle associated ta in (5.5a).

Proposition 8.2. Let s# 3, u€ &L,z € $.
i) With rr(¢) = fzzo_l[u, R(Z; -)°], and with the averagév; in §4.2 and the
gamma factor fs) in (3.4d}

(. ) b( ) iyo+co

i

BU(Q) = AL (rr)() = _ [u R -)°]. (8.8)
iyg—oo

i) Put R(t; -) = A% (R(t; -)%). Then R(t,2) = Ri(z-t) where R € &{ has the
Fourier expansion

I(s-3).

R@ = Vg i@+ > I Heam(@). (89)

m#0

F(s)
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iii) The functiong(u) and R, are related by

)
p0© = 2 (7 Ry 1. (8.10)
m Jgea
The integral in (8.8) converges absolutely if Re % and has to be understood in
the regularized sense discusse@4n? if 0 < Res < %
Before giving the proof of Proposition 8.2, we state the esponding result for the

hyperbolic case, which will be proved §8.3.
e Hyperbolic case.Elementsu € &L are coded by two holomorphic functions

W) = Y AL with Re > 0,

_ 8.11
B-UQ) = Y Bu(-0  withRef <0, R

wherea runs throughoﬁgtz. The Fourier cofficientsA, andB,, are those in (8.4). The
holomorphic functiongR(u) ands-(u) are invariant undef s tZ. We shall prove:

Proposition 8.3. Letue &L, and 3 = iyo, yo > 0. With 1,(¢) = fi;i(;t[u, R(Z; -)®):

b(s) BRu)() forRel >0,

-B~(u)(¢) for Res < 0.

Proof of Proposition 8.2We can assume that Re> % since the Fourier expansion
(8.1) with fixed codfficients A, and B, gives an analytic continuation of the function
u(2) (still belonging to&?), and hence also af: (¢), to all complex values o$ (with
B(u) € O(C)" constant), and since all of the expressions in (8.8), (818) @.10)
are meromorphic irs. For Res > 3 3 the sum defining the average Avr) converges
absolutely and by (1.9) and patrtial integration we gefiforl| < yg

A = [ uRE = [ Ry
mz=yo

Im z=yo

A () (&) = { (8.12)

. 00 a 6
- f (R0 +)° 500+~ U0 + ) R yo + 7).

The functionu and its derivatives may be unbounded wizeraries in$. On a hor-
izontal line however, they stay bounded. We insert the [eowekpansion ofi, and
consider the term of orden, which has the fornfy(y) €.

__f ezmmx m(yo) R(Z; 2)° - fm(yo) —R@ )S|y yo) (8.13)

- e2ﬂ'm4 (fr(o) Lm(yo) — fm(yo) Lm(vo)) -

where
imx

Lm(y) = f M R0;2)%dx = y f TR

The last expression is considered in (1.8). The contributibthe term of ordemis
given by a Wronskian, and can be computed with use of the tlefigiin (1.2) and
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(A.4) in [4]. We find:

miI['(29) im o
Awma—zMﬂyZ Bre”™™ = —nib(9 ' AWQ).  (8.14)
Now equation (8.9) is obtained with the summation formul®oisson, and finally
Z0—N s 20
@ = 3 [ wReen 1 = [T uR@OL

8.3. Reconstruction.Proposition 5.1 has shown that~ r, is injective, both for
y = T andy = n. To reconstructu explicitly from r,, we first pass to the image

a, = b(s)Pgry under the transverse Poisson transform and then reconatfien g,
With the base pointy € $ as in the previous subsection, we have

M@ = [ Al Aa)@ = [ a2,

Imz =2y
The second integral converges absolutely forsRe 0, while the first has to be un-
derstood in the regularized sense, under the assumptior%. Both integrals define
As-eigenfunctions of the Laplace operator outside the patimtefration. Thus we
haveup, uy, UL, Ur in Eg(X), whereX in each case is a component®minus the path
of integration:

up(2) for zbelow the path
,Os( - » = 8.15a
[m s yo[u Gs(- 2] { uy(2 for zabove the path ( )

f (Uae(-.2)] = { u. (2 for zon the left of the path (8.15b)

Ur(2) for zon the right of the path

Local deformation of the path of integration shows that ¢hisir functions extend
to 9, yielding four elements afs. Theorem 1.1 implies that

U@ -u@ = u(d-ur(2 = mu(2. (8.16)

In the parabolic caseup represents an element #/¢’(R). We use that the restric-
tion to the boundarys inverts the transverse Poisson transformation. With (346
and Proposition 8.2, we have fére R:

(0sALaT)(€) = 1(S) (oA PLrT)(E) = b(9) (Avprr)(€) = —i BU)(E).
Sinceis2m(2) ~ y*e®™ asy | 0, this implies that
Up(2) = —i ) Buisam(?).
n
This Fourier expansion identifiesup as the component afi u in 75 in the direct sum

decompositionS! = K @ Is of (8.3). Thenuy is the component iKs. We have
obtained:

Proposition 8.4. Let s# 3. Each function & & can be recovered as
= (ni)tuy - (i) tup € K@ I (8.17)

from the value ¢ € Wy’ of the cocycle q ir{5.5c)representingyu, by the regularized
integral in (8.15a)
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Remark By (3.6¢) the transverse Poisson transform of the fundRg(n, Z) occurring
in part ii) of Proposition 8.2 is the resolvent kernel fuocti

Qs(zZ) = b(9™ (A% as(z -))(@) (8.18)
on{(zZ?) € $ : Imz # ImZ}. It satisfiesQs(z Z + 1) = Qs(z Z) = Qs(Z,2). On
ImZ < Imzwe usePs€** = ig, to obtain the expansion

Qs(zZ) = b(s) (PR -, 2))(Z)

1
St35

(8.19)

DM o sun(@) s -2em(Z)

m=0

1 . .
= :% i1-s0(2 is0(Z) + I(s+ %)

In the hyperbolic casgeu, represents an element ¢’ (-0, 0), andugr an element
of W(0, ). Thus i)~tu_ is given by the part of the Fourier expansionuoivith

f&,, and—(ri)~*ug by the part withfg,:
U= 7Y Befl,,  Ur = —mi ) AL, (8.20)

Hencepsur(¢) = —ri BR() for & > 0, andpsuy (€) = 7i gH(¢) for & < 0. This proves
Proposition 8.3. Furthermore, we have obtained:

Proposition 8.5. Let u € &, and let qe Z((n), W) be a cocycle representing
qu. The integral in(8.15b)reconstructs u from,gas u= (i)™ (u_ — Ug), with the two
terms corresponding as {{8.20)to the - and X terms in the Fourier expansiq8.4).

9. Coinvariants. In this section the subject of study B /(Vs’ | (1 - y)), fory =
nandy = T, as before. The parabolic cage= T is more complicated than the
hyperbolic case = . The parabolic case will lead us to consider sevérahodules
betweerV andV¥", like V&> andV¥"~**° mentioned in the introduction.

The main theme in this section is the correspondence betwedous spaces of
T-invariant eigenfunctions and cohomology groups. The mesalts are Proposition
9.11, Proposition 9.15 and Theorem 9.20. We will use thedetrer results from this
section in Chapter IV, where we study the cohomological ati@rization of various
spaces of -invariant eigenfunctions for discrete subgroups G with cusps.

9.1. The first cohomology group and averaging operatdrsty = T orn andA = (y)
as in the previous section. We hak(A; V&) = (V)a = VE/(VE (L -y)), by
associating te € V¢’ the cocycley with ¢, = v. (This can be seen as a special case
of Poincaré duality, sinc¥x = Ho(A; V) and the classifying space afis a circle.)

To apply the averaging operatoryﬁdefined in§4, we assume in the parabolic case

thats # % Sincev|(1-7y) |Avyi = v, the spaceVy’ | (1-v) is contained in the kernel of

A= A=AV (V&")". So Ay induces a linear mag(A; V) — (VYA
The hyperbolic case is easy to treat. Here the imageyoifs/montainedﬂ/g’[o, N

= Y& (~00,0)* ® V&(0, 0)* (cf. (2.21)), and we have:

Proposition 9.1. Let A = (i) with n hyperbolic. Then the maA/n C HY A Ve) —

V[0, 0]” is injective, and the natural map¥A; V) — HL(A; V") is zero.
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Proof. The first statement is equivalent to Corollary 4.3. kot V¢ we seth =
AV, (v) € V[0, o0]* and definef € V& by f(x) = —'fgg'ﬁ' h(x). Sincehly = h, the
function f satisfiesf|(1-n)=h. =

The parabolic case is more complicated. In that case the miap AVg)x —
(‘V&[0])2 is no longer injective.

9.2. Invariant eigenfunctions on subsets of the upper halfgldn the main theo-
rems of these notes, we give isomorphisms between on theamtkdpaces of Maass
forms and larger spaces of invariant eigenfunctions, antherother hand cohomol-
ogy groups. In this section we study similar relations, bowrbetween spaces of
T-invariant eigenfunctions and cohomology groups¢{fb}. This subsection serves to
define such spaces ®finvariant eigenfunctions.

Definition 9.2. We put

el = lim&y{ze$ : Imz>Y)), & =Ilimé&{ze$ : 0<Imz<e}). (9.1)
¥ i

Thus, elements cﬁ)l may be viewed as eigenfunctions defined on some half-plane
Imz > Y, whereY may depend on the function. Similarly, eIementsSéfare defined
on some strip O< Imz < &. Representatives of elements 6T£IT and 6£)T have
Fourier expansions of the form indicated in (8.1) (modifiedralicated there i = %)
converging on some half-plane or strip. The Fourierfioents satisfy weaker growth
conditions than those indicated in (8.2), namely

ue ENT & A, = o) for somes > 0 andB, = O(e™/?) forall £ > 0, 9.2
ue (YT & A, = O for all ¢ > 0 andB,, = O(e /) for somes > 0.

Definition 9.3. For s # % we define7(§ =KsnN 82 as the subspace of elements of
(Sg)T represented by functions with only terks.n, n # 0, andii_s in their Fourier
expansion. For alswe define K2)' as the subspace oﬁbT of elements represented
by a Fourier expansion containing only terks,n, n # O, andfsl as the subspace

of elements ofcﬁﬁ)T with representatives containing only terms,n in their Fourier
expansion.

The cocycles, pandgon(T) in (5.5) make sense fare (SQ)T, provided we take
Im zy suficiently large. The proof of Proposition 8.2 can be extendaegive:

Lemma 9.4. Let s# % Letue (SQ)T. The cohomology class is represented by the

cocycle r determined byr(?) = fzio_l[u, R(Z; -)%] for Im zy syficiently large. The av-
erageAv (rr) € Ve[eo]" is represented by the holomorphic functieni b(s)~ s(u),
whereg(u) € O(C)" is defined by an expansion similar (®.6) with B, the cogficient

of is2.n in the Fourier expansion of u.

We note that although € (8£)T is represented by a function on some half-plane
Imz>Y, the corresponding serigs$, Bnis2.n converges on all of, and hencg(u) is
holomorphic onC.
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The average A(rr) in Lemma 9.4 is defined on a neighborhoodFoin C. The
average Ay(gr) makes sense on two regionssin\We now consider the consequences
of this fact.

Let h be a function on$ representing an element d8’s’. Such an element is
in (9 \ C) whereC c $ is compact. The averaging operator defines o
eigenfunctions of the Laplace operator, on regionz Y and O< Imz < &, where
e > 0andY > 0 are such that the regiofize $ : y<eland{ze H : y = Y}are
both contained in the domain bf We obtain:

AvTT(h) represented by A(h) on a region Inz> Y,

9.3
Av#(h) represented by A(h) on aregion < Imz<e. (9:3)
h Az (h)
Imz=Y
C
Imz=¢
1
R —2 0 R
Lemma 9.5. i) Ifs+ % then for all boundary forms b W’

Aty ers, Al ex!.

i) If the boundary form he W satisfies(osh)*(c0) = 0 then for all s with
O<Res<1

Aty ers, Al e

Proof. Using the restrictiorps : W¢ — V¢, we puty = psh € V¢. We follow
the reasoning in the proof of Proposition 8.2 withieplaced by A}%(h), keeping the
integral on a line withyg < &. Thus, we get a holomorphic 1-periodic function on
im¢] < e. Applying PL, we get a series expansion forT%h) in the eigenfunctions
Is2mn-

Next we turn to AJ(h). There is no corresponding “Mg)". Let first s # 3.
Lemma 4.6 implies that A(h)(2) = Cy'™S + O(y~S) asy — 0. This shows that the
Fourier expansion of this periodic function consists of tples of i;_sp andksam,

n # 0. If (osh)*(e0) = 0, the same lemma gives an estimatg ), which shows that
we have only termg&som, N#0. =

Proposition 9.6. For u € (EL)T put hz) = fzzo_l[u, as(-,2)]. ThenAle(h) e Is,and u
is reconstructed from h by

u@ = (@) *ALN)@ - @) TAL@  (Imzsyiciently largg,  (9.4)
giving the decompositio€l)T = I @ 75, which generalize$8.17)

Proof. The definition ofh generalizes the cocyclkgin (5.5¢). We have to taks, in
the domain of a representative f The functionh is in ‘W’ by the properties of the
kernel functiongs. Following the reasoning i§8.3 we get the decomposition (8.17),
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and obtain also that é*(h)(z) doe depend omy with Imzy > Imz This implies that
Al els m

9.3. Smooth semi-analytic vector#t will turn out, in (12.6) and (14.8a), that the pe-
riod functionsy attached to modular Maass cusp forms in the introductioelaraents
of the spaceV~* defined in (2.23), which is equal 5" N V. We call it the space
of smooth semi-analytic vectons V.

ForW we use the analogous notational conventiéff” “"as fory in (2.23) and
below (2.21), where “cond” denotes a condition imposed asthgularities.

The spaceW"™ consists of the elements o’ with representatived (2) =
(#)sap(z) with & real analytic on an open s&tc PL with P% \ Q finite, such that
ps: & a(¢) onPL NQ extends as an element ®f°.

TheG-modules V¥ andW<"* are isomorphic with the inverse isomorphisms
ps: WS — VIS, PV — W (9.5)
We can produce elements ﬁfg’*""’ by the following integral, discussed in [21],
Chapter 2§2:

Proposition 9.7. Letue (X2)". Then
w0 = [ RG T, (9.6)

with Rezy syficiently large, defines,f € V5[], independent of the path of inte-
gration from 3 to oo, providedeo is approached along a vertical line.

As 3 tends tox along a vertical half-line, then,f tends td0 in the topology ofV°,
defined by the seminorris||, in (2.9)for all n € N.

The second part of this proposition is one of the few placdébése notes where we
mention the topology of principal series spaces. We will thég part in the proof of
Theorem 19.1.

Proof. In part I, the first statement has been proved with the prdposin §2 of
Chap. Il and use df-functions. Here we also consider the limit in the topolo§$g°.

It suffices to considery = iyg with yg > 1. We work in the projective model. From
(2.30) and (1.9) we conclude fgre R:

- [ e )
W@ = [ () (s guwile. @
The exponential decay ofandu, |mpI|es convergence. The dbeients in the expan-
sion in¢ — ¢ of ( 241 ) and ofy‘l( £+l ) £ at a givenyy € R are bounded functions

24y? 212 ) Ty
of y. Hence after integration we get a converging power serigesentingfi,,(£) on
a neighborhood ofg. So fj,, € V¢ [eo].
On a neighborhood af = « we use the variablé = =

w0 = [ A s 5 v ) e
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This converges as well. The daieient of&" in the expansion of the integrandéat 0
contains a ternp**"u(iy). So analyticity ato seems out of the question. fBirentiation
with respect t& can be carried out inside the integral. This shows fate Vg®.

Next we estimate the supremum nofirfy, | W"|| onR for all n € N, where the
differential operatowV is given by (1+ £2)d; onR, and by—(1 + £2)d; on a neighbor-
hood of¢ = co. From (9.7) we check thd{1 + £2)d,)" fi,,(¢) is a linear combination,
with codficients depending only osandn, of integrals

fj(y. ) Uj() dy,

Yo

where
2418 b - — S e
0. = 5% (Ss) €D =) e+ i),
Ui() = Wliy), aj = 0, or Uj(y) = uly), & = -1,
bj,cj €[0,n], -1<dj<n, O0<eg<n+1,

bj+Cj = dj+€j +N.
For ¢ in a bounded intervaHA, A] andy > yo we havefj(y, () <sn A"y®°. With the
exponential decay af and its derivatives we obtain or A, Al:

(1 + 280 e Q) <sne Alyge™®, (9.9)
with £ € (0O, 2r).
Forl¢] < A~ < 1, we have a similar linear combination of finitely many intag
fy :’ gi(y,€) Uj(y) dy with U; as before and

1 2 \s
(0.8 = 4% (50 ) (L= (W (- ) (L i) 9

aj,dj>-1, bjc,eeN, d+¢2=>0, a<n.
Now we havey;(y, £) <sn y**3 (1 + y2¢2)~@i+e)/2 « ™S This leads to
(~(1+ 99 fiyo(L1/8) <sn yp e, (9.10)
This estimate and (9.9) show that fjm..||fi,, IW"|| _ =0 foreacmeN. m

Applying the transverse Poisson transformatldnto fz in Proposition 9.7 and
multiplying by the gamma factdu(s), we obtain with use of (3.6c¢)

hﬂ3=iﬁu%um, (9.11)

representing an element 8¥s*, also callechy,.
Let g be a cocycle as in (5.5¢c), representing u € K2. We would like to write
ot = hg-1 — hz. To do that, we need the following extension of Theorem 1.1:

Proposition 9.8. Suppose that C is a piecewise smooth positively orientegleim
closed curve irp U {oo}. Suppose that neap the curve C consists of geodesic half-
lines. For each e k¥:

f[uq(u 2)] {U(Z) if z is inside G
= (U fzi |

if z is outside C
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Proof. ApproximateC by C,, where nearo we have replaced the part @f in the
regiony > a by a curvel, along{x +ia : xe€ R}. Theorem 1.1 can be applied @.
The integralfIa [u,qs(-,2)] tends to zero aa — o for eachz € §, by the exponential

decay ofu and its derivatives. The same holds for thatience of the integrals over
C andC,. The results follows. m

We apply Proposition 9.8 to the cur@that consists of geodesic paths fremto
20 — 1, tozy, and then back teo. Forz outsideC:

J. " a2l = hea@ -,
Soqr = hg-1 — hy, in W', Application of restriction maps : WE® 5 e
gives for the cocycle, with f,, € V¢ asin (9.6):
rr = fpo1— 1z (9.12)
Thus we have, withh = (T):
rk? c Ker(HY(A; V@) — HY(A; V),
qKe © Ker(HY(A; W) — HY A W),
Notation. We will often deal with such kernels of natural maps betwegmoenology
groups. FoA-modulesV ¢ W we put
HYA; VW) = Ker(HY(A; V) — HY(A;W)). (9.14)
For A = (T) one may view this as a mixed parabolic cohomology group, awvilve
discuss in Definition 10.1. We reformulate:
rk? c HY(A; Ve, ve ), qk? c HYA, We, We->). (9.15)
Proposition 9.9. The following statements are equivalent §oe Vg’
a) ¢* (o) = 0and A (¢) = AV (¢).
b) There exists ke V"> such that H(1 - T) = ¢ in V.
If a) and b) hold, then there is only onedfs® as in b), namely k= AvZ(¢) = A (¢).

(9.13)

Proof. Suppose that a) is satisfied. Singgc) = 0 the averaging operators 1Av
and AL converge absolutely op, without regularization and without the assumption
S # % In (4.12) the constanty vanishes. Hence the expansions in (4.11) start at
m = 0. From AvF(go) = Av_(¢) we conclude that the averages define an element
h € V¢ *[0], which satisfies b).

Suppose that b) is satisfied. This implies théf~) = 0. Hence the averages con-
verge without regularization. K # % we immediately obtain a) from Proposition 9.14
below. In a proof valid for alls with 0 < Res < 1, we note that Ai\*/(go) converges
without regularization and satisfiesﬂqo)(x) = O(IX%%) asx — oo. Sinceh has the
same behavior, and sinte- AVTT(go) is periodic we conclude thdt = AVTT(go). From
the behavior ag | —co we obtainh = AvT‘(go). ]

Corollary 9.10. The kernel oA @ Vg — V¢ contains the space of € V¢ that
satisfy the equivalent conditions a) and b) in Propositiof, But is larger than this
space.
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Proof. The first statement follows directly from Proposition 9.@rEhe second state-

ment, consideu € K2, u # 0, and putp(l) = fzzo_l[u, R(Z; )] for somezy € $. Then

¢ € V¢, and it satisfies condition b) in Proposition 9.9 (by Proposi9.7). Since
¢ = rt as defined in (5.5), the injectivity afin Proposition 5.1 shows that the class
ruin HY(T; V&) represented by is non-zero. S ¢ V¢ [(1-T). =

In §9.6 we shall prove:

Proposition 9.11. The maps andq give the following isomorphisms.
(KT =5 HACTH V2, V), (KT~ HI(TY We, We'=).

9.4. Semi-analytic vectors with simple polédle turn to a5-module betwee/y’ and
V¢ that obtained by replacing the condition of smoothnesseasigularities by the
condition “simple”, which allows simple singularities:

Definition 9.12. We defineV 5™ as the space of € V" such that for eacl €
BdSing (f) the functionx — c#(x) f¥(x) is smooth at, wherec; is a local coordinate

onPl até, e.9.,Cu(X) = &, andcy(x) = x - £ if £ € R. We defineWw?”*"™® as the
space of those elementsfwg”* for which psf € q/g’ simple

The spaces/2 5™ and W< S™P*® are isomorphids-submodules of¢" respec-
tively W', by P} andps.
We have the following generalization of Proposition 4.5:

Proposition 9.13. The space¢Ve*™"9T and (W~ "™P9T are zero for s« 1.

Proof. Consider the expansiop(t) ~ |t Yim_1 Cat™" at oo in the line model, and
insert theT -invariance. Ifg is the first non-zero cdicient, it follows that [+ 29)¢ =
0. m
Proposition 9.14. Let s# % For ¢ € V¢ the following statements are equivalent:
a) A (g) =0.
b) A(p) = ALL(p).
c) There exists £ V5™ sych that (1 - T) = ¢.
If these statements holds, then f in c) is unique, and is GQUM?((,D).
Proof. The equivalence of a) and b) is clear. If a) and b) hold, thestyaihe asymp-
totic behavior in (4.11) to conclude thit= Av () = Av=(¢) € Ve’ SIMPle - conversely
if eV SMPlsatisfiesf |(1—T) = ¢ € V¢, thenf — AVZ () has forx T oo an as-
ymptotic behavior as indicated in (4.11). Sinte- Av(¢) € (V- SMPIT _ ()
(Proposition 9.13), this implie§ = Av;(go). Proceed similarly for A]\_/(go). [ ]

In §9.6 we shall prove:

Proposition 9.15. If s # % the maps andq give isomorphisms

KL o HL(TYy; Ve, Ve simoiy - qcl L T W, we s
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9.5. Semi-analytic vectors with support condition on the siagties. For a conomo-
logical characterization analogous to Propositions 94d @15 of the much larger
spacesr(ag)T and q(al)T we need to introduce yet another space of semi-analytic
vectors.

To show the need for this larger space, we considegpresenting an element of
V¢, in the line model. The corresponding functighin the projective model is holo-
morphic on a neighborhood @ in PL. Hencey is holomorphic at least on a strip
[Im | < € and on half-planes Re> 5—; and Re’ < —% for some small positive. For
S# % the one-sided averages

-1

A (@)Q) = Zow@m), AN = = D eZ+1)

N=—co0

are both holomorphic on the strjlm ¢| < €. Furthermore, A}?(go) is also holomorphic
onRe/ > 1, and AZ(¢) on ReZ < —1 provideds is sufficiently small. Suppose now
that Av () extends holomorphically as an elementdfc)". (Proposition 8.2 shows
that this is the case i = rr associated to € EI.) Then AVF((,D) = AL (p) + AVT_((,D)
has a holomorphic extension to the haIf-pIane{Re—%. Hence A((go) € V¢, and
also Az (¢) € V¢ have representatives with large domains containing bogfft ahd
a right half-plane. They are elements of the smf;éexc that we now start to define.

Definition 9.16. Let F c PI%& be finite. We call a se® c Pé anexcised neighborhood
of PL \ F if it contains a set of the form

U Jwe, (9.16)
&eF
whereU is a (usual) neighborhood @% in Pé and whereW, is the set containing
and the sectors i® and 9~ between two geodesic half-lines with final point

In the upper or lower half-plane, the s&¥, in this definition are the region between
two vertical half-lines. Fog € R setsW; are the regions between to half-circles
through& with centers orR to the left and the right of. See Figures 1 and 2 for
sketches of excised neighborhoods.

Definition 9.17. LetF c Pﬂﬁ be finite. We say thap € V& [F] satisfies the condition
“exc” if ¢ is represented by an element@{) for an excised neighborhood Bﬁ\ F.

¥, exc

This means thafls is the direct limit limO(Q) where Q runs over excised
—

Q

neighborhoods of? \ F with F finite. Figure 3 depicts the relation 67" with
other principal series subspaces that we have defined uptill The space/S™mPe
is defined only fors # 3. The definition of V<> ®*° makes sense f& = 3 as well.

The spacévsw*’ ®Cis aG-invariant subspace oF¢". The elements @Ef(go) discussed

in the introduction of this subsection are > **9]. We have even more:

Proposition 9.18. Let s+ % For ¢ € V¢ the following statements are equivalent:
a) Ax(p) € o@©)".
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f
Weo
Wfl
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Yo Q Y& Q
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Q 4 N\
W§1
Weo
}

Ficure 1. An excised neighborhoad of P1 \ {¢1, &, o).

Ficure 2. An excised neighborhood 6f \ {e7/4, 1, &M/4 i} for the
disk model.

Ve rvsw*’“’c Ve Vol Vg

(Va)*, simple
s

S

*, eXC w*
1 /i %A

Ficure 3. Subspaces of the principal series spate

b) Azr(p) andAv- () are elements obs"oo].

Proof. We have already discussed the implicatior-ap).
For a) = b) we suppose that 4&\(90) and AL (¢) are inV®90]. By construction,
they are inV{’[oo]. They are given by holomorphic functions on a regign: [Im{| <
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glUL : IRef| > &7} for somes > 0. Onlim¢| < & we have Ay(p) = At (p) -

AvT‘(go). So Ay (¢) extends holomorphically to Re> £71, and the invariance under
T stays valid by analytic continuation. THeinvariance on a right half-plane implies
that Az (¢) extends holomorphically tG. =

We will now define the condition “exc” for the behavior of sects of W< at
singularities:
Definition 9.19. An element of W& satisfies the condition “exc” at the points of the
finite setF c P if it has a representative of the forfi(2) = (#)Sap(z) onQN H,
where
a) Qis an excised neighborhood Bﬁ \ F for some finite seF.
b) a° is real analytic or.

The transverse Poisson transformation giv€sequivariant isomorphism
F ., exc w*, eXC
Ps Vs — Wy .

To see this we use the integral representation@lgind its inverse in Theorem 4.7
in [4]. To apply this we note that the intersectiOm Q of an excised neighborhodd
of P \ F is again an excised neighborhoodHdf\ F, for finite setsF c P1.

Propositions 9.11 and 9.15 can be viewed partly as spegi@lirs of the following
result:

Theorem 9.20.1f s # % then the maps andq give isomorphisms
(EDT -5 HI(TY: V2, Ve o), ()T = HY(T); We, We' o).
We shall give a proof ir§9.6.

Definition 9.21. We defineg*° as the space df € C2($) that are inSs($ N Q) for an
excised neighborhoo@ of ]Pﬂla minus a finite set, and we put

G2 = (f € G2 : f represents an elementdf ).

The minimal closed seX c $ such thatf € E4(H \ X) is the set of singularities
Sing (f).

Examples:The functioniso(2) = y° is an element oEs that represents an element
of WE(R), also calledsp, andBdSing (isp) = {oo}. Soigo ¢ G¢. We haveiso(2) =
(#)S(x2 +(y + 1)2)3. We conclude that®(2) = (X2 + (y + 1)2)S is real analytic
on C. Henceisp € G %, andSing (iso) = 0, BdSing (is0) = {co}. To get more
examples of elements 6/~ ®*°, we considelp € V< such that A¥(p) € OC)T, as
in Proposition 9.18. 16 # , thenPLAV (¢) = Av (Ply) andPLAV- (¢) = A (Ply) are
elements of W< &,

For generah € W¢, the average Ah may very well have singularities in horizon-

tal strips in the upper half-plane. Then the average is ng&irf”.

The example ofsg shows that iff € G2 represent$ ¢ W, then the set
BdSing (h) can be larger thasing (f) N 99. On the other hand, the zero element
n e ‘W satisfiesBdSing (n) = 0. It may be represented as an elementif " **° by

any f € C2($) that is equal to 0 outside the regipt < 1,y > 1, and equal to 1 on
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X < % y > 2. In this exampleSing (f)Na$ is larger tharBdSing (h). Definitions 9.19
and 9.21 imply that we can always represknt ‘W% by an element ¢ g2~

such thatSing (f) N 8% c BdSing (h).

The exact sequence (3.11) extends to an exact diagram

0 0 0
! l !

0 - AN - G¢ — W - 0 (9.17)
! ! !

* * *
0 — Nw,exc — g(é),eXC N (Wéu,exc > 0

We recall thatv = C2($), and defineN“-* as the kernel in the lower row. The
support of an element g¥“~®*¢ need not be compact; it may contain regions between
geodesic half-lines to the same pointdil. Siegel domains of; = PSLy(Z) are
examples of such sets.

Lemma 9.22. The space§ W< )T = (G<*¥YT are equal tofs, and the space
(N> is zero.

Proof. If f € (G2*%9T, then the seBdSing (f) is a T-invariant finite subset af?,
and hence is contained {m}. The setSing (f) is alsoT-invariant. It is contained in
the union of a compact set and finitely many vertical regidtesnceSing (f) = 0 and
f € &L. Sincef represents an element &[], itis in Is. If f € (N7 then
Sing (f) = 0 implies f = 0.

We are left with the proof of W& )T =~ (G297, Clearly, each element of
(G = I represents an element oM< -9)T. Restriction of a giverh €
(WE-YT givespsh € (V¢[])T. Henceh has a representative € E¢(H \ W,),
where

W, = {ze$ :IRez <&l Imz> &) (9.18)

for somes > 0. By extendingf as aC2-function onW,, we obtain a representative
f e G2 Sof|(1-T) e N“-& After diminishinge, we havef(2) = f(z+ 1)
on $ \ W,. Sincef represents an element @¥’[oo], it has a Fourier expansion with
only is2m, and hence is ifs. This expansion converges gnand defines another
representative df, whichisinZ,, =

Lemma 9.23. Suppose tha € G2 % satisfies:

a) Sing () is a compact subset &f.
b) GI(1-T)egGs.
Then there exists p Zs such thatf — p € G¢.

Proof. From a) it follows thatq represents an elemeqtin the spacefs defined in
(3.1). The direct sum decomposition (3.3) implies thaté¢hare uniquep € & and
f e W¢ such thatg = p+ f. Condition b) implies thag|(1 - T) € Wg’. Hence
pl(1-T) = q|(1-T)-f | (1-T) € W¥NEs = {0}. Sop € &L, andp = g—f € WL,
As in the proof of the previous lemma, this implipss Zs. Now, - p € gg’*’ Cis a
lift of f € W, for which Sing (§ — p) = Sing (§) is compact. Hencg-pe G¢. =
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9.6. T-invariant eigenfunctions and cohomologw this subsection we prove Theo-
rem 9.20 and Propositions 9.11 and 9.15. We treat these phoeés in parallel, since
the statements are closely related.

e Images. First we considen € (82)T ands # % We representu by the co-
cycler determined byry(¢) = fzzo_l[u, R(Z; -)%] with a suitable base poir#y. Rela-
tion (4.10), Lemma 9.4 and Proposition 9.18 show that Av;(rT) [(1-T)isinthe
space’ V2 | (1 - T). Sor maps €L)7 to the subspacel!((T); V2,V 9. Ap-
plying the transverse Poisson transform, we seeq(t‘abT is contained in the space
HI((TY; We, We"e9),

Ifue 7@ then Lemma 9.4 shows that Avr) = 0. Hence AY(rT) = AvT‘(rt), and

then Af(rr) € @-SimPle by, Proposition 9.14. This show that
rq(él' c H1(<T>;(Vg),(\/§)*’eXC&Simp|3 c Hl(<T);fV“’,fVé"*’eX°)'

Again we applyP} to get the analogous statement épr(The spacels’” &5 mPejs
equal to V& n V<SPl since at the singularities both the conditions “exc” and
“simple” are imposed.)

We have seen in (9.15) thatk?)" c HX(T); W&, We"*), even ifs = 1. Since
the restriction maps is an isomorphism oWy’ andwg’*"’", the corresponding state-
ment forr follows. The integrals in (9.6) and (9.11) show thaandq map (K2)" to
HL(T); Ve, Ve excéey respectivelyH((T); We, W &C&),

e Comparison result.For Propositions 9.11 and 9.15 it is important to have:

Lemma 9.24.
HI(TY; V2, Ve exc&ey = HI(TY, Ve, ye-), (9.19a)
HI(TY; We, WeHexc&e)y = HI(TY; We, W ™), (9.19b)

and if s# 3

Hl(<T);‘V“’,fV§)*’eXC&SimpI3 _ H1(<T);(V‘”, ;u*,simple)’ (9_19(:)
H1(<T>;(Wa)’(wéu*,exc&simp|3 — H1(<T>;(Wa)’(Wéu*,Simp|% (919d)
Proof. We haveH((TY; V&, V<SP 5 H1(Ty; o, 42 *’_eXC&Simp'e). Conversely,
if yr € V& is of the formyr = f|(1 - T) with f € V"> then Ar(yr) = 0

(Proposition 9.14), and hence Awr), A= (y7) € V& (Proposition 9.18). This
gives (9.19c). For (9.19a), we proceed similarly, with uk@mposition 9.9 to obtain

A (r) = 0.
The transverse Poisson transformation provides us withjantion

i . 0" exc &simple *, exc & simple
PL: Vs — "Wg) ,

and a bijection
Pl . (Vg) simple SN ,Wg)‘,smple‘
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The resulting commuting diagram

* i =(9.19 .
Hl(<T);(Vé",(V;‘)’eXC&S'mpI3 #2 Hl(<T>;(Vé”, ;U,SImple)

lp]s- Elp‘s’

H1(<T>;(W§J,(W§)*’6XC&SimpI%C—> Hl((T);(Wé",(Wg’*’Simple)

shows the equality in (9.19d). For (9.19b) we proceed sityila =

e Injectivity. This is Proposition 5.1.

e Surjectivity in Theorem 9.20Since V" #¢ and W< are isomorphic it sfices
to prove that fors # 1

q: (YT — HY(TY; We, we'ex)

is surjective.

We recall thaty associates ta e (EL)T the cohomology clasgr + WEI(L-T),
whereqr can be represented loy € G¢ given bydr(2) = fzzo_l[u, gs(-,2)] outside a
small neighborhood of the line segment frag+ 1 to zy. The class does not depend
on the choice ofy with Im zy sufficiently large. In this proof we will mainly work with
representatives igy and N“. See the diagram (9.17).

For the proof of the surjectivity we start withe §w*, excssuch thah := f|(1-T)
belongs toW¢. The aim is to constructi € (82)T whose associated functiagy
satisfiesh— Lqr € W& [(1-T).

Let f € G2°®°andh € G¥ be representatives df andh, respectively. Since the
setBdSing (f) is finite andT-invariant, it is contained ifoo}. We chooseN > 2

suficiently large and € (0, 1) suficiently small to achieve the following situation:

Sing (h) ¢ [-N,N] xi[&,N] Sing (f) c [-N,N] x i[&, o)
iN . i
(singularities) (9.20)
(singularities)
ic ic
-N N —-N N
The diferencek = h— f|(1 - T) is an element o~ &, |t satisfies
Suppk c [-N — 1, N] x i[e, o). (9.21)
We set
u@ = ALK forimz> N. (9.22)

This will turn out to represent the element 6qu corresponding to the cocycle on
(T) given byh. We prove this in several steps.

Lemma 9.25. The function u represents an elemen(ébﬁ‘)T.
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Proof. The average Ak is given by a locally finite sum. Far = x+ iy € [-1,1] X
i(0, o0) we have

N+1 N+1
Ar@ = > kz+n) = fz+N+2)-fz-N-2)+ > h@z+n).
n=-N-2 n=-N-2

The termsf(z+ N + 2) and f(z— N — 2) have no singularities in the region m=
y > & |X < 1, andh has no singularities in the region> N. Hence A(k) is a
As-eigenfunction ofA on the regiony > N, |X < 1. Since it is 1-periodic, it is a
As-eigenfunction oy > N. m

We takeyo > N + 2¢, and define

iyo
or@ = [ [ua.2) (9.23)
Iyo—l
outside the box{1-&, &]xi[yo—e, yo+e], iyo-1e==iyo
and extendgt inside the box as &2- o
function. Thus we obtair” € G¢ rep- Or given by
resentinggr. Our aim is to show that integral
h-areGgeI(1-T)+ NV
10
We apply Proposition 9.6, which writes
u= i.(uT —uh) = 1.(AvT (Gr) - Ak(@r)). (9.24)
i N T T

with u' = A/I(h) € %! equal to Ay(Gr) on the region Inz > yo + & andut :=
Ale(qT) € Isequal to Ay(Gr) on Imz < yo — &. Both functions do not depend on the
choice ofyg.

The next step is to relate Adr) to Az (K), Az (h) and f. To do this, we use the
functionsp, andp_ in the next lemma:

Lemma 9.26. The following two functions jpbelong toZs:
p. = A(R) - AL () - f, po = Az(h) - Az () - f.

Proof. AvZ(K) is given by a locally finite sum, and }rﬁ\vﬁ) can be understood in reg-
ularized sense, sinde e G¢. Hencep, is defined ony, except for its singularities,
which occur on a locally finite union of curves in the regi@e $ : X< N, y > &}
From h — k)|Av1T|(1 -T)=h-k=f|(1-T)itfollows thatp,|(1 - T) = 0. Since
p; has no singularities in the region> N, the T-invariance implies that there are no
singularities at all. Hencp, € &!. i

On0< y < g, we havek = 0. Moreover, Ag(h) represents an element @[ oo],
andf e G¥ ®9c0]. Sop, represents an element @/~ (R). Hence it is ins.

The case op_ goes similarly. =
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Lemma 9.27.

A (h) on Imz>yo+e,

1
ZA(B7) =
ni Vr (Gr) {p+—p_ on Imz<yg-=s.

Proof. On the region Inz > N we have
u= Ag = Ag(h)+p-—p:.

Lemma 4.6 implies that Afh) = c¢;y*° + O@5) asy — oo for X < 1. By T-
invariance this estimates holds for all and shows that the restriction of Af) to

y > Nisin 7@ Lemma 9.26 givep, — p- € 5. Hence we have obtained the terms
in the decomposition afi in (SQ)T = Ks! + I given in Proposition 9.6:

ut = A(@Er) = miAg(), o = Ag(ar) = 7i(p - po).

The averages A(@r) and A¢(dr) are both given by A(Gr) on the regions Inz >
yo + e and Imz < yg — &, respectively. m

_ We will choose a functiory € C2() that will turn out to satisfyg|(1 - T) €
h —_%QT + N“. First we prescribg on the union of the following three overlapping
regions:

/AL

TR T
N -N N

-N N -N
H:{ze,f) : y>yo+s} R:{ze,f) x>N ory<s} L:{zeS) i x<-Nor y<5}
Av{f(Aﬁ) - AAZ(Gr)-ps  ONH,
g(r) = f+ A (k- %QT) onR, (9.25)
f+A-(k-%ar)+p-—p, onL.
To see that this is possible, we have to do some checking antérsections. On
y < g, i.e.,,onRN L, we check:
1, _ 1,
A (k= =0r) = (A (k= =r) + p-— py)
i i
1 .
= 0- EAVT(QT) +ps — p- sincek=0o0ny < ¢
=0-p;s+p-+p-—-p+ = 0 bylLemma?9.27

OnHNR, i.e., fory > yo+ &andx > N:

f+ A (k- iqT) — (AF(h- i_qT) -p,) =0 bylLemma9.26
T i T i
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OnHNL,i.e.,fory >yo+eandx < —N:

N ~ 1,
fo A(k= —ar) + p- - p. — (A (h - —ar) - p.)

Az () - i.Av—(qT) - A (h) + i_Av+(qT) by Lemma 9.26
a7 T a7

1 N
= _AVT(h)+EAVT(qT) =0 by Lemma 9.27

Thus, we havg onHURUL, i.e, only on the exterior of the boxN, N] x i[&, yo + £].
We extend it by 0 on the box, and change it ongt2§-neighborhood of the boundary
to bring it into C2.

Lemma 9.28. We havey € G2 “andg|(1-T) € G¥.

Proof. The functionf + Av{f(k— %QT) =f- %Av;(qT) onRNL represents an element
of W¢(R). The singularities of are contained in the box-N, N] xi[e, yo+€]. Hence
g€Go

On the regiorR:
. 1. ~ 1,
gl1-T) = f|Q-T)+k-=Gr = h—=0Gr.
mi mi
Sinceh - 1gr € ¢, the equalityg|(1 - T) = h— 1 extends to the region i
outside the box{fN — 1, N] x i[&, yo + £]. So there isy; € N“ such that

~ 1.
gl(l—T):h—EqT+gleg‘g. | (9.26)

For the giverh € ‘W2 andf € W< ®Cwithh = f|(1-T) we have givem € (&1)7,
and have given in (9.23) a representatyeof the correspondingir € “Wg’ which
determines the cocyctgu. In Lemma 9.28 we see that 6 € N +G% | (1-T).
Henceh - 1qr € W¢>®C|(1 - T). This completes the proof of the surjectivity in
Theorem 9.20.

e Surjectivity in Proposition 9.15. We need only prove the surjectivity of Ap-
plying Theorem 9.20 to a giveme HI((T); W, W &€ n WS e obtain a
uniqueu € ()T such thafju = ¢. We have to check thate K.

In the proof of the surjectivity that we have just given, wemnbave the addi-
tional information thatf € W& n W S Hence Ay(h) = 0 (by Proposi-
tion 9.14), and Ay(ﬁ) vanishes neaR. Sincek also vanishes ned&, the diference
p: — p- € Isin Lemma 9.26 vanishes nef@ras well, and hencg, — p- = 0 ev-
erywhere. In Lemma 9.27 we see thatr(&',‘r)l = 0. Hence (9.21) takes the form
u= 1A (Gr)" e k1.

e Surjectivity in Proposition 9.11.Now s may be equal tc%. This forces a further
review of the proof of the surjectivity af for Theorem 9.20.

We start withf € W0 W with h = f|(1 - T) € W2. This implies
thath(2) = (lzfilz)sap(z) with a°(c0) = 0. So AF(h) and Avrt(ﬁ) converge without
the need for regularization. The absolute convergence p{l@\is clear anyhow. We
have by Lemma 9.25 a functiam € (82)T given ony > N by Az (k). We cannot
yet use the one-sided averagesyef but still havep, andp_ in &I in Lemma 9.26.
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Proposition 9.9 and an application of the isomorphigmas (wgf"m - (sz*,oo and
PL: V™ - W imply that Af (h) = Av-(h) nearR. NearR, we also havé = 0.
Sopy—p- = AvT(ﬁ) — Av; (k) vanishes first neaR, and then everywhere af. On
y > N we have Ay(h) = Arp(K) + p; — p- = Av(K) as in the proof of Lemma 9.27.
Hence Ay(h) = uony > N. Lemma 4.6 givesi(2) = Av;(h)(2) < y~°asy — c. So
u can have only terms witks 2.n, N # 0, in its Fourier expansion. Thus,e (X9).

With Gr as in (9.23), we use (9.11) and Proposition 9.8 to weites T, [ (T — 1) +
N@-8C with hi,, € G2, Sing (hiye) < i[yo, o) and BdSing (hi,,) < {eo}. In par-
ticular, (ostr)f(c0) = 0, and A{ (6r) and AL (67) converge absolutely. Now we can
proceed as before.

Chapter IV. Maass forms and semi-analytic cohomology: grops with cusps

In this chapter we start the generalization of the resultstfie modular group
PSLy(Z) mentioned in the introduction to general cofinite disciegroupd” c G
with cusps. We will prove those statements in Theorems B atithCconcern coho-
mology groups with semi-analytic cficients. The results concerning smoo@t(
and diferentiable CP for somep € N) codficients will be proved in Chapter V.

In Section 12 we consider the isomorphismaass(I') = le,ag(l“; Ve, VL) (in

Theorem B),EL = Hgaﬁ(r;q/w,q/g’*’e“) (in Theorem C), and a similar isomorphism

using the space/ S 5 ¢ introduced in§9.4. The method of proof is the
same as that followed for cocompact groups in Chapter Il. pitesence of cusps
makes it necessary to look at geometrical models for cohogyohgain, especially
in connection with parabolic cohomology. That is the subgfcSection 11, where
we also discuss an interpretation of our approach to paabohomology in terms of
sheaf cohomology.

In Section 13 we prove the isomorphisrh%aﬁ(r;(vg,‘vg’*""’) = Héar(r;‘vs“’*""’)

(in Theorem B) and—léar(r;‘vg’,(vg"*’e"% = HgaAF;Vg”qexﬁ (in Theorem C), where

V&€ consists of the elements 672> that have singularities in cusps only. This
requires an analysis of the set of singularities of cocyde$13.2 we give a recapit-
ulation of the proof of Theorem C.

This chapter generalizes results of [21], where Maass cuspsfon Sk(Z) were
related to “period functions”. The link with the period fuian is discussed in Sec-
tion 10, where we also give some general definitions, and ttiGe14. In (8.6)
we gave a holomorphic function associated tosaigenfunctions invariant under the
parabolic element = [éi] of G. Such linear maps to the space of 1-periodic holo-
morphic functions ortC can also be defined fai-invariant eigenfunctions. That is the

subject of Section 15.

10. Maass forms. Throughout this chapter the grolipc G = PSLy(R) is assumed
to have cusps. For such groups we discuss several spacesas$ftams and general
invariant eigenfunctions, which coincide for cocompaciugrs discussed in Chapter Il.
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The image of the map from invariant eigenfunctions to cohlogn with values
in the spaceVy’ of analytic vectors in the principal series is contained imixed
parabolic subgroup, of which we will give a preliminary détiion in this section.

Here the upper half-plang is the natural model off. A discrete subgroup’ c
G is calledcofinite if the quotientI'\$ has finite volume for the measure induced
by the invariant measurdu on $. The cuspsof I' are pointsc € P% for which the
isotropy subgrouf’, = {y €T : vk = «} is non-trivial, and hence infinite cyclic with
a parabolic generator. We denote ®yhe set of cusps df. This set depends dn It
is infinite, but consists of finitely marly-orbits.

For eachx € C we fix g, € G such thay,c = k and such that, = ¢, Tg. ! generates
I, with T = [§1]- This leaves some freedom in the choice of gaeWe arrange the
g« such thay,, € v9.T# within eachl™-orbit of cusps.

The standard example is the modular grdyp= PSLy(Z), generated byl and
S = [9 5], with relationsS? = (TS)* = 1. Its set of cuspe = Py, forms oneli-orbit.

10.1. Notations and terminologyWe call the elements @, invariant eigenfunctions
and reserve the notatioviaasss(I') for the finite-dimensional spac&{*)" of invari-
ant eigenfunctions with polynomial growth, whose elemevéscallMaass formsAn
invariant eigenfunctio € EL haspolynomial growttif and only if

u(ge(x +iy)) < y? asy — oo for somea € R, uniform inx, forallx € C. (10.1a)

Inside Maasss(I') the spaceMaassd(I') of (Maass) cusp forms determined by the
stronger condition ofjuick decayat all cusps:

u(g(x+iy)) < y*asy — oo forallae R, uniforminx, forallk e C. (10.1b)

By theTI-invariance, it stfices that these growth conditions hold for one represeetativ
k of eachl'-orbit of cusps. In [21] we useblaasss to denote the space which we now
call Maassd(I1). For cocompact groups, the spadéaassd(I) c Maasss(I') ¢ &L
coincide.

Letu € &L. For eachk € C, the functionu|g, : z — u(g,2) is in &, and has a
Fourier expansion (8.1), with cigcients As(ul]g,) and B,(u| g,), and alsoag(u|g)
andbp(ulg.). The spaceMaassg(I) is characterized b,(u|g,) = 0 forn # 0 for
all k, and the spaclaflaassg(r) by the additional requiremew(u|g,) = Bo(ulg,) =0
(for s # %), or ag(u|g,) = bo(ulg,) = O (for all ), for all x. The form of the Fourier
expansion implies that we can weaken (10.1b) by replaciog &fl a € R” by “for
somea < min(Res, 1 — Res)”.

Fors# 1 we define the spaddaass(I) c &L by the condition thaB,(u|g,) = 0
forall xk e Cand alln € Z. We haveMaassg(F) - Maassé(r) C Maassg(I). It may
happen thaMaass] ((I') # Maass$(I') ( e.g., ifT’ = I and Zis a zero of the Riemann
zeta function), whereadaass?(I'), Maasss(I') and&L are invariant undes — 1 — s.

10.2. Invariant eigenfunctions and parabolic cohomologie start with an example.
A 1-cocycley on the modular group; with values in a righQ[I'1]-moduleV is, in the

group model of cohomology, determined #y andys on the generatorS = [(1)‘%]

andT = [5 7], subject to the relationgs | (1 + S) = 0 andyrs|(L+ TS+ TST9 =0
(andyts = ¥Y71|S + ¥s). There are various possibilities of normalization. We may
for instance require thats = 0, which can be arranged by subtractidg from ,
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with a € V given by% ¥s. Another normalization is by arrangingrs = 0; theny is
determined by/s = yt satisfyingys | S = —s. For the cocycle in (5.5a) associated
to an invariant eigenfunction, the former normalizatiorarsanged by choosing the
base point, equal toi, and the latter by choosirg = (1 +iV3).

In general, it is impossible to choogein its cohomology class such thay = 0.
However, in the case of a cusp fonme Maassg(rl), andr as in (5.5a), we know
from (9.12) thatry is of the form f,, | (T — 1), with f,, € V", Thus, subtracting
dfy from r, we obtain afvg"*""’—valued cocycle satisfyingr = 0. This cocycle is
determined by its valugs. Since (V¥"*)T c (V)T = {0} (Proposition 4.5), this
cocycle is unigue. This motivates the following definition:

Definition 10.1. LetV ¢ W beQ[I'l-modules. We define thmixed parabolic coho-
mology group H,(T'; V, W) asZ3,(T'; V. W)/BY(T’; V), where

Zoal T VW) = {y e ZH(IV) @ ¢ € W] (x — 1) for all parabolicr € I'}
is the space afixed parabolic cocycles

We define thgparabolic cohomology group é‘jr(r; V) as Héar(r; V,V), and call the
elements oZ,%ag(F; V, V) parabolic cocycles

It suffices to impose the parabolic condition only foe =, with « running through
a set of representatives BfC. The mixed parabolic cohomology gronl:rt&ar(r; V, W)
is the kernel of the natural map

HY(I V) — P HITW). (10.2)
kel'\C
We may view the grougH((T); V,W) in (9.14) as a mixed parabolic cohomology

group.
Returning to the cask = I, we see that thé’s’" *-valued cocycley with vt
0 associated above to a Maass cusp fersatisfiesys € V<4 since f,,

ehexcde (gee Definition 9.17 forVe ®€) Actually, the singularities ofs
rs — f5 (S — 1) can occur only ino and 0= Sco. So the cocycley has values in

0 . e .
e exeée \where we use the following definition:

m

Definition 10.2. Let (Vg’o be thel-submodule consisting of thé € V¢ such that
BdSing (f) ¢ C. With a condition “cond” imposed on the singularities, wet pu

(Véuo’ cond _ (Vé"o A (Véu*,cond.

For W; we follow the same convention.

We recall that elements o¥¢" can have a finite number of arbitrary singularities
on 8% = PL, those of V&~ (Definition 9.12) have a “simple pole” ( i.er,
(r — To)(smooth) at real pointsy), and the singularities of elements &£ occur
outside an excised neighborhoodFgf minus a finite set (Definition 9.16).

Proposition 10.3. The injective maps andq determined by5.5) have images in the
following equal cohomology groups.

rMaassd() © Hi ([ Ve, V=) = HL (T, Ve, Vo), (10.3a)
gMaassd) c HL (T W, W) = HL T, We, We=). (10.3b)
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If s # 3, then we also have

r Maassy(T) ¢ HL(T; Ve, Ve smPiey  — HL(r e e simle  (10.3c)
qMaassi(r) © HIL (T3 We, W Sm™P9) — HL (1 awe, we S8 - (10.3d)
r&l ¢ HL Ve, Ve = HL (T, v, vee9), (10.3e)
QEL C Hi T We, We'e) = HI (I, We, Wwe o)., (10.3f)

Proof. By definition, Hgar(r;(v;v,(vg’qexﬁ C Hpadl Ve, V&9 Consider a para-
bolic cocyclec € zgar(r;fvg,fvg’*’exﬁ and a parabolic element = n,, k € C. Then
C: | (1 —n) € V¢ implies that ther-invariant setBdSing (c,) is contained inx}. So
[c] € HpadlT; VY, V&9 This proves the equality of these cohomology groups. The
same proof works for the other equalities of parabolic coblmay groups.

For the inclusiorr &5 in H(; V&, V5" %) we takeu € &L, and suppose that
%. Letzy € $ be the base point in the definition in (5.5a) of the cocycld”™ — V¢
Letk € C. The valuer,, on the generator, = gKTgK‘1 of I', satisfies

20 9c' 20
m@ = [ RGN = [ l0aRC e @1,
230

2 gtz
where we have used th&-equivariance of the Green’s form [-] in (1.10a) and of
R(-; -)®%in (2.25). Hence
g—l

iz
mloe@ = [ WlgeRE ).
9D

which shows that;, |g, = rf, wherer® is a cocycle onT) that represents(u|g,) €
H(T); V&), with the base poing,*zy. Theorem 9.20 shows that

r(ulg) € HH((T); Ve, Vg9,
as defined in (9.14). Hence theresjse V¢~ such thar¥ = a,|(T - 1), and

(e = al(T-Dlgt = (@lgeh)|(m—1).

This works for allk € C, and henceu e HFl,a,(F; Yo Yo

The other assertions go similarly, using also Propositthd4 and 9.15, and taking
into account thamaass(I') is characterized &L by u|g, € s for all cusps« € C,
andMaassd(I) byu|g, € K0 forallkeC. m

We can use Proposition 8.4 to reconstruet EL from the valueg, of the cocycleq
in (5.5¢) on any parabolig € T

11. Cohomology and parabolic cohomology for groups with cyss. We now turn

to a more geometrical description of the cohomology of ctdidiscrete groups with
cusps, like we did ir§6 for cocompact discrete subgroups @f For the standard
cohomology groups we do not work with resolutions builtsgrbut on a contractible
subsetHy c H, whereY is a parameter. For the parabolic cohomology, we work on
9* > 9, where all cusps of are added t®. Using tesselations a§* we will define
Hlioar(l“;\/,W) foralli > 0, extending Definition 10.1. In Proposition 11.8 we willats

these mixed parabolic cohomology groupbg,(l“; V, W) to sheaf cohomology groups.
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11.1. Resolutions.Fork € C anda > 0, we define théorocycle H(x) and theopen
horocyclic disk R(x) as follows:
Da()

Ha(k) = g«(ia+R),
Da(k) = {g«z : Imz>a} . (11.1) Ha(o0)

Da(e0) is a euclidean half-plane, whereas
Da(x) is a euclidean disk touchirg in «
if Kk € R. We denoteéhz = H\Uxec Dal(k).
We provide theextended upper half-
plane $* = 9 U C (depending o via
C) with its usual topology that induces Da(x)
the standard topology ofy, and has the
extended horocyclic disk®a(x) U {«}, a(x)
a > 0, as a basis of open neighborhoods K R
of k € C. This topology is finer than that induced by the inclusignc $ c P(l:.

e Fundamental domain. We shall work with a fundamental domaih for I'\$
that satisfies the following conditions: We require tfjais a Dirichlet fundamental
domain, constructed from a base poifi that is not an elliptic fixed point. There is
a finite setA = A~ c I" such thar&, a € A, runs through thé&-translates ofy that
have an edge in common wifj. We add the cusps in the closure ®fin $* to &.
We require that this extended fundamental domain meetsleadhit of cusps exactly
once. This is possible ([17], Chap. I¥7G on p. 151). In particulay® = § N C can
and often will be used as a set of representative$ {or.

The standard fundamental dom@n= {ze  : |X < % |2 > 1} for the modular
group satisfies these requirements, v = {oo}.

e Tesselations. For a fundamental domaiy as above, we choosé > 0 large

enough that alDy(x) are pairwise disjoint and that the following geodesic segts

are contained in the interior ¢fy: the segments(Po, o~ 1Pg) for a € A, all segments

connectingPg to the vertices off N Hy, and all segments connecting those vertices.
In the sequel we will need tesselations of the following foyyes.

i) Tesselation of typBir. With Xo = I'Pg, X; = I'{e(Po,a"*Pg) : @ € A, and
X> the collection of the closures of the connected regionsosied by the edges
in X1, we get a tesselation of a contractible region containeginThis leads
to a projective resolutiof, = Q[X ], which computes the group homology and
the group cohomology df.

i) Tesselation of typ&d. The fundamental domaify gives a tesselatiofi”
of . We add to the edges tHetranslates of the intersections gf with
dDy(x) for k € . These edges are not geodesic segments. In this way,
& = Ty U Ukegn Vi, WhereFy = § N Hy, and whereV, = {g,z : Imz >
Y, X —1 < Rez < x} for somex, € R, is a triangle with infinite height
and finite hyperbolic area, with vertices P, = g.(X + iY) € 9%y and
ﬂ';lpk = gK(XK -1+ |Y) € 09y.

We write e, = &(P,,«) and f, = &P, 7;1P,) c dHy(x) N §. Soe, is a

geodesic half-line and, is a horocyclic segment. We have

N, = e—n e~ f,. (11.2)
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There is a finite selE of edgese of Fy and correspondinge € I" such that
Oy = D fe+ D e= > yle. (11.3)
keFeu ecE ecE
We denote
B=Eule, f. : ke gF). (11.4)
See Figure 4 for an illustration in the modular case.

o)
8

Ficure 4. Modular group, parts of tesselations of tyipe (left) and
Dir (right).

We put
Xy = T'{vertices ofgv} , Xo = Xjuc,
XY = T{fe 1 ke FYUWUTE, X = X[ ul{e : keF, (11.5)
XY = I'(Fy), Xo = XJUT (Ve 1 ke FY.

Here, and in the sequel, we consider the elements of theXsets compact
smibsets ofH*. We have arranged that all elliptic fixed points are elemehts
X!

0The translates d&v form a tesselatioff of the contractible spacgy, and
F7Y = Q[X"]is a projective resolution of th@[I']-moduleQ. It is contained
in the chain comple¥” = Q[X ], which is not projective, due to the cusps in
C c Xp. The setBin (11.4) is aQ[I']-basis ofF(lr, and the following set is a
Q[I']-basis ofFJ :

{Fy)U{Ve © ke F). (11.6)

All other tesselations that we consider (apart from tykie), are refine-
ments of a tesselation of tyypel.
Tesselation of typ®lix. Add to a tesselatiofi” of typeFd based on a Dirichlet
fundamental domain as above the interior base g&jrand the edges frorRy
to the vertices ofyy. TakingI'-translates of the new points and edges we
obtain a refinement of ", which turns out to be a triangulation. See Figure 5.
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iv) Tesselation of typ#ix’. Take the common refinemefit of tesselations of
type Mix andDir built on the same Dirichlet fundamental domain. Add all
I'-translates of the geodesic half-lines frdPg to the cusps irg“ and the
resulting additional vertices on the edggsWe call the resulting triangulation
a tesselation of typMix’. See Figure 5.

Ficure 5. Modular group, part of tesselations of typkx (left) and
Mix” (right).

e Chain complex omy*.  The chain complex oi* gives the resolutiorF;”" =
Q[($*)'*1], with boundary maps, augmentation and group action as i).(& has a
subcomplexF”™ = Q[$i1].

11.2. Cohomology groups fof. For all tesselationg™ that refine a tesselation of
type Fd, the complexF”-Y is a subcomplex oF” that gives a projective resolution
of Q and can be used to compute the cohomology gradifE; V). For this purpose,
we can also use the complex corresponding to a tesselatiyp@bir, and the com-
plex FpY,

If there are cusps, theH?(T; V) = {0}. In modelFd, FZ’Y is generated bygy.
For a cocyclec, the freedom inc(Fy) is determined by a coboundagh(gt) =
Yece B(€) | (1 = ye) + Dxezeu b(Fe). Theb(f,) € V can be freely chosen.

11.3. Parabolic cohomologyWe will base the definition of parabolic cohomology
groups on parabolic resolutions defined below. For the diefinbf mixed parabolic
cohomology groups we use resolutions based on a tessetdtigpe Fd or a refine-
ment of such a tesselation. To put these definitions in cantexshall prove (Proposi-
tion 11.8) that the resulting cohomology groups are isomiarfo certain cohomology
groups in sheaf cohomology. Moreover, we will show that imelnsion 1 these coho-
mology groups are isomorphic to those in Definition 10.1.

e Parabolic resolutions. For all resolutions obtained from a refinement of a tessela-
tion of typeFd there is an exact sequence

R S-S5 0—0

of Q[I']-modules such that
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a) Fo has a seGg of generators ove@[I'], such that for eack € Gy the subgroup
I'y c T fixing x is either finite, or equal tdy with x € C. (In the modular case,

with a tesselation of typ&d based on the standard fundamental domain we

may takeGq consisting ofi, 1+i2‘/§, P andeo.)

b) Foreach € C theQ-subspacéFg)™ has dimension 1, and the augmentation
is non-trivial on this subspace. (In the modular casg){ = Q().)
c) TheF;, i > 1, are freeQ[I']-modules.

In resolutions coming from a tesselationsgf, we haveF; = 0 fori > 3.

We call any resolution with the properties a)—-@axabolic resolutiorof Q. For the
moment, we have only the example of resolutions based omeneéint of a tesselation
of type Fd. In Chapter VI, we will use another example, obtained byrtgkiensor
products.

Most of the properties of projective resolutions carry over

Lemmall.l.lf f : F - F andg. : F — F are augmentation preserving chain maps
of a parabolic resolution Fof Q, then they are homotopic.

Proof. In dimension 0, we have for eaghe C a unique elemen, € Fq such that
mhb = b, andeb, = 1. This forcesfgb, = gob,. Frome o fg = £ 0 gg, we conclude
that there is &-equivariant map : Fo — F; such thatvihg = fg — go. It satisfies
hob, = 0 for all k € C. The further construction of a homotopy betweleandg. goes
in the same way as for projective resolutions. See [1], Levimian Chap.|. =

Lemma 11.2. If F, and F' are parabolic resolutions o, then there exists an aug-
mentation preserving chain map:fF, — F’.

Proof. For eachk € C, we are forced to havéb, = b;,. The further construction of
the f; on the generators can be carried out as for projective réspnkl See [1]§7 of
Chap.l. m

Definition 11.3. The parabolic cohomology groups HEI,(F;V) of I" with values in a
Q[I']-moduleV are the cohomology groups of the complex

Homgyri(F, V) = Map(X., V)"
for any parabolic resolutioR: of Q.

The parabolic cohomology groups fofigirent parabolic resolutions are canonically
isomorphic.

In the case of the parabolic resolutiofi$ based on a refinemefit of a tesselation
of type Fd, there is a subcomple” Y which forms a projective resolution @f. We
use such parabolic resolutions to define the mixed parabohiomology groups:

Definition 11.4. LetV c W be an inclusion of[I']-modules. We defin€'(F”; V, W)
to be the space df-equivariant maps : XiT — W such tha’c(XiT’Y) c V. We define
coboundary mapd' : C'(F”;V,W) — C*Y(F";V,W) by d'c(x) = (-1)*1c(di;1X).
We call the cohomology groups of the resulting complex

0 1
0— COFT: VW) -5 CHET VW) L C2(FT: VW) — 0
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themixed parabolic cohnomology group%;—r(r; V, W):

Hpal VW) = Z/(F75V,W)/BI(F7; VW),

Z(F7; VW) = Ker (d': C'(F7; W) — C*HET; V. W))
d-1C-YF7;V,W) ifi>0,

0 ifi=0.

(11.7)
B(F";V,w) = {

The definition is justified by Lemmas 11.1 and 11.2, which skioat up to canon-
ical isomorphisms the spactdé'ba,(l“;\/,W) is independent of the choices made. Note
that Hj,,(I; VW) = {0} for i > 2. In the cas&/ = W we denoteH;,(T'; V, V) by
Hlioar(F;V). SinceF” is a parabolic resolution, Definitions 11.3 and 11.4 leadsts i
morphic parabolic conomology groups. Finally, this defomtis a redefinition in the
casei = 1; in Proposition 11.5 we will see that Definitions 10.1 and4liead to
isomorphic spacefly,(I'; V. W).

o Dimension0. ForallV c W, we haveH(T’; V, W) = VT (use thaix] ¥ # 0).

e Dimensionl. Consider the newly defineld,%ag(l“; V, W) in a tesselatioy™ of type
Mix. If c € ZY(FT;V, W), theny, = c(y Py, Pg) is a cocycle ol with values inV.
Forx e C:

Yr, = C(Po,k)|(me —1) e W[(1-m).
Soy is a parabolic cocycle. I€ = dbis a coboundary, thes, = b(Po)|(y — 1), so
¥ € BYI"; V). This gives a map frorHFl,ar(F; V, W) defined here to the mixed parabolic
cohomology group in Definition 10.1.

Conversely, sinc&”-Y is a projective resolution, there is associated a cooyate
ZY{(F7-Y;V) to each parabolic cocyclg onT. For eachP € X/, the cocycley —
c(y 1P, P) is in the same cohomology classyasand hence is parabolic. For each cusp
k € %, there isw, € W such thate(f,) = c(n;lPK, P = we| (e — 1). Extendcin a
Q[I')-linear way toX; by definingc(e,) = —w, for all k € . Thenc € ZY(F7;V,W)
corresponds to the parabolic cohomology clads Thus, we have:

Proposition 11.5. The mixed parabolic conomology groug @; V, W) defined in Def-
inition 11.4 is isomorphic to that defined in Definition 10.1.

e Dimension2. The second mixed parabolic cohomology groups do not nedlyssa
vanish:

Proposition 11.6. If I'\C| = 1, then for each € C:
H2, (I3 V, W) = W/(W| (L-m)+ > VI~ 'y)),

yell
Proof. We work with a tesselation of mod&ld. Let = {«}. Any cocyclea €
Z(F7;V,W) = C2(F”;V,W) is determined by its values(Fy) € V anda(V,) € W.
The freedom consists of addirdg with ¢ € C1(F”;V,W). Choosingc(e) € V for
e € E changesa(gy) by c(e) | (1 — ye) and leavesa(V,) unchanged. These elements
generatey,, V| (1 - y). Choosingc(e,) € W changesa(V,) by c(e)|(1 - n,) and
leavesa(Fy) unchanged. Finally, the choice off,) € V changeqa(dr), a(V,)) by
(c(fy), —c(fy)). Thus, we can arrang®dt) = 0, and get(V,) € W with freedom in



PERIOD FUNCTIONS FOR MAASS WAVE FORMS AND COHOMOLOGY 73

W[ (1-m)+2,er [V(1-y). This completes the proof, and implies that the descriptio
is up to isomorphism independent of the choicexon its I'-orbit C. To make this
isomorphism explicit we considet € I', and note thatv — w|é leavesW andV
invariant, and sendé/| (1 - 7)) + ¥, VI(1 - y) to

WIS(L - 671 r8) + Y- VIS(L = 671y0) = WIL-mpn) + ) VIA-y). =
Y Y

Along the same lines, we arrive at the following more comgikcl description for
the general case. We recall, frajhl.1, that we use a fundamental dom@ifor which
Fis a system of representatives of the finitely mangrbits of cusps.

Proposition 11.7. For any cofinite groud” with cusps the mixed parabolic cohomol-
ogy group I-gar(r; V, W) is isomorphic to the spac@,(egcuw modulo the sum of the
following three subspaces:

Pwia-r), PO Via-», {ee@PV: du=0.

keFH keFH yell KkEFU K
In the special cas¥ = 0, we havel—||{)a,(l“; O,W)={0}fori =0,1, and
Ha(T 0, W) = EHW/WI(1-7) . (11.8)
KEFY
If V=W, then

Haa([3 V) = Vr. (11.9)

This isomorphism is given by evaluation on the fundameritscrepresented by
(3) =@+ Y, (V). (11.10)

KEFY

Thus we have

HL VW) = HS (V) = HOT V) = VI,
Hi[3 V) © HEDVIW) ¢ HYTV), (11.11)
H2{[; VW) o HZ(V) = Vi > HYGV) = {0).

e Sheaf cohomology. We now show that the mixed parabolic cohomology groups
can be identified with cohomology groups of certain sheaveS\®*. This will then
be used to give a long exact sequence for mixed parabolicwology groups (Propo-
sition 11.9).

The topological spack := I'\ 9" is compact. It contains the open subspéceI'\H
and the closed subspate = I'\9y. We denote the projection map ky. 9 — X.
LetV c W beQ[I'l-modules. Or)* we have the constant shaafx $* with subsheaf
(VX HY)U(W x ($* \ Hy)). The groud” acts by @, P)|y = (w|y,y 1P). The quotient

Faw = ((Vx 50 UWx (5" $1))fT (11.12)

is a sheaf orX. For openU c X the spacefy,w(U) consists of all locally constart-
equivariant functiong~1(U) — W that take values il on the components af 1(U)
that intersect™1(Yy).
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For a givenP € X, choosez € $* with P = 7z. The stalk(#vw)p is isomorphic to
VIZif P € Yy and toW!z if P € X \ Yy. The isotropy groud is trivial for all but
finitely manyP € X.

Proposition 11.8. Let V ¢ W be an inclusion o@[I']-modules. Then
HladT;V, W) = HI(XG Fyw)  forall j > 0.

Proof. For any refinemenf™ of a tesselation of typed, we form forz € Xg the open
set

Q, = {ZU(R: eexl,zee}u{\7 : v€x2,zev}.

in $*. By & we meare minus its end points, not the (empty) interior as a subséf of
Forz e Xp N 9, the sel?, contains finitely mang andV. If x e C, thenQ, is equal to
Dy (x)U{«}. If I';is non-trivial, the sef2, necessarily contairis,-equivalent points. We
require that the tesselatiofn is such that al), contain no mord -equivalent points
than necessary: If, = {1}, thenQ, should not contaiir-equivalent points; otherwise,
if z1, y1z1 € Q, fory € T, theny € I',. We also require thaX, consists of triangles.
A tesselation of typ@ix’ satisfies these conditions.

The setll = {nQ, : z e Xp} is a finite open covering ok. The intersection of two
different elements A4, if non-empty, contains the image for exactly ond -orbit of
e € X1. The non-empty intersection of threefférent elements dfl corresponds to
the 7V for exactly ond-orbit of elementd/ € X,. In this way, we can check that the
complexC (F, V, W) is isomorphic to the comple(>Ci (0, 7—‘\/,W))i in Cech cohomology.
This implies the following isomorphism:

Hpal T3 V)W) = H' (2 Fuw) -

See, e.g., [12], Chap. l1§4 for Cech cohomology.

Leray’s theorem (Exercise 4.1Mc. cit) states that’ (A Fyw) = H (X; Fuw) if
H"(U;?—‘V,Wlu) = {0} for all intersectiondJ of elements ofX for all k > 1. To finish
the proof, we have to check that this condition holds in tresent situation.

We first consider a connected gétthat does not contain the image of an elliptic
or parabolic fixed point of". It may happen that) is contained inyy or in X \ Yy.
Then the restrictio = Fywlu IS the constant sheadf or W, andH' (U;Fuwlu) =0
fori > 1, since constant sheaves have trivial conomology. The ptbesibility is that
U is a neighborhood ofé for some edges contained ind$Hy. ThenG(U1) = W if
U; € X\ Yy andGg(U;) = V otherwise. The sat)y = U N Yy is closed inU. Let
k: Ug — U denote the inclusion. We have an exact sequence of shea@eseiftor

spaces oJ:

0—G—W-—Kk,(W/V)—0, (11.13)
whereW is the constant sheaf given B on U, andW/V the constant sheaf on
Up given byW/V. Fori > 1, we haveH' (U;W) = {0}, andH' (U; k. (W/V)) =
H' (Up; W/V) by Lemma 111.2.4 Joc. cit, and hence alsbi*(U; k.(W/V)) = {0}. The
long exact sequence corresponding to (11.13) starts with

0 -V - W - WV - HU;g) - HUW) -

I
0
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SinceW — W)V is surjective, this implies thad(U; G) = {0}. The later parts

- HYU;k(W/V) - H(U;G6) - H(@UW) —
[ [
0 0

of the long exact sequence show thBU: G) = 0 fori > 2.

Suppose now that contains the image of a parabolic or elliptic fixed point. he
U = 1Q;whereze C or zis an elliptic fixed point. We treat the cage- x € C. The
other case goes similarly.

Let P = 7«. The restriction ofG to U \ {P} is the constant sheal/. With the
injectionk : {P} — U, we have the following exact sequence of sheaveld on

0—G—>W-—k(W/W,)—0,
whereW, is the constant she®¥/W!= on{P}. We proceed as in the previous casem

This proposition shows that the concept of mixed parabawoenology in Defini-
tion 11.4 can be interpreted as sheaf cohomology. Sinceteereq of sheaves is exact
if all corresponding sequences of stalks are exact, we have:

Proposition 11.9. Suppose that the rows in the following diagramQ@f’]-modules
are exact

0 \ Vv \ 0
f f f (11.14)
0 w W wW” 0
and that for each € §° the sequence
0— W) — W — W)'*—0 (11.15)

is exact as well. Then there is a long exact sequence of mixadb@lic cohomology
groups

+- —Hpar (T V7, W) — Hpo TV, W) — Hia T3V, W)
—Hpa [TV W) — HZ OV W) — -

Parabolic cohomology groups are sometimes defined as thellarthe restriction
to the boundary in the Borel-Serre compactification, erg[8i, §2. In dimension 1
this leads to parabolic cohomology groups isomorphic tcgrbelpsHéar(F; V) defined
here.

The category with as its objects inclusiovisc W of Q[I'l-modules and the obvious
morphisms is not abelian. To get a fully satisfactory cohtmgical treatment of mixed
parabolic cohomology, one should extend Definition 11.4 typhismsV — W of
Q[I']-modules. We refrain from carrying out this extension, andntion only one
case, which will be used in Section 13. Met— W be an inclusion of[I']-modules.
DefineQwv as the quotient in the exact sequence of sheave§ on

0 — Fuw — Fuww — Qwyv — 0. (11.16)

SoQwyv(U) = 0 if the open seU is contained inX \ Yy and Qwyv(U) = W/V
otherwise. By generalizing the proof of Proposition 11.8 sees that'(X; Quv) =
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H'([;W/V) for all i > 0. As a consequence of the exactness of (11.16) we obtain a
long exact sequence

- HAT W) — Hpa TV W) — Hpa T3 W)

. - (11.17)
— H'(W/V) — HGr (T VW) —

12. Maass forms and cohomologyThis section generalizes the results concerning
the relation between Maass forms and analytic cohomologgngin Chapter 1l for
cocompact groups to groups with cusps. We follow the sambaadeds for cocompact
groups, with some modifications to handle the complicatmmssed by the cusps. The
presence of cusps brings also a simplification: The cuspgeatiees of the tesselations
situated or9H. There is no need to extend cocycles to hyperbolic fixed panvH,

like we needed to do i§7.3.

12.1. From invariant eigenfunctions to parabolic cocycleBhe linear maps andq
from invariant eigenfunctions to cohomology classes haantdescribed in (5.5) only
in the group model of cohomology. In a model based on a tdgselA of type Fd or

a refinement of it, cocycles and q representing u, respectivelyqu, for u € &L, are
determined by:

r((Q) = f WRE . q0@ = f [was(-.2] forxeX]Y. (12.1)

We know from Propositions 10.3 and 11.5 thatis a parabolic cohomology class in
HadT; VE, Vs #9), whereV° consists of elements with finitely many singulari-
ties of a special type, discussed in Definition 9.17. Theofaihg result gives explicit
cocycles in the classes andqu.

Proposition 12.1. Let7 be a tesselation refining a tesselation of tyje

For a cusp form ue Maass{(I'), the cocycles r and q ifl2.1) have unique exten-
sions re ZYFT; Ve, V&) and q e ZY(FT; We, W), given by the integrals
in (12.1)for all x € X .

If u € Maass(I') and s# % the cocycle r has a unique extension as an element of

ZYET; Ve, VS determined by
r(eps) = —Avﬂ*Kr(eﬂ;lP’P) = —Avﬂ‘xr(e,r;lP’P)
for k e C and Pe XlT on the horocycle W«). (See§4.2 for the one-sided averages.)

If s # 3 and ue E is a general invariant eigenfunction, then r can be extended
non-uniquely, as an element ofE” ; V<, V<) by defining

r(eps) = —AV;Kr(eﬂ;lRP)
for k € C and for Pe X7 on the horocycle Wx).
In all cases g= b(s) Pir gives an extension g ZL(F” ; W2, W9

Proof. If uis a cusp form, then the integral in (12.1) converges alsamame end point
of x is a cusp. Use Proposition 9.7 and (9.12), and Propositibrfct.the unique-
ness. In the general situation, we have,1pp) € Vs’, and hence Ar(ep . 1p) €

V¢ [«]. Lemma 9.4 and Proposition 9.18 imply, after conjugatidat A\{:r(eﬂ;lp’P) €
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V9] TheTI'-equivariance of follows from -1, = y'ry. For the cocycle
property it suifices to considedr on the triangled/, at the cuspg € F:

dr(Vi)

r(er.) | (1m0 + (e 1p p,)
(-AVT(€1p,p)) [ (L= ) + T (E1p,p,) = O.

If u € Maassg(I'), then Proposition 9.15 implies thefe, 1) € y@ SRl 1z,
and then the choiceep,) = Av;r(eﬂ;lp’,:) = AVT‘r(e,,;lRP) is unique. See Propositions
9.13and9.14. =

12.2. From parabolic cocycles to invariant eigenfunctiorBhe ideas ir§7.1 and§7.2
can be applied, with some modifications. In this subsecti@construct an element
of &L starting from a parabolicy®, W"®9-valued cocycle in two ways: a local
representation as a sum of values of the cocycle, likg7id, and as an average over
T, like in §7.2.

We work with a tesselatioff™ of type Fd based on a Dirichlet fundamental do-
main §. A difference with the cocompact case is the presence of ed@éﬁ imith
a cusp as one of their end points. For the interior edges $y we can work with
R-neighborhood$\g(€), like in §7.1. TheR-neighborhoods with respect to the hyper-
bolic distance of edgem, with « € C intersect infinitely many -translates oép,. We
define instead foR > 0

Nr(epy) = {9«z : IReZ <R, Imz>1/R}. (12.2)

This is the set,Wyr with Wyr as defined in (9.18). It is of the for§ \ Q for an
excised neighborhoo@ of ]Pﬂla \ {«}. It containsep, if R>Y.

For a given cocycley € ZL(F”; W2, W< ®% we choose &-equivariant lifty €
CLFT; 6%, G2 %) by first choosing lifts of(b) for bin aQ[I]-basisB of F7; e.g.,
I§ = Eu{f,e : ke T} Forinterior edge® € E or e = f,, we choose any lift
y(e) € G¢ of y(e) € W. For the edge, to the cuspc € F it is sensible to take a
lift of y(e,) € W satisfying

U(e) € G2, Singy(e) c Nr(e,) for someR>Y. (12.3)

To see that this is possible, we note thde,)|(1 - 7)) = ¥(f) € WE. Hence
BdSing y(&) C {«}.

Next we fixR > Y large enough thasing y/(€) ¢ Nr(€) for all e e X! . LetZ be a
finite union ofT-translates ofy. We can find cycle€ e Z[X(lr] with winding number 1
onZ such thalNr(C) = Uecsuppc NR(€) does not intersed.

The cycleC has to pass through the finitely many cuspZin
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We defineu, onZ by

W@ = IO, (12.4)

Like in §7.1 this does not depend on the choice of the cg;len the choice of the
lift ¢, or on the choice of in its cohomology class, and satisfigg62) = u,(2), and
leads tou, = upy) € &L.

Suppose thay is the cocycleg in (12.1) representingju, with u € EL. We can
take a lifty(b) € C3($) of q(b), for b € B, equal to the value of the integral oin (12.1)
outsideN,(b). If ¢ is suficiently small, then there is a non-empty open\set &y not
intersecting the-neighborhood of ang € XlT. With Theorem 1.1 and Proposition 9.8
we obtain forz € V:

w@ = o [ w21 = ).

By analyticity uy, = u everywhere or.

If s# 3, we haveqsl ¢ Hi, (T W, W), from Theorem 9.20. Thugy - uy
induces a one-sided inverse @f Fors = % we haveuq = u only for thoseu €
&}, for which qu € HFl,a,(F;ijz,ij;’eX%. This includes the Maass cusp forms in
Maass] ,(I).

We summarize:

Proposition 12.2. There is a linear mag — u, from ZX(F7; W, W9 to &L.
The invariant eigenfunctionadepends only on the parabolic cohomology clagse
Hoa(T; W, W% and can be given on each compact sebiby a (finite)C-linear
combination of translates af(e), where e runs through th@[I']-basis B of Flr in
(11.4) If s # 3 the induced mapy : Hi([; We, W) — &L satisfiesr? g = Id
oné&L.

In §12.4 we will discuss the question under what conditionsyotine invariant
eigenfunctionu, is in Maassd(I') or MaassZ(I').

Now we have generalized the approact§hl leading to Theorem 7.2. To gener-
alize §7.2, we use the diagram (9.17). It satisfies the exactnesditmon(11.15), as
follows from Lemma 9.22. Proposition 11.9 implies that thisra long exact sequence
associated to (9.17), from which we use the following part:

_>Héar(ri Q‘é’,gé’* ) — Héaﬁ(r; (Wé”,"Wé”* “9
— HA (T N9 N &) —
We choose aliffy € CYF”; %, G¢" %) of y € ZXF”; We, W¢ ) as above. Then
dy € Z2(F7; N9, N“>®9), Asin §7.2, we obtain
1 ~
Uy = —A (D). (12.5)

independent of the choice of the lift The support obly(F) € N“-<is not compact,
but meets only finitely many-translates ofy. So the sum defining @\(/d&(&)) is
locally finite and converges absolutely. The represematibu, as an average does
not depend on the choice of the lftsatisfying (12.3).
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12.3. Injectivity. Starting from a cocycley € ZY(F”; We, We-*9 and a lift§ of
Y satisfying (12.3), we have constructed in two ways, (120) @.2.5), a -invariant
eigenfunctionuy, thus obtaining a linear mag from Hga,(r;wg,wg’*’exﬁ to &L
Now we will prove:

Proposition 12.3. Let s€ C,0 < Res< 1. The map
0%+ Hia [ W, W) — &L
in Proposition 12.2 is injective.

With Proposition 12.2 and with the fact that the transversisgon map gives iso-
morphismsVe = W andVs &€ = W~ ¥, this implies:

Proposition 12.4.Let se C, 0< Res< 1, s# % Then
Hpall'; V3, V5" = &

To prove Proposition 12.3 we use the following results, ofoitwe postpone the
proofs.

Proposition 12.5. The cohomology group H(T'; G2, G2 %9 is zero.

Lemma 12.6. Suppose € C?(F”; N, N ) satisfies the following conditions:

i) There exists B 0 such thatSuppc(V,) c Nr(e,) for all x € F.
i) Avp(c(®)) = 0.
Then the clasfc] € H2,(I; N, N“-®9) is the zero class.

Proof of Proposition 12.3For a given cocycles € ZX(F” ; W, W% we suppose
thatu, = 0. We have to show thap] = 0 in Hi([; We, W),

To obtainu, fromy we have chosen allift € C*(F”; 6%, G¥ ) satisfying (12.3).
The assumption implies that Ady/(%)) = i u, = 0. For eachx € ' we have

dlZ(VK) = _(Z( fK) + (Z(ek)l(l - 7TK)

as an identity ing<®. The singularities off(fx) are contained in a compact subset
of $, and those ofi(e,), and hence also af(e.)|(1 - ), in a setN,(e,) as in (12.2).
So there is an open neighborhoQdbf P]%R \ {k}in Pé that is an excised neighborhood
of P%& \ {«}, for which dyg(V,) € E(Q N $). Since the cochaig represents the co-
cycley we havedy(V,) = 0 onQ N $. In particular Supply(V,) ¢ Nr(e,) if Ris
suficiently large. Now we can apply Lemma 12.6 to conclude thatdlass @] in
Hgar(r; N@, N9 s zero.

We use the part

W O . w W, 4 . AW oy
H[%ar(r;gs’gs ,exc) - Héar(r’(ws s Ws ,exc) - sz)ar(r’ NE N ,exq

of the long exact sequence associated to the diagram (yFtpjposition 11.9. Since
[dy] = 6[¢] we have |] = O by Proposition 12.5. m

Proof of Lemma 12.6The cocyclec is determined by its values on the bagis/} U
Vi © ke Fof FJ.
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The support ofc(Fy) is a compact e
subset ofp. Condition i) in the lemma
ensures that we can find a large> Y
such that Supp(gy) < I'§a and that Fa
Suppe(Vy) ¢ I'(Fa U V) for all k € F.
In particular Supg(V,) does not inter-
sectI'Ve for somea # «, 4 € . Con- ?
dition ii) implies that Ay(c(V,)) = 0 on '

V2. A

We takea € CZ°(R) such thaty,,.; a(x+n) = 1 for all x € R, andg € C*(0, o)
equal to 0 on (0a) and equal to 1 ona(+ &, ) for somee > 0. We define for
eachk € % the functiony, € N> by (9.2 = a(X)B(y). Let ¢ be given by
&(Fy) = c(By) and for each € F

E(V) = oV = DOV - (rebmIL = ™) = xe Y V"
nez nez

The cocyclexandc are in the same cohomology class, angd(&&)) = A/(c(¥)).
Since the support af(V,) is contained iT, (V2 U &,) we have forz \°/|f+5

ALV = x@ ) cVIIm"@ = &V,

nez

and on the other hand Ac(V,))(2) = Av(c(Fy)) = 0. Sinces > 0 was arbitrary we
conclude that(V,) has compact support for eaghe F. Hencec(F) has compact
support, and is an element &f“.

The proof of Proposition 7.3 works fa), although the support of the functign
constructed there is not compact and intersects infinitelpynfundamental domains.
Thus we see tha(§) € > N“|(1-7). The cocyclecis in the same class as the cocycle
€ given by (Fy) = &(&) (which is in ¥, N“|(1 - y)) and(v,) = O fork € F. The
cocyclecCiis a coboundary. m

Proof of Proposition 12.5Let y € ZY(F7; G, 6% %), where7 is a tesselation of
type Fd. The presence of cusps gives us direatlyo = v(epo) € G2 for all
PQe Xg, including the cusps. There is no need of an extension torbgpe fixed
points as in Lemma 7.5. F&t Q € XOT’Y =X N9, we haveypq € G¥.

The cocycley is determined by its values on tigT’]-basisB = E U {f,} U {e}
in (11.4). For interior edges we havyée), y(f,) € G¢. Sincey is a cocycle, we have
w(e) | (L-m) = y(f). Thisimplies that (12.3) holds automatically for the cdeyy.
Thus, we know that there is a numbRr> 0 such thatSingy(x) c Ngr(x) for all
x e XT', with Ng(") as defined ir§12.2.

Let cuspsé,n € C be given, and leZ c $ be compact. There is a cham =
Yj€j € € Z[XT], representing a path frogito n, with ; € {1, -1}, ej € X] such that
Nr(ej) N Z =0 forall j. Forze Z we have

ven@ = v(O@ = ) & u(E)@.

J

Soy, ), € 85(2). The path can be adapted to any compact $, and hencey;,, € Es
for each pair of cusps.
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LetP e XJ Y. Fromypg| (1 - 7e) = Upxip € G it follows thatSing (pe) N 99
{¢). Letn € C, n # &. In the relationy,,, = yp, — Y¥ps singularities nea¥ of yp,
cannot be canceled by singularitiesyaf,. SoSing (yp¢) is a compact set is.

We apply Lemma 9.23 witlyy = ypglgs. Sinceypg| (1 - m) = wp’,,glp € G¢,

condition b) is satisfied as well. So therepise G2~ *°n &g such thayp, — p: € G.
Forn = y~1¢,y € T, we takep, = pg|y. Theng-invariance ofp; implies that this does
not depend on the choice gfsuch that) = y~1¢.

Leth e CO(F”; 6%, 6<% be given byh(Q) = 0if Q € XJ N $, and byh(¢) = p,
for &£ € C. Soh takes values irf€s. We go over to the cocyclg = ¢ — dhin the
cohomology class af. Theny, € Esfor all ¢, € C, andyrps = Yps — Pr € G¥. SO
Wen = Upy — Upe € EsN GY = {0}, as follows from (3.3). Taking the base pointGn
we obtain a group cocycle correspondingj/tthat is zero. m

12.4. Restriction to subspace§he mapa? : Hi([; We, W9 — &L has been
constructed in§12.2 for all s with 0 < Res < 1. Under the additional condi-

tion s # % it is an isomorphism. Now we turn to its restriction to sulisgm of

Had's W, We ).

Proposition 12.7. Let se C, 0 < Res < 1. The following linear maps are isomor-
phisms:

«

« Ps * ag
Ha [ V&, V& ®) = Hood [ W, W) — Maass(I) . (12.6)

Under the additional condition & % the following linear maps are isomorphisms as
well:

HE (T3 V&, VeS8 25 B we, w518 5 Maassh).  (12.7)

Proof. We consider two cases: (8 = W&, s = 1 allowed; ()W = WP
S # % Consider a group cocycle Zéa,(l“;fW“’,W). Proposition 12.2 implies that
[¥] = quy.

Consider a cusp € §°. Propositions 9.11 and 9.15 imply that there is a unique
eigenfunctiony, such that the clasgv, € HY(T,; W&, W) is represented by the re-
striction of y to T, i.e, ¥, = v,. We havey, € (X9)' in case (a), and, € Kl in
case (b). Proposition 5.1 shows that= u,. Since this holds for all cuspse F,
we conclude that, € Maass2(I') in case (a), and, € Maassi(I') in case (b). Propo-
sition 10.3 shows thaty gives isomorphisms in (12.6) and (12.7). The proof is com-
pleted by the fact that the transverse Poisson map giveigimsmsVy — W¢ and
(Véu exc _, "Wé‘)*’ exc. -

13. Parabolic cohomology and mixed parabolic cohomologyin this section we
shall prove the isomorphism

Hpa T3 Ve, V") = Hpa {3 V&) (13.1a)
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in Theorem B, and also, under the assumpti@ﬂ%, the isomorphisms
1 i ¥, simp
Hpar(n Ve, (Vg) e)
1 . ¥ ex
Hoal [ Ve’ Ve &)

HEa (T Ve SmP, (13.1b)
H (T Vo) (13.1c)

IR

I

Together with the previous section, this will complete theqgb of Theorem C.

We recall thatVe” €% consists of thef € V2" for which the set of singularities
BdSing (f) is contained in the s&t of cusps ofl". In Proposition 13.7 we shall give
an example that shows that there Brier which we cannot replaca’?> & py 2" exc
in (13.1c). The proofs will show that (13.1c) still holds ieweplace V<> by the
r-module of those € V" for which BdSing () does not contain hyperbolic fixed
points.

13.1. Space of singularitiesThe Q[G]-module Ss = V& /V¢ is the space of singu-
larities of semi-analytic vectors in the principal seri€®ré € 9% we denote bySs,
the subspace represented by elementd/9f¢]. For eachg € G the mapf — f|g
induces an isomorphism

Sse — Sselg = Ssyte

Clearly,Ss contains the direct sum of afis, with £ € ]Pﬂla = 09. We note thatSs, is a
subspace o, not a stalk of a sheaf.

Proposition 13.1. The spaceSs is equal to@ Sse.
&epl

Proof. Suppose thaf € V¢ represents an element 8. We write BdSing (f) =
{¢1,....&n). Weidentify f (in the circle model) with a holomorphic functidne O(Q),
whereQ c Cis an open set such that \ Q = {£1,...,&n). We choose open se;
andQ, such that

Q= Q1NQy,

£E&1€Q1, &,...,6n ¢ Q1, E1¢Qo, &o,...,60€ Q).
\ §2 52

S)l Q2

Atheorem in complex function theory (e.g., [14], Propasitil.4.5) gives the existence
of f1 € O(Q1), f2 € O(Qy), such thatf = f; + f, on Q. (Apply Theorem 1.45 in [14] to
the covering(Q4, Qy} of Q1 U Qp, and pulyy2 = —g21 = f on Q1 N Q. The theorem
givesgj € O(Qj) such thaty; » = g1—g2 0NQ1NQy.) Thus we hav@dSing (f;) C {£1)
andBdSing (f2) c {&2, ..., &n}. Repeating this construction givés- V¢’ as an element

Of Dycpr Sse- ™
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e Exact sequenceFor anyQ[I']-moduleW with V¢ ¢ W ¢ V¢, we conclude from
(11.17) that the following sequence is exact

HOT; W/ V) — HpaT; V&, W) — HL (T W) — HY T W), (13.2)

Since alll-orbits in 9% are infinite, we haveW/V¢)' ¢ SL = {0}. Hence the nat-
ural mapHo ([ Ve, W) — Hg(T; W) is injective. If the image oHJ,(; W) in
HY(T; W/Ve) is zero, then this map is surjective as well.

It seems unnatural that we go from parabolic cohomologyandsrd cohomology.
The following lemma makes this step more explicit in the desion of cohomology
based on a tesselatign of type Fd, discussed i§11.1.

Recall thatX(lr has three kind of edges: the edges going to a cusp, which are th
[-translates of finitely mang, (x € %), the edges id@$y, which are tha -translates
of finitely many f, € XY (k € §), and the interior edges iK ¥ of the formye
withy eT',ee E.

Lemma 13.2. Let ¢ € ZY(F”; W). There is a cocycle c in the same cohomology class
such that ¢e) = O for all edges e going to a cusp and for all edges containedin.

Proof. For eachk € &, the edges, goes from a poinP, € 99y to k. Definef €
Map(Xj , W)" by f(P,) = ci(e) for all x € F, andf = 0 on all other™-orbits in X7 .
Takec = c¢; — df, thenc(e,) = 0 andc(f,) =c(e)|(L—x,) =0forallk e T m

The new cocycle is effectively a 1-cocycle o ”-Y, and this resolution computes
the standard group cohomology, as we have discussgili?. Actually, the condi-
tion thatc(f,) = O for all « €  for somec in a cohomology class can be used to
characterizeH,(I"; W) inside H(I"; W).

Definition 13.3. We call aQ[I']-moduleW such thatV¥ ¢ W ¢ V¢ locally defined
if the imageSY of W in S has the form

wWo_ W
Ss = EBSs,f’
&epl

whereSY, = S&' N Sse.

SinceW is a Q[I']-module, the local summands satisﬁaly = S‘;"y_lf for all
¢ € PL. The subspace®/s"*, 5" smple VX and V& of V&' are all locally
defined.

If Wis a locally defined)[TI']-module betweerV® andV¢", we have

HY(T;SY) = @ HUTSY(), (13.3)
xel'\PL
whereSY/(x) is theQ[I']-module Dex S‘é‘g. So for the bijectivity of the natural map
HoaT; V&, W) — Hi(T; W) it suffices to show that the image of
HarT3 W) — HY(T; SY'(x)

is zero for alll-orbits x € I'\PL.
The main result of this subsection is the following proposit
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Proposition 13.4. Let W be a locally define@[I']-module betweefV® andV¢". Let
o € PL. If & is a hyperbolic fixed point fixed bye I, n # 1, we assume that the map

. oW W
1-n:8% — S¥ (13.4)

is injective. Then the image of}k(I'; W) in HY(I'; S'(I'4p)) vanishes.

This implies thaﬂﬂ,%ag(l“;(vw,W) = Héar(F;W) for all locally definedW between

V¢ and V¥ for which the map in (13.4) is injective for all hyperbolic e points
of I.

Proof. The proof is long. Starting frone € ZY(F”>Y; S¥(I'&o)) representing a class
in the image OH%al(l—‘; W), we will show thatc is a coboundary, separating the cases
wherel'y, is trivial, hyperbolic or parabolic.

We can assume by Lemma 13.2 théf,) = O for eachk € §°, and hence(f) =0
for any edgef e XlT’Y with support contained ia9y.

Let& € P3. Forh € SY(I'&) andé e I'é we denote by the component ofi in
the summancs‘é,‘g. We have

(h1y)y = hyely. (13.5)

We put for¢ € T'ép:

D) = fee X]"" : c(e) % 0}. (13.6)
Lemma 13.5. For each¢ e I'ég the set [§) consists of finitely man;-orbits.
Proof. From (13.5):
yee D(€) & c(ye)g = ¢(€), 1|y 1 # 0 = ¢(€),1, # 0 = ee D(y 19).
This implies thal'sD(¢) = D(¢).

For each interior edge e X] ", the set{¢ € T& : c(€): # 0} is finite, since
BdSing (f) is finite for eachf e V¢". We use tha&] " = | JegTeU [ Jege fe,
whereE U {f,} is the finiteQ[I]-basis ofF} ¥ mentioned in§11.1. Sincec(f,) = O,
we have

DE) = | Jlre s yeT, &)1 #0),

ecE
which consists of finitely many/:-orbits. m

o Casely = {1}.

Letk € Y, andy e I'. If y € T,
thenc(y 1P, P,) = 0, since there is a
path fromy~1P, to P, along the horo-
cycle of P,. If y ¢ T, theny™'P, is
on another horocycle. For eaghe T'&p
the setD(¢) is finite. Hence there is a
path p from y~1P, to P, along edges of
X7-Y none of which is inD(¢). (It does
not matter if the path goes through an
end point of an edge iD(£).) Hence
c(y P, Py)s = ¢(p)s = 0. This holds
for all & € T&, soc(y *P,,P,) = 0.
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Take P, as the base point for the transition to group cocycles. Tdasl$ to the
cocycley satisfying

Yy = c(y *PP)=0  (yel).

This shows that represents the trivial cohomology class.

° CasegoeC
We takex = &, and useP, as

v € I'\T,. Foreaché¢ € I'k the
edges in thd c-invariant setD(¢) are all
5 contained in a horocyclic disk at¢. If
K pass througlc, but if so, the pieces of the

D) the base point. As before, we have
& # kand¢ # y~k, a path fromy~1P, to
X7 Y may be forced to
path that are insid€ can be chosen along edgesiifiy, on whichc vanishes. Thus
we conclude that(y1P,, P,); = 0 for £ ¢ {x,y 1«}.

J/ cy *P.,P) = 0if y € TI.. Let
P, along edges o
The group cocycley, = c(y 1P, P,) is of the form

v = W)y 1+ Wy € s‘évy_lk ®Se. (13.7)

Lety,6 € I"such thats ¢ I', andyé ¢ I',. Writing out the cocycle relatiog,s =
¥y |6 + ys, we find for the components ifigy

Wys)e = Ws)k- (13.8)

This implies that there ib, € S . such thaty, ). = b, for all y e I' \ T'. For suchy:

(lﬁy—l)y,( + bK = w)/_l = _wy |'}/_1 = _(wy)y‘lk | ’)/_1 - bK | ')/_1 .
Hence

be (13.5)

(w}/)y‘lk = _((//y‘l)yk | Y — b/( | Y — _((//y—l |7)K - b/( | Y — (%)K = _bK | Y-

We arrive at

0 if yel,,
= 13.9
vy {bkl(l—y) if ye I\Ty. ( )

Foro € I'y, y € I' \ T, the cocycle relation impliegs, = ¢,. Henceb,|(1 - dy) =
be|(1 - 7y), sob, € (S¥)'*. Thus we havey, = b.|(1-y) forall y € T, andc
represents the trivial cohomology class.

e Case wher&y is a hyperbolic fixed point.
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We now suppose thay is fixed by a
hyperbolicn € T. We fixx € §. Pro-
ceeding as in the previous cases we find
c(y P, P) =0if y e I,. -1

Lety € '\ T', and considet € I'&,. 4
Letn € I' be a generator df; say¢ is
the attracting fixed poinb(n) of n. Then
n also generateb,, whereé” = a(n) is
the repelling fixed point.

The setD(¢) consists of finitely many-orbits. Ifx andy~1« are in the same cyclic
interval ¢,&')c ¢ PL or (¢,&)c c PL, then we can find a path fropr P, to P, not
containing edges iD(¢), and hence(y 1P,, Poe = 0. If 6~k andk are separated by
& and¢’ in P, thenD(¢) may form a barrier betweest*P, andP,. But now we have
(P, 1P = 0 andc(61P,, n1671P,)s = 0, sincex andy 1« are not separated by
£ and¢’, and similarly forstk andn~16~1x. Thus we have

(C(0 P PII(L=n); = (6 Py 67 P)s = (P P = 0.

The injectivity of the map in (13.4) implies by conjugatidmat 1— 7 is injective on

S‘Q’f, and hence(6~P,, P,); = 0. We proceed as in the cakg = {1}.

This completes the proof of Proposition 13.4m

Proposition 13.6. For the spacesVe"®, /2 SMPle ang /@ eXC the map(13.4) in
Proposition 13.4 is injective for all hyperbolic fixed pant

Proof. Suppose after conjugation that= [‘Oﬁl/o\ﬁ] with 0 < t < 1, fixing 0. If

f € V¢ then f has an asymptotic behavid(x) ~ Y@ X" asx — 0 for some
an € C. Thenf [(1-n)(X) = f(X) —t5f(tx) ~ X7 o(L—-t"S)an X" If f|(1-n) eV,
then (1- t"*%)a, = O(C") for someC > 0, and consequentlg, is also OC"), since
1-t™Stends to 1 fonlarge, sof € V&. This shows thatvg"*""’ satisfies the condition.

If f e V5™ thenf(x) ~ £, anX". Now the assumption thatt| (1 — n) is
analytic atx = 0 implies @ —t51)a_; = 0, and hence_; = 0 since Res # 1. Sof is
analytic at 0 as before.

Finally, of course, the condition is vacuous ftffo’exc. =

For the spac&/%"®“the map in (13.4) is not injective. This one sees by consideri
n= [(t) ﬁt] with t > 0. The function given by

¢(@ = z° forRez>0, 92 = 0 forRez<O (13.10)

determines a non-zerg-invariant element of V¥ (line model), with singulari-
ties 0 andeo. However, of course, the subspace of thdse V<*®C for which
BdSing (f) does not contain hyperbolic fixed points also satisfies theditions of
Proposition 13.4.

e Counterexample. To show that the injectivity of the map in (13.4) is necessary
we give a counterexample, based on tdoenmutator subgroup, = [I73,I37] of the
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modular group. Itis a subgroup bf of index 6. Itis free on the hyperbolic generators
C = [41]andD = [_77]. It has one cuspidal orbi, and(It)., is generated by

T6 =CDC DL See [17], Chap. XI§3E, on p. 362.

Proposition 13.7. Denote¢ = —1+2‘/5. Then kgar(rc;(vé)*,exc) has non-zero image in
HY(T,; SY(Te)), where W denoteds” .

Proof. The elemenD is conjugate tg = [‘%2 ¢92], and fixes-¢ and¢ . The example

in (13.10) shows that we can firffde WP with BdSing (f) = {—¢, ¢71}.

Definey € ZX(I,; W) in the group model of cohomology hyc = f andyp = 0.
This determines a parabolic cocycle:

Yre = (Wclas(D — 1)+ ¥plas(1 - C))|,,C D! = flas(D-1)C'D™*+0 = 0.

Suppose that the image af][in H(It; SY(I'¢) is zero. Then the image of is
of the formdF with F € SY(I'¢). FromF (D — 1) = 0 it follows thatF = F_p +

FpreSY,® S‘;‘;_l, since—¢ and¢~! are the fixed points ob. Further,f + V¢ =

FI(C-1)=(FIC)c1(g) + (FIC)c-141 — F_y — Fy1. The pointsC(-¢), C 174,
—¢ and¢! are all diferent. SinceBdSing (f) = {-¢, ¢ 1}, we conclude that G=
(F |C)C’1(—¢) = F_¢|C and 0= (F |C)C—l¢—l = F¢—l |C. HenceF = F_¢ + F¢71
vanishes, a contradiction.m

13.2. Recapitulation of the proof of Theorem Cet s # % The injective map
r: & — HYI;Ve)

in Proposition 5.1 has image mgar(r;fvg,(vg’o’ X0 = Hgar(r;fvg,(vg’*’ 9, accord-
ing to Proposition 10.3. Proposition 12.4 shows that it isssmorphism. The space
V&g |ocally defined and satisfies the conditions of Propasitia.4 according to
Proposition 13.6. smgaﬁ(r;(vg,(vg’q &0 = HgaAF;V;”O’ ®9 by Proposition 13.4.

14. Period functions and periodlike functions for the full modular group. We re-
turn to the modular groupy = PSLy(Z), which was the sole discrete subgroup of
PSLy(R) considered in the earlier paper [21]. We give a cohomoklgitterpretation

of the period functions and the periodlike functions coased there. We show that
the cohomology groupi(Iy; V&) is larger than the imagesy!, and end by describing
briefly the generalization df-invariant eigenfunctions corresponding to the classes in
this larger cohomology group: the quantum Maass forms.

14.1. Periodlike functions and cocycle3.he spac&Eg(C’) of periodlike function®n
C’ = C\ (—o0,0] is defined, in Chap. Il of [21], as the space of functignsC’ — C
that satisfy the three term equation ©h

(@) = Y+ D+ + 1)y (—). (14.1)

T+1
The subspace of holomorphic functionsHBEg(C’) is denoted-E¢(C’),,. Similarly, the
space of functions oR, = (0, ) that satisfy (14.1) is denotegeE(0, ), with sub-
space$Es(0, o), C FEs(0, )., C FE5(0, o), of real analytic, respectively smooth,
respectivelyp times diferentiable periodlike functions.
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The main theorem in [21] shows thMaassg(Fl) is isomorphic to the space of
period functionsFEs(C")°, characterized insideEs(C’),, by the growth conditions

00 = { o) L0,

O(X%) (X — o). (14.2)

These growth conditions also defif€g(0, )2, inside FE(0, o)., andFEs(O, 00)8
insideFEs(0, «)p. (These last notations and the next are not used in [21].gdtich 3,
Chap. IV of [21] a discussion of eigenfunctions of the tr@nsiperator leads to the less
strict condition that there a®), ¢, € C such that
coxt+0(1) (x10)),
X) = 14.3
v { Coo X3+ O(X%5) (X — o0). (14.3)
We use this condition to defineEs(0, )l ¢ FE4(0, 0),,. In Section 3, Chapter I
of [21] we see that general elementsk# (R, ). have in their asymptotic behavior
at co an additional termQ..(x), and at 0 a termx25 Qp(1/X), with periodic functions
Q.. andQo. So being IFE(R,)} is a strong condition, almost as strong as being in
FEs(R,)J.

Periodlike functions are related to cocycles. SupposeglaFEg(R,),. Definey
on (=, 0) by y(X) = —|X "5 y¥(-1/x). One verifies that
— -2s X
(X)) = w(x+1)+|x+1 w(—x " 1) (14.4)

for all x € R \ {-1, 0} by separately considering the cases< x < 0 andx < —1.
This extended functio satisfies i/

YlosS = —ys, ¥ = Yol (T+T'), (14.5)
with T’ = [i i’]. These relations are equivalent to the parabolic cocytdioas
Yhs(1+S) = 0, Ulas(L+ST+STST = 0. (14.6)

Hencey € FE¢(R,), determines a parabolic cocyatec Zgaﬁ(rl;(vg)*) given on the
generatorsS andT of I by ¢t = 0 andcs = y. Conversely, a parabolic cocycle
C € Zg(I'; V") such thatcr = 0 and such that the set of singularitiBeSing (cs)

is contained in{0, oo} determines a periodlike function IREs(R,), by restriction
to (0, o0).

Proposition 14.1. The cohomology group H(I4; V&9 is isomorphic to the space
FES(C")w/{hl2s(1-S) : he O(C)T}.

Proof. For a giveny € FE5(C’),, we definec € Zj,(I; peex) py

W(T) if Ret >0,

-7)"y(-1/7) ifRet <O0. (14.7)

Cr = 0, Cs(T) = { (
If ¥ = hl2s (1 — S) with h € O(C)T, thencs = hlzs(1—S). If c = df, f € V%€ then
cs = f|(S-1), and fromcy = f|(T — 1) = 0 we conclude thaf | T = f, firston an
excised neighborhood @& = P]%R \ {00} and then orC. Thus, we obtain a map from

FEs(C'), t0 HpadI1; V&€ with kernel{h| (1 = S) : he OC)T).
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0 exc)

Conversely, a given cohomology cIaseréar(Fl; % can be represented by a

cocycle such thatr = 0. In view of Theorem C there ig € V"€ such that the
equivalent cocycle — di has values inVg’. Fromn|(1 - T) € V¢ it follows that
BdSing (1) c {oo} andBdSing (cs) c {0, co}.

Restriction ofcs to (0, «) givesy € FEg(R,),. Moreover,y has a holomorphic
extension to a right half-plane. The second step in the baptprocedure ir§4,
Chap. Il of [21] can be applied, to see thaextends taC’ and provides an element
of FE§(C"),. =

Proposition 14.2.

HoalT1; V&) = FE(R,)D, (14.82)
w", Si 1
Hpal 1 V5™ = FE(RL)L (5% 5). (14.8b)
Hoall1i V) = FE(R,)S,, (14.8c)
Hiall1i VE) = FE(R.))  (PEN, p=2). (14.8d)

Proof. Each cohomology class in one of these four cohomology gr@opgains a
unique cocycle such thatr = 0. The uniqueness follows from Propositions 4.5
and 9.13. In cases (14.8a) and (14.8b) we concludeBHS&ing (cs) c {0, o0} in
the same way as in the proof of Proposition 14.1. Restriatibos to (0, o) gives
usy € FEg(R,), in cases (14.8a) and (14.8k),c FE4(R,) in case (14.8c), and
Y € FEs(R,)p in case (14.8d). In cases (14.8a) and (14.8c), the factcthat Vs°
implies thaty satisfies (14.2). In case (14.8b), we get (14.3) from Dedinif.12.

Conversely, starting from a periodlike function on €&, we construct a corre-
sponding cocycle in each of the four cases. The hardest ifie behavior at 0
and co. We have the estimate (14.2) or (14.3), and want to deriveafipgopriate
asymptotic behavior. We use averaging operators similémédransfer operator dis-
cussed irg3 of Chap IV in [21]. From the three term relati@g|>s (1 — T) = Cslos T’
onR \ {-1, 0} we conclude thats = c5|25T’|25Av+F on (Q o) andcs = cs|25T’|25AvT‘
on (—c0, —1). The asymptotic formula (4.11) implies thaf has the desired behavior
nearco in each of the three cases, and also near O SigeeS = —Cs. =

14.2. Reconstruction.A periodlike functiony € FE¢(C’),, determines a cohomology
class in Héar(l“l;fvé’qexﬁ (Proposition 14.1), which in turn determines an invariant

eigenfunctionu € &, provideds # % (Theorem C). We want to construgtdirectly
from the periodlike functiony.

For a period functiony € FEs(C’)? we need not use cohomology. Proposition 2
in §2, Chap. | of [21] shows how to associateyt@ functionf € O (C \ R)" which
in turn determineg.. The Fourier expansion df gives the Fourier cd&cientsB,(u)
of u, hence determines explicitly. This also works ify € FE4(C).. For general
periodlike functiongy there still is a holomorphic 1-periodic functidn and its Fourier
codficients still give theB,(u), but the coéficients A,(u) cannot be readfbfrom it
directly. (They are hidden in the behavior binear points ofQ.) In this case we will
use the theory developed in these notes instead.

To a giveny € FE¢(C’),, we have associated in the proof of Proposition 14.1 an

explicit cocyclec € zgar(rl;q/g’q 9 by (14.7). To apply the method 12 directly,
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we have to finch € V> ®9eo] such that

c— dh e ZL(y; Ve, V&)  ZY; Ve).
The existence of such a functidtrfollows from (13.1c¢). The proof of Proposition 13.1
shows that the construction of a suitables not explicit. It seems better to apply the
method in§12 directly to the cocycle € H,%ag(l“l;ws‘“qexﬁ given by, = Plc,. So
Jr = 0 andjs = Pics € WA W0, o). )
The first step is to determine a cocycle correspondingitoa model of conomology
based on a tesselation. We use the fundamental domain

F1 = {ze9 : 0<Rez<1,|4>1, z-1] > 1}

in Figure 6, which diters from the standard fundamental domain in Figure 4 on p. 69.
Here we work with parabolic cohomology, not with mixed pasidcohomology. So

A %1 A g’l C
Tle e

i €li+1 —
ST_leZ +i V3
2

-1 0 1 2

Ficure 6. Fundamental domai§; for the modular group, and a 1-
cycle around it.

there is no need to give the neighborhood of cusps a speedathient. In particular,
we do not need an edde,. We use the tesselation obtained from alll;-translates
of &1. In Figure 6 we have indicated@I1]-basis{es, e} of Q[XlT]. The tesselation
7 is not exactly a tesselation of tyjpel as discussed if11.1.

To find a cocyclec € Zl(F_T;WS“’O’ % corresponding tg we writec = df, with
the following f € Map(X7 ; W 9. We put, withp = %

fo) = 0. ) = 3dsIA-STY. 1) = 305,  (149)

and check thaf satisfiesf (P)|(1—6) = s if P = Pfor P € {c0,p, i}, 6 € I'. Next we
extendf to X by f(y"1P) = f(P)|y + ¢, for all y € . Takingeo as the base point
we see that = d f corresponds to the cohomology clag$. [

On theQ[I]-basis{ey, e} of F :

1. 1. 1.
cler) = zwslT_l, ce) = —§¢SIT_1+§¢/S|(1—ST1)- (14.10)

To represent the corresponding invariant eigenfunctiam &, we take the follow-
ing 1-cycleC around

C=ew+teo_1+€10+61+€12, (14.11)



PERIOD FUNCTIONS FOR MAASS WAVE FORMS AND COHOMOLOGY 91

which is indicated in Figure 6. It turns out that
€0 = (l - S)T_lel s
C = (T2-T1-STS+ST!S+T2STNeye
= (T?2-T1-STS+STIS+T2ST)(1-S)T e.

Application of the transverse Poisson transformation t ftmction in (14.7) gives
a representativés € G2 of ys € W ¥ with Sing (Js) c i (0, ). We have
c(€0.00) = C(€1) | T(1 - S) = ¥s, and hencesing (c(€p,.)) C i (0, ). This implies that
the singularities ofy(C) are contained in the support Gf Thus, forz € §; we have

ui2

%w(c:) = iil//(eo,oo) (T?-T-STIS+STS+TIST?
" d (14.12)
= 2 (is(e-2- stz + 1 ds( 25 )+ b 1) + s =)

= Us ¥s l//sz+1 ¥s 13 wsz_z :
Each of these values @fs(z1) can be expressed by a transverse Poisson integral from

71 to z of the original periodlike functiow. See (3.4).

14.3. The image of the invariant eigenfunctions in the first conogyogroup. In the
previous section we have shown thal, = HL(I; Ve, V&) for s # 3. We now
show that forl" = T'; the image is not the total first cohomology group with analyti
codficients:

Proposition 14.3. Let s# 3. The inclusion lgar(rl;fvg,q/gf’exﬁ c HY(Iy; V&) is not
an equality.

Proof. We determine a cohomology clasg [¢ H(I'1; V2) by taking in the line model
—dit

Yts = 0, Yt = aE(Vg) with a(T) = m (1413)
(See the introduction df10.2 for the relations.) The sum
—di(t+n
AL )@ = ) SRdl) (14.14)

& (1+ (r+n2)™

converges without regularization, and has singularitreshe points of+i + Z. So
Av;(y7) does not extend as a holomorphic 1-periodic functiorComhich it should

according to Proposition 8.2 if/] were inHL (I Ve, V") =r&d. m

14.4. Quantum Maass formsThe notion ofquantum modular formeas introduced
by the third author based on several examples ranging frodekied sums to quantum
invariants of knots [35]. Roughly, these forms are fundién Q — C whose “failure
of modularity” f — f oy (or more generallyf — f|y for some group actiori +— fly
involving a non-trivial automorphy factor) has some kindcohtinuity or analyticity
property that is not shared by the functiéntself. Example 1 in [35] was related to
the period function, in the sense of [21], of a particular B&Brm (ono(2) and with
eigenvalue M), and this was extended by the first author in [3] with theliappon in
this subsection in mind.

More precisely, we will discuss how to fill the gap indicatgdebquestion mark in
the following diagram of inclusions and isomorphisms (inietithe underlying group
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is the full modular groud’;, omitted from the notations, ansl # %) by putting an
appropriate space of quantum Maass forms in that position.

Maassd . Maassic  *  _gh . ?

F

HEAVE, V) HL Ve, VS HL (Y, V& &9 7 H(Ve)

113

(14.15)

We first discuss the quantum Maass form associated to a cuspife Maass2(I}).
In the main theorem in [21] we associateutamong other objects a periodic holomor-
phic functionf, on C \ R given by

W) = { Znon® AW - ifim e > (14.16)
— Yo NS 2ALU)E™™  iflIm 7T <0,

with the Fourier cofficientsA,(u) from the expansion (8.1). In [21], Chap.§4, the
function f, is expressed in terms of thefunctions ofu by inverse Mellin transforma-
tion. By moving the line of integration in this represematiwe obtain an asymptotic
expansion forfy(iy) asy — 0. This expansion is the same fpd 0 andy T 0. Sofy,
has a smooth continuation through 0. Instead of approadhweytically, we can let
7 tend to 0 along a geodesic half-line $nor in $~. One may show that there exists
fu(0) € C such that

fu(r) = f,(0)+0(1) asr-5o0, (14.17)

where 5 (geodesic approach) indicates uniformity on sectors inugyer or lower
half plane bounded by geodesic half-lines.

The periodicity off, and the formulafy(r) — 723f,(-1/7) = Yu(7), wherey, is the
period function associated tg leads to a unique extension ffto Q that satisfies

fu@) = fu@+o(l) ast-¢ for each¢ € Q, (14.18)
fulasy(€) = fu(¢) - c, (&) foralmostallé e Q forallyely, (14.19)

wherey - ¢, is the V¥ *-valued group cocycle determined by = ¢, on (Q ).

The isomorphism (13.1a) implies that there exists V<" such thatcy = c, +
nlas(y — 1), y € I, is aV¢-valued cocycle oy. Replacingf, by fu = fu+n, we
obtain the relationfy,sy = f, — ¥, onQ, with ¢ € Z (N fvg’,(V“’*"”). If we add
to f, an element ofV’¢, then nothing essential changes We say fhaepresents the
guantum Maass forrassociated ta € Maass2(I}).

Itis argued in [3] that to define quantum Maass forms for oitnaariant eigenfunc-
tions, we should work not with function® — C, but with systems of expansions,
giving for each¢ € Q a short asymptotic expansion

1) = d—g te+0(l) (- ). (14.20)

In the case ol € Maass(Iy), the function f, gives an system wherd: = O for
all ¢ € Q. Eachy € V¢ (line model) defines an uninteresting example with- 0 and

C: = ¢(&) for all cuspst.
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The groupl} acts on the spack; of all expansions as in (14.20) by

| [ab
Pi2s cd

withy = [‘;‘3] e I1. We define thdi-moduleQs as the quotient in the exact sequence

(€1) = (cr + D) pOéyn) +0(1) @), (14.21)

0> VY —>Rs—Qs—0 (14.22)
and we call the elements @ /R quantum Maass formsvith the notation
gMaass(I1) = QL / R . (14.23)

In this way, we ignore elements 6f¢ and systems iR that are exactly's-invariant.
One can show that there is an injectigMaass(1) — H(T; V¢). Theorems 2 and 4
in [3] give for s # % the following commuting diagram:

&g
[ \ (14.24)

gMaassg(I'1) —— H(Iy; Ve)

Thus, gMaass¢(I'1) can take the place of the question mark in the diagram (34.15
Proposition 3 in [3] relates the vanishing A§(u), the codficient of =S in the Fourier
expansion ofi € &Y, to the vanishing of the; in (14.20).

We expect that these results can be extended to all cofiiteedel” with cusps.

15. Maass forms and holomorphic functions.In §8.2 we have associated tice Sl
the holomorphic functiom(u) € O(C)T given by

BUE) = ) Baw)e™,

nez

based on the cdicientsBy(u) in the Fourier expansion (8.1). To have a well defined
codficient Bp(u), we assumes # % For al-invariant functionu € &L, whererl is a
group with cuspsp(ulg,) € &L for each cusp € C. In the introduction o&10 we
have chosen thg, such thap(u|g,) depends only on the class ofn T'\C. Thus we
are led to define

8l — Do, ju=(Bulgy),- (15.1)

kel'\C

The kernel of is, by definition, the spackaassi(') introduced in§10.1. To get
information on the cokernel, we start withv € SE and integrate the Green'’s form
{u,v} in (1.9) over the boundary of a truncated fundamental dorg&inSince{u, v} is
closed, this integral vanishes. All edgesf, except for the edgek near the cusps
k € §%, occur in"-equivalent pairs for which the integrals @f, v} cancel. Hence
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Inserting the Fourier expansions and working with Wronsgjave obtain the follow-
ing relation, valid for allu, v € EL:

0 = 3 ((2s- 1) (Aoul ) Bolvlgr) - Bolulge) Ao(v1 9)

KEFU

+n2 (s + %)Z 10272 (An(ul g6) B-n(0191) = Balul g0 A1) )
n+#0

(15.2)

This is the so-calletlaass-Selberg relatiorSee, e.g.§3 in Chap. IV of [22].
In particular, ifv € Maassi(I'), then

0 = (s~ DBo(ulg) Aolvl g

KEFY

1 1 1
+a0r(s+ 5) D INEBo(ul 9 Anlola)
n+0
The right hand side of this expression makes sense if weaepheB(u| g,) by the
codficientsby, of an arbitrary element

B e PO, B0 - Ve

kel'\C mezZ

Note that the convergence of these series implies that
bt <«<a €M fornez, keT\C, foreachA > 0. (15.3)

Thus, we have a linear map from @Ker\c O(C)T to the dual spacMlaassi(I)".

Theorem 15.1.Let0 < Res< 1, s# 1.
i) The following sequence is exact:

0 —> Maassi(I) — &L - @ 0@C)"T = Maassi(r)Y — 0. (15.4)
kel'\C

i) Every ue &L is the specialization of a familfus)s<y of elements y € 82
depending holomorphically on a parametéros a neighborhood U of s.

Remark 1.Part ii) of the theorem will be used in Chapter VI, when we stlidy the
relation betweeir-invariant eigenfunctions and distribution-valued colubogy.
Remark 2.The proof will show that the restriction on the spectral page#ersis non-
essential.

Remark 3.This theorem is essentially known if almost Bf| vanish. Since the result
is peripheral to the main themes of these notes, we will okéych the proof.

Proof. The surjectivity of the mapn is clear sinceMaass.(I') has finite dimension
and already the restriction ofi to (D, C[q], with q = €< is surjective. The Maass-
Selberg relation shows that the imagej @ contained in the kernel oh. The main
point is to show that Imis equal to Kem. We will sketch how this follows from the
spectral theory of automorphic forms. One may use [15] aargé reference.

We use Eisenstein series and Poincaré series. These geralasolutely only for
Res > 1. This forces us to consider also valuesaiutside the strip & Res < 1.
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For Res > 1,k € C, the Eisenstein series

E{D = ) (Imgy2)® (15.5)
e\l

converges absolutely and defines an elemer&.of It depends holomorphically on
s, and has a meromorphic continuations@ C as a family of elements a.. The
singularities in the region Re > 3, s # 3 are of first order and occur at = 1
and possibly at finitely many points ir%,(l). The latter singularities are absent for
congruence subgroups bf. If E has a singularity ag € (%,l) then Reg Ef €
Maassg (I') and for allu € Maassg (I):

f u ResEgdu = Ay(u). (15.6)
ng
Suppose that the collectiobf) satisfies (15.3). The series
Fs(@ = Z 's,27rn(gK 2)
nez

converges absolutely for all € C and defines a holomorphic family of elements of
E¢ N WE[k]. The Poincaré series

P2 = > > Fi») (15.7)
kel'\C yel \I'
converges absolutely for Re> 1. It defines a holomorphic family of elements&ff,
and
Bm(Pslgs) = br, (MmeZ, ke F). (15.8)
We consider the following families df-invariant functions, only the first of which
has values i€’

Es = ) BES.  P@ = ), ), Fi02,

KkeFU keFM yel \I'
where

F{@ = ), biimg g emRee .
n+0
This definesPs € C®(I'\$) for Res > 1. The diferencePs — Es — Ps is given by
a series converging absolutely for Re- 0. Compared withPs, the advantage of
Ps is its square integrability. Its decay at the cusps implregt for any Maass form
ue€ Maassg (I),0 < Res; < 1,5 # 2, the mtegralfm Psu du converges. Its value
can be explicitly computed:

j;\s PsUd/l Z Z (7T|n|)2 SF(S+521 l) (S 251)A—n(U|gK)bK (159)

keFU n£0

This quantity occurs in the expansionRfin the spectral decomposition of the Laplace
operator inL2(I'\$). This expansion converges absolutely forRe1. On checks that
the convergence is even better in the region Res < 1, except for the terms that have
singularities in this region. See, e.g., the reasoningemifvof of Satz 6.2 in [26]. For
O<Res<1,s# % these singularities have at most first order and occur aegaior
which there are square integrable elementsioéind at values at which an Eisenstein
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series has a pole, in other words, at valuesfof which Maass.(I') # {0}. This means
thatPs = Eg + Ps + (PS — Es- F3S) has a meromorphic continuation to Re 0, with
singularities of at most order one at the same points, ansiuth a point,

ResP; = ResEs + ResP.
% o )

By analytic continuation the equalityA(— A5)Ps = 0 goes through wherBs is holo-
morphic. (Work first in distribution sense.) Furthermore,

Ba(Pslgs) = B (ke FY nez). (15.10)

At points s for which Maass(I') = {0}, we thus havePs € &L with prescribed
Fourier codficients B(Ps|g,). This implies that the sequence (15.4) is exact for
theses, and that all elements &% occur in holomorphic families on this region in
the parameter space.

It remains to considesy # % 0 < Reg < 1 for which Maass%O # {0}. We first take
Resy > 3. Then all elements dflaassg, are square integrable, ahassg () # {0}
can occur only foisg € 3 + iR or sy € (% 1). Hence the spaddaass} (I) is invariant

under complex conjugation. Fare Maass? () we have from (15.6) and (15.9):

f uResPsdy = Z bg Ao(ul g) + Z Z (”|”')2 %)b’,; A (Ul gy).
ng %

kegcu KEFU n£0

This implies that the finite-dimensional spamaasséo(l“) is spanned by residues of
finitely many Poincaré seriel;, for choices of theby, such that almost all of them
are zero. Hence elements M‘aasséo(l“) occur as values of holomorphic families
s (s— ) Ps.

Now suppose that thej, are chosen such that(h) = O for h = (h,), h(0) =
Snb§ €. Then Reg Ps € Maassg (') is orthogonal to alu e Maassg (T). In
other words, RegPs = 0, ands — Ps is holomorphic as = 5o andPs, € Sgo satisfies
|Ps, = h. Thus, the sequence (15.4) is exact for the vauef the spectral parameter as
well, and all elements dfg occur as the value of a holomorphic familyfnvariant
As-eigenfunctions of\. This finishes the cask < Resy < 1.

Since&l = &, all elements oL with 0 < Res < 3, s # 3, occur as values of
holomorphlc families as well.

We are left with the kernel ofn for 5 with 0 < Regy < % Suppose that the
collection f) satisfies (15.3) and that for alle Maasséo(l“)

(250 - DB Ac(ulg) + 7T (s+ 3) D EbA(ulg) = 0. (1511)
KEFU n#0
As in the case Rg) > 2, it follows that Reg, Ps is orthogonal td\/laassSo(F) which is

contained |r1v|aassSO(F) If Res, Ps # Oitis known that then itis a linear combination
of residues afy of Eisenstein series, and thag(Res, Ps|g,) # 0 for someu € F.
We apply the Maass-Selberg relation (15.2)Ftband the Poincaré seri€%", which

is the Poincaré series witlf = 1 and all otheb’;]', equal to zero. This gives

1 1
220(P5"92) = (xn)2°T (s~ 5) An(Esl )
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Application of (15.2) toE and E5 gives Ao(E£|g,) = Ao(ES|g«), which is the
symmetry of the scattering matrix. Hence we have

Ao( ResP| gu) = Z bt RSOesAo(Eg lg,) + Z Z b RsoesAO(pg,n 19,)

K Kk nz0

St AoReset 1) + > 3 T (s - 2) A (ResE Ig,)

K Kk nz0

-0,

by assumption (15.11) on th¥s. Hence Reg Ps = 0, andPy, € 81;0 has the prescribed
Fourier codicients By(Ps, |g«) = bf. This implies that the sequence (15.4) is exact
for s= .

Part ii) is a consequence of parti). For instance,dbes not belong to the (discrete)
set wherMaass.(I') is non-zero, then we can takg to be the preimage of any holo-
morphic variation ofu € EBKer\C 0(C)T, e.g., the constant family — (8(ul gi)),.

In the proof of part i) we have seen that for &}y, be?™"¢), in the kernel ofm at
sthere is a family of Poincaré serigs— Py such thajPs or j Res -5 Py is equal to

(Zn bﬁeZHin()K_ u

Chapter V. Maass forms and diferentiable cohomology

In the chapters 11-IV we studied the relation between iramreigenfunctions and
(semi)-analytic cohomology, and proved Theorem C and mb#he statements in
Theorems A and B. In this chapter we turn to smooth artédtintiable cohomol-
ogy. We will give a proof of the isomorphismséar(l";‘vg"*""’) = Hgar(r;fvg°) =
Haa(T; V), p > 3, in Theorem B. Actually, we will show that

Maass(I) = Ha ([ Ve), (V.1)

and

Maassd() = Ha([;VE)  (peN, p>3), (V.2)
which together with the previously proved results (in parar, (12.6) and (13.1a))
proves the remaining isomorphisms in Theorem B.

The isomorphism (V.2) will be established §16 by a method analogous to that
used in§12.2, with adaptions to the fiiérentiable context. 1§17 this leads to The-
orem 17.1, which gives the isomorphism (V.1). A consequdsdéat the space of
modular Maass cusp forms is in bijective correspondench thi¢ space of smooth
period functions. This result, Theorem 17.2, extends thmmesult in [21].

Most of the proofs in this chapter work for general cofinitealete subgroups of
PSL,(R). At the end of Section 16 we use separate approaches fompzat groups
and groups with cusps. The cocompact case is the harder @rin§A.3 in Chapter I
we need for cocompact groups to extend cocycles to hyperbrdid points.

The isomorphy ofeL and HY(I'; V<) in the cocompact case is already known,
though with a quite dferent proof, from the work of Bunke and Olbrich [6].
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16. Differentiable parabolic cohomology.In this section we relate the cohomology
group Héar(r;‘vsp), peN, p > 2, to the space of Maass cusp forMaassg(F). The
spaceV? was defined ir§2.1. Recall that in Chapters Il and IV the map from para-
bolic cohomology to cusp forms was constructed, not withocoeblogy with values in
the spacel of analytic functions o@H, but in the isomorphic spac®/’s’ of bound-
ary germs ofis-eigenfunctions of the Laplace operatdr Here we work with the
corresponding spac®/’? of boundary jets, as defined §3.3.

The construction of Maass forms from cocycleghl and§12.2 used locally finite
sums. To generalize this, i§116.1, to diferentiable cocycles we will need infinite
sums. The resulting convergence questions require sonmaejgao considerations,
carried out in§16.2. The proof for discrete groups with cusps is completegil6.3,
where we prove that ip > 3 the map that we have given is injective with image in the
cusp forms. (The surjectivity will be an easy consequendbaifin the analytic case.)
The injectivity in the cocompact case is handled1%.4.

16.1. Construction of a Maass form from a given cocyclge start with a cocycle
v e ZXF7; W) with p € N, p > 2, and use a tesselation of type Fd. (See§6.2
and§11.1.) We choose B-equivariant liftys € C}(F”, G%) of v, corresponding to the
exact sequence

0—- N g -wP—o, (16.1)

with the spacez? of representatives and the spa@é’ of functions with decay of
order p at the boundary, as introduced§8.3. Thendy € C2(F”, N¥) and we put

WD = = YA = MG  @eH).  (162)

yell

Proposition 16.1. The series in16.2) converges absolutely and uniformly on com-
pact sets inH. The sum it defines belongs&), and does not depend on the choice
of the lift  or on the choice of the representativein the cohomology clasiy] e
Héar(r; (Wsp)-

IfZ e Z[Xl'r] is a cycle consisting only of edges that &r¢ranslates of edges i
that describes a simple positively oriented closed cuivent

W= @@ Y i), (16.3)

yel',y~1F outsidezZ

Proof. The functionh = di(§) is in ¥ and hence satisfids(z) = o((#)S+ P)
asz - 09. Since—L, = (2 + 2coshdg i)™ (Table 1 in§1.1), we haveh(z) =

: [z+iP
o(e" 5P dE)) as7 — 9.
Let K c H be a compact set. Fare K the number ofy € " such that d¢z i) < Ris
at most G (e®) since the area of a hyperbolic circle with large radiis asymptotic

to 47eR. We get

(o)

Do) <k Y FetPR < o

yel R=1
This proves the first statement of the proposition.
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Our next observation, which will be used repeatedly, is tahave

W) = ), hy

vel, y~1§ insideZ

for any cycleZ as in the proposition, sinde = di. This gives the expression (16.3)
for uy. It also follows thatuy is the limit of %&(ZR) for any sequence of cycles
{Zr)}ren @pproaching the boundary, for instance those given in Lerhéa below,
whereZg has distance at lea&to i and consists of @F) edges. This observation
is useful both to prove thaiy is independent of the choice of the lift and that it
is an eigenfunction. For the former we observe that changirg ¢ + y with y €
CY(F”; N®) each edge in Z contributes at most(e (¢*PR) to y(Zg), which gives
¥(Zr) = O(ER) o(e™(5*PRY. Hence link_, x(ZRr) = 0.

The definition of W implies that f — As) € CH(E”; ). It follows that with{Zg}
as above we have\(- 1s) ¢(Zg) = O(eR e (5tPIR) = (1), this estimate being uniform
on compact sets. Hence we have with a test funatiarC:°(9)

0, (A= A)uy) = f ((A = 25)0) uy du (sinceA — Ag is self-adjoint)
$

= 1 FI{im f (A = 29)0) ¥ (ZR) du (sinced is compactly supported)
— 00 55

i

= il FI{im f 0 (A — )Y (ZR)) du (again sinceA — Aq is self-adjoint)
JT — 00 55

= Jim of L . sup [(4 - 19(Z(2)

0 (by the estimate (3.10a))

So (A - As)u, = 0 weakly. By elliptic regularity, 4 — As)u, = 0 holds also at the level
of functions. This shows that, € Es, and thel-invariance is obvious.

Finally, we add toy a coboundandf with f € CO(F”; WP). We can lift f to
f e CO(F”;GP), and change the lify of y to the lift ¥ + df of y. This changes
dy(F) by dd f(F) = 0, and does not influence the definitionupf m

Thus we have defined a mag : [y] — u, from H3 ([ WE) — &L If g € N,
q > p, theny € ZYF”; WS also determines an elementZA(F” ; ‘WP). The con-
struction ofu, shows thatrd[y] = a8[y]. Fory € ZY(F”; ‘W) the sequencé(Zr)(2)
stabilizes, uniformly forz in compact sets, and this shows thgtcoincides withu,
defined in§7.1 and§12.2. Thusaf[y] = ag[y] on HgaH(F; W), with o as in Theo-
rem 7.2 and Proposition 12.2. This implies that in th@edentiable case we also have
Uqu = U for u € &L, whereq : 5 — HY(T; W) is the map constructed §6.2, in the
version given after (6.10c). Summarizing, we have:
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Proposition 16.2. For each pq € N, g > p > 2 there are linear maps? and o3
induced byy — u, such that the following diagram commutes:

Maassd(IN———— &L

= q
ag
2 T X

0 0
Héar((wéu’ (Wéuoo) = |_|éa\r(("V§J ,00) - Hpar((qu) - Hpar((Wsp)

We have suppressddin the notation for conomology groups. See (13.1a) for the
isomorphismHéar(F;W“’,‘Wg’o"”) - H%ar(l“;ws“’q“’).

It remains to be shown that the linear mag)is injective, and, ifi" has cusps, that
its image is in the space of cusp forms. Before turning to tjugstion, in§16.3 and
§16.4, we prove the geometrical result that we used in thefmioBroposition 16.1.

16.2. Geometrical lemmasThe result that we used is the following:

Lemma 16.3. Let R> 0. There exists a cycle Z Zg € Z[X] ] consisting 0fO(€?)
edges contained ihd¥ and lying outside the open hyperbolic disk with center i and
radius R, with winding numbek around i.

Remark. The circumference of a hyperbolic cycle with radiRds approximately
2reRl asR — . The lemma says that the conditions Brdo not force it to have
substantially more edges that is to be expected from theHesfga hyperbolic circle.

The proof of Lemma 16.3 will be very simplelifhas no cusps, but If has cusps
andRis large, the path correspondingZawill always have to go through some cusps,
and in that case we will need a bound for the number of timdsieacurveZ is forced
to go through a cusp. We first estimate this quantity.

We recall that for groups with cusps the fundamental domasadecomposition
& = FyUUegeu Vi Wheregy is compact and wheré, is the closure of the intersection
of & with the open horocyclic disby(x) in (11.1). The boundary obvy(x) is the
horocycleHy ().

Lemma 16.4. The number of horocycleg*Hy(x), y € T, x € §, that intersect
the hyperbolic circle § around i with radius R i©O(€}) as R— co. The number of
cuspidal trianglesy™'V,, y € T, k € Y, that intersect the circle gis alsoO(eR) as

R — oo,

Proof. & is finite, so we may restrict ourselves to considering ongaus F,
which we conjugate too.
In the counting of the horocycles, runs over',,\I'. We writey™1 = [i‘g]. The

horocycle is determined by the first colur@) of y~1. The maximum of

Im(y 1Y +x) Y
LGY +X) +i2  (ax+b-cY)?2+ (@Y + cx+ d)?
_ —ab-cd L (@AY 1 ; ¥ R
occurs forx = -5, and has Valu‘(1+(a2+c2) 7 < @y Slnce|Z+i|2 e " onCg,

the number of horocycles intersectifg is bounded byN(e?/Y), where
N(B) = #{y €T\l : y ¢ T, @ +?<B]. (16.4)
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Lemma 2.10 in [15], applied witlz = i andg, = 1, implies thatN(B) = O(B) as
B — 0. This gives the first statement in the lemma.

For a fixed horocycle/*Hy(x), there may be many cuspidal triangtgs'V,, in-
tersectingCg. Their number dfers by no more than 2 from the number of intervals
[-1+n, 3 +n], n e Z, containing an elementwith % > e R If suchx occur,
the equationax+ b — cY)? + (@Y + cx+ d)?> = Y& has solutionsq andx,. These
solutions satisfy

4 4Y(1-2eR) Y&
< < .
(@2 +c?)? 7 (a?+c?)er a +c?

4
(X2—X1)2 = m(eR—Z)Y—‘I-YZ—

So the number of sectors is bounded by
VY&
Va2 + 2

Fory € I's this gives C( VYGB) sectors. The number of other sectors to be counted is
estimated by

2+ % — X <«

Yo=Y Y i
> —(1+1)/2

yel\I, y¢l o, a+ C Vel \I, ¢l oo, 2 eR/Y

a?+c2<eR/Y 27-1eR v<a?+c2<27 'Ry

<Y 22(”1)/2 NE2'e?Y) < &,
=0

where in the last line we have again usé&(B) = O(B). =

Proof of Lemma 16.3LetI'(R) = {y e I' : 371§ n Dgr # 0}, whereDg denotes
the hyperbolic disk around with radiusR. We putAg = U,err) y~ 1§, and take

Z = 0Ar. Sincedy has finitely many edgeg, consists of at most @I'(R)) edges.
Each edge occurring i@ (with non-zero factor) has a distance at leBdb i. The
curve Z encirclesDg once in the positive direction. To complete the proof we show
that #°(R) = O(e®) asR — co.

We use thafy is the union of a compact s@t, and finitely many cuspidal triangles
V,, with x € . Lemma 16.4 estimates the numbewaf I" such thay 1V, intersects
D for somex € by OER). To count the number af 1y intersectingDg we note
that the distance between any two pointsyoty is bounded by some numbgr
independently ofy € I'. Hence ify 1&y intersectsDg, theny &y is contained in
Dr.t. This leads to an estimate by

areaDrg.+)

_ R+ty _ R
arcaly) OE™) = o). n

In the next subsection we will use the following modificatmii_emma 16.3:

Lemma 16.5. Suppose tha¢ andn are cusps of . Let R> 0, and denote by Rthe
open hyperbolic disk around i with radius R. There exists drcila= Ag € Z[Xl'r]
consisting ofO_g,,,(eR) edges in[9F that describes a path fromi to i in the region
$ \ Dgr and is homotopic i \ Dg to the (oriented) arc irPﬂé fromé&ton.
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Proof. Let C € Z[XlT] denote a path frong to n along edges of the tesselation. It
consists of Q,(1) edges. LeFr be a cycle as in Lemma 16.3, consisting o€%)(
edges and encirclinBg once.

The cycleZg and the direct path intersect each other in pointX@f As in the sketch
on the right, this leads to a path with the desired propertiéth O, (1) + OER) +
O¢,(1) edges, going frong alongC to the first intersection point, then counterclock-
wise alongZg to the last intersection point, and then aldDgon. =

16.3. Maass cusp forms associated tgfetientiable parabolic cohomology classes.
In the cocompact casMaassg(F) = &L, and parabolic cohomology coincides with
standard cohomology. In this case it only remains to showttramapse? are in-
jective. IfT" has cusps, we need to show not only th8is injective, but also that its
image is in the space of Maass cusp fonma;assg(r). Surprisingly, the presence of
cusps actually helps in proving the injectivity.

The cocompact case will be discussed in the next subsetiiere we suppose that
I has cusps. We use a tesselationf type Fd. (See§11.1.)

Letu = u, € &L be the invariant eigenfunction associated to the cocycle
ZYF7;Wy) via a lit y € CY(F”;G5). We use the following variant of the for-
mula (16.3) in Proposition 16.1: éfandn are distinct cusps df, we have the splitting

U= Ugy + Uyg (16.5)
with
1/ -~
ey = —(FW+ Y @),
yerl', y~1§ to the right of A (16.6)
1 - . .
Upg = ;(—w(AH D dw(%)ly),

yerl, y~1F to the left of A

where the chairA € Z[X]] represents a path fromto n without self-intersections,
following edges contained i d%. The words “to the left” and “to the right” oA
depend on the orientation &€ “to the left of A” is equivalent to “to the right of the
opposite path-A.” The definitions ofu;,, andu, . do not depend on the choice of path
from ¢ to 5 for the same reason that the right hand side of (16.3) wagerment of
the chosen patA.
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Proposition 16.6. For cuspse, n, 8 satisfyingé < n < 8 < £ for the cyclic order obH,
andy € I we have

Usg = Ugy + Upg, (16.7a)
U1gy-1y = Ugyly, (16.7b)
Usp € Es. (16.7¢c)

Proof. The statements in (16.7a) and (16.7b) are clear from theitiefis. For (16.7c)
we proceed as in the proof thate &g in Proposition 16.1, now with a sequence of
pathsAg from £ton asin Lemma 16.5. m

The following lemma implies that, , is relatively small near the arc fromto &
ind%.

Lemma 16.7. Lety, ¢ and 4, be as above. We denote py g;, the geodesic from
£ to n. For any choice of path A fromito n we have

. -2
@02 = of( 7))
yeT, y~1§ to the right of A (16.8)

and @ = (1)),

In both estimates z> 9% through the region to the left @for ong.

We first apply this result, postponing its proof.

Proposition 16.8. Let p > 2. The function y is an element oMaass(I') for all
y e Z{FET; WD),

Proof. Since 0 < Res < 1, it sufices to show thaty, is bounded on the cuspidal
sectorsV, c & for anyk € §. (This follows from the Fourier expansion at the cusp
see§10.1 and equation (8.1), and use the asymptotic behavipraso of the special
functions in the expansion.) Taken € C with x betweené andn for the positive
(counterclockwise) orientation @fH and such thaV, is between the geodesig ),
from « to  and the geodesig;  from ¢ to k. LetRy, Ry, Rz denote the regions to the
right of the geodesics; «, g«.,, andg,, ¢, respectively, as in the picture below. We have

U= Ugy + Uy + Upe. (16.9)

By Lemma 16.7y; . is bounded on the complementRf (and hence also o), u,,
is bounded on the complement & (and hence also o¥,), andu, is bounded on
the complement oR3 (and hence also oY, sinceV, N Rz is compact). =
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Proposition 16.9. The mady] ~ u, from HFl,ar(F; W& to L is injective for p> 3.

Proof. Suppose thati, = 0. Let A be a path from the cusfto the cusp; as in the
definition ofu , in (16.6). Lemma 16.7 shows that

. ~ S+p-2
iUz, (2) = H(AQ) + o((|Z f i|2) ) (16.10)
for zon or on the left of the geodesic frogto i, and also thati us ,(2) = —ni U, ¢(2)
satisfies (16.10) on the right of that geodesic. Hence (}tal@s for allz € $.

Sincey(A) € GY, there is a continuous functidl on a neighborhood dPﬂla in Pé
such that

WA = (ﬁ)s B +0(=L5)")  @-09).

1z +il2

With (16.10), and with the assumptign> 3, we get the same estimate fau; ,(2).
Lemma 4.4 in [4] tells us that elements&f satisfying an estimate of this type vanish.
We conclude thati;,, = O for all cuspst andp.

Now we have by (16.10) that(A) € 272, soy(A) is 0 in WP, Theny(A) = 0
becauseW? — WP is injective (sinceW? = VP c VP2 = wiP2),

Take a cusg as base point. The group cocygle— ¥(C,-1.,) with C,-1, - a path
in Z[X]] from y~¢ to £ is zero. Hence the clasg][ € H3,(G. m WY) is the trivial
cohomology class. m

We summarize the results in the following proposition:

Proposition 16.10. Suppose thal’ has cusps. Forall g € N, g > p > 3, the
following diagram is commutative and all arrows are isomtugms.

Maass2(I')

= N

HL (W, W) —= HL (W) — Hpad WE) — Hpal WE)

It remains to prove the estimate (16.8).

Proof of Lemma 16.7Sincey(C) € GP, the second estimate in (16.8) follows from
the first.

By conjugation and symmetry it fices to considef = co, 7 = 0. Theng = iR, .
We can assume thate §. ChangingA means adding an element A to the sum,
and does not influence the estimate. So we can assumg iias fromeo to 0 through
the left half of the upper half-plane. It nowffiges to estimate far e $ with Rez > 0

the sum I
myz \s+p
202 = ()
Y Y
wherey € I'is such that 1§ is in the left half of$ and whereh = dy/(§) € NE.
For anyy = [23] in the sum we have Re'li < 0, soab+cd > 0. Moreoverw is a
cusp ofl, so Imy~1i stays under a bounB,,, depending only on the groupand the
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cuspeo. Hencea? + ¢2 > g-. ForRez> 0,17 > 1:

Imyz y _ 22 + y+1
yz+iP[lz+i2 (82 +c?)z? + 2(ab+ cd)x + 2y + b2 + & (16.11a)
4% +27 +1 48
T @+ T T

We apply the reflectioa — 1/zto conclude that there is a boulg > 0 such that for
Rez>0,|7 < 1:

Imyz y
hZt iR /|z+ i < 4By. (16.11b)

In the proof of Lemma 16.3 we saw that the number d@fanslates ofy that in-
tersect the closed disRy aroundi with radiusk is O(€) ask — . We use this to
estimate the size of the sEf of y occurring in the sum such that 1§ intersectsDy
but does not interse@y_;. We use the estimates in (16.11) for the sum up+okg—1,
with kg to be chosen later.

Z Zh(yz) < Zek |Z+||2 s+p eko(#)ﬁp.

k=0 yeFk
For the tail of the series, we employ another estimate. Applyhe triangle in-
equality d§z i) + d(z i) > d(y1i,i), and using ' ~ @) 357 — 9%, we find

-1
Imy_z Y gdoz-d@) o gdolii) o L
lyz+il? |z+if? i

and ify~1§ has distance at leakt- 1 toi, then

|m’y_1i _k
—_— e".
ly~ti +if?
This leads to
ek Imy s+p Yy \-sp
IR ,_1.+.|2 (720)
k=Ko 7€Fk ok Y
(1- sp)k -sP (A-s-pko (_Y 5P
< € < € —_— .

k>ko
Combining both estimates we obtain for the total sum:

S hiyz) < do-(RestpdED . i-Res-plorRestpdCe).
Y

We takeky = [2d(z i)], and obtain

which gives the desired estimate of the summ
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16.4. Injectivity of the map from gierentiable cohomology to invariant eigenfunc-
tions, cocompact caséle can also prove the injectivity of the map froWP-valued
cohomology classes to invariant eigenfunctions in the ogaarct case, now even for
p = 2, but the proof in the absence of cusps is harder, becauseh#ie A used in
(16.6) must be replaced by an infinite path. We will show:

Proposition 16.11. LetT be cocompact, and let,jg € N, g = p = 2. Then the
following diagram is commutative and all arrows are isomtugms.

&5

q
(074
q ST a?

HY (W) — H(Ws) —= H(WY)

Only the injectivity of ] — u, from HgaH(F; WP) to &L remains to be proved. In
the non-cocompact case we used the decomposition (16.5)teothe eigenformu,
as a sum of two pieces associated to paths between cusps.hR@are no edges in
XlT that go to points of the boundadt and we will use paths betwedtyperbolic
points instead. To do this we will extend a liit € C{(F”; G%) of ¢ to a function
defined on infinite paths going from a poiRte XOT C H to a hyperbolic fixed point
on 0H, like we did in§7.3 in the analytic case, using a one-sided average. However
because our knowledge of the behavior of the extension hedmyperbolic fixed point
is incomplete, we are forced to perform some complicateitheses.

The proof will consist of five steps, of which steps a) and bjenmsot needed for
groups with cusps, and step d) requires more work than inréndqus subsection.

a) Choice of paths from points (Ng to hyperbolic fixed points.
b) Extension of} to these paths.

c) Definition ofuy(£1, &2) for hyperbolic fixed pointg; andés.
d) Proof that ifu, = 0 thenu;(£1,&2) = 0.

e) Proof that ifu, = 0 then /] is the trivial cohnomology class.

e Step a). We assume that the tesselati®nof type Fd is based on a Dirichlet
fundamental domaig. We choose once and for alll&orbit H of hyperbolic fixed
points ofT", and consider only hyperbolic points belonging to this brbor eacl¥ € H
we denote by € I" the generator of ¢ that hast as its repelling fixed point.

In the proof of Proposition 7.4 we extended a cocyclexé'nx XOT to a cocycle on

(XOT U H) X (Xg U H). Here we work with a cochaif, and have to deal with actual
paths between points NOT U H. We choose for eache H and eaclP € Xg cHan
infinite chainp(P, ¢) of elements ob((lr, describing a path fror® to ¢£. We require:

(i) T-equivariancei.e, yp(P, &) = p(yP, y¢) forall y e T,
(i) p(P, &) has no self-intersection,
(i) for I;’:Q € XOT andé¢ € H the diferencep(Q, ¢) — p(P, &) is finite, i.e, it is in
Z[X] ]
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To see that such a choice is possible
we start with on& € H, and abbreviate
ne = 1. Let sbe the geodesic connecting
& with the other fixed point’ of . (In
the sketch on the right in the upper half-
plane model we placég at 0 ]Pﬁ and
& atoo € PL.) We choose a poird on nta
s and cover the segment sfbetweena
andn~tawith the finitely many translates S
¥& such that the closurgF contains the
segment between these two points. &

Next we take the infinite cover of consisting of all translates by, n € Z, of the
cover of the segment betwearand,'a.

fl

The union of all these translates is a
connected simply connected regioriHn
a The boundary of this region consists of
C two components. We take the component
on the right of the geodesic with respect
to the direction fron¥’ to &.
nta This component can be described as an
infinite chain of the fornC = }°_ & X
s with x € X] ande; € {1,-1}. The chain
is p-invariant: there exists > 1 such that
nX = Xn. It has no self-intersections.
We use this chain to form infinite paths from eaehe XOT to &. Through each
Pe XOT there is a unique geodesie that intersectss orthogonally. We denote the
intersection point byp. If P happens to be a point sfwe takexp = P.
First we consider those poinBse XOT

for which x; is betweena and n‘la, or Q
is equal toa. For each of these points %
P we choose a chaim € Z[XT] de- C xp P

scribing a path fromP to a pointQ in
Ccn XOT. This can be done in such a way

-1
that the path correspondingitintersects n-a
the path given byC only in Q. Then we
choosep(P, &) as the sum of and the | S
part of the chairC describing a path from
Qtoé.

The pathx(P, £) that we have constructed has no self-intersectionP, R € Xg
satisfy xp, Xxr € [a,1771a) then p(R, &) and p(P, &) form the same path, except for an
initial part. So requirement (iii) is satisfied. Thus we hamnpleted the choice of
paths going to the fixed € H.

he condition on the intersection points implies that the seH x XOT is freely
generated by thet(P) for which we have defined(P, £). We putp(I'P, y¢) = yp(P, &)
for y € T to definep onH x Xg'. This choice clearly satisfies requirements (i) and (ii).
For requirement (iii) we observe thpfp"P, &) andp(P, &) differ only in an initial part.
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In the sequel we assume tha(P, &) for £ € H andP € Xg has been chosen such
that requirements (i)—(iii) hold.
e Step b). The lift € CY(F”; @P) of the given cocycley € ZX(F”; WP) is defined
on paths irZ[X] ]. For P € X] andé € H we have arranged tha(P, &) - nglp(P, &e
Z[Xl‘r]. Soy(p(P,&) - né:l p(P,£)) is an element o&F. We use the one-sided average
Av;f discussed 4.1 to define:

Fi(P.&) = A J((1-n1)p(P.&)) € GEIH \ (€)). (16.12)

The dependence &;(P, £) on the choice of the patp(P, ¢) is not visible in the nota-
tion. We think ofF;(P, &) asy evaluated on the infinite pat(P, &).

Near points ofdH \ {¢} we have good information on the behavior 6§ (P, £).
It is locally (in the disk model) of the formw — (1 — |w]?)® - (analytic), as defined
in §3.3. The next lemma gives information concerning the beitavear the poing.
We formulate it in the upper half-plane model, witat position zero, and use polar
coordinatesy > z= pe? (p > 0, ¢ € (0, 7).

Lemma 16.12.Letg € G such thaty - 0 = &, in the upper half-plane model, and
gneg L= I 1/0«/f] with t > 1. Then we have, uniformly f@ < ¢ < 7:

Fi(P.é)(g-pe?) < 1 (0 10),
9Fs(PEg-pe?) < pt (plO).

Proof. This is a statement concernitfo€?) = Y -0 h(t"x) for someh € GY. There
areR,, > Ry > 0 such that

p3(sing)®ag(p cosg, p sing) for0<p <Ry,
h(o€?) = o(1) forRy < p <R,
p~S(sing)%a.(-p cosp, p~tsing) forp = R.,
with CP-functionsag anda,, on a neighborhood of 0 iR? containing a disk of radius
Ro, respectivelyR-L. In the intermediate region we also hayh(pe?) = O(1).

Forp < Ry we split up the sum &8 = —% andA = —'Ogl(gg/?). The sum over
0 < n < Bcontributes

toHpE?): ) t"p(sing)%ag(t"po cose, tpsing) < pS(sing)t°s

0<n<B

S

< p(sing)’p™° <« 1,

tod,Hpe?): < Z pS(sing)® ("7t + ") < pt
0<n<B
The sum oven > A contributes
to H(p€e?) : Zt‘”sp‘s(sin #)%ac(~t "o cosep, t "o sing)
n>A
< pp % <« 1,
to d,H(pe?) : Zt—”<s+1>p—5(sin¢)s(50—10(1)+ p?0(1) < pt.

n>A
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The regionB < n < A contributes QA - B) = O(1) toH(p€?), and tod,H (o€?)

Z t"O(1) < t" <« p7t.
B<n<A

On this region we do not obtain a facjei(sing)®. So we have to be content with O(1)
and Op1) as the final estimates. m

Let p(-, -) and (-, -) denote two choices of paths, both satisfying the require-
ments. Thenp(P, &) — p(P,£) can be written as an infinite sumyermy(y‘lg) of
elements o] , with m, = +1 if y~!F is between both paths, with the choice of the
sign depending on the winding number@iP’¢) — p(P, &) aroundy~1g, andm, = 0
for all othery~1&. For the influence of the choice of the path BH(P, &) we would
like to get an estimate of the sum

> My di). (16.13)
Y

For later use we formulate this more generally. We need estisnfor absolutely
converging sums ovey such thaty™'§ is contained in a seX. Near pieces of the
boundary away from the closure &fin Pé the estimates are better. In the proof of
Lemma 16.16 we will need also an estimate for derivativefiefsum.

For convenience we use in the following lemma the disk métle!l D, with coor-
dinatesw = re'?, 0 <r < 1 andd € R/2xZ.

Lemma 16.13. Let X be a union of-translates ofy. Denote by)? the closure of X in
DuUJD. Lethe Nsp, p=23,... let{e, : I'} be abounded set of complex numbers,

and put
H = Z g hly.

yel', y~1FcX
Then for anyw € D with hyperbolic distancé(w, X) to X at least equal to R 0

Hw) < e ®PDR - (1-r?) g H(re"?), (1-r2)dgH(re") < e PR (16.14)

The diferential operators operators £1Ir%) 9, andr~1 (1 — r?) y are natural in the
coordinates and#, since they ar&-equivariant up to a factor of absolute value one.

Proof. In fact, we will prove the estimates (16.14) for the funciarbtained by re-
placing all terms in the defining sums by their absolute \&lue

Near the boundanh(re'”) = (1 - r?)Sa(re'”) with a CP-function a on a neigh-
borhood of the boundary, vanishing up to orgeon the boundary. Hende(re'?) =
O((1-r?)S*P) andd, h(re'?) andagh(re'?) are Q(1-r?)5*P-1). Sincehis aC2-function,
we can use these estimate everywher@®oifo estimated, Y, hoy anddy Y, ho y we
useX |22 hy (yw)| and 3| 22 hy(yw)|, and note thal 22| = Lbvl® e use thab, and

1—|wl
hy are linear combinations df, andh; with bounded coficients.) So foH and for

its derivatives we have to deal with sums of the type

> @- P, (16.15)

yel,y~1FcX

with g = porq= p- 1, and have to add a fact¢t — r?) for the derivatives.
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We can assume thatg. Forally e T’

1-hul? < e90w0 = gdwy™0) o gdwy™F)

An area consideration shows that the numbey af T such that df,y ') < Ris
O(€R). Hence the sum in (16.15) satisfies

< Zed(w,X)H e (st (+dw.X) o g (sta-1)dw.X)
1>1

This gives (16.14). m

Lemma 16.13 has as a direct conse-
guence that ifl is a closed cyclic inter-
val in St = 8D contained in the open set
dD \ X, then ag 7 1, uniform in€® € I:

H(re’) < (1-r?)%Pt,
OH(re”) < (1-r?)stP2,
To see this we simply observe that
e d@X) = O((1 - r?) uniformly, because
the nearest point ok to any point neat
lies in a fixed compact subset Kt

If we have two choicep(P, £) and p(P, £) for the path fromP to ¢ we get for the
difference of the corresponding valueg(P, &) andF; (P, £) the expression

2 M aiiE) = ) m i@y

vell yell

(16.16)

with m, as in (16.13). We havey(%) € N¥, and the estimate (16.16) shows that
this sum is estimated by(@ — r2)s*P-1) near points obD \ {¢} =: |. The restriction
morphismps : WE(1) — V(1) in §3.3 is given bypsf(€) = limy41((L-r?))~S f(re'?))

on the class iVP(1) represented by e G2(1). Thus, we obtain the following result:

Lemma 16.14. The elementsF; (P, &) € V20D \ {£}) does not depend on the choice
of p(P, £), and satisfies

psFi (P ) = (psFp(PENY  (yeD), (16.17)
and
psFi(PL.&) = psFy(P.&) +y(r) (16.18)
for P1,P e X7, & € Hand re Z[X] ] corresponding to a path from;Ro P.
Thus we get a cocycleon (XJ UH)x(XJ UH) with values in a-module containing
V& in which singularities at points ifl are allowed. The restriction @fto X x X7’

is related toy € ZY(F”; WE) by ¢(P, Q) = ps¥(p), wherep € Z[X? ] is a path fromP
to Q. ForP e X] andé € H we havec(P, ¢) = psF;(P,é).

e Step c). Letéy,& € H, and choosd € XOT. Motivated by (16.6) we might
consider
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F(Z(R 52) - FIZ(P’ gl) &1
D i@y,

yel',y~1FcX
whereX is in the region indicated on the
left. However, this sketch is misleading,
because the pathp(P,£¢1) and p(P, &2)
may intersect each other. &2

We need to work with a surEymyd;Z(%)W, wherem, is the winding number
aroundy 1§ of the closed path-p(P.£&;) + p(P, £1) from &, via P to ¢; and then back
to & along the positively oriented arc @D from &; to &. (In the sketch above,
wherep(P, £1) and p(P, &) do not intersect each other exceptHnwe havem, = 1 if
y~1& c X andm, = 0 otherwise.) We define

1 -
Upér. &) = — (Fi(P.&) - Fy(Pér) + ) my di(®)ly). (16.19)
yell
There is a more general representation
1,- -
U 2) = — (UM + ) my di@)hy). (16.20)

yel

whereA is any infinite path given by an

infinite chain of the form—p(Qa, &1) + &

r + p(Q2. £2), whereQq, Q2 € X, where

re Z[XT] corresponds to a path fro@;

to Qo, and wherem, is the winding num-

ber aroundy~1§ of the closed path con-

sisting of —A and the positively oriented

arc indD from & to &. &2

Lemma 16.15. We have pi(é1, £2) € Es and

Uj(€1,62) + Up(€2,61) = Uy. (16.21)

Proof. The second assertion follows directly from (16.2) and (Q}.2

To see thati;(&1,£2) is in Es we want to apply the same reasoning as in Proposi-
tion 16.1. We need a sequenégof infinite paths fromé; to & that have distance
at leastl to a fixed pointPy. To construct such a sequence we consider first the se-
quencesif; "Po) and (7,"Po) tending ta¢1 andé», respectively. Pupn = 17" p(Po, £1)—
n;"p(Po, &2). This is a finite path frony;"Pg to 7;"Po, andF;(Po, £1) is equal to
2ins=0 LZ(po)mg. (The infinite chain} o pn describes an infinite path fromAg to &1,
that will in general be dferent fromp(Po, £1).) For eachn the maximum of the dis-
tance between two points gf, does not depend om The sequence of finite paths
On = 15" P(Po, £2) — 15" p(Po. £2) has similar properties.

For eachl > 1 there is by Lemma 16.3 a cyc going aroundD once in the
positive direction in the region with hyperbolic distandeleastl to Py. There are
pointsP, € XOT in the intersection oF; with Yo pn, andQ, € Xg in the intersection
of Z, with the infinite path}, .o 0. Taken; such thatP, is on the finite patip,,, and



112 R.BRUGGEMAN, J.LEWIS, AND D. ZAGIER

nz such thatQ, is on the patta,,. We form the chainy as the sum of the following
chains:

from to
& = —2nsn Pn &1 . Po,
a» along edges op,, n7,"Po Py,
ag along edges of;, P Q.
a  alongedgesaf, Q  7,"Po,
a = 2nen,Un U;nz Po &.

To apply the method used in the proof of Proposition 16.1 ienese (A—/ls)lZ(aj)
for each of these paths. We have{ 1s)¥(az) = O(€) O(e P! = o(1). The paths
a, anday consist of finitely many edges, and have distance at lea®{(1) toPy. This
leads to A — As)U(a;) = o(1) fori = 2,4. The pathg,, has distance at leakt- O(1)
to P, and there exists a factar> 0 such thatj,"q,, has distance at leagh+1 - O(1)

to Pg. Hence f — Ay (as) < Yns0 O(e Py = o(1), and similarly fora;.
Now we can proceed as in the proof of Proposition 16.1m
e Step d). We now show:

Lemma 16.16.If uy = 0, then y;(é1,&2) = Ofor all £1,£2 € H.

Proof. Sinceu,, = 0, equations (16.21) and (16.19) give

niuz(é1,62) = F(P.&) ~ Fy(P.é1) + Sp(P €1, &2) (16.22)
= —niug(é,&1) = ~Fi(R&) + Fi(P.&) - Sp(Ré2, 1),
where
Sp(Pé&m) = ) m,di(F)ly, (16.23)
yel

with m, the winding number aroung1§ of the path consisting ofp(P, 1), p(P, &)
and the positively oriented arc dD from & to n.
Letws € D. By Lemma 16.15 and (1.9) we can use Theorem 1.1 to write

Uj (€1, £2)(wn) = 2 j; {U;(£1,€2), 0}, (16.24)

whereuv(w) = gs(w, w1) andC is a curve encirclingv; once in the positive direction.

We will choose the patlC consisting
of four pieces, two being small ar€; &1
andC, nearé; andé,, and two being arcs
D; andD; betweent; andé,. (See dia-
gram.)
Near¢; it is convenient to use the up-
per half-plane model, writing; = k; - 0,
with k; € PSO(2)c G = PSLy(R). &
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We choose th€; depending on two small positive paramete@ndo, as indicated
in the following sketch okj‘l C; in the upper half-plane:

The pointsz; andz, where the ar€; meetsD; andD>, correspond ta; = % and
Z-i . . .

w, = zj—+: in the disk model. The absolute valbe= |wj| = Iw’jl (near 1) is related te
]

j
ands (near 0) by an explicit formula (namely-1b? = %). The arcsD; are
of the formw = be? whered runs through an intervdl in R/27Z. We must show that
each of the four contributions to (16.24) tends to zeré as 0 and there — 0.

We begin withC;j. In the upper half-plane model we use forearé; the coordinate

pd¥ = kj‘lz € $, for which

{u,0} = 1 (vuy — U,) do + p (U, — vU,) de,
Io

and hence simplju, v} = £ (u, — vu,)) dp on Cj, wherep = ¢ is constant.

We haveF;(P.£j) = O(1) andd,F;(P.&j) = O(™*) according to Lemma 16.12.
The corresponding term fd¥; (P, &y ), with j # j, is smaller, sincé;(¢1,¢2) € G2
for an intervalJ containing¢;j; the derivative is Q). Lemma 16.13 and its con-
sequence (16.16) applied & (P, ¢1,£2) = —S;(P, é2,£1) show thatS; (P, &1, £2) is
bounded neafj, and that nea¢; the derivatives with respect toand ¢ are esti-
mated by @1 - r?)~1) = O(¢™1). The derivative with respect {0 can be expressed
in these derivatives with bounded dbeients. Finally, the functions and v, for
v =0s(-,w1) € WP are O¢5) and O€S 1) respectively. All this leads to the following
estimate of the integral oveér;:

f ' £(O(1) OE" %) + O(%) O(c ™)) dp = O().

-6
This estimate is uniform ia € (0, 7/2).
Now we turn toD;. In the disk model with coordinate = re'’ € D we have

{u,0} = %(UUQ—UUQ)dI’+I’(UU|——UUr)dH,

and hencdu, v} = b(uyy —vu;) d on Dj, wherer = bis constant. Sincé has length
at most z = O(1), the contribution of the integral ove; is bounded by a multiple of
the maximum ofuu| + [vur| over the ard;.

We use that;(P,§)) € G2(1) and that represents an element Y to get from
Fi(P.&j)(re") = (1-r?)%a(r, 6) anduv(re'®) = (1 - r?)sh(r, 6) the contribution

r(1 - r2)2(a(r, )b (r, 6) — a (r, O)b(r, 6)) do .
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This contributes Q(1 — b?)%%) to the integral. (We note that the implicit constant
depends on the interval, henceah By Lemma 16.13 the contribution &;(P, £1, £2)
or —S;(P,&2,£1) is O, ((l - b2)25+p‘2). Sincep > 2, the final estimate of the integral
overDj is O:((1 - b?)%).

We have arrived at

Uj(é1.&) = O(9) + O.((1 - b9)®),

with the first term uniform irs. Lettings | 0, and hencé 7 1, we arrive at the bound
O(e®) for all positivee. Henceu;(é1,£2) =0. =

e Stepe). If u, = 0, thenu;(£1,£2) = uz(é2,£1) = 0 by step d). Lemma 16.16 and
(16.22) give forP € XJ andéy, & € H:

Fi(P.&2) - Fj(P.&1) = Sj(P.&2.61) = —Sj(P.é1,£2). (16.25)

The cocyclecon (X) UH)x(X] UH) introduced after Lemma 16.14 satisfig:, £2) =
ps(Fj (P, &2) = Fj (P, £1)). We havel; (P, &j)(w) = Aj(w) (1- |w]?)3 whereA is ptimes
differentiable on a neighborhodd; of !\ {£j} in P%. Estimate (16.16) shows that
Sj(P.é1,&2) iso(1 - |w|2)p‘1 near closed intervals irF4, £1)c and, with reversed roles
of £&1 andé,, also neardy, &)c. SOA; — Ay is in CP1(Q; N Q). We glueA; andA,
to obtainf € G%* that represents(P,¢;) ons* \ {¢j} for j = 1,2. The sheafw? "
has no sections with support consisting of one poinf-s(°, £1) andF; (P, &) are in

WPt and and their dference is represented by an elemenngf*. The proof can
now be completed in the same way as in the last part of the fdéfoposition 16.9.

17. Smooth parabolic conomologyWe combine the results oiP-valued cohomol-
ogy of the previous section to show thaga,(r;(vg) = Maassg(r). In this way, we
complete the proofs of Theorems A and B, and conclude thahtie theorem of [21]
extends to three timesfierentiable period functions.

Theorem 17.1.Let0 < Res < 1. LetT be a cofinite discrete subgroup of &
PSL(R).

If T is cocompact thei&k is isomorphic to R(T; V) and to HY(T; VP) for all
peN,p>2

If T has cusps, theRaass2(I") is isomorphic to H,(T'; Vs) and to Hi,(I'; V) for
alpeN,p>3.

Proof. With the restriction maps we obtain from Propositions 16.10 and 16.11, in
the case thdf has cusps and > 3

N /’/2\)
Maass(I) — Hi(T; V) — HL (T V) —— HA(T VE) |

and ifI" is cocompact ang > 2

N — T
EL — HY(; V&) — HYD; V) —= HY(T; D)
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where in both cases the composition is an isomorphism. Suffitss to show that the
natural mapsHz.(I; V) — Hia(T; VE) andHY(T; Ve*) — HY(T; 1Y) are injective
for all p.

We show this in the standard model of cohomology. Supposédha € Z1(T; VL)
there existsa, € VP such thaty, = ap|(y — 1) for ally € I'. Since all arrows in the
diagrams in Propositions 16.10 and 16.11 are isomorphitimese are als@g € A
such thaty, = aq|(y — 1) for all y. We take a hyperboliy € I', and conclude from
Proposition 4.1 that aliy coincide, and hence give elementsdf’. =

As a consequence of (14.8c) we obtain for the modular groegpdiowing exten-
sion of the main theorem in [21] on period functions and Maasp forms:

Theorem 17.2.Let0 < Res< 1,and pe N, p> 3.
Maass)(I1) = FEs(R,)) = FEs(R.), = FEs(R.)S.
So thrice diferentiable functions on (60) that satisfy

F) = f(x+1) + (x+ 1% f(?’(l)S

and the estimateg(x) = O(1) asx | 0 andy(X) = O(x %) asx — oo automatically
are real analytic, and occur as the period function of a Maasp form.

17.1. Recapitulation of the proof of Theorem Ahe definition in (5.5a) induces an
injective (Proposition 5.1) map: &L — HY(I"; V). The isomorphisniV® = W (in
§3.2) and Theorem 7.2 give a left inversg o Pg of r, with

a’ [(//] — b(S) Uy »

with b(s) as in (3.4d). The injectivity o o Pl follows from Proposition 7.3, Propo-
sition 7.4 and the exact sequence (7.6).

Proposition 16.2 extends? to af : HY(; W) — &L, in a compatible way for
different values op. Theorem 17.1 shows that these extensions are injectideglan
determine an isomorphist(I'; V°) — EL.

17.2. Recapitulation of the proof of Theorem Bhe injective map in Proposition 5.1
from Maass2(I") to HY(I'; V&) has its image in the subspaki.(I'; V&, Ve ), ac-
cording to Proposition 10.3. Proposition 12.7 shows that

r 1 Maassy(I') — Hi (T V&, V)

is an isomorphism. Propositions 13.4 and the factﬂﬁt"" is locally defined (Defi-
nition 13.3) imply that
Haal [ Ve, V& ®) = He (T V)
Finally, Theorem 17.1 gives
Maass(I) = Ha ([ Ve).
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Chapter VI. Distribution cohomology and Petersson product

In the previous chapters we have considered the relatiovgaet automorphic forms
and cohomology groups with values in principal series spaoasisting of functions,
possibly with singularities. In this chapter we turn to cotaogy with values in the
spacesV; > andV;“ of distribution and hyperfunction vectors in the princigatries.
For groups with cuspg*(I’; V5*) is isomorphic td\/laassg(r), by a result of Bunke
and Olbrich, [7]® The natural map fronH(I"; V;*) to HY(I"; V5 ) turns out to be
the zero map if" has cusps. This contrasts with the cocompact case, wheleBumd
Olbrich, [6], have shown thatl}(T"; V) = HY(T; V5 ¥).

The Petersson scalar product can be transformed into &#&iliorm on the space
Maass(I'). The isomorphisms with cohomology groups transform thiliadar form
into a duality betweet 3, (I'; Vs®) andHY(I'; V7). We will show in Section 19 that
this bilinear form coincides, up to a multiple, with that givby the cup product, which
we have to adapt to parabolic cohomology if the discrete gimas cusps.

18. Distribution cohomology. The obvious way to obtain a map from Maass forms to
distribution cohomology uses the natural homomorphisno@ated toVs® — V.

In §18.1 we see that this leads to the zero mag18.2 we discuss another map from
Maass forms to distribution cohomology, which gives an isgphism on cusps forms.

18.1. Vanishing image in distribution and hyperfunction cohooggl The injective
mapr in Proposition 5.1 can be followed by the natural mapH¥T; V). The
composition is injective for cusp forms:

Maassd(I") —— Hia([; V&, V&) —— Ha (T, VeY)

f

HY(T; V)

81;(% H(; V)
The inclusionsVg® ¢ Vg™ c Vg« give further natural homomorphisms
HI V) — HYT Ve™) — HYT Ve). (18.1)
Proposition 18.1. The image of EL under the natural maps i(18.1) vanishes in
H(T; V5¢), and the image af Maasss(I') vanishes in H(T; V;®).

Proof. Letu € &EL. In §5.2 we have seen that the class ofis represented by &/¢-
valued cocycley, = glos(y — 1), whereg € H is a representative of the hyperfunction
Ps~lu. Hence the image afu in HY(T; V;“) is zero. Ifu € Maasss(I') thenu has
polynomial growth. Theorem 2.3 implies theg 'u e V5. Henceru is zero in
HYT Vs®). =

18.2. From cusp forms to distribution cohomologin §2.4 of [4] we have considered
two spaces ofecond order eigenfunctions:
&, = Ker((A - 15)? : C*(H) — C¥(H)),
(&™) = {f €& : f has polynomial growth

(18.2)

3see the footnote i87 on p. 37.
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The space of eigenfunctions of polynomial growth is equallty = PsVs™ (Theo-
rem 2.3).

Propositions 2.6 and 2.7 in [4] show that the spaces of seoadetl eigenfunctions
fit into the following exact sequences:

0 - & - &g - & - 0

U U U (18.3)

0 > &% 5 (E)° D&~ o 0

The second of these exact sequences leads to a non-zeroamequisp forms to distri-
bution cohomology. Indeed, defibe: Maasss(I') — H('; V5*) as the composition
Maasss(l) = (£57) = HE57) — HYTIE57) = HYT;95™),

of the connecting homomorphism in the long exact sequersmcided to the second
row in (18.3) and the isomorphism provided by the Poissomsfiamation.

If I has cusps and € Maassg,(I) is the valueug, of a holomorphic familys —
Us € Maassg(I'), then al-invariant lift is, € (E5)™> can be obtained by fierentiation
with respect tcs, as in the proofs of Propositions 2.6 and 2.7 in [4].[Baanishes on
Eisenstein series. Bunke and Olbrich have shown in [7], &sibjpn 8.1:

Proposition 18.2. Let0 < Res < 1. The map : Maass)(I) — HY(I; V;>) is an
isomorphism.
Their proof uses an exact sequence

0—&~ —Cc™Hc™ 5o,

whereC™* consists of thef € C*($) such that}oT'f has polynomial growth for all
n,me N.

In the cocompact case, this result amount§fic HX(T"; V;*). In [6], Bunke and
Olbrich have shown that

EL = HYTvo™) = HYT; vv). (18.4)

If I has cusps and # % then all elementsl € &g occur in holomorphic families,
as we have seen in part ii) of Theorem 15.1ff&ientiation with respect tegives for
u € & aT-invariant lift in (89)". Hence the image dfuin H(I"; V) vanishes:

Proposition 18.3.Let0 < Res< 1, s# % For groups with cusps the composition
Maassg(I') LN HY(T; Vo) — HYT;V0@)
is the zero map.

19. Duality. In this final section we give a cohomological descriptionhaf Petersson
scalar product.

19.1. Petersson scalar productThe Petersson scalar produain the space of cusp
formsMaass{(I) is given by
(uv) = f uv du.
ns
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It can be computed by integration over any measurable fuedéahdomain, for in-
stance ovefy as chosen i§6.2 in the cocompact case afitil.1 ifI" has cusps.
Instead of ¢, -) we use theilinear Petersson scalar product

U0y = f uodu  (u,0 € Maassd(I)). (19.1)
e

SinceMaassd(I') # {0} only if s € (3 +iR) U (0, 1), the spacéaass(I') is invariant
under conjugation. Hencei,p) = (u,v) for all u,v € Maass®(I') for all swith 0 <
Res< 1.

19.2. Cup product. The cup product in cohomology can be described with any aug-
mentation preserving chain mép— F®F of projective resolutions, called a diagonal
approximation, which gives an isomorphism in cohomologythie standard model of
group cohomology one may use the diagonal approximatiocritbesl in [1], Chap. V,
§1. This leads to a linear map

U H(; V) @ HI(; W) — HH(T Ve W).
Fori = j = 1 this is induced on 1-cocycles b ¢ ¢)(X) = —(b ® €)(A2X)), where
A, denotes a diagonal approximation. Foe j = 1, the cup product ends up in
H2(T"; V ® W), which is isomorphic to\{ ® W) in the cocompact case. For groups
with cusps, the second cohomology groups vanish, and wepeagatiolic cohomology
to have a reasonable cup product. Applied in the cocompaet e& get back the usual
cup product.

For our purpose it dtices to consider a resolutid?’ based on a tesselation of
type Mix, as discussed i§6.2 and§11.1. The tensor produ& = F” ® F7 with
G = EB;:O FI® F[a gives a resolution of). The boundary maps are determined by
0i+jx®y = (0ix) @y + (1) x® (9jy) for x € F7 andy € FT. The augmentation is
given bye(P® Q) = 1 for P,Q € XOT. With minimal setsB; c XiT of generators of
F7, the sets
i

U {X®y_ly © XeBy, ye By ye Fy\F}

a=0
generates; overQ[I'], and form a basis if > 1. Fork € C:

Gy = Q-k®«.
These are the sole generators with an infinite isotropy suhmrThe conclusion is that
G. is a parabolic resolution as defined§ihl.3.

e Explicit basis elements.For the sequel we need an explicit description of gener-
ating elements oFiT for the tesselatioly™ of type Mix. The Dirichlet fundamental
domaing underlying the tesselation has the following boundary:

B 0 (cocompact)
P 11 19.2
& ; el(l-ve)+ { Swewcu €& | (1 -7t (not cocompact) (192

If T is cocompact, the@" is empty.
We introduce some notation, illustrated in Figure 7 for thedoidar group. Define
verticesPe and Qe of &y (or of § if T'is cocompact) such that= e(Pe, Q¢), and also
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verticesP, of &y such that, = e(P,, «) if I' has cusps. Note th&. may occur a¥y
for somee’ € E.

€
TPy = PO
T7Qa v
ba
Pp =
T_lPa Pa= SH)

Ficure 7. The pointsPe and Qe in the standard fundamental domain
of the modular group.

So FOT is generated byPg, the Pe and Qe with e € E, the P, and «, with « €
F. We use theD[I']-basis of F] consisting of thee € E, the edge®(Po, R) where
R runs through the set of verticd®e, Qe} U {P,, 7. 1P,}, the e, = e(P,,«) and the
fe = &Py, m1P,) with k € F. A Q[I']-basis ofF) consists of the polygons iK}
contained inf. For the tesselatiofi” of type Mix these polygons are triangles. Their
sum represents the fundamental class. Denoting(ByB, C) the triangle ianT with
boundaryea g + € c + €c.a We have:

(3) = ) (A(Po, Pe, Qe) + A(Po, Y5 Qe 76 *Pe) (19.3)
ecE
+ Z (A(Po, P, ﬂ;lpk) + VK) B
KkeFY
whereV, = A(n;1P,, P, ).
e Explicit diagonal approximation. The cup product in parabolic cohomology is
induced by any augmentation preserving chain mapF” — F” ® F”. With the
notations just introduced we indicate a special choicewfibtvork well in connection
with the Petersson scalar product.
In dimension O there is only one sensible choice:

so(P) = P)&(P) (PeX]). (19.4)

This is continued[I']-linearly, and gives an augmentation preserving map.
In dimension 1 we prescrib& on the basis discussed above. For each of the basis
elementsep o we put

61€pQ = P®epq+epq®Q. (19.5)
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After Q[I']-linear extensiong; turns out to be compatible with the boundary maps:
6051 = (5161.

For the basis elements EfZT we make the choice in Table 2, withe E, x € .
It is some work to check that this is compatible withandd;. This choice has the

Po ® A(Po, Pe, Qe) + &(Po, Pe) ® €

+ A(PO’ Pe, Qe) ® Qe

Po® A(Po, ¥5'Qe. Yo Pe)

— €(Po, Yélpe) ® e(yglpe, Ve_;lQe)

+ A(Po, 75" Qe 6 Pe) ® 721 Qe

Po ® A(Po, P, 7 1P,) + &(Po, P) ® f,
+ A(Po, Py, n;lPK) ® n,ijK

oV, = PoV,-ferle+V,®«

62A( PO’ Pe, Qe)

62A(Po, 75 Qe, Yo' Pe)

82A(Po, Py, 7 1P,)

TasLE 2. Basis elements (ﬁg, with e running throughE andx through&*©.

special property
5F3 c(Fy oF7)e(F; Yo F] o (F] F] ). (19.6)
where the first factor of the (1)-term isF] Y.

e Cup product. LetV andW beQ[I'l-modules. The cup product of cocyclese
ZYF7-Y;V) andc € ZYF”; W) is computed as(U ¢)(x) = —(b ® €)(d2x) for x € XJ .
The tensobb ® ¢ sees only the component »in F({’Y ® FlT. The result represents an
element ongaH(F;V ® W), which does not depend on the choicebadindc in their
cohomology classes. Thus, we have obtained

Ut HY(I; V) ® Hpp T W) — HZ(15V @ W) . (19.7)
By evaluation on the fundamental class we obtain an eIem‘eIHﬁg(F; VeoWw) =
(V @ W)r represented by:

(bUQE) = Y (~b(Po. Pe) @ () + (blyePo. Pe) & c(e) | e

ecE

+ ) (~b(Po. P ® c(f) + BT @l e

KEFU

(19.8)

e Duality. Inthe special case that there iB-&nvariant bilinear form(-, - ) : VXW —
C we have a linear mapV(® W)r — C. Thus we have a linear fori(’, V) ®
H3a(T'; W) — C given by

[b] @ [c] ~ ((bu)(IN\H])),

where we denote by- ) the linear form oV ® W corresponding to the bilinear form
(-, ). We will use this withV = V% andW = 15°. See§2.1.
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19.3. Cohomological interpretation of the Petersson scalar pictd

Theorem 19.1. For 0 < Res < 1 and all cofinitel’ c G, the bilinear Petersson
scalar product is given by the cup producttnf € HY(I'; V%) andro € Hi (5 VeY)
evaluated on the fundamental class:

O

(u,v) 5 ((buUTo)(IMEHD)

foru,v e Maassg(r). Seg(3.4d)for the gamma factor (3).

Remarks. 1. For discrete groups with cusps we understand the cup pradldbe
parabolic sense of the previous subsection.

2. The choice of the spectral paramessuch thatls = s(1 — 9) is the eigenvalue ok
onu andv is not visible in the notationb andr. Here it is important to use opposite
choices for the spectral parameter karandrv. For the Maass cusp forms the choice
does not matteMaass_(I') = Maass(I).

Proof. The proof takes the remainder of this subsection, and dsrsishree separate
steps, which use several results from the previous chapfenscocompact we use
¢ = @ throughout the proof.

e Use of a distribution-valued cocycleFirst we use the description of cohomology
with cocycles on the group.
The mapb in §18.2 gives rise to

bid : Maass{ (') ® Maass)(') — HY(T; ;%) ® Maass{(T),
where we have used the identificatidf°; = &, by the Poisson transformation. We

define a linear mad : ZX(T'; &;_s) ® Maass)(I') — C by

db®uv) = 2i Z [b,.1.0], (19.9)

ecE’ e

whereE’ = EU {g, : k€ §%} andye € I' for e€ E’ such thadF = Y €] (1 — vye)-
Fore = g, « € &, and hence, = 7, the convergence of the integral is assured by
the exponential decay ofand its derivatives, and the polynomial growthiof: .

Lemma 19.2. Definition (19.9)induces a linear map
d: HY(I; &1%) ® Maass)(I) — C
such that the following diagram commutes:

Maass)_((I') ® Maass(I")

d

HY(T; ;%) ® Maass{(l) —————=C
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Proof. Letb € Zl(F;SIj’;) andv € MaassJ(I'). To see thatl(b ® v) does not depend
on the choice ob in its cohomology class, we look ht= da e BY(T; &%)

ZZLLHW?—&@:=Z%E(ﬁgad—lﬁmﬂ

eckE’

zl%mq = 0.

Let u,v € Maass)(I) = Maass{ (I). The exactness of the sequences in (18.3)
implies thatbu can be represented by a cocygle> b, = T[(y - 1) withl e (&]_ )™
such that A — A5)T = u. Thus,

dlbuev) = dbev) = 2i Z[m(y;l— 1),0] = 2if [0,v].
ecE’ 9%
Since A — 15)0 may be non-zero, the formu[7] is not closed. For cocompattwe
obtain with (1.10c):

dlbu®v) = 2if [O,0] = fwd,u = (U,v).
3

o
If I has cusps, we replageby the truncated fundamental dom&gp = & N Ha with a
large. (Segll.1 for9H,.) The exponential decay ofand the polynomial growth af ~
and their derivatives shows that for all large values of

d(b® )

dlbu®v) = 2i [G,0] +0(1) = f U du +0(1) = (u,v) +o(1).
93a Ba
Taking the limit asa — oo we obtain the desired equality. m

e Reformulation with &-cocycle. We switch to the description of cohomology with
a tesselatiorf” of type Mix, and define fob € Z}(F”; £;°) andv € Maass3(I):

wpq = [b(P.Q),0]  (PR.QeX]). (19.10)
The map P, Q) — wpgq defines a 1-cocycle o] x X7 with values in the smooth

closed diferential forms, satisfying,-1p,-15 = wpqoyfory eI'. ForP,Q,Re Xg
we put

R
C(PRQ,R) = —2if wpQ, (19.11)
Q
where the path of integration fro@ to P follows edges irX(lr.

Lemma 19.3. Equation(19.11)defines a cocycle @ Z2(F” ; C) and induces a linear
map

a: HY(I; &%) ® Maass)(I') — H3,(I'; C) (19.12)
such that the following diagram commutes:

HY(T'; &7 ® Maassd(T) d C

\ Teval. OI’I(ES‘)

Hsar(r; C)
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Proof. If P or Qis a cusp, the decay properties used in the proof of Lemmaet&dre
convergence here as well. ThenvariantC-valued 2-cochaiA(P, Q,R) — C(P,Q,R)
in C3(F”'; C), also calledC, is automatically iZ*(F”; C), sinceF} = {0}. To see that
it does not depend on the choiceloih its cohomology class, we suppose that da,
with al-equivarianta. Thenwpg = 17p — 1o, With np = [a(P), v] alsoI'-equivariant,
and

i R Q R
EC(P,Q,R) = fp np—fp np—fQ no = df(P,Q,R), (19.13)

wheref(P,Q) = —fPQ np. Soa: [b] ® v — [C] can be extended to give a linear map
H(T; &1_s) ® Maass(I') — H(T; C).
We evaluateC on the representative of the fundamental class in (19.3):

C() = ) (C(Po. P, Qe) — C(yePo. Pe. Q)
ecE
(19.14)
+ ) (C(Po, P *Py) = C(Pe 1Py ).
ke
where we have used theinvariance ofC.
Each term in the sum overe E contributes:

Qe
-2 (wPOsPe_w)’ePOsPe) =2 waePO,PO =2 f[b()/epo, Po),v].
e

Pe e
This is equal to the corresponding term in the definitionl@® v) in (19.9), provided
we usePy as the base point in the descriptionofn the standard model of group
cohomology.
The contribution of the terms fare F are also in accordance with (19.9), as one
sees from the following slightly more complicated compiotat
1

(P, PP - C(P. Py )

fﬂ;1PK K
= - WPy,P, +f Wp, 7. 1P
P, ‘ e,
K K K
_f wpop, + f WP, P, +f (‘UPO,n;lPK — wpyP,)
Py Py Py

K K
| @WPyP +f WPy 1P,
jl; ‘ TP, o

= f (—wpyp, + Wrpep,) = f [by-1,0]. =
[ €

e Reformulation with cup productThe map

MaassQ(I) — Haa T3 W, WL ™) — Hao T W)
induces a map
id .
HY(T; &1%) ® MaassY(T') S HYT E1%2) ® Hpa I, W)

U oo * 0o
— Héar(F;Sl_s(zowg” ).
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Since&;= = Vi< andWe ™ = V™ c Ve, there is aG-invariantC-bilinear dual-
ity (-, ) 1 87X ‘W“’ * — C. On the subspacg;*;, x W¢’ we have the description
in (3.9):

b(s
(o) = bEp(f.g) = 22 [[1.q],
7l c
with a suitable contou€. This leads to the following result:

Lemma 19.4. Fix f € &%, and defingy € W byg(2 = fp[u, gs(-, 2)], where
v € Maass3(I) and pe X7 . Then

(f,9) = b(9) f[v, fl. (19.15)
p

Proof. First we suppose thai € XlT’Y. ThenSing (g) ¢ Supp @) which is compact
in $, andg € W¢. LetC be a positively oriented closed curve encirclipgnce. With
(3.9) and Theorem 1.1:

(o) = b9 [[tal = 22 [ |16, fz _@).ase2), |

_ by fz ep[ o) f [f@.0z )| = b9 f [v, 1.

The legitimicity of the interchange of the order of squaradinets must (and can!) be
checked. Thus, we have obtained (19.15) & X .

We still have to consider the case that (P, ) with P € XOT N $ and« € C. We
approximatep by po = &P, Q) with Q € $ on p. Put, forQ € p (including Q = «):

00 = [ [nas-2],
ePQ)
o = [ [RE .
eP.Q
With (3.6¢) and Proposition 12.1 we hal?érQ = b(s)™* goforallQe p. If Q # «

thenrg € V¢. Proposition 9.7 implies that lig,. rq = r, in the topology ofVs”. Let
B € V% be such thaf = P1_g5.

(f,g) = B.b(9ry) = b(g) ggyﬂ,r@ = gTK<f,gQ>

= b(9) im fe( o [v, ] = b(9 fe( FM[u, f.

The last equality follows from the fact thjet(PK)[ f,v] converges absolutely. m

Lemma 19.5. The following diagram commutes:

HY(I; &%) ® Maass3(T)

—b(s) id®q l/ \

HY(T: 877 @ HEad T3 W) — = HE(T: 817 @ WE™) g Hpal ' ©)
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Proof. We start withb € Z{(F”; £, representing a class iH(I'; £%), and with
v € Maass)(I"). The imagegu € H,(I; W) is represented by € Z1(F”; W™ )
given by
W@ = [lat2 wex)).
Y
LetCy € Z%(F”; C) be the cocycle obtained from the cup product
CuV) = (buan(V))  (VeX]).

Our aim is to relat€; to Cod,, whereC is the cocycle in (19.11) representiafb]®v),
and wheres. : F” — F7 @ F” is as in§19.2.

It suffices to conside€; andC o ¢, on the generators in (19.3), given in the first
column of Table 3. For each of these generators we haved)(A) = —b(X) ® q(y)

basis eltA xeX]T yeXl
A(Po, Pe, Qe) &(Po, Pe) e ecE
A(Po.75'Qe. e Pe) —&(P0.75'Pe) 7o'€(Pe.Qe) ecE
A(Po, P, 7 'Py) &(Po, Px) fe ke g
V, —f, n e, K€ FM

TabLe 3. Basis elements d¥;

with x andy as indicated in Table 3. Lemma 19.4 shows that
Ci(4) = —(b(x¥).aly)) = —b(s) fy [, b(x)] .
With (19.10) and (19.11) we ha@®A) = -2i fy[b(x),v]. In view of (1.10b):
500 -9 Cu®) = [‘deoo).
A computation on the basis elements/f in Table 3 shows that
J dwpey = @pre

whereF € Map(F7 ; C)' satisfies

F(e(Po, P)) = —u(P)b(e(Po, P))(P) for all verticesP of &y,
F(e) = —0v(Qe) b(€)(Qe) foree E,
F(f) = —u(P)b(f)(r P  forke .

Hence C] = —2ib(s)~1[C4]. (For A = V, with k € § we use thab(x) = 0, and that
F(e,) is unimportant sinc& (n)x e, = F(e)lrc = F(&).) m
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e Combination. We combine the commuting diagrams in the Lemmas 19.2, 19.3
and 19.5:
Maass) (') ® Maass(I")
b®idl o

HY(T'; &1 ® Maass? d C

eval. on ()
9 ig ®ql \ T

17 o—0 1 . ¥, 00 2 . O0—00 ¥, 00 2 .
HIT; 8,%9) @ Higll W) — = Hyl[ 615, 0 WE™) = M2, 0)
SinceVy® = &= and Ve o V& = W, this completes the proof of Theo-

rem19.1. m
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