A NOTE ON REYES'S THEOREM ABOUT TRIANGLES

Don Zagier

In the last issue of Nieuw Archief, the following elegant theorem was stated by Reyes [1]:
Theorem. Let $A_{1} A_{2} A_{3}$ be a triangle. We extend the numbering cyclically by $A_{i+3}=A_{i}$ for $i \in \mathbb{Z}$. Suppose given for each $i \in \mathbb{Z}$ a point X_{i} on the perpendicular bisector of $A_{i-1} A_{i}$ such that the three points X_{i}, A_{i}, X_{i+1} are collinear for each i. Then the sequence $\left\{X_{i}\right\}$ has period 6 .
(In the notation of [1] the three vertices A_{1}, A_{2}, A_{3} were denoted by A, B, C and the first four points X_{1}, X_{2}, X_{3} and X_{4} by X, Y, Z and X^{\prime}, and the result was stated in the form that the map $X \mapsto X^{\prime}$ from the perpendicular bisector of $C A$ to itself is an involution.) The proof in [1], though described as "quite simple," is fairly intricate and uses arguments from both vector algebra and trigonometry. Here is a much shorter geometric proof. Let O be the meeting point of the perpendicular bisectors of the sides ($=$ center of the circumscribed circle) of the triangle $A_{1} A_{2} A_{3}$. The point X_{i} determines, and is determined by, the angle $\theta_{i}=\angle O A_{i-1} X_{i}$. Since X_{i} is on the bisector of the angle $A_{i-1} O A_{i}$, we have $\angle O A_{i} X_{i}=\theta_{i}$, and since X_{i}, A_{i} and X_{i+1} are collinear we have $\angle O A_{i} X_{i+1}=\pi-\angle O A_{i} X_{i}$ or $\theta_{i+1}=\pi-\theta_{i}$. Thus the angles θ_{i} alternate between two values θ_{1} and $\pi-\theta_{1}$, so $\theta_{i+6}=\theta_{i}$ and $X_{i+6}=X_{i}$.
[1] W. Reyes, 1996, On a theorem in circle geometry, Nieuw-Arch.-Wisk. 14, no. 2, pp. 231-233.

