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0. Introduction. In this appendix we want to give a unified explanation of the many
linear relations which exist among values of polylogarithms at algebraic arguments, as
well as a framework for understanding the functional equations of these functions. We will
content ourselves with describing the (partially conjectural, partly proved) results, without
explaining the reasons which motivate the form the answer takes. This motivation, as well
as many more details of the theoretical setup, can be found in [Z], of which the present
appendix (except for §7, which contains some new results) is essentially just a summary.

The classical theorem of number theory in which the “monologarithm” function Li1(x) =
− log(1 − x) appears is Dirichlet’s theorem, which in a weakened form says: Let A1(F )
denote the group of units of an algebraic number field F of degree n = r1 + 2r2 in the
usual notation, DF the discriminant of F . Then

(i) The map A1(F ) → Rn which sends ε to the n-tuple of values of log |εσ|, σ ranging
over the embeddings of F into C, maps A1(F ) to a lattice in an (r1+r2−1)-dimensional
subspace of Rn; and
(ii) The covolume of (= volume of a fundamental parallelogram for) this lattice is a
rational multiple of |DF |1/2π−r2 times the residue at s = 1 of ζF (s), the Dedekind
zeta-function of F .

Our goal is to define similarly for each m > 1 groups Am(F ) such that (i) the mth
polylogarithm function defines a map from Am(F ) to a lattice in Rn, and (ii) the covolume
of this lattice is up to a simple factor equal to ζF (m). Assertion (i) implies—since the lattice
is finite-dimensional—a large number of relations among the polylogarithms with values in
F , including all known, and conjecturally all, such relations, while (ii) implies that ζF (m)
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for any number field F and integer m > 1 can be expressed in finite terms in terms of
values of polylogarithms with values in F . (It was in fact this latter statement, not the
existence of relations among polylogarithm values, which was the original motivation for
the conjectures in [Z].)

The definition of Am(F ) and more details of the above picture are given in §1. Several
examples in the case of the dilogarithm are discussed in §2, and for higher polylogarithms
in §3. The reader may want to look at these sections before reading §1, which is more theo-
retical. The relation between the concepts explained here and Lewin’s ladders is discussed
in §4. The following section proves in the case F = Q that there are enough elements of
Am(F ) to produce non-trivial relations, and in particular that there are non-trivial rela-
tions among values of Lim with rational arguments for arbitrary large values of m. In
§6 we state the conjecture that all relations among values of polylogarithms at algebraic
arguments come from specializing functional equations (i.e., are “analytically derivable” in
Lewin’s terminology) and hence—since the processes of verifying or specializing any func-
tional equation are mechanical—in some sense trivial; of course, this is a very non-trivial
use of the work “trivial,” since finding the functional equations needed is not at all an
easy matter. Finally, in §7 we discuss how the same setup as is needed to understand rela-
tions among special values of polylogarithms also lets one search efficiently for functional
equations, and report on some new functional equations found by H. Gangl, including his
spectacular discovery of a functional equation for the hexalogarithm, the first progress
beyond m = 5 in 150 years.

1. The basic algebraic relation and the definition of Am(F ). We are interested in
looking for linear dependences of polylogarithm values at algebraic arguments. It turns out
that the only combinations which work are those whose arguments satisfy two conditions.
The first condition, which is the basic one, is purely algebraic. We will call collections
of numbers satisfying this condition good, or more precisely (since the condition depends
on m and becomes more restrictive as m grows) good at level m. For the problem of
finding functional equations, discussed in §7, only the algebraic condition is needed, so
the whole problem is to find good combinations of functions of one or several variables at
various levels m. The second condition is inductive. At level 2, any “good” combination
of arguments is mapped by the dilogarithm into a certain lattice in Rn, as sketched in the
introductory paragraphs and explained in more detail below, so the group A2(F ) consists
of all good combinations and we automatically get non-trivial relations among dilogarithm
values whenever the rank of this group is bigger than the dimension of the lattice to which
it maps. (Actually, its rank is always infinite, as we will see in §5, so it is merely a
question of computation to get as many relations as desired.) In higher levels m, any good
combination of arguments has associated to it other combinations which are good at some
smaller level m′, 2 ≤ m′ < m. Starting at the bottom (m′ = 2), we require that the image
of each of these lower-level combinations under the m′-th polylogarithm map is 0 in the
relevant lattice. The group Am(F ), defined as the set of all combinations of elements of F
which satisfy this property, then is mapped by the mth polylogarithm map into a certain
lattice of finite rank, so we automatically get relations among polylogarithm values if the
rank of Am(F ) (which, again, turns out actually to be infinite) is larger than that of the
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lattice.
We now give the precise definitions. Let F be any field. By a “combination of elements

of F” we will mean a formal linear combination ξ =
∑

i

ni [xi] where i runs over a finite

index set, the xi are elements of F×, and the coefficients ni are integers. (Actually, all our
considerations are up to torsion only, so we could allow ni ∈ Q.) For convenience we also
allow [xi] to be 0 or ∞ but set [0] = [∞] = 0. The set of all combinations ξ forms a group
FF , the free abelian group on F×. An element ξ ∈ FF is good at level 2 if it satisfies the
relation

(∗)
∑

i

ni [xi] ∧ [1− xi] = 0 in Λ2(F×)⊗Z Q ,

i.e. if the sum
∑

ni[xi] ∧ [1 − xi] is a torsion element in the exterior square of F×. (The
element [xi] ∧ [1 − xi] is to be interpreted as 0 if xi = 0, 1 or ∞.) Explicitly, (∗) means
that if we pick a basis p1, . . . , ps of the subgroup of F× generated by all xi and 1 − xi

(modulo torsion) and write

xi = ζi

s∏

j=1

p
aij

j , 1− xi = ζ ′i

s∏

j=1

p
a′
ij

j

where ζi, ζ
′
i ∈ F× are roots of unity and aij , a

′
ij belong to Z, then

∑

i

ni

(
aij a

′
ik − aik a

′
ij

)
= 0 (1 ≤ j < k ≤ s).

In particular, if for some finite subset S = {p1, . . . , ps} of F× the set of x ∈ F for which
both x and 1− x belong to

〈S〉 =
{
ζ pa1

1 . . . pas

s | ζ ∈ F× a root of unity, a1, . . . , as ∈ Z
}

has cardinality bigger than
(
s
2

)
, then we can find good combinations of these elements x.

A key question, both for finding relations among special values and for finding functional
equations of polylogarithms, will be to find as large sets as possible of (numbers or rational
functions) x ∈ F for which all x and 1− x belong to a subgroup of F× of small rank.

For any vector space, we can identify Λ2(V ) with V ⊗ V/Sym2(V ), where Sym2(V ) is
the subspace of V ⊗V spanned by elements x⊗ y+ y⊗x (or by elements x⊗x). Thus (∗)
can be interpreted as saying that

∑
ni[xi] ⊗ [1 − xi] belongs to Sym2(F×) up to torsion.

The generalization to higher m is to say that a combination ξ ∈ FF is good at level m if it
satisfies the relation

(∗m)
∑

i

ni [xi]⊗ . . .⊗ [xi]
︸ ︷︷ ︸

m−1

⊗[1− xi] ∈ Symm(F×)⊗Z Q ,
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where Symm(A) for any abelian group A is the Sm-invariant subspace of the mth tensor
power A⊗m. We can write the (m− 1)-fold tensor product [x]⊗ . . .⊗ [x] as [x]⊗(m−1) or

more simply, since it automatically belongs to the subspace Symm−1(F×) of
⊗m−1

(F×),
as [x]m−1. Thus the set Gm(F ) of good combinations at level m is the kernel of the linear
map

βm : FF →
(
(Symm−1(F×)⊗ F×)

/
Symm(F×)

)
⊗Z Q

defined on generators by

βm

(
[x]

)
=

{
[x]m−1 ⊗ [1− x] (mod Symm(F×)) if x 6= 0, 1, ∞ ,

0 if x = 0, 1, ∞ .

We can also write Gm(F ) in a way more analogous to the definition for m = 2 as the kernel
of the map [x] 7→ [x]m−2 ⊗

(
[x] ∧ [1− x]

)
∈ Symm−1(F×) ⊗ Λ2(F×), since for any vector

space V there is a natural injection Symm−1(V )⊗ V/Symm(V ) → Symm−2(V )⊗ Λ2(V ).
The first relation between Gm(F ) and the polylogarithm function is that functional equa-

tions of Lim modulo lower order polylogarithms are given by combinations ξ =
∑

ni[xi]
of rational functions xi = xi(t) satisfying (∗m). Since Lim cannot be extended to a con-
tinuous one-valued function on the whole complex plane, we will work instead with the
modified function

Pm(x) = ℜm

(m−1∑

j=0

2j Bj

j!

(
log |x|

)j
Lim−j(x)

)

;

here ℜm denotes ℑ or ℜ according as m is even or odd and Bj the jth Bernoulli number
(B0 = 1, B1 = − 1

2 , B2 = 1
6 , B3 = 0, . . . ). This function is continuous and real-valued

on P1(C) = C ∪ {∞} and is real-analytic except at 0, 1 and ∞. (The function P2(x) is
just the Bloch-Wigner function D(x) defined in 1.5.1 of this book.) Using Pm instead of
Lim also has the advantage that the lower order terms in all functional equations cancel,
so that

∑

i Pm

(
xi(t)

)
=constant for any good combination

∑
ni[xi(t)]. The proof, which

is not difficult, is given in §7 of [Z] and will not be repeated here. As simple examples, we
note that

βm

( 1

x

)
=

(
−[x]

)m−1 ⊗
(
[−1] + [1− x]− [x]

)
= (−1)m−1βm(x)

for any x ∈ F , since [−1] is a torsion element of F× and [x]m−1⊗[x] belongs to Symm(F×),
and similarly

βm(x2) =
(
2 [x]

)m−1 ⊗
(
[1− x] + [1 + x]

)
= 2m−1

(
βm(x) + βm(−x)

)

or more generally βm(xN ) =
∑

ζN=1 βm(ζx) for any N ≥ 1, corresponding to the inversion
and distribution relations

Pm(1/x) = (−1)m−1Pm(x), Pm(xN ) = Nm−1
∑

ζN=1

Pm(ζx)
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of the polylogarithm. Many other examples will be discussed in §7.

We now return to number fields and the definition of Am(F ). If φ is any homomorphism
from F× to Z (e.g. φ = vp for F = Q, where p is a prime number and vp(x) denotes the
power of p contained in a rational number x), then for m > 2 the map ιφ : FF → FF

sending [x] to φ(x) [x] sends Gm(F ) to Gm−1(F ) (because βm−1 ◦ ιφ = (φ ⊗ id⊗(m−1)) ◦
βm under the natural identification of Z ⊗ (F×)⊗(m−1) with (F×)⊗(m−1)). If we have r
homomorphisms φi (1 ≤ i ≤ r), then for m ≥ r + 2 the composite map ιφ1

◦ . . . ◦ ιφr
:

Gm(F ) → Gm−r(F ) is independent of the order of the φi and will be denoted simply
ιφ1

. . . ιφr
. The elements ιφ1

. . . ιφr
(ξ) ∈ Gm−r(F ) (1 ≤ r ≤ m − 2) for an element ξ of

Gm(F ) will be called the good combinations associated to ξ. Up to linear combinations
there are only finitely many of them, since only the restrictions of the φi to the subgroup
of F× generated by the elements occurring in ξ are important and we can let φi run over
a basis of the group of homomorphisms from this group to Z.

The definition of Am(F ) is now as follows. We start with A2(F ) = G2(F ). For ξ =
∑

ni[xi] ∈ A2(F ) and each embedding σ : F →֒ C, we consider P2(ξ
σ), where ξσ denotes

∑
ni[x

σ
i ] and P2(ξ

σ) denotes
∑

niP2(x
σ
i ) (we shall use this abbreviated notation for the

value of functions on combinations of arguments from now on). There are only r2 essentially
distinct such values, since the relation P2(x) = −P2(x) for x ∈ C implies that P2(ξ)
vanishes for the real embeddings of F and is the same up to sign for each conjugate pair
of complex embeddings. Thus, picking one of each conjugate pair of non-real embeddings,

we get a map ~P2 from A2(F ) to Rr2 by sending ξ to {P2(ξ
σ)}σ. The image ~P2(A2(F ))

is contained in a lattice (= discrete subgroup of maximal rank) R2 = R2(F ) ⊂ Rr2 .
Therefore, if A2(F ) has rank > r2 (and we will see later that its rank is actually infinite),

then the kernel C2(F ) of ~P2 contains non-zero elements and we get non-trivial relations
among dilogarithms of complex algebraic arguments. Furthermore, if ξ ∈ C2(F ) and
σ : F →֒ R is a real embedding of F , then L2(ξ

σ), where L2(x) = Li2(x)+
1
2 log |x| log |1−x|

(x ∈ R) is the Rogers dilogarithm function (cf. 1.2.3), is a rational multiple of π2, so we
also get relations among dilogarithms of real algebraic arguments. For m = 3 we define
A3(F ) as the subset of G3(F ) consisting of all good combinations ξ for which ιφ(ξ) ∈ A2(F )
belongs to C2(F ) for every homomorphism φ : F× → Z. This condition can be checked by
numerical computation since the element P2(ιφ(ξ)) belongs to the discrete group R2 and
hence is recognizably zero or non-zero. For ξ ∈ A3(F ) we consider the collection of all
P3(ξ

σ) where (since P3(x) is invariant rather than anti-invariant under complex conjugation
of x) σ now ranges over the real and half the complex embeddings of F . This defines a map
~P3 : A3(F ) → Rr1+r2 whose image is again contained in a lattice R3 ⊂ Rr1+r2 , so again
we get a non-trivial kernel C3(F ) and non-trivial relations among polylogarithm values.

Similarly, for m > 2 we consider the map ~Pm : FF → Rn∓ , where ±1 = (−1)m, n+ and n−
denote r1 + r2 and r2 respectively, and ~Pm(ξ) is the collection of Pm(ξσ) with σ ranging
over half the complex embeddings (m even) or all the real embeddings and half the complex
embeddings (m odd). The subgroup Am(F ) ⊆ Gm(F ) ⊂ FF will be defined inductively in

such a way that its image under ~Pm is contained in a certain lattice Rm = Rm(F ) ⊂ Rn∓ ,
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in which case the kernel

Cm(F ) =
{
ξ ∈ Am(F ) | Pm(ξσ) = 0 for all σ : F →֒ C

}

is a subgroup of corank at most n∓. Assuming that Am′(F ) and Cm′(F ) have been defined
for m′ < m, we define Am(F ) by

Am(F ) =
{
ξ ∈ Gm(F ) | ιφ(ξ) ∈ Cm−1(F ) for all homomorphisms φ : F× → Z

}
.

Explicitly, this means that starting with ξ ∈ Gm(F ), we verify ξ ∈ Am(F ) by checking

first that all associated elements ιφ1
. . . ιφm−2

(ξ) ∈ A2(F ) map to 0 under ~P2, then that
all associated elements ιφ1

. . . ιφm−3
(ξ) (which are then known to belong to A3) map to 0

under ~P3, and so on in succession for all associated elements ιφ1
. . . ιφr

(ξ) for r = m − 2,
m− 3, . . . , 2, 1.

We do not give any further explanation of these definitions here; the examples in the
following sections should make it clear how they work in practice, while the background
and motivating ideas are explained in more detail in [Z]. However, we should say a few
words about the relationship to K-theory and about what has been proved so far and by
whom. The former can be understood without needing to know the definition of algebraic
K-groups Kn(F ). One need only know that there are such groups and that by a result of
Borel [B], the even-index groups are finite while the odd-index groups K2m−1(F ) (m > 1)
are mapped isomorphically (up to torsion) onto a lattice in Rn∓ by the so-called “regulator
mapping.” The lattice Rm(F ) we have been speaking about is the image of the regulator
mapping (or more precisely, any lattice commensurable with this image, since everything
we are saying is known only up to groups of finite order). Borel also showed that the
covolume of Rm ⊂ Rn∓ is a rational multiple of |DF |1/2 ζF (m)/πmn± . Hence if the map
~Pm : Am(F ) → Rm is surjective, then ζF (m) can be expressed in terms of polylogarithms
of order m with arguments in F .

The relationship between the dilogarithm and the regulator lattice R2 was found by
Bloch (for this and later developments concerning K3 and dilogarithms, see Suslin’s ICM

talk [S]). In this case the map ~P2 : A2 → R2 is surjective (after tensoring with Q) and
its kernel is the subgroup of A2(F ) spanned by the 5-term functional equation of the
dilogarithm. The above picture for general m was formulated conjecturally in [Z]. The case

m = 3 was proved completely by Goncharov [G], who showed that the map ~P3 : A3(F ) →
Rn+ maps not only into, but onto the regulator lattice R3 (at least after tensoring with
Q) and also gave a complete description of the kernel in terms of a new 22-term functional

equation for the trilogarithm. The fact that ~Pm maps Am(F ) into the Borel regulator
lattice for arbitrary m was proved by Deligne and by Beilinson for cyclotomic fields and
by Beilinson in the general case [BD]. For m > 3 the surjectivity is not known except in
the cyclotomic case, so that the desired corollary that ζF (m) can be expressed in terms of
special values of polylogarithms at arguments in F is still a conjecture in general. We also
conjecture that Cm(F ) can be described completely in terms of the functional equations of
the mth polylogarithm, but this also is known only for m = 2 and 3.
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Finally, we should mention that the generalized Rogers function Lm(x) (x ∈ R) de-
fined in 1.5.1 agrees with Pm for m = 3 and x real, while for m > 3 odd and x real
it is equal to

∑m−2
r=0 (log |x|)r Pm−r(x)/(r + 1)! (only the terms with r even in this sum

contribute, since Pm′(x) = 0 for m′ even and x real). Thus for elements ξ ∈ Am(F ) (m
odd) and real embeddings σ of F , the elements Pm(ξσ) and Lm(ξσ) agree (because each
term

∑
ni(log |xi|)rPm−r(xi), r > 0, vanishes by virtue of the inductive definition of Am),

and therefore our relations among values of Pm(x) at real algebraic arguments can be
reinterpreted as relations among the same values of Lm(x). For m even, Pm(x) vanishes
identically for x real, but if we take an element ξ ∈ Am(F ) for which Pm(ξσ) = 0 for all
complex embeddings σ, then it is apparently a consequence of the results in [BD] that each
Lm(ξσ) (σ : F →֒ R) is a rational multiple of πm.

2. Examples of dilogarithm relations. For m = 2 there is no distinction between
Gm and Am, so we just have to look for good combinations at level 2, i.e., combinations
ξ =

∑
ni[xi] satisfying (∗). For such ξ, P2(ξ) = D(ξ) belongs to the r2-dimensional lattice

R2. Thus if we find r2 elements ξ with linearly independent images, we obtain ζF (2) as

π2(r1+r2)/
√

|DF | times a rational number times an r2 × r2 determinant of integral linear
combinations of dilogarithm values, and if we have more than r2 good combinations ξ,
then they will have linearly dependent images in the lattice and we obtain linear relations
over Q among the values D(xi) (resp. L2(x

σ
i ) modulo π2 for the real embeddings σ of F ,

where L2(x) is the Rogers dilogarithm).

As an example over Q, take elements x ∈ Q such that x and 1 − x contain no primes
except 2, 3, 5 and 7. There are exactly 375 such x, forming 63 orbits under the group
generated by x 7→ 1/x, x 7→ 1−x. For each one, β2(x) = [x]∧ [1−x] is a linear combination
of the six elements

[2] ∧ [3], [2] ∧ [5], [2] ∧ [7], [3] ∧ [5], [3] ∧ [7], [5] ∧ [7],

so we get 57 essentially different linearly independent linear combinations ξ belonging to
A2(Q), for each of which L2(ξ) is a rational multiple of π2. For instance, if we pick at

random the seven elements
1

3
, −1

6
,
2

7
,
1

8
,
1

9
,

1

21
, and

1

28
(any other seven would do just

as well), then since 7 > 6 we must find at least one non-trivial element of A2(Q). In fact,
calculating

β2(
1

3
) = [

1

3
] ∧ [

2

3
] = [2] ∧ [3], β2(−

1

6
) = [−1

6
] ∧ [

7

6
] = −[2] ∧ [7]− [3] ∧ [7], etc.,

we find that two linearly independent combinations of the 7 elements in question are
annihilated by β2, namely 6

[
1
3

]
−
[
1
9

]
and 3

[
− 1

6

]
−
[
1
8

]
+
[
1
9

]
+
[

1
28

]
. The image of each of

these under the Rogers dilogarithm must be a rational multiple of π2, and indeed,

6L2

(1

3

)
− L2

(1

9

)
=

π2

3
, 3L2

(
−1

6

)
− L2

(1

8

)
+ L2

(1

9

)
+ L2

( 1

28

)
= −π2

12
.
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Taking instead a field with r2 > 0, we let F = Q(
√
−7). Then for the two elements

x1 = (1 +
√
−7)/2 and x2 = (−1 +

√
−7)/4, both 1 − x1 and 1 − x2 belong to the group

generated by −1, x1, and x2, so both β(x1) and β(x2) are multiples of [x1] ∧ [x2]. The
multiples turn out to be 1 and −2, respectively, so 2[x1] + [x2] belongs to A2(F ). Hence

2D(x1) +D(x2) must be a rational multiple of ζF (2)/π
2
√
7, and indeed one finds

2D
(1 +

√
−7

2

)
+D

(−1 +
√
−7

4

)
=

21
√
7

4π2
ζQ(

√
−7)(2).

As a third example, we consider the number u =
√
ρ, where ρ = (

√
5−1)/2 (cf. Chapter

5, section 5.2.1). Here the relation (5.4) implies that ξ0 = [u6] − 4[u3] + 6[u] is a good
element of FF , F = Q(u), since

β2(ξ0) = [u6] ∧ [1− u6]− 4[u3] ∧ [1− u3] + 6[u] ∧ [1− u]

= 6[u] ∧ [(1− u6)(1− u3)−2(1− u)] = 12[u] ∧ [u] = 0.

However, ξ0 does not belong to the subgroup C2(F ) of A2(F ), because, denoting by σ the
embedding of F into C which sends u to uσ = i/u, we have D(ξσ0 ) = 8.6124152 . . . 6= 0.
Therefore we should not expect L2(ξ0)/π

2, which is the number given by (5.6), to be
rational. What we do expect is that D(ξσ0 ) is a rational multiple of π−6ζF (2), since for the
field F we have r1 = 2, r2 = 1, DF = 400. To compute numerically, we decompose ζF (s)

as ζF1
(s)LF1

(s) where ζF1
(s) is the Dedekind zeta function of F1 = Q(

√
5) and

LF1
(s) =

1

1 + 5−s

∏

p≡11, 13, 17, 19

1

1− p−2s

∏

p≡3, 7

1

1 + p−2s

∏

p≡1, 9

( 1

1 + εpp−s

)2

(here the congruences on primes p are modulo 20 and εp =
(ρ

p

)
=

(2i+ 1

p

)
for p ≡ 1

or 9 mod 20, where ρ and i are solutions of ρ2 + ρ − 1 ≡ i2 + i ≡ 0 (mod p)). We

have ζF1
(2) = 20π4/75

√
5 and (computing numerically with the Euler product, using all

primes up to 2500) 203/2π−2LF1
(2) ≈ 8.612406, agreeing with D(ξσ0 ) to the accuracy of the

computation. If we want to find elements of C2(F ) and hence relations among the Rogers
dilogarithms of elements of F , then we must look at combinations involving other numbers
of F than just powers of u, i.e., it is not enough to consider ladders only. For instance, the
group of units of F is generated (up to torsion) by u and v = 1 − u, and we can look at
elements x ∈ F for which both x and 1−x belong to this group. Up to equivalence by the
group generated by x 7→ 1/x and x 7→ 1−x, under which D(x) is invariant up to sign, there
are 5 such elements, namely x = u, −u, u2, u2v and v2/u3. For these elements 1−x equals
v, u4/v, u4, u7/v and v/u6, respectively, so β2[x] = [x]∧[1−x] equals [u]∧[v] times 1, −1, 0,
−9 and 9, respectively. We therefore get four linearly independent elements [u]+[−u], [u2],
[u2v]+9[u] and [u2v]+ [v2/u3] belonging to A2(F ). The first two of these are proportional
by the duplication formula and uninteresting because they reduce to relations from the
smaller field F1. Computing numerically, we find that D

(
(u2v)σ

)
+ 9D

(
uσ

)
equals D(ξσ0 )
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but that D
(
(u2v)σ

)
+D

(
(v2/u3)σ

)
vanishes. Hence [u2v] + [v2/u3] and [u2v] + 9[u] − ξ0

belong to C2(F ) and should map under the Rogers dilogarithm to rational multiples of π2,
and indeed,we have

L2(u
2v) + L2(v

2/u3) =
1

20
π2 , L2(u

2v) + 9L2(u)− L2(ξ0) =
41

60
π2 .

3. Examples for higher order polylogarithms. Many examples of relations among
trilogarithms of algebraic arguments are given in §§3–5 of [Z] as motivation for the form
of the conjectures explained in §1. Here we give instead two examples for the field F = Q

(also both taken from [Z]). The first illustrates the necessity of the extra condition in the
definition of Am as opposed to Gm, while the second gives an example of a relation for
heptalogarithms, beyond the range of known functional equations.

For the first example, we proceed as in the example for m = 2 in §3, but using only the
primes 2 and 3 (if we used 2, 3, 5 and 7 again, we would get many more examples). There
are 21 numbers x ∈ Q for which x and 1 − x contain only the prime factors 2 and 3, but
this number is cut down to 11 if we do not take both x and x−1 (for which the values of
all polylogarithms are the same up to sign), and further cut down to 8 if we eliminate the
numbers −1, 1/4 and 1/9 for which the polylogarithm reduces to simpler values by virtue
of the duplication equation. These values are 1/2, 1/3, 2/3, −1/2, 3/4, −1/3, 8/9 and
−1/8. The image of each of them under β5 belongs to a space of dimension 4 (this is the
dimension of Sym4(V )⊗V/Sym5(V ) for V the 2-dimensional subspace of Q× spanned by 2
and 3), so we must have at least four independent elements ξ ∈ Ker(β5), and indeed there
are exactly four, namely [1/2], [−1/3] − 2[1/3], [−1/8] − 162[−1/2] and [8/9] − 9[3/4] −
36[2/3]−18[−1/2]−6[1/3]. This gives a 4-dimensional subspace of G5(Q). However, to get
elements of A5(Q), we need three further conditions, namely that the images of ξ in A3(Q)
under the three maps sending [x] to v2(x)

2[x], v2(x)v3(x)[x], and v3(x)
2[x] all map to zero

under the trilogarithm map ~P3 : A3(Q) → Qζ(3). This cuts down the dimension from
four to one, the unique surviving relation being ξ = [−1/8] − 126[1/2] − 162[−1/2]. This
element should therefore map to a rational multiple of ζ(5) under P5 or L5, and indeed we
find that P5(ξ) = L5(ξ) =

403
16 ζ(5) .

To get an example for the heptalogarithm takes more work. If we consider the set of
all x such that both x and 1− x contain only the first s primes for some s (as we did for
m = 2 with s = 4 and for m = 5 with s = 2), then the number of conditions we have to
satisfy is so large that the first value of s for which there are enough x to give a non-trivial
element of A7(Q) is 8 (i.e., use all primes less than 20), for which there are 10946 elements
x (up to inversion) and “only” 10662 conditions to be satisfied (cf. [Z], §10A). This system
of equations is far too large to solve numerically. Instead we consider x ∈ Q for which
x ∈ 〈{2, 3}〉 and 1 − x ∈ 〈{2, 3, 5, 7}〉. There are 29 such x (taking only one of each
pair x, 1/x and omitting squares as before). On the other hand, there are 28 conditions
to be fulfilled: first 20 to get good combinations at level 7 (if V and W are the 2- and
4-dimensional subspaces of Q×⊗ZQ generated by {2, 3} and {2, 3, 5, 7}, respectively, the
number of conditions is dim(Sym6(V )⊗W/Sym7(V )) =

(
7

6

)

·4−
(
8

7

)

) and then a further
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8 to ensure that each of the combinations ιjv2ι
r−j
v3 (ξ) (r = 4 or 2, 0 ≤ j ≤ r) maps to 0

in the one-dimensional lattice R7−r. Since 29 is bigger than 28, we must find a solution
of this system of equations, i.e., a combination ξ ∈ A7(Q). This solution turns out to be
unique up to multiplication by a constant and is given by ξ =

∑
ni[xi] ∈ A7(Q), where

the ni (normalized for convenience to be in 1
6Z rather than Z) and xi are given by the

following table:

ni xi ni xi ni xi

−25111753072 1/3 −284585110 1/8 1765911 3/128
−27461584367 −1/3 470985412/3 −1/8 478706760 2/9
−171330250 −1/9 38987641 −1/24 −66158750 8/9

57577037 −1/27 17015061/2 −1/48 15912813 −9/16
−151540388696 1/2 −11528187258 2/3 23786119 2/27
−136446322032 −1/2 −6563312469 −2/3 −2879429 −8/27
−2209899405 1/6 2802854628 3/4 2585366 27/32
−2199243270 −1/6 −751304106 −3/4 111363 32/81

43524 −1/4374 −785318380 3/8 −2372265 −2/243
−7089743800 −1/4 11883921 −3/32

The theory now predicts that
∑

niP7(xi) should be a rational multiple of ζ(7), and indeed,

computing numerically we find that it equals −1020149599795

96
ζ(7) to high precision.

4. Examples: ladders. We now come to the subject of Leonard Lewin’s ladders (note
once again the fascination with the letter “L” which marks this field; cf. [L], p. 191), the
source of most of the examples in the book, and show how they fit into the theory sketched
so far. Briefly, ladders are the special case of combinations ξ =

∑
ni[xi] in which all of

the xi are powers of a single number α. The advantage of making this restriction is that
the conditions needed to make ξ belong to Am become much more transparent and easier
to check (and to fulfill) than in the general case. The disadvantage, of course, is that
it is very difficult and requires great ingenuity to produce examples, whereas providing
examples of general elements in Gm or Am is something which can be done in a mechanical
manner. In particular, while we can show (§5) that there exist polylogarithmic relations
for arbitrarily high orders m, it is not at all clear—indeed, rather unlikely—that there are
any valid ladders at all with m larger than, say, 20.

Suppose, then, that all of the xi are powers of a single number α. Since [x] and [1/x] are
essentially equivalent for all polylogarithmic purposes, we can restrict to positive powers.
Then the combinations ξ we are looking for can be written as

(1) ξ =

∞∑

j=1

nj [α
j ] (nj ∈ Z, nj = 0 for all but finitely many j) .

(From now on we will abbreviate the condition in brackets as {nj} ∈ ⊕
j≥1

Z.) If we compute

the image of this under the map βm, we find (since [αj ] = j[α] in F×)

βm(ξ) =
∑

j≥1

jm−1 nj

[
α]m−1 ⊗ [1− αj

]
=

[
α
]m−1 ⊗

[∏

j≥1

(1− αj)j
m−1nj

]
.
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This is 0 modulo Symm(〈α〉) if and only if
∏

j(1 − αj)j
m−1nj is (a root of unity times) a

power of α. In other words, turning things around, given any cyclotomic relation

(2)

∞∏

j=1

(
1− αj

)bj
= (root of 1) × αN ({bj} ∈ ⊕

j≥1
Z, N ∈ Z)

we get good combinations
∞∑

j=1

j−m+1 bj [α
j ] for all levels m. (Of course, if we want integral

combinations, we must multiply these by Jm−1, where J is a common multiple of the j with
nj 6= 0.) This is the beauty of ladders: they give an immediate construction of elements
of Gm(F ) for all m simultaneously. However, to get relations among polylogarithm values,
we need combinations in Am, not Gm. Here, too, the special property that V = 〈{xi}〉 is
1-dimensional simplifies life considerably, since it means that there is up to scalar factors
only one homomorphism φ from V to Q (namely, the one sending αj to j) and hence only
one way to associate to a good combination ξ =

∑
nj [α

j ] of order m good combinations
of smaller order m′ = m− r, namely ξ′ = ιrφ(ξ) =

∑

j j
rnj [α

j ]. Thus we get the following

inductive picture. Let {b(1)j }, . . . , {b(d)j } be a multiplicatively independent set of cyclotomic

relations (2) for the same number α. Then for each m we get d linearly independent

elements ξ
(ν)
m =

∑
j−m b

(ν)
j [αj ] of Gm(F ), where F = Q(α). For m = 2 each of these

elements belongs to A2 and maps to the r2-dimensional lattice R2, so we get at least d−r2
dilogarithm relations. Changing our basis for the set of cyclotomic relations we can assume

that these are ξ
(1)
2 , . . . , ξ

(d−r2)
2 , i.e., for each ν ≤ d− r2 we have

∑
j−2b

(ν)
j D

(
(ασ)j

)
= 0 if

ασ is complex,
∑

j−2b
(ν)
j L2

(
(ασ)j

)
∈ Qπ2 if ασ is real, and ξ

(ν)
3 =

∑
j−3b

(ν)
j [αj ] ∈ A3(F ).

Now the elements ξ
(1)
3 , . . . , ξ

(d−r2)
3 map under D3 to the (r1 + r2)-dimensional lattice R3,

so we get at least d − r2 − (r1 + r2) = d − n (n = [F : Q]) linearly independent relations
among the trilogarithms of the αj and the same number of elements in the next higher
group A4(F ). Continuing in this way, we find that the dimension goes down alternately

by r2 and r1+r2, so by n every two steps. Hence after approximately
2d

n
steps the process

terminates, unless we are very lucky (i.e., there happen to be more linear relations than is
forced by the number of equations to be satisfied, a rather rare occurrence) or d is infinite.
In fact the second alternative cannot happen, since one can show that the number

d(α) =
DEF

rkZ
{
{bj} ∈ ⊕

j≥1
Z |

∞∏

j=1

(1− αj)bj ∈ 〈α〉
}

is finite for any algebraic number α which is not a root of unity (of course d(α) = 0 if α is
transcendental).

We now illustrate all of this with two examples. We first take α to be the number ω
treated in [AL] and in Chapter 4 of the present book, i.e.,the root of ω3 = ω+1. Here d(α)
is (at least) 12, the corresponding special exponents (= exponents j for which a positive
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power of 1−αj belongs to the subgroup generated by α and 1−αi with i < j) being 1, 2,
3, 5, 8, 12, 14, 18, 20, 28, 30 and 42. Since r1 = r2 = 1, we can go up to m = 8, the number
of linear relations obtained for the mth order polylogarithms being 11, 9, 8, 6, 5, 3, 2 for
m = 2, 3, . . . , 8, respectively. At the 9th level there are no more relations. However, if we
include 1 as well as the positive powers of ω then there is one more relation in odd levels
and in particular we get an expression of ζ(9) as a rational linear combination of D9(ω

n)
with n > 0. More details of this example can be found in Chapter 4 and in §9C of [Z].

The most spectacular example is the Salem number treated in Chapter 16 (section 16.3),
namely the solution of α10 + α9 − α7 − α6 − α5 − α4 − α3 + α + 1 = 0. Here d(α) is (at
least, and probably exactly) 71, the special exponents ranging up to j = 360. Here r2 = 4
and r1 + r2 = 6, so the number of conditions to be satisfied at the even and odd steps is
a priori 4 and 6, respectively, but because the two real conjugates of α are inverses of one
another and Dm(x−1) = Dm(x) for m odd, there are in fact only 5 independent conditions
at odd levels. We therefore get successively (at least) 71, 67, 62, 58, . . . elements of R2,
R3, R4, R5, . . . . Thus the ladder reaches up to m = 16.

By the way, to find the special exponents, one proceeds as follows. First calculate the
norm of αj −1 by multiplying the conjugates numerically for j up to, say, 1000. The norm
is 1 for the 22 values j = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 17, 18, 21, 23, 27, 29, 34, 37, 47, 63,
65 and 74. Since the unit rank is r1 + r2 − 1 = 5, we lose 4 relations, because α, 1 − α,
1−α2, 1−α3 and 1−α5 are needed to generate a group of units of full rank, but we then
get 18 independent multiplicative relations among α and the 1−αj . Now we look at other
j for which the norm of 1−αj is no longer 1 but still factors into small prime factors which
have already occurred for previous j, and then try to form combinations which are units.
For instance, the norms of αj − 1 are positive powers of 3 for j = 4, 8, 12, 16, 20, 24, 36,
and 40, and eliminating α4 − 1, which together with the units generates the group of all
elements of F whose norm is a power of 3, we get 7 further relations. Proceeding in this
way (in practice it is more efficient to use the cyclotomic polynomials Φj(α) rather than
the numbers αj − 1) gives the 71 relations mentioned. By the time we get to j = 1000,
the norms are so huge that it seems clear that αj − 1 will never again be a combination of
smaller values, and this could be proved by a finite effort if really required.

It seems very likely that this particular α gives the maximum of
d(α)

[Q(α) : Q]
(indeed,

quite possibly even of d(α)) for all algebraic numbers, in which case there are probably no
valid ladders at all of order bigger than 16. In any case, the study of the number d(α),
motivated by the ladder concept, seems to be a very interesting problem in the field of
diophantine approximation.

5. Existence of relations among polylogarithm values of arbitrarily high or-
der. Let S be a set of s numbers in Q and X(S) the set of all x ∈ Q such that both x
and 1− x belong to the multiplicative group generated by the elements of S. The number
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of independent requirements on a combination ξ =
∑

x∈X nx[x] to belong to Am(Q) is

(m− 1)

(
s+m− 2

m

)

+
∑

0≤r<m−2
m−r odd

(
s+ r − 1

r

)

(the first term is the dimension of Symm−1(V ) ⊗ V/Symm(V ) where V = 〈S〉 is s-
dimensional; the other terms give the number of successive conditions for the images of ξ
under the various maps ιφi1

. . . ιφir
to map to 0 in Rm−r

∼= Z), which is a polynomial in
s. Therefore if there are sets S of arbitrarily large cardinality s for which |X(S)| grows
more than polynomially with s, then it follows that Am(Q) has infinite rank and hence
that there are infinitely many relations among the values of Lm(x) (x ∈ Q) for every m.
The existence of such S is the content of a theorem of Erdös-Stewart-Tijdeman [EST]. A
simplified presentation of their proof was given in [Z] and a further simplification (with a
slightly weaker bound, but not appealing to any results from analytic number theory) is
given here.

Theorem (Erdös-Stewart-Tijdeman). For any ε > 0 there exist sets S of arbitrarily

large cardinality s for which |X(S)| > e(2−ε)
√

s/ log s .

Proof. Let t and u be large numbers, to be chosen presently, and let A denote the set
of products p1 . . . pr with r ≤ u and each pi a prime ≤ t. The cardinality of A is then
(
u+ π(t)

u

)

which for π(t) (number of primes ≤ t) much larger than u equals
π(t)u+o(u)

u!
=

(eπ(t)

u

)u+o(u)
. The number of pairs (a, c) with a, c ∈ A, c > a, is therefore equal to

(|A|
2

)

=
(eπ(t)

u

)2u+o(u)
. For each such pair the difference b = c− a is an integer between

0 and tu, so by the pigeonhole principle there is a number b which is expressible as c−a in at

least N =

(|A|
2

)

/tu =
(eπ(t)

u
√
t

)2u+o(u)
ways. We maximize this by choosing u = π(t)/

√
t,

giving N = e(2+o(1))π(t)/
√
t. Now take S = {b} ∪ {p ≤ t, p prime}, with cardinality

s = 1 + π(t) = (1 + o(1))
t

log t
; then each representation b = c− a gives a distinct element

x =
b

c
of X(S), so |X(S)| > N = e(2+o(1))

√
s/ log s .

Corollary. (1) Am(Q) has infinite rank for all m. (2) For any m, there are infinitely
many linearly independent relations over Q among the values of Lm(x), x ∈ Q.

Remarks. 1. The original result of Erdös-Stewart-Tijdeman was slightly stronger in that
2 was replaced by 4 in the exponent and S was required to consist only of primes; for the
proof of the stronger statement, see [EST] or [Z].
2. In part (1) of the corollary, we could have written “Am(F ) for any number field F”
instead of Am(Q), since Am(F ) contains Am(Q), but of course the interesting question is
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whether one gets infinitely many new relations on passing from Q to F , and this is not
clear without doing more work.
3. Of course, part (2) of the corollary is not a corollary of the Erdös-Stewart-Tijdeman
theorem alone, but of this theorem together with Beilinson’s deep result on the relation
between the polylogarithm and regulator mappings.

6. A conjecture on linear independence. We conjecture that the only linear relations
over Q among polylogarithm values at algebraic arguments are those which follow from
the theory explained in §1. More precisely, this says that if there is a relation

(1)
∑

i

niPm(xi) = 0 (ni ∈ Z, xi ∈ Q) ,

(respectively
∑

niLm(xi) = 0 with ni ∈ Z and xi ∈ Q ∩ R), then
(i)

∑
nixi satisfies the algebraic relation (∗m), and

(ii) the conjugate equations
∑

niPm(xσ
i ) = 0 (σ ∈Gal(Q/Q)), as well as the associated

equations
∑

niφ1(xi) · · ·φr(xi)Pm−r(xi) = 0 and their conjugates for all r ≤ m− 2 and

all homomorphisms φ1, . . . , φr : Q
× → Q, also hold.

Since we further conjecture that the kernel of the maps ~Pm : Am(F ) → Rn∓ is the group
Cm(F ) defined by specializing functional equations, we can state the combined conjecture
more concisely by saying that the only relations (1) are specializations of functional equa-
tions

∑
niPm(φi(t)) = 0 (φ(t) ∈ Q(t)) to arguments t ∈ Q. (This includes conditions (i)

and (ii) since the arguments of functional equations of Pm automatically satisfy (∗m) and
since replacing t ∈ Q by tσ replaces each value xi = φi(t) by xσ

i .) This conjecture, which
is discussed in more detail in §10 of [Z], contains as a special case Milnor’s conjecture [M]
that the only linear relations over Q of the Clausen function Cl2(θ) =

∑∞
n=1 sin(nθ)/n

2 at
arguments θ ∈ Qπ are those arising from the distribution relations

|N |
∑

m=1

Cl2
(
θ +

2mπ

N

)
=

1

N
Cl2(Nθ) (0 6= N ∈ Z).

The only evidence in its support is its naturalness and internal consistency and the fact
that the many known examples of algebraic relations among polylogarithms all conform
to it. On the theoretical level nothing is known; so far as I know, for instance, one cannot
prove that there is even a single pair of values D(x), D(y) with x and y algebraic which
are linearly independent over Q, or even that there is a single value of D(x) which is not
a rational number! The conjecture is also particularly daring because we know from §5
that there are linear dependences among values of the mth polylogarithm function for
arbitrarily large values of m, but for m > 6 do not know whether these functions have any
non-trivial functional equations at all.

7. Functional equations. The basic fact here, already mentioned in §1, is that the
only requirement for a functional equation is the algebraic condition (∗m), i.e., that for
any combination

∑
ni[xi] of functions (of one or several variables t) xi(t) which satisfies
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(∗m) the corresponding sum of polylogarithms
∑

niPm(xi(t)) is independent of t. In this
section we discuss how this criterion can be used to check known functional equations and
to find new ones in an algorithmic way. We will express all functional equations in terms
of Pm rather than Lim in order to have well-defined values for complex arguments and
to avoid lower-order terms in the equations; for real values of the arguments, the function
Lm would do just as well because of the relation between Lm and Pm mentioned at the
end of §1. A striking property of many of the functional equations is their high level of
symmetry; we will emphasize this aspect in our discussion.

Example 1. The 5-term relation for the dilogarithm. The basic functional equation
of the dilogarithm function is the 5-term relation (cf. Chapter I, section 1.2), which in our
notation says that D

(
R5(x, y)

)
= 0 for any x and y, where R5(x, y) denotes the formal

linear combination

(1) R5(x, y) =
[
x
]
+

[
y
]
+
[ 1− x

1− xy

]
+
[
1− xy

]
+
[ 1− y

1− xy

]

of elements in Q(x, y). (The other forms given by Spence, Hill, Abel and Kummer are
equivalent to this by the 1-variable relations of Chapter I, 1.1.) To prove it in our language,
we have to check that R5(x, y) is in the kernel of the map β2 : [z] 7→ [z] ∧ [1 − z]. We
calculate

β2

(
R5(x, y)

)
= [x] ∧ [1− x] + [y] ∧ [1− y] +

(
[1− x]− [1− xy]

)
∧
(
[x] + [1− y]− [1− xy]

)

+ [1− xy] ∧
(
[x] + [y]

)
+
(
[1− y]− [1− xy]

)
∧
(
[y] + [1− x]− [1− xy]

)
= 0.

This is the simplest example of the use of the calculus with wedge products in checking
functional equations (and also, as far as the dilogarithm is concerned, the basic exam-
ple, since it is apparently the case that all functional equations of the dilogarithm are
consequences of the 5-term relation.)

We use this simple example to give a first illustration of the comments on symmetry
made at the beginning of the section. First of all, we can check that R5 has a cyclic
symmetry, i.e.,

R5

(
x, y

)
= R5

(
y,

1− x

1− xy

)
= R5

( 1− x

1− xy
, 1−xy

)
= R5

(
1−xy,

1− y

1− xy

)
= R5

( 1− y

1− xy
, x

)
.

However, this is only part of the full symmetry group. The basic invariance property of
the dilogarithm is that for any x the six numbers D(x), D(1/x), D(1−1/x), D(x/(x−1)),
D(1/(1−x)) and D(1−x) are equal up to sign. This 6-fold symmetry plays a role so often
in the following that we introduce the special notation

x′ ∼
6
x ⇔ x′ ∈ {x, 1

x
, 1− 1

x
,

x

x− 1
,

1

1− x
, 1− x} .

A symmetric way to express the∼
6
-invariance is to say that the functionD([a, b, c, d]), where

[a, b, c, d] =
a− c

a− d

b− d

b− c
denotes the cross-ratio of a, b, c and d, is up to sign a symmetric
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function of its four arguments, since changing the order of four numbers replaces their
cross-ratio x by a number x′ ∼

6
x. More precisely,

(2) D
(
[xπ(1), xπ(2), xπ(3), xπ(4)]

)
= sgn(π)D

(
[x1, x2, x3, x4]

)

for any xi ∈ P1(C) (1 ≤ i ≤ 4) and any π ∈ S4, the symmetric group on 4 letters. To
verify this in our terminology we compute

β2

(
[x1, x2, x3, x4]

)
=

[
(x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)

]

∧
[
(x1 − x2)(x3 − x4)

(x1 − x4)(x2 − x3)

]

=
1

2

∑

π∈S4

sgn(π) [xπ(1) − xπ(2)] ∧ [xπ(2) − xπ(3)]

(this has only 12 terms rather than 24, because the πth summand is invariant under π 7→ πτ
where τ is 1 ↔ 3). This has the desired invariance property under the action of S4, so
D([x1, x2, x3, x4]) also does. Now the 5-term relation becomes simply

(3)
1

24

∑

π∈S5

sgn(π)D
(
[xπ(1), xπ(2), xπ(3), xπ(4)]

)
= 0, (x1, . . . , x5 ∈ P1(C))

(this has only 5 terms rather than 120 because the πth summand is unchanged by π 7→ πτ ,
τ ∈ S4), with a symmetry group of order 120.

Example 2. The 9-term relation for the dilogarithm. As a second example, we
consider the 3-variable functional equation (2.40) of Chapter I, 2.3.2. This equation has
an obvious 8-fold symmetry generated by the involutions x ↔ y, v ↔ w and (x, y) ↔ (v, w),
but in fact has a symmetry group of order 72, a typical non-obvious symmetry being given
by (x, y, v, w) 7→ (y, xy/vw, y/w, y/v). To make the symmetries obvious, we first define a
3× 3 matrix

(4) Z =
(
zij

)

i,j=1,2,3
=





x 1/v v/x
1/w y w/y
w/x v/y xy/vw



 .

Then the functional equation becomes simply
∑

i,j D(zij) = 0. The constraints on the zij
are

(5)
∏

j

zij = 1 (∀i) ,
∏

i

zij = 1 (∀j)

and (taking the indices i and j modulo 3)

(6) (1− zi,j)(1− zi+1,j+1) = (1− z−1
i,j+1)(1− z−1

i+1,j) (∀i, j) .
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Indeed, (5) is equivalent to the fact that Z can be expressed by (4) for some numbers x,
y, v and w, and (6) for i = j = 1 is just the constraint (1 − x)(1 − y) = (1 − v)(1 − w).
A calculation shows that this equation implies the validity of (6) for the other 8 values
of the indices (i, j). Thus we have the symmetry group of order 72 given by permuting
the indices i, permuting the indices j, and interchanging the roles of i and j. However,
this is still not satisfactory because we cannot yet “see” why equation (6) for one pair
of indices (i, j) implies (in conjunction with (5)) its truth for all i, j. To remedy this,
we choose new coordinates tij (i, j ∈ Z/3Z) and set zij = ti,j t

−1
i,j+1 t

−1
i+1,j ti+1,j+1 . Then

the equations (5) are true identically and each of the 9 equations (6) is equivalent to the
condition det(T ) = 0, where T = (tij). (The set of 3 × 3 matrices T with det(T ) = 0 is
8-dimensional, but there are only 3 free parameters because replacing tij by λiµjtij for any
λi and µj leaves zij unchanged.) Finally, we give a parametric solution of det(T ) = 0 by
setting tij = ui−vj . Then the constraints (5) and (6) are automatically satisfied and zij is
simply the cross-ratio of the four numbers ui, ui+1, vj and vj+1. Therefore the functional
equation can be written

∑

i, j

D
(
[ui, ui+1, vj , vj+1]

)
= 0 for any 6 points ui, vj ∈ P1(C) (i, j ∈ Z/3Z).

Now not only the 72-fold symmetry of the equation is obvious (permute the ui’s or the vj ’s
or interchange u and v), but also its proof: applying (3) to the 5-tuple (ui, ui+1, v1, v2, v3)
gives

∑

j

D
(
[ui, ui+1, vj , vj+1]

)
= D

(
[ui, v1, v2, v3]

)
−D

(
[ui+1, v1, v2, v3]

)

for each i, and the sum of this over i (mod 3) vanishes. Of course, we can now go back
and give a non-motivated and non-symmetric proof of the equation in its original form by
adding the three 5-term relations R5

(
x, 1/v

)
, R5

(
1/w, y

)
and R5

(
w/x, v/y

)
and using

the 1-variable functional equations of the dilogarithm to simplify the result.

Example 3. The 9-term relation for the trilogarithm. As the first example of the
verification of a functional equation for a higher-order polylogarithm we consider Kummer’s
2-variable equation for the trilogarithm. Again we use P3 rather than Li3 in order to
eliminate lower-order terms (the function L3 would do just as well if we restricted our
attention to real values of the variables). The functional equation in question (cf. Chapter
2, 3.2.2.3) has the form P3

(
R9(x, y)

)
= 2ζ(3), where R9(x, y) denotes the element

R9(x, y) =2
[
x] + 2

[
y] + 2

[x(1− y)

x− 1
] + 2

[y(1− x)

y − 1
] + 2

[1− x

1− y
] + 2

[x(1− y)

y(1− x)

]

−
[
xy]−

[x

y
]−

[x(1− y)2

y(1− x)2
](7)

of Q(x, y). This equation has an obvious symmetry group of order 8 (invert x or y or
interchange x and y), but in fact has a symmetry group of order 24. We can write it
symmetrically in two ways.
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Symmetric form: first version. Let H be the hypersurface in P3(C) consisting of 4-
tuples (a1 : a2 : a3 : a4) with

∑

i ai = 0, with the obvious action of the group S4. Let V
be the 3-dimensional space generated multiplicatively by all ratios ai/aj and W ⊃ V the
6-dimensional space generated by all quotients (ai+aj)/ai, j 6= i (this space has dimension
only 6 because up to sign there are only three distinct quantities ai + aj). Each of the
elements x = −ai/aj (j 6= i) and aiaj/akal (i, j, k, l distinct) has the property that x ∈ V
and 1 − x ∈ W , and up to inversion there are exactly 9 of them. The argument R9 of
Kummer’s functional equation can then be written symmetrically as

2
( [

−a1
a2

]
+ 5 permutations

)
−
( [a1a2

a3a4

]
+ 2 permutations

)
.

(To see this, normalize the common value of a1 + a2 and −a3 − a4 to be 1, in which case
H is parametrized by two parameters x = −a1

a2
, y = −a3

a4
as

{(
x

x−1 : 1
1−x : y

1−y : 1
y−1

)}
.)

The proof of P3(R9) = constant (the value of the constant is then found by specializing
to x = 0, y = 1) can be obtained easily by computing β3(−a1/a2) and β3(a1a2/a3a4) and
symmetrizing with respect to the group action.

Symmetric form: second version. As with the dilogarithm, we interpret the arguments
of the trilogarithms as cross-ratios of 4-tuples of points in P1(C). However, we no longer
have the sixfold symmetry of the function D(x), but only the twofold symmetry P3(x) =
P3(1/x). This means that the argument of P3(x) must be interpreted as a cross-ratio
[a, b, c, d] of four points a, b, c, d ∈ P1(C) where the only symmetries allowed are the ones
generated by the interchanges of a and b, of c and d, or of (a, b) and (c, d), i.e. P3([a, b, c, d])
depends only on the unordered pair of unordered pairs {{a, b}, {c, d}}. To emphasize this,
we write the cross-ratio x as [a, b; c, d] rather than [a, b, c, d], although the definition is the
same as before. Now suppose that we have six points pν ∈ P1(C) and that there is an
involution τ on P1(C) which interchanges these points in pairs. We consider all cross-ratios
[a, b; c, d] of four distinct points a, b, c, d from the set {pν} for which {a, b} is disjoint from
{τ(c), τ(d)}. Using the symmetries of [a, b; c, d] and the invariance of the cross-ratio under
automorphisms of P1(C), we find that there are 9 of these, 3 of the form [a, τ(a); c, τ(c)]
and 6 of the form [a, τ(a); c, d] with d 6= τ(c). Then R9 is just twice the sum of the latter 6
minus the sum of the former 3. (Take the pν to be 0, ∞, 1, xy, x and y with the involution
τ : t 7→ xy/t.) The equivalence of this form of the functional equation to the one just given
is seen by taking for {pν} the 6 numbers ai + aj (1 ≤ i < j ≤ 4) and for τ the involution
t 7→ −t. The symmetry group appears now not as S4, but as the semi-direct product of
S3 (permute the three orbits of τ on {pν}) with a Klein 4-group (interchanging the two
elements within each orbit is an automorphism of order 2, but the product of these three
automorphisms is just τ and has no effect on the cross-ratio).

The functional equations discussed up to now are classical, but the method of verifying
them can also be used to discover new equations. The basic desideratum, as in the case
of relations among special values, is to find as many x as possible such that all the x and
1− x belong to subspaces V and W of F× of small dimension. Typically one first chooses
the generators of V (certain irreducible polynomials in one or several variables), preferably
with a lot of symmetry to reduce the number of independent conditions which have to be
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checked later, and then looks for many x in V for which the prime factors of the elements
1− x are repeated many times; then one computes βm(x) for these x’s and some small m
and uses linear algebra to solve if possible the system of equations which expresses that a
linear combination of them vanishes. This algorithm, which can be carried out by hand
in simple cases, can also be programmed, although not easily. This has been carried out
by H. Gangl, who in this way found a large number of new functional equations. In the
remainder of the appendix we present a few of these.

Example 4. Functional equations for the tetralogarithm. The simplest of Gangl’s
functional equations is the 9-term equation

(8)

2
[
P4

(
z(1− z)

)
+ P4

(
− z

(z − 1)2
)
+ P4

(z − 1

z2
)]

−3
[
P4

( 1

1− z + z2
)
+ P4

( (1− z)2

1− z + z2
)
+ P4

( z2

1− z + z2
)]

−6
[
P4

(1− z + z2

z(z − 1)

)
+ P4

(1− z + z2

z

)
+ P4

(1− z + z2

1− z

)]
= 0 .

This has a 6-fold symmetry G9(z
′) = G9(z) for z′ ∼

6
z and up to this symmetry has only

three rather than nine terms, as shown by the square brackets.

More interesting is the equation

[
P4

(
−bd

a

)
+ P4

(
−ac

d

)
+ P4

(
−ab3

c2d

)
+ P4

(
−c3d

ab2
)
+ P4

(
− d

ab2
)
+ P4

(
− a

c2d

)]

+
[
P4

(
−ad2

b

)
+ P4

(
−a2d

c

)]
+ 2

[
P4

( b

c2
)
+ P4

( c

b2
)
+ P4

(
bc
)]

+ 3
[
P4

(
− b

ad

)
+ P4

(
− c

ad

)
+ P4

(
− 1

ad

)]

+ 3
[
P4

(
−cd

)
+ P4

(
−ab

)
+ P4

(
−d

c

)
+ P4

(
−a

b

)
+ P4

(
−ab

c2
)
+ P4

(
−cd

b2
)]

+ 6
[
P4

( c

a

)
+ P4

( b

d

)
+ P4

(1

d

)
+ P4

(1

a

)
+ P4

( b

cd

)
+ P4

( c

ab

)]
= 0 ,

in two variables y and z, where we have abbreviated

a = 1− z + yz, b = −y, c = y − 1, d = 1− y + yz

This equation has an obvious symmetry under the involution P : (a, b, c, d) 7→ (d, c, b, a),
corresponding to (y, z) 7→ (1 − y, 1 − z), and a less obvious one under the involution
Q : (a, b, c, d) 7→ (a, b−1, cb−1, db−1), corresponding to (y, z) 7→ (y−1, −yz). These two
involutions generate a group of order 12 under which the 26 terms of the functional equa-
tions fall into only 6 orbits (grouped by square brackets in the formula above). One can
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introduce new variables which make the symmetries obvious. Let F be the function field
(over Q) of the variety

X =
{
(t1 : t2 : t3 : t4 : t5) ∈ P4 |

5∑

i=1

ti = 0,
3∑

i=1

t−1
i = 0

}
,

with an obvious symmetry of the group G = S3 ×S2 ⊂ S5. We can parametrize X by

(
t1 : t2 : t3 : t4 : t5

)
=

(
−y : y − 1 : y(1− y) : y − y(1− y)z : (y − 1)2 + y(1− y)z

)
,

(set y = t3/t2, z = −(t1 + t4)/t3) and under this identification G is identified with the
symmetry group 〈P, Q〉 of the functional equation. The 26 arguments x of P4 satisfy
x ∈ V , 1 − x ∈ W where V is the 4-dimensional subspace of F× ⊗Z Q spanned by the
quotients ti/tj (i 6= j) and W the 11-dimensional space spanned by V and the elements
(ti + tj)/ti (i 6= j, max{i, j} ≥ 4). Using this description and the symmetry one can easily
check that the linear combination of the x’s specified by the functional equation is in the
kernel of β4.

Example 5. A 2-variable functional equation for the hexalogarithm. Gangl found
one-variable functional equations for the penta- and hexalogarithm which had a similar
structure to equation (8) above, namely the arguments of the polylogarithms involve only
the irreducible polynomials z, 1− z and 1− z+ z2 and the whole equation is unchanged if
z is replaced by any z′ ∼

6
z. The functional equation for the hexalogarithm, in particular,

has 60 terms forming 13 orbits under the 6-fold symmetry and can be written efficiently
as

3T−
{0,1,5} + 4T+

{−5,0,3} + 5T−
{−4,3,3} − 20T−

{0,1,3} − 20T−
{0,0,4} − 60T−

{−3,1,2} + 90T−
{−1,1,2}

+ 95T−
{−1,0,3} + 120T+

{−2,1,1} − 180T+
{−1,1,2} − 360T+

{0,1,1} + 540T−
{0,1,1} − 544T+

{0,0,2} = 0 ,

where for a set of three integers α, β, γ with even sum we have set

T±
{α,β,γ} =

∑

{a,b,c}={α,β,γ}
P6

(

± (−1)azb(1− z)c

(1− z + z2)(a+b+c)/2

)

(the sum is over all permutations and has 6 terms in general but only 3 if two of α, β and
γ coincide). Later he found a second functional equation with 89 terms and where the
prime factors of the hexalogarithm arguments involved four prime factors z, 1 − z, 1 + z
and 1−z+z2. Many of the coefficients in these two equations agreed, suggesting that they
might be different specializations of the same two-variable equation. After a considerable
amount of trial and error, guided by the symmetry, it was found that this is true and that
the two-variable functional equation has an 18-fold symmetry:
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Theorem. Let y and z be variables and denote by yi (1 ≤ i ≤ 6) and wj (1 ≤ j ≤ 3) the
elements y′ ∼

6
y and z′(1− z′), z′ ∼

6
z. Then

(9)
∑

a,b

na,b
1

µa,b

6∑

i=1

3∑

j=1

P6

(
(wj

yi

)a(1− wj

1− yi

)b
)

is independent of y, where the coefficients na,b and µa,b are given by the following table:

(a, b) (−2, 3) (−1, −1) (−2, 1) (1, −2) (1, 0) (0, 1) (1, −1)

na,b 3 4 5 20 60 90 180
µa,b 3 2 2 2 1 1 1

Remarks. 1. The value of (9) can be found by specializing y in any way we want. Taking
y = ∞ (or 0 or 1, which are equivalent under ∼

6
), we find that it equals 60P6(G9(z)),

where G9(z) is the combination of arguments occurring in Gangl’s tetralogarithmic func-
tional equation (8).
2.The coefficient of each inner double sum in (9) has been written as na,b/µa,b rather than
simply na,b because the 18 terms of the double sums occur with multiplicity µa,b, so that
the (a, b)th summand in (9) in fact consists of 18/µa,b terms with coefficient na,b. Thus
there are 87 terms altogether, forming 7 orbits under a group of order 18, or 96 terms
forming 8 orbits if we include the “constant term” as given in the previous remark.
3. Gangl’s original 1-variable equations are obtained by specializing to y = z and y = −z.
4. The coefficients na,b are determined by the requirement that the homogeneous poly-
nomial

∑
na,b(aX + bY )5 vanish identically (since this polynomial is a combination of 6

monomials XkY 5−k and there are 7 indices (a, b), this has a solution). To see the necessity
of this condition, note that the arguments x of the hexalogarithms in (9) belong to the
16-dimensional space generated by the irreducible polynomials yi/wj and (1−yi)/(1−wj)
(1 ≤ i ≤ 6, 1 ≤ j ≤ 3), while 1 − x belongs to the 34-dimensional space with the ad-
ditional generators pi,j = yi − wj . The contribution of one of the new primes p = pi,j
to β6(x), where x is one of the arguments in (9), is ordp(x) [x]

5 ⊗ [p] ∈ Sym5(F×) ⊗ F×

(F = Q(y, z)), so a short consideration shows that the total coefficient of [pi,j ] under β6

equals
∑

na,b(aX + bY )5 with X = [yi/wj ], Y = [(1− yi)/(1−wj)] ∈ F×. Thus the func-
tional equation stated in the theorem can only hold for the values of na,b given in the table;
that it actually does hold depends on luck (at least at our present stage of understanding),
since the coefficients are already uniquely determined by requiring that the “new” primes
pi,j drop out under the map β6, and we have no further freedom to ensure that the “old”
primes also give a zero contribution modulo Sym6(F×).
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Remark. For computing numerical examples in number fields it is useful to have a
simple and rapidly convergent formula for calculating Lim(z). For z small (say |z| < 1/2),
one can of course simply use the defining series of the polylogarithm, and for z large the
functional equation relating the polylogarithms of z and 1/z. For z near the unit circle, a
convenient (and pretty) formula which was noticed by Henri Cohen and myself is

Lim(ex) =

∞∑

n=0

ζ(m− n)
xn

n!
,

where the meaningless term ζ(−1) is to be replaced by 1+ 1
2 + · · ·+ 1

m−1 − log(−x). This
formula, easily proved by m-fold differentiation, works for all x of absolute value less than
2π and hence gives Lim(z) for all z with .005 < |z| < 230.


