
On Harder’s Sl(2,R) -Sl(3,R) - identity

Appendix by Don Zagier

The object of this appendix to prove the experimentally obtained formula
stated in Section 2.2.4 of the paper.

1 Notations and statement of the identity

Our notations differ slightly from those of the paper. Fix an integer D ≥ 0 .
(This is the d+ 2 of the paper, but we assume neither D even nor D > 2 .) We
define coefficients

Ca,b =

min(a,b)∑
ν=0

(−1)a+b−ν
(
a

ν

)(
2D − a
b− ν

)
(0 ≤ a, b ≤ 2D) . (1)

(This is (−1)a 2D C
(d)
a,b in the notation of the paper.) For n ∈ Z and z ∈ C we

define

γn(z) = Γ
(z + |n|+ 1

2

)−1 |n|/2∑
k=0

(−1)k
(
|n|
2k

)
Γ
(
k +

1

2

)
Γ
(z + |n|

2
− k
)
. (2)

In the paper the number c(z, n) = i−nγn(z − 1) is used instead, but γn(z) is
slightly easier to work with since it is an even function of n and is real for z real,
and the shift of z by 1 also simplifies some of the formulas. Harder’s identity
says that∑

0≤b≤2D
b≡mα (mod 2)

∑
0≤c≤2D

c≡mβ (mod 2)

iD+b+c C2D,b Cb,c Cc,e γD−b(z −D + 1) γD−c(z)

=
23Dπ

z

(
δe,2D + (−1)mβδe,0

) (3)

for any mα, mβ ∈ Z/2Z satisfying mα+mβ ≡ D, e ∈ 2Z satisfying 0 ≤ e ≤ 2D,
and z ∈ Z (z = d− nα = nβ + 1 in Harder’s notation) satisfying 0 < z < D − 1
and z ≡ mα (mod 2). In fact this identity is true without the restriction on the
parity of mα +mβ (but with the right-hand side replaced by 0 if mα +mβ 6≡ D
(mod 2)) or of e, and for all complex numbers z (in the sense of meromorphic
functions). If we restrict to integral values of z, then the individual terms on the
left sometimes have poles and the identity does not make sense, but if z ≡ mα

(mod 2) then all terms are finite and the identity is true whenever z > 0, without
the assumption z < D − 1.
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2 Properties of the coefficients Ca,b

The key property of the numbers (1) is the identity

2D∑
b=0

Ca,b x
b = (x+ 1)a (x− 1)2D−a (0 ≤ a ≤ 2D) , (4)

which follows straight from the binomial theorem. This immediately implies the
symmetry properties

Ca,b = (−1)b C2D−a,b = (−1)a Ca,2D−b (0 ≤ a, b ≤ 2D) (5)

(the first of which is also obvious from (1)). A further symmetry property is(
2D

a

)
Ca,b =

(
2D

b

)
Cb,a , (6)

which follows either from (1) and the identity(
2D

a

)(
a

ν

)(
2D − a
b− ν

)
=

(
2D

b

)(
b

ν

)(
2D − b
a− ν

)
or else from (4) and the generating function calculation

2D∑
a=0

2D∑
b=0

(
2D

a

)
Ca,b x

ayb =

2D∑
a=0

(
2D

a

)
xa(y+1)a(y−1)2D−a = (xy+x+y−1)2D

Finally, substituting x = ±1 into (4) and using (6) gives two identities which
we will use below:

2D∑
c=0

(
2D

c

)
Cc,e = 22Dδe,2D,

2D∑
c=0

(−1)c
(

2D

c

)
Cc,e = 22Dδe,0 (0 ≤ e ≤ 2D)

(7)
Observe that (4) says simply that the (2D+1)×(2D+1) matrix

(
Ca,b

)
0≤a,b≤2D

is the image of the matrix
(
1 1
1 −1

)
under the (2D)th symmetric power map

GL(2)→ GL(2D+ 1). In particular, the square of this matrix is 22D times the
identity.

3 Properties of the functions γn(z)

These are summarized in the following proposition and its corollary.

Proposition 1. (i) For n ∈ Z and z ∈ C with <(z) > 0 we have the integral
representation

γn(z) =

∫ π/2

−π/2
einθ (cos θ)z−1 dθ . (8)

(ii) For all n ∈ Z the function γn(z) is given by the closed formula

γn(z) =
π

2z−1
Γ(z)

Γ
(
z+1+n

2

)
Γ
(
z+1−n

2

) (9)
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Collorary 1. For n and z in Z the values of γn(z) are given by

γn(z) =


21−zπ

( z−1
|n|+z−1

2

)
if z ≥ 1, z ≡ n+ 1 (mod 2),

(−1)
|n|−z

2 21−z z−1 /
( |n|+z−1

2
z

)
if z ≥ 1, z ≡ n (mod 2),

(−1)
|n|+z−1

2 2−z π
( |n|−z−1

2
−z

)
if z ≤ 0, z ≡ n+ 1 (mod 2),

∞ if z ≤ 0, z ≡ n (mod 2).

(10)
In particular, γn(z) = 0 if z ≡ n+1 (mod 2) and either z < −|n| or 0 < z < |n|.

Proof: Since the left- and right-hand sides of both (8) and (9) are even
functions of n, we may assume that n ≥ 0. Setting m = 2k in (2) and using the
beta integral followed by the substitution t = sin2 θ, we find

γn(z) =

n∑
m=0

(
n

m

)
<(im)

∫ 1

0

t(m−1)/2 (1− t)(z+n−m−2)/2 dt

= 2

∫ π/2

0

cos(nθ) cos(θ)z−1 dθ

for <(z) > 0, establishing (8). If z is a positive integer congruent to n + 1
modulo 2, then (8) gives

γn(z) =
1

2

∫ π

−π
einθ

(eiθ + e−iθ

2

)z−1
dθ =

π

2z−1

(
z − 1
z−1−n

2

)
,

proving (9) for these values of z. But this is sufficient, since the quotient of
each term in (2) by the right-hand side of (9) is a rational function of z and two
rational function which agree at infinitely many arguments are equal. We can
also give a purely combinatorial proof of (9), e.g., if n = 2m ≥ 0 (the case of
odd n is similar), then using the duplication formula of the gamma function we
find

γn(z)

RHS of (9)
=

(
m− z+1

2

m

)−1 m∑
k=0

(
m− 1

2

k

)(
− z2
m− k

)
= 1 .

The corollary follows immediately from (9) by computing the values or limiting
values of the right-hand side as z tends to an integer. The second and third
lines of (10) are identities given in Section 2.2.2 of the paper.

4 Proof of the identity (3)

For 0 ≤ c ≤ 2D we define a meromorphic function γ̂c(z) by

γ̂c(z) =

2D∑
b=0

iD+b+c Cc,b γD−b(z −D + 1) . (11)

Note that this is a real function (in the sense that γ̂c(z) = γ̂c(z)) because of the
symmetry properties Cc,2D−b = (−1)cCc,b and γn(z) = γ−n(z). The key fact is
the identity

γ̂c(z) =
2D+1 π

z γD−c(z)
. (12)

3



To prove this, we may assume that <(z) > D − 1 since both sides of (12) are
meromorphic functions of z. Then (8) and (4) together with the substitution

t = cos
(
π
4 −

θ
2

)2
and the beta integral give

γ̂c(z) = iD+c

∫ π/2

−π/2
(cos θ)z−D eiDθ (ie−iθ + 1)c (ie−iθ − 1)2D−c dθ

= 2z+D
∫ π/2

−π/2
cos
(π

4
− θ

2

)z+c−D
sin
(π

4
− θ

2

)z+D−c
dθ

= 2z+D
∫ 1

0

t(z+c−D−1)/2 (1− t)(z+D−c−1)/2 dt

= 2z+D Γ
(z + c−D + 1

2

)
Γ
(z − c+D + 1

2

)
/Γ(z + 1) ,

and together with (9) this proves the claim.
Combining equations (12) and (7), we obtain

2D∑
b=0

2D∑
c=0

iD+b±c C2D,b Cb,c Cc,e γD−b(z −D + 1) γD−c(z)

=

2D∑
c=0

(±1)c
(

2D

c

)
γ̂c(z) γD−c(z)Cc,e

(
by (6), since C2D,b =

(
2D

b

))
=

2D+1π

z

2D∑
c=0

(±1)c
(

2D

c

)
Cc,e (by (12))

=
23D+1π

z
δe,D±D (by (7)) ,

and (3) follows by taking the real or imaginary part of the sum or difference of
these two identities.
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