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Proof of the gamma conjecture
for Fano 3-folds of Picard rank 1

V. V. Golyshev and D. Zagier

Abstract. We verify the (first) gamma conjecture, which relates the
gamma class of a Fano variety to the asymptotics at infinity of the Frobe-
nius solutions of its associated quantum differential equation, for all 17
of the deformation classes of Fano 3-folds of rank 1. This involves com-
puting the corresponding limits (‘Frobenius limits’) for the Picard–Fuchs
differential equations of Apéry type associated by mirror symmetry with
the Fano families, and is achieved using two methods, one combinatorial
and the other using the modular properties of the differential equations.
The gamma conjecture for Fano 3-folds always contains a rational multi-
ple of the number ζ(3). We present numerical evidence suggesting that
higher Frobenius limits of Apéry-like differential equations may be related
to multiple zeta values.

Keywords: gamma class, gamma conjecture, Picard–Fuchs equation,
Fano 3-fold.

Dedicated to the memory of Andrei Andreevich Bolibrukh

Introduction

The goal of this paper is twofold. On the one hand, we will calculate cer-
tain entries of the transition matrix (or central connection matrix) for the Laplace
transform of a number of Apéry-like differential equations and find the expansion
coefficients of the most rapidly growing solution at infinity in terms of the Frobe-
nius basis at z = 0. On the other hand, these calculations, whose results always
involve the number ζ(3), enable us to verify the prediction of mirror symmetry
(the so-called first gamma conjecture) for each of the 17 deformation classes in
Iskovskikh’s classification of smooth Fano 3-folds of Picard rank 1.

We will present two approaches to computing the limits in question. One of them,
which we carry out for the differential equation satisfied by the generating function
of the numbers used by Apéry in his famous proof of the irrationality of ζ(3), is
based on the explicit hypergeometric formula that he gave for these numbers. This
method is less satisfactory since it depends on complicated formulae that were found
experimentally and whose proofs are somewhat artificial. Nevertheless we include
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it because it could also be applied in non-modular situations (like the differential
equations associated with most Fano 4-folds). It also works almost automatically
whenever the differential equation is of hypergeometric type, which is the case in 10
of the 17 cases in Iskovskikh’s list. The second method is based on the modular
parametrization of the differential equations in question, like the one found many
years ago by Beukers in the Apéry case. This method is much nicer and explains
the crucial constant ζ(3) as a period of an Eisenstein series. It works in a uniform
way for each of the differential equations admitting a modular parametrization,
which holds for 15 of the 17 families, including all non-hypergeometric ones. This
gives the following theorem, which is our main result.

Theorem 1. The gamma conjecture holds for all Fano 3-folds of Picard rank 1.

Since the themes of the paper cover a wide spectrum and may not all be known to
the same readers, we will include in § 1 a review of the main ingredients in the story
(Fano varieties, Iskovskikh classification, quantum differential equations, gamma
classes, gamma conjecture) for completeness. However, the actual calculations of
the limits, which are given in § 2, involve only classical tools from number theory
and can be read independently of this material. In the rest of this introduction we
give a little more indication of the background of the problem and state the explicit
prediction made by the gamma conjecture in the Apéry case.

Mirror symmetry predicts, among other things, that with each of the 17 families
of Fano varieties in question there should be associated a family E of K3 surfaces
over P1 (related by an isogeny to the so-called Landau–Ginzburg model) in such
a way that the ‘quantum differential equation’ on the Fano side is the Laplace trans-
form of the Picard–Fuchs differential equation satisfied by the periods of E . These
quantum differential equations, whose definition will be recalled briefly in § 1.4, arise
from counting embedded holomorphic curves (Gromov–Witten invariants), so that
this is the ‘A-side’ in the terminology of string theory (where one is usually inter-
ested in families of Calabi–Yau 3-folds) while both the Landau–Ginzburg model
and our second family E with its Picard–Fuchs equation would be the ‘B-side’. One
further expects that the Picard rank of the Fano variety and that of the generic
fibre of E add up to 20. In the 17 cases we are considering, these predictions of
mirror symmetry were made precise in [1] and proved in [1] and [2]. In each case
E is a family of Kuga–Sato type whose base space is equal to the modular curve 1

X∗
0 (N) = X0(N)/WN classifying the unordered pairs (E,E′) of N -isogeneous ellip-

tic curves for some N , and the fibre is equal to the smooth resolution of the quotient
of E × E′ by (−1), with Picard number 19 = 20− 1 as it should be (with 16 alge-
braic cycles coming from the resolutions of the 16 singularities, and 3 more from
the classes of E, E′ and the graph of the isogeny). The fact that these fami-
lies are of Kuga–Sato type means precisely that the solutions of their associated
Picard–Fuchs differential equations have modular parametrizations. More specifi-
cally, each of these differential equations has a unique holomorphic solution of the
form Φ(t) =

∑∞
n=0 Antn with A0 = 1 at the point t = 0, where t is a suitably cho-

sen coordinate on the base P1, and the modular parametrization says that Φ(t(τ))2

1Or a d-sheeted covering of it, where d is the ‘index’. In the introduction we assume that
d = 1.
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is a modular form of weight 4 on Γ∗0(N) for some Hauptmodul t(τ) on X∗
0 (N).

The gamma conjecture relates the asymptotics at infinity of the four Frobenius
solutions of the differential equation satisfied by Ψ(z) =

∑∞
n=0 Anzn/n! to the

so-called gamma class (a characteristic class in cohomology with real coefficients,
whose definition will be recalled in § 1.5) of the corresponding Fano 3-fold.

We now describe the picture in more detail in the Apéry case, corresponding
to N = 6. Here we have

An =
n∑

k=0

(
n

k

)2(
n + k

k

)2

, Φ(t) = 1 + 5t + 73t2 + 1445t3 + · · · . (0.1)

The corresponding recursion and differential equation are

(n+1)3An+1−P (n)An+n3An−1 = 0,
(
D3−tP (D)+t2(D+1)3

)
Φ(t) = 0, (0.2)

where D = t d/dt and P (n) is the polynomial

34n3 + 51n2 + 27n + 5 = (2n + 1)(17n2 + 17n + 5).

The modular parametrization, as found by Beukers [3], is given by

t =
(

η(τ)η(6τ)
η(2τ)η(3τ)

)12

= q − 12q2 + 66q3 + · · · ,

Φ(t) =
(η(2τ)η(3τ))7

(η(τ)η(6τ))5
= 1 + 5q + 13q2 + · · · ,

where η(τ) is the Dedekind eta-function and q = e2πiτ , as usual. To state the
gamma conjecture, we consider instead of Φ(t) the related power series 2

Ψ(z) =
∞∑

n=0

An
zn

n!
= 1 + 5z +

73
2

z2 +
1445

6
z3 + · · · .

It also satisfies a linear differential equation, this time of order 4, having no singu-
larities on C∗, a regular singularity at 0 and an irregular one at infinity. (This is
what we called the ‘Laplace transform’ above, although ‘Borel transform’ might be
a better name.) The space of solutions of the transformed equation near z = 0 has
the standard Frobenius basis Ψj(z), 0 6 j 6 3, where each of the Ψj(z) has a sin-
gularity of the form (log z)j/j! near the origin. We define the Frobenius limits κj

by the formula
κj := lim

z→∞

Ψj(z)
Ψ(z)

. (0.3)

The gamma conjecture gives their values in terms of ζ(3) and the Chern numbers
of one of the Fano varieties (the one called V12) in the Iskovskikh list. Specifically,
it predicts that

κ1 = −γ, κ2 =
γ2

2
− 3

2
ζ(2), κ3 = −γ3

6
+

3
2
γζ(2) +

5
2
ζ(3), (0.4)

2We should warn the reader that our z is the reciprocal of the one occurring frequently in the
literature.
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where γ is Euler’s constant. (An easy explicit computation of the gamma class in
this case and in the other 16 cases is given in § 1.5, Proposition 2.) This will be
proved as a special case of our main theorem (§ 1.3, Theorem 3), which gives the
Frobenius limits in all 17 cases.

We end by remarking that the Frobenius basis is a part of an infinite family of
functions Ψj(z), j > 0, with singularities of type (log z)j at the origin, but with Ψj ,
j > 4, satisfying some inhomogeneous versions of the differential equation for Ψ(z).
The limits κj defined in (0.3) still exist and can be computed numerically to high
precision by a method that will be explained in § 2.4. We find that for j 6 10 each
of these ratios is again a polynomial in γ and the Riemann zeta values, but this
is not the case for κ11, which involves a multiple zeta value as well. This point,
although purely experimental at the moment, seems worth mentioning. It will be
described in more detail in § 2.4.

Since the main ingredient in our story is the monodromy of Fuchsian differential
equations, we hope that it is a suitable homage to Andrei Andreevich Bolibrukh,
who contributed so deeply to this subject.

§ 1. Fano varieties, Apéry-like differential equations,
and mirror symmetry

In this section we briefly describe the gamma conjecture (see [4] and [5] for more
details) and give a complete statement of the prediction it makes for Fano 3-folds
whose Picard groups have rank 1. We also describe the associated Picard–Fuchs
equations and their modular parametrizations, following [1].

1.1. Fano varieties and the Iskovskikh classification. In this paper a Fano
variety X means a smooth projective algebraic variety with ample anticanonical
class. The projective line P1 is the only Fano variety of dimension 1. Fano varieties
of dimension 2 are called del Pezzo surfaces; these are either P1 × P1, or blow-
ups of P2 at d points, 0 6 d 6 8. By the results of Mori and Mukai [6] there are
105 deformation families of Fano 3-folds.

We will be interested in Fano 3-folds whose Picard lattices have rank 1. (Since
all cohomology classes of degree 2 are algebraic here, this simply means that
H2(X, Z) ∼= Z.) According to Iskovskikh [7], [8] (see also [9]) there are exactly
17 such varieties up to deformation. The relevant numerical invariants for this clas-
sification are the index d = [H2(X, Z) : Zc1], where c1 is the anticanonical divisor,
and the level N = 1

2d2 〈c3
1, [X]〉, which is always a positive integer. The 17 possible

pairs of invariants (N, d) are then

(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (11, 1),
(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (3, 3), (2, 4).

(1.1)

For example, the pair (N, d) = (2, 4) corresponds to the Fano variety X = P3 (so
here the deformation family has a 0-dimensional base), whose associated Picard–
Fuchs differential equation is hypergeometric. The pair (N, d) = (6, 1) determines
a family which is called V12 (its geometric definition plays no role for us and will
be omitted) and corresponds to the Apéry differential equation as described in the
introduction. This case will hereafter be referred to as the ‘Apéry case’.
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1.2. Apéry-like differential equations. Here we describe the Picard–Fuchs dif-
ferential equations associated with the 17 cases. The modular properties of these
equations are presented in the next subsection, and the relation of their Laplace
transforms to the quantum cohomology of Fano varieties is described in § 1.4.

The differential equations occurring are of type D3. Here ‘type Dn’ (the full
name is ‘determinantal differential equations of order n ’) is a specific class of linear
differential equations, introduced in [10], which includes the Picard–Fuchs differen-
tial equations of certain families of Calabi–Yau varieties of dimension n − 1 and,
in its Laplace-transformed version, the quantum differential equations of certain
n-dimensional Fano varieties. Operators of type D2, which are of the form

D2 + t(a1D(D + 1) + b1) + a2t
2(D + 1)2 + a3t

3(D + 1)(D + 2), D = t
d

dt
,

are precisely the ones appearing as the ‘Apéry-like differential equations’ in [11]
and [12]. Their prototype was the differential equation of order 2 coming from the
coefficients used by Apéry in his new proof of the irrationality of ζ(2). Since the
class D3 also contains the differential equation of order 3 corresponding to Apéry’s
proof of irrationality of ζ(3), we will use the terminology ‘Apéry-like equations of
order n ’ as an alternative name for the class Dn. The generic D3 operator, which
is the case that we will be studying, is of the form

L = D3 + t

(
D +

1
2

)
(a1D(D + 1) + b1) + t2(D + 1)(a2(D + 1)2 + b2)

+ a3t
3(D + 1)

(
D +

3
2

)
(D + 2) + a4t

4(D + 1)(D + 2)(D + 3). (1.2)

It can also be written as tL, where L is a differential operator of the form

L = t2Q
d3

dt3
+

3
2
(t2Q)′

d2

dt2
+

(
t2

2
Q′′ + 3tQ′ + R

)
d

dt
+

(
t

2
Q′′ +

1
2
R′

)
, (1.3)

in which the polynomials

Q = Q(t) = 1 + a1t + a2t
2 + a3t

3 + a4t
4, R = R(t) = 1 + b1t + b2t

2 (1.4)

of degrees 6 4 and 6 2 describe the positions of the singularities of the equation
and the so-called accessory parameters, respectively.

In general, a Dn equation is obtained from an (n + 1) × (n + 1) matrix A =
(ai,j)06i,j6n whose entries (which in the quantum cohomology situation arise as
correlators in a way recalled briefly in § 1.4) satisfy the equations

ai,j = 0 for j < i− 1, ai,j = 1 for j = i− 1,

ai,j = an−j,n−i, 0 6 i, j 6 n,

so that this family of equations has n2/4 + O(n) parameters. The differential
operator L corresponding to A and its Laplace transform L̃ (related to L by the
condition L̃Ψ = 0 ⇔ LΦ = 0, where Φ(t) =

∑
Antn and Ψ(z) =

∑
Anzn/n!) are

then given by
L = D−1detR

(
(δi,jD − ai,j(Dt)j−i+1)06i,j6n

)
(1.5)
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and (setting Dz = z d/dz)

L̃ = detR

(
(δi,jDz − ai,jz

j−i+1)06i,j6n

)
. (1.6)

Here the ‘right determinant’ detR of a matrix with non-commuting entries is defined
by induction as the alternating sum of the rightmost entries multiplied on the
right by the right determinants of the corresponding minors, and formula (1.5)
makes sense because every term in the rightmost column of the corresponding
matrix is left-divisible by D. An alternative and possibly more natural way to
introduce the two operators is to consider the connection given in matrix form by

Dz(ξ0, . . . , ξn) = (ξ0, . . . , ξn)(ai,jz
j−i+1)06i,j6n; (1.7)

then L̃ is the operator that annihilates ξ0, and L arises formally as its ‘inverse
Laplace transform’. We regard two matrices A differing by a scalar cI as equivalent,
because this corresponds merely to a translation t−1 7→ t−1 + c on the t-side or to
multiplication by exp(cz) on the z-side, with no effect on the Frobenius limits
in (0.3). We remark that operators of type Dn are self-dual in the sense that
the coefficient of ti is (−1)n−i-symmetric under D 7→ −D − i. The equations
of type D3 are also symmetric squares, which is important for us because being
a symmetric power of a second-order differential operator is a necessary condition
for modularity. The corresponding assertion for higher Dn is completely false, and
indeed the D4-equations occurring as the Picard–Fuchs equations of families of
Calabi–Yau 3-folds are almost never modular.

The 4× 4 matrices corresponding to the 17 Iskovskikh families were listed in [1].
For example, the matrices

5 96 1692 12816
1 12 216 1692
0 1 12 96
0 0 1 5

 and


12/5 24 198 880

1 22/5 44 198
0 1 22/5 24
0 0 1 12/5


correspond to the Apéry case (N, d) = (6, 1) and to the most complicated case
(N, d) = (11, 1), in which the differential equation corresponds to a 5-term recursion
for the coefficients of its holomorphic solution, and the scalar shifts are chosen to
make the solutions become Eisenstein series. Instead of giving the matrices in the
remaining cases, we give in Table 1 the polynomials Q and R defined by (1.4).
These polynomials contain the same information and are much more compact to
write down. We give the data only for d = 1 since there is a simple algebraic
procedure for deducing the differential equation satisfied by a power series Φ(td)
from the one satisfied by Φ(t). (In our cases the passage from (N, 1) to (N, d)
simply replaces Q(t) by Q(td) while the new R-polynomial equals 1 + (4b1 − a1)t2

when d = 2 and just 1 when d = 3 or 4, where a1 and b1 are the linear coefficients
of the original polynomials Q and R.) The final three columns of the table contain
certain invariants (fM )M |N , (hM )M |N and µN = 1

2

∑
M MhM , which will be defined

in the next subsection (see (1.14)) and used in the proof of the gamma conjecture.
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Table 1

N Q(t) R(t) {fM} {hM} µN

1 1− 1728t 1− 240t — — 62

2 1− 256t 1− 48t ( 24,−24 ) (−80, 80 ) 40

3 1− 108t 1− 24t ( 12,−12 ) (−30, 30 ) 30

4 1− 64t 1− 16t ( 8, 0,−8 ) (−16, 0, 16 ) 24

5 1− 44t− 16t2 1− 12t + 4t2 ( 6,−6 ) (−10, 10 ) 20

6 1− 34t + t2 1− 10t ( 5,−1, 1,−5 ) (−7, 1,−1, 7 ) 17

7 1− 26t− 27t2 1− 8t + 3t2 ( 4,−4 ) (−5, 5 ) 15

8 1− 24t + 16t2 1− 8t ( 4,−2, 2,−4 ) (−4, 1,−1, 4 ) 13

9 1− 18t− 27t2 1− 6t ( 3, 0,−3 ) (−3, 0, 3 ) 12

11 1− 68
5

t− 616
25

t2 − 252
125

t3 − 1504
625

t4 1− 24
5

t− 56
25

t2
`

12
5

,− 12
5

´
(−2, 2 ) 10

1.3. Modular properties. The operators we are studying are of type D3 by
construction. They also have very special modularity properties, discovered in [1],
which we now describe.

For every N > 1 we have the following modular curves: X0(N) (which is defined
over C as H/Γ0(N)∪{cusps}, that is, the completed quotient of the upper half-plane
by the congruence subgroup of level N) and X∗

0 (N) (the quotient of X0(N) by
the Fricke involution WN sending τ ∈ H to −1/Nτ). As usual, we write Γ∗0(N)
for the group generated by Γ0(N) and WN . As moduli spaces, X0(N) and X∗

0 (N)
parametrize the ordered and unordered pairs (respectively) of elliptic curves related
by a cyclic isogeny of degree N . The involution WN acts on the space Mk(Γ0(N))
of holomorphic modular forms of weight k on Γ0(N) by the formula (f |kWN )(τ) =
Nk/2τkf(−1/Nτ) and splits this space into two eigenspaces M±

k (Γ0(N)) with

M+
k (Γ0(N)) = Mk(Γ∗0(N)), M−

k (Γ0(N)) = Mk(Γ∗0(N), χ),

where χ : Γ∗0(N) → {±1} is the homomorphism sending Γ0(N) to +1 and WN

to −1. If N = 1, then WN = S =
(

0 −1
1 0

)
belongs to Γ0(N) = SL(2, Z), so that

WN has only the eigenvalue +1. In this case, by an abuse of notation, we will
write F ∈ M−

k (Γ0(1)) if F
√

E4 is a modular form of weight k + 2 on Γ0(1), where
E4(τ) = 1+240q+· · · is the normalized Eisenstein series of weight 4. Then F is not
a single-valued function on H (since E4 has simple zeros at τ = (±1+ i

√
3)/2), but

it is well defined and holomorphic on the union of the closed standard fundamental
domain of SL(2, Z) and its image under S (this union is closed under S and contains
the fixed point i) and satisfies the functional equation (F |kS) = −F in this domain.

We now state the main result on the modular properties of the differential equa-
tions associated with the 17 families in Iskovskikh’s list. The first assertion of
this theorem was proved in [1] along with a statement of the second assertion and
a sketch of its proof in some cases. The remaining harder cases were checked
by Przyjalkowski [2]. The ingredients used were the quantum Lefschetz theorem
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of Givental [13], the computation of quantum multiplication by the first Chern
class in the Grassmannians by Przyjalkowski [14] and Fulton and Woodward [15],
Kuznetsov’s calculation of GW-invariants for the varieties V22 (private communi-
cation), and Beauville’s result [16] on V5.

Theorem 2 (see [1], [2]). Let N and d be positive integers such that the curve
Γ∗0(N) has genus 0 and there is a modular form in M2(Γ0(N))− whose differential
equation with respect to the dth root of a Hauptmodul 3 of the group Γ∗0(N) is of
type D3. Then (N, d) belongs to the list (1.1) and, up to equivalence, the Laplace
transform of this differential equation is the quantum differential equation (see § 1.4
below) of the corresponding Fano variety in Iskovskikh’s classification.

The modular form F and the Hauptmodul t occurring in this theorem can be
given by a (nearly) uniform formula. If N > 1, we define a modular form FN ∈
M2(Γ0(N))− as the unique Eisenstein series of weight 2 on Γ0(N) which is equal
to +1 at τ = ∞, −1 at τ = 0, and 0 at the other cusps. If N = 1, this definition
makes no sense, but we can set F1 =

√
E4, and this again belongs to M−

2 (Γ0(1)) in
the sense just introduced. Then, in every case, the modular form F = FN,d and the
Hauptmodul t = tN,d, whose existence is asserted by the theorem, are given (after
the normalizations F (τ) = 1+O(q) and t(τ) = q+O(q2) and up to the equivalence
t 7→ t/(1 + ct), F 7→ (1 + ct)F ) by the uniform formulae

FN,d(τ) = FN (dτ), tN,d(τ) = tN (dτ)1/d (1.8)

for all N and d, where the power series tN (τ) in q is defined by the formula

FN (τ)tN (τ)(N+1)/12 = η(τ)2η(Nτ)2. (1.9)

Conversely, it is an elementary exercise to show that the only pairs (N, d) ∈ N2

for which the function t = tN,d defined by (1.8) and (1.9) is a modular function on
Γ0(dN) are those listed in (1.1). We sketch the argument. If N is sufficiently large,
then the well-known ‘valency formula’ (a formula giving the number of zeros of
a holomorphic modular form in a fundamental domain for the group) implies that
the order of at least one zero of FN in H is not divisible by (N +1)/GCD(N +1, 12),
and then the function tN (τ) defined for large Im(τ) by (1.9) cannot be extended to
the upper half-plane even as a single-valued meromorphic function, let alone a mod-
ular function. Checking the remaining cases by computer, we find that the only N
for which the required root can be extracted are the ten values N = 1, . . . , 9, 11
occurring in (1.1) and four further values N = 12, 16, 18 and 36. But in each of
the latter cases, the function tN (τ) defined by (1.9) is not modular on Γ0(N). This
fixes all possible values of N , and then for every N a similar argument shows that
for all values of d except those occurring in (1.1), the function tN,d defined by (1.8)
is only a root of a modular function on Γ0(dN).

We note that in each of the four cases N = 12, 16, 18 and 36 mentioned above,
FN is an eta-product and tN+1 is also an eta-product and is a modular function

3That is, a modular function of weight 0 parametrizing the quotient of the upper half-plane
with respect to this group.
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on Γ∗0(N), even though t itself is not. For example, if N = 12, then

F12(τ) =
η(2τ)4η(3τ)η(4τ)η(6τ)4

η(τ)3η(12τ)3
,

t12(τ) =
(

η(τ)60η(12τ)60

η(2τ)48η(3τ)12η(4τ)12η(6τ)48

)1/13

,

(1.10)

so t13 is a modular function on Γ0(12), but t is invariant only under a non-congruence
subgroup of Γ0(12) of index 13.

As a side remark, we mention that there are exactly eight values of N for which
the modular form FN ∈ M−

2 (Γ0(N)) can be written as a quotient of products of
eta-functions:

N 4 6 8 9 12 16 18 36

FN
220

1848

2737

1565

2646

1484

310

1333

24314164

13123

214681

12162

21336391

22182

416491

11361

The notation in this table becomes clear from a comparison of the N = 12 entry
with the formula (1.10) for F12, or the N = 6 entry with the formula for Φ(t) in
the Apéry case that was given in the introduction.

The modular form F = FN,d can be written in all cases as a power series Φ(t)
in the Hauptmodul t = tN,d, where Φ = ΦN,d is a power series with integer coeffi-
cients and leading coefficient 1. This integrality, which is clear from the modular
description, is not at all obvious from the recursion for the coefficients that comes
from the differential equation for Φ. This was one part of the ‘Apéry miracle’ that
was demystified by Beuker’s modular interpretation. The operator L, which anni-
hilates Φ, then has the form tL with L given by (1.3), as explained in the previous
subsection. The following proposition expresses it in purely modular terms.

Proposition 1. The differential operator L is given in terms of the modular vari-
able τ by the formula

L =
1

H(τ)

(
1

2πi

d

dτ

)3 1
F (τ)

, (1.11)

where F = FN,d ∈ M−
2 (Γ0(N)) is the modular form defined above and H = HN,d

is a modular form belonging to M4(Γ0(N))−. This form is given explicitly by the
formula HN,d(τ) = HN (dτ), where HN for N > 1 is the unique Eisenstein series
of weight 4 on Γ0(N) which equals +1 at τ = ∞, −1 at τ = 0, and 0 at the other
cusps, and H1 = E6/

√
E4.

Proof. We first note that the space of solutions of the differential equation is
spanned by F (τ), τF (τ) and τ2F (τ). Hence it consists of precisely those func-
tions whose quotient by F (τ) is annihilated by (d/dτ)3. Therefore L must be of
the form (1.11) for some function H(τ). Equating the symbols (that is, the coeffi-
cients of (d/dt)3) on both sides of (1.11), using (1.3), we find that

t(τ)2Q(t(τ)) =
1

H(τ)
t′(τ)3

t(τ)F (τ)
, (1.12)
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where t′ = 1
2πi

dt
dτ , and the expression (1.12) is at least a meromorphic modular

form of weight 4 on Γ0(N) with WN -eigenvalue −1. On the other hand, since the
differential operator is of type D3, a purely algebraic calculation shows that

H(τ) = F (τ)
t′(τ)
t(τ)

. (1.13)

Comparing these two formulae, we see that the modular form H (for N > 1) is
holomorphic and takes the prescribed values at the cusps. This yields the desired
conclusion since S4(Γ0(N))− is always equal to 0 here. Alternatively, one can
simply check case-by-case that the right-hand side of any of the equations above
coincides with E−

4,N when N > 1 and with E6(τ)/
√

E4(τ) when N = 1. The cases
with d > 1 follow easily from the cases with d = 1, with H(τ) = HN,d(τ) defined
as HN (dτ). �

Note that the equality of the equations (1.12) and (1.13) for H implies that the
curve u2 = Q(t), which is either rational or elliptic depending on the degree of Q,
has a modular parametrization by t = t(τ), u = t′/tF , and in particular gives
the Taniyama–Weil (Taylor–Wiles) parametrization when deg Q > 2 (which here
happens in only four cases, (N, d) ∈ {(11, 1), (5, 2), (3, 3), (2, 4)}). In this case the
function f = tF is the cusp form of weight 2 for which the expression f(τ) dτ =
t′(τ)/u(τ) is the Weierstrass differential dt/u on the corresponding elliptic curve.
Hence this function is a Hecke eigenform with multiplicative coefficients. In this
connection we mention the joint paper [17] of one of us and Vlasenko, which contains
among other things a classification of all D3-equations with five distinct singularities
for which the function tΦ(t) has an expansion with respect to exp(Φ1/Φ0) with
multiplicative coefficients (which in the modular case again means that this function
is a Hecke eigenform).

If N > 1, then since all Eisenstein series on Γ0(N) come from level 1 in the cases
considered, the functions FN and HN are given by formulae of the form

FN (τ) =
∑
M |N

MfMG2(Mτ), HN (τ) =
∑
M |N

M2hMG4(Mτ), (1.14)

where

G2(τ) = − 1
24

E2(τ) = − 1
24

+
∞∑

n=1

nqn

1− qn
,

G4(τ) =
1

240
E4(τ) =

1
240

+
∞∑

n=1

n3qn

1− qn

are the Hecke-normalized Eisenstein series of level 1 and weights 2 and 4, and the
coefficients fM , hM (M |N) are rational and possess the antisymmetry property

fN/M = −fM , hN/M = −hM (M |N) (1.15)

because F and H are in the (−1)-eigenspace of the involution WN . (Note that the
function G2(τ) is only quasimodular, but since (1.15) implies that

∑
fM vanishes,

the right-hand side of the formula for FN in (1.14) is modular.) The coefficients fM
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and hM were tabulated in § 1.2 together with the coefficients of the corresponding
D3-operators. The related numbers

µN =


62 for N = 1,

1
2

∑
M |N

MhM for N > 1,
(1.16)

which were also tabulated in § 1.2, appear in the following theorem that gives the
values of the Frobenius limits occurring in the gamma conjecture.

Theorem 3. Let Ψ0 = Ψ, Ψ1, Ψ2, Ψ3 be the Frobenius solutions of the fourth-
order linear differential equation satisfied by Ψ(z) =

∑
Anzn/n!, where FN,d(τ) =∑

AntN,d(τ)n for one of the 17 pairs (N, d) in (1.1). Define the Frobenius limits κj ,
j = 1, 2, 3, by equation (0.3). Then

κ1 = −γ, κ2 =
γ2

2
−

(
12

d2N
− 1

2

)
ζ(2),

κ3 = −γ3

6
+

(
12

d2N
− 1

2

)
γζ(2) +

(
µN

d3N
− 1

3

)
ζ(3),

where µN are the numbers defined in (1.16).

This theorem will be proved in §§ 2.2, 2.3. We remark that the formulae in the
theorem can be written in the simpler-looking form

Γ(1 + ε)−1
∞∑

j=0

κjε
j = 1− 2

d2N
π2ε2 +

µN

d3N
ζ(3)ε3 + O(ε4). (1.17)

It is in fact the expression on the left-hand side of (1.17) which is naturally com-
puted from the modular side, since this expression describes certain limits associ-
ated with Frobenius solutions of the differential equation for Φ itself, rather than
for its Laplace transform Ψ. On the topological side, this is related to the ‘modified
gamma class’ as defined in (1.19) below.

1.4. Quantum differential equations of Fano varieties. In this subsection
we briefly explain the definition of the differential equations whose asymptotic prop-
erties play a role in the gamma conjecture. We first describe the meaning of the
entries of the 4× 4 matrix A = (ai,j) that specifies the quantum differential equa-
tion by the formula (1.6). Then, for the benefit of the interested reader, we briefly
explain how this determinantal equation arises.

Very roughly, the entry ai,j with j > i (the other entries of A are 0 or 1 by
definition) gives the (correctly interpreted) ‘number’ of rational curves of anti-
canonical degree j − i + 1 that intersect algebraic cycles of codimension speci-
fied by i and j. We state this more precisely in the case of interest to us, when
X is a Fano 3-fold with H2(X; Q) = Qc1. The three-point correlator 〈α1, α2, α3〉
of three (effective and homogeneous) classes a1, α2, α3 in H∗(X) is defined as
the polynomial

∑
cnzn, where cn is the expected number of holomorphic maps

P1 → X of anticanonical degree n sending three fixed generic points Pi of P1 to



Gamma conjecture for Fano 3-folds of rank 1 35

cycles representing the Poincaré duals of the classes αi. Using this correlator, one
defines the quantum cohomology ring of X as H∗(X) ⊗ C[z] with quantum multi-
plication ?, where α1 ? α2 is defined by regarding 〈α1, α2, · 〉 as a linear functional
on H∗(X)⊗ C[z] with values in C[z] and dualizing it with respect to the Poincaré
pairing:

∫
[X]

(α1 ? α2) ∪ α3 = 〈α1, α2, α3〉. Then the matrix G(z) = (gi,j(z))
of the operator c1? with respect to the basis c = (1, c1, c

2
1, c

3
1) is of the form

gi,j = ai,jz
j−i+1 for some matrix A, and the desired fourth-order differential oper-

ator L̃ is associated with the system Dz
~ζ(z) = ~ζ(z)G(z) of first-order differential

equations in the standard way (with 1 as the cyclic vector). The Frobenius basis
{Ψi} of the space of solutions of the differential equation L̃Ψ = 0 then corresponds
to the basis of H∗(X, Q) that is Poincaré dual to the basis c. The expressions for
the coefficients of L̃ (or for the expansion coefficients of the Frobenius solutions)
in terms of the Gromov–Witten invariants of X can be found in [18].

The identification described enables us to regard the linear functional Ψ 7→
limz→∞

Ψ(z)
Ψ0(z) on the space of solutions of the differential equation L̃Ψ = 0 as

a cohomology class AX (called the ‘principal asymptotic class’ of X). In our case,
it is given explicitly by the formula

AX =
3∑

j=0

κjc
j
1 ∈ H∗(X; C),

where the numbers κj are the Frobenius limits as defined in (0.3). The gamma con-
jecture, to be described now, says that this class is equal to a certain characteristic
class of X called the gamma class.

1.5. The gamma class and the gamma conjecture. The gamma class of
a holomorphic vector bundle E over a topological space X is the multiplicative
characteristic class (in the sense of Hirzebruch) associated with the power series
expansion Γ(1+x) = 1−γx+ γ2+ζ(2)

2 x2 + · · · of the gamma function at 1. In other
words, it sends a holomorphic vector bundle E/X to the cohomology class Γ̂(E) =∏

i Γ(1 + τi) ∈ H∗(X, R) if the total Chern class of E has a formal factorization
c(E) =

∏
(1+τi) with elements τi of degree 2. When E is the tangent bundle of X,

we write simply Γ̂X instead of Γ̂(E). The terms of degree 6 3 in this class, which
are the only ones needed for our purposes, are given by the formula

Γ̂X = 1− γc1 +
(
−ζ(2)c2 +

ζ(2) + γ2

2
c2
1

)
+

(
−ζ(3)c3 + (ζ(3) + γζ(2))c1c2 −

2ζ(3) + 3γζ(2) + γ3

6
c3
1

)
+ · · · , (1.18)

where ci = ci(TX) ∈ H2i(X) are the Chern classes of X. If we introduce the
modified gamma class Γ̂0

X by putting

Γ̂X = Γ(1 + c1)Γ̂0
X , (1.19)

then the equality (1.18) takes a simpler form:

Γ̂0
X = 1− ζ(2)c2 + ζ(3)(c1c2 − c3) + · · · . (1.20)
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(The passage from Γ̂X to Γ̂0
X in our cases reflects a relation between the topol-

ogy of a Fano variety and that of its K3-surface hyperplane sections. On the
other side of the gamma conjecture, as already mentioned in connection with The-
orem 3, this passage corresponds to a relation between the Frobenius limits for the
quantum differential equation associated with the Fano 3-fold and the Frobenius
limits for the Picard–Fuchs differential equations of its mirror dual.) The gamma
class of a variety may be regarded as a ‘half’ of the Todd class occurring in the
Hirzebruch–Riemann–Roch theorem, or, more precisely, a ‘half’ of the Â-class
ÂX = e−c1 TdX occurring in the Atiyah–Hirzebruch theorem, since the Γ-function
identity Γ(1 + z)Γ(1 − z) = πz/ sin(πz) implies that we can factorize the Â-class
in the form µ+(Γ̂X)µ−(Γ̂X), where µ± are the rescaling operators of multiplication
by (±2πi)−m in H2m(X; C).

Let AX ∈ H∗(X) be the principal asymptotic class of the quantum differential
equation associated with a Fano variety X (as explained in § 1.4), and let Γ̂X ∈
H∗(X) be the gamma class of X.

We now have all the ingredients necessary to state the gamma conjecture.

Definition. If the equality
AX = Γ̂X (1.21)

holds, then we say that the gamma conjecture 4 holds for X.

Theorem 1 says that the gamma conjecture holds in the 17 Iskovskikh cases. To
prove it, we compute both sides of (1.21) independently and check that they agree
in each case. The result on the Picard–Fuchs side was given in Theorem 3 and will
be proved in § 2. The computation on the cohomology side is straightforward and
will be given here.

Proposition 2. The modified gamma class of a Fano 3-fold X of rank 1 is given
by

Γ̂0
X = 1− 12

d2N
ζ(2)c2

1 +
h1,2 + 10

d2N
ζ(3)c3

1,

where c1 is the first Chern class of X and h1,2 is the dimension of H1,2(X).

Proof. The three Chern numbers of X are given by the formulae 〈c3
1, [X]〉 = 2d2N

(by the definition of N), 〈c1c2, [X]〉 = 24 (since the hyperplane sections of X are
K3-surfaces and 〈c2, [S]〉 = e(S) = 24 for all K3-surfaces S) and 〈c3, [X]〉 = e(X),
where e(X) is the Euler characteristic of X. Here e(X) = 4− 2h1,2 since all Hodge
numbers of X vanish except for hi,i = 1 and h1,2 = h2,1. Since ci ∈ Hi,i

alg(X; Q) =
Qci

1, it follows that

c2 =
12

d2N
c2
1 and c1c2 − c3 =

h1,2 + 10
d2N

c3
1.

Substituting these values into (1.20), we obtain the desired assertion. �

4This is called ‘gamma conjecture I’ in [5]. Since we will not discuss ‘gamma conjecture II’
here, we speak simply of the gamma conjecture.
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Proof of Theorem 1. The numbers h1,2 for the 17 Iskovskikh families are given in
the table below, which is taken from the comprehensive source [9] on Fano varieties.

N 1 2 3 4 5 6 7 8 9 11 1 2 3 4 5 3 2

d 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 4

h12 52 30 20 14 10 7 5 3 2 0 21 10 5 2 0 0 0

We check in all cases that h1,2 + 10 = µN/d, where µN are the integers defined
in (1.16) and tabulated in § 1.2.5 Combining this with Theorem 3 in § 1.3 and
Proposition 2, we obtain Theorem 1. �

§ 2. Computation of the Frobenius limits

In this section we give two different approaches to calculating the Frobenius
limits. One of them uses the combinatorial description of the coefficients of the
holomorphic solution as sums of binomial coefficients (like Apéry’s formula in
the V12-case or in general Landau–Ginzburg models), and the second uses the
modular representation of the solution. In § 2.2 we carry out the first approach
in detail in the V12-case, and also verify the prediction of the gamma conjecture
in the (easier) hypergeometric cases. The modular approach, which works uni-
formly in all cases with N > 1, will be treated in § 2.3. Finally, in § 2.4 we briefly
describe numerical calculations suggesting that the higher Frobenius limits (beyond
the dimension of the Fano variety) are also interesting: the first few of them are
still polynomials in Riemann zeta values, but further ones apparently involve more
complicated kinds of periods like multiple zeta values.

2.1. The two Frobenius bases and their relationship. Here we define the
higher Frobenius functions for the Picard–Fuchs type differential equations as well
as for their Laplace transforms. We illustrate everything using the Apéry numbers,
but the definitions work in all cases.

The definition of the Apéry numbers A0 = 1, A1 = 5, A2 = 73, . . . and the
recursion relations for them were already given in the introduction and will not be
repeated here. We consider the Frobenius deformation of Apéry’s recursion, that is,
the sequence of power series

An(ε) =
∞∑

j=0

A(j)
n εj ∈ Q[[ε]], n = 0, 1, . . . ,

determined by the initial conditions A−1(ε) = 0, A0(ε) = 1 and the recursion

(n + ε + 1)3An+1(ε)− P (n + ε)An(ε) + (n + ε)3An−1(ε) = 0, (2.1)

5Galkin has pointed out to us that the left-hand side of this equality can be interpreted as
minus half the Euler characteristic of the open Calabi–Yau 3-fold obtained from X by removing
an anticanonical K3-section.



38 V. V. Golyshev and D. Zagier

where P (x) is the same polynomial as in (0.2). We assemble the rational numbers
A

(j)
n into further power series:

Φan
j (t) =

∞∑
n=0

A(j)
n tn, Φan(t, ε) =

∞∑
j=0

Φan
j (t)εj =

∞∑
n=0

A(ε)
n tn. (2.2)

The beginning terms of the first few power series Φan
j (t) are given by

Φan
0 (t) = Φ(t) = 1 + 5t + 73t2 + 1445t3 + 33001t4 + 819005t5 + · · · ,

Φan
1 (t) = 12t + 210t2 + 4438t3 + 104825t4 +

13276637
5

t5 + · · · ,

Φan
2 (t) = 72t2 + 2160t3 + 59250t4 + 1631910t5 + · · · ,

Φan
3 (t) = −7t− 1011

8
t2 − 522389

216
t3 − 90124865

1728
t4 − 264872026721

216000
t5 + · · · ,

Φan
4 (t) = 9t +

1437
16

t2 +
182489

144
t3 +

5753277
256

t4 +
663266820361

1440000
t5 + · · · .

(2.3)
Putting tε = exp(ε log t), we define the Frobenius functions Φj(t) for all j > 0 by
the expansions

Φ(t, ε) = tεΦan(t, ε) =
∞∑

j=0

Φj(t)εj , Φj(t) =
j∑

i=0

Φan
i (t)

(log t)j−i

(j − i)!
. (2.4)

Then the recursion satisfied by An(ε) translates into the statement that the power
series Φj(t) and Φ(t, ε) satisfy the differential equations

L(Φ(t, ε)) = ε3tε, L(Φj(t)) =
(log t)j−3

(j − 3)!
, (2.5)

where

L = D3 − tP (D) + t(D + 1)3
(

D = t
d

dt

)
is the differential operator that annihilates Φ(t), and the right-hand side of the
second equality in (2.5) is interpreted as 0 for j < 3. In particular, Φ0, Φ1 and Φ2

are solutions of the original differential equation LΦ = 0 and they constitute the
well-known Frobenius basis in the space of solutions. The higher Φj are also of
interest, as already mentioned in the introduction. In any case, the proof of the
gamma conjecture requires the solution Φ3 of the inhomogeneous differential equa-
tion LΦ = 1 because the Laplace transform establishes a correspondence between
the tuples {Φ0, . . . ,ΦJ} and {Ψ0, . . . ,ΨJ} for all J , as we will see now, and the
operator L̃ has order 4 and thus four Frobenius solutions Ψ0, . . . ,Ψ3.

We now do the same thing on the Laplace transform side. The modified numbers
an = An/n! satisfy the modified recursion relations

(n + 1)4an+1 − P (n)an + n2an−1 = 0 (2.6)
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with the same polynomial P (n) as before, and their generating function Ψ(z) =∑
anzn therefore satisfies the modified differential equation (the Laplace transform

of L)
L̃(Ψ) = 0, L̃ = D4

z − zP (Dz) + z2(Dz + 1)2,

where D = z d/dz. The Frobenius deformation in this case is given by

(n + 1 + ε)4an+1(ε) + P (n + ε)an(ε) + (n + ε)2an−1(ε) = 0 (2.7)

for n > 0 with initial conditions a−1(ε) = 0 and a0(ε) = 1. We again set an(ε) =∑
j a

(j)
n εj and define the power series

Ψan
j (z) =

∑
n

a(j)
n zn, Ψan(z, ε) =

∑
j

Ψan
j (z)εj =

∑
n

an(ε)zn.

Their first values are as follows:

Ψan
0 (z) = Ψ(z) = 1 + 5z +

73
2

z2 +
1445

6
z3 +

33001
24

z4 +
163801

24
z5 + · · · ,

Ψan
1 (z) = 7z +

201
4

z2 +
10733

36
z3 +

432875
288

z4 +
47115959

7200
z5 + · · · ,

Ψan
2 (z) = −7z − 461

8
z2 − 92323

216
z3 − 9220085

3456
z4 − 6108294133

432000
z5 + · · · , (2.8)

Ψan
3 (z) = −15

8
z2 +

169
4

z3 +
4285465

6912
z4 +

3811075
768

z5 + · · · ,

Ψan
4 (z) = 9z +

2449
32

z2 +
441925

864
z3 +

52564099
18432

z4 +
259795048429

19200000
z5 + · · · .

As above, putting zε = exp(ε log z), we find that the Frobenius functions defined by

Ψ(t, ε) = zεΨan(z, ε) =
∞∑

j=0

Ψj(z)εj , Ψj(z) =
j∑

i=0

Ψan
i (z)

(log z)j−i

(j − i)!
(2.9)

satisfy the inhomogeneous differential equations

L̃(Ψ(z, ε)) = ε4zε, L̃(Ψi(t)) =
(log z)j−4

(j − 4)!
(2.10)

under the same conventions as before. In particular, Ψ0, . . . ,Ψ3 form a basis (again
called the Frobenius basis) of solutions of the transformed differential equation.

The gamma conjecture concerns the limits κj defined in (0.3). However, to cal-
culate them, it is more convenient to work with the numbers A

(j)
n and the functions

Φj(t), which have better properties (regular singularities, modular parametriza-
tion). We must therefore seek how the two sequences of numbers and functions are
related. It follows from the recursion that

an(ε) =
An(ε)

(1 + ε)n
=

An(ε)
n!

n∏
k=1

(
1 +

ε

k

)−1

.
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Here (1 + ε)n stands for the ascending Pochhammer symbol (1+ε)(2+ε) · · · (n+ε).
We continue the last formula by inserting the expansion

n∏
k=1

(
1 +

ε

k

)−1

= exp
(
−Hnε + H(2)

n

ε2

2
−H(3)

n

ε3

3
+ · · ·

)
,

where
Hm = 1 +

1
2

+ · · ·+ 1
m

, H(2)
m = 1 +

1
4

+ · · ·+ 1
m2

,

and so on. This yields

n! a(0)
n = A(0)

n ,

n! a(1)
n = A(1)

n −HnA(0)
n ,

n! a(2)
n = A(2)

n −HnA(1)
n +

H2
n + H

(2)
n

2
A(0)

n ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(2.11)

Using the formulae Hn = log n + γ + O(1/n) and H
(m)
n = ζ(m) + O(1/n) for

m > 1 and noticing that the maximum of a
(j)
n zn for large z and fixed j is attained

at n ≈ Cz with C = (1 +
√

2)4 = 17 + 12
√

2 (since An ∼ const ·Cn/n3/2, as
discussed in more detail in § 2.4), we see that the asymptotics of the Frobenius
solutions are found simply by replacing Hn by log(Cz) + γ and H

(m)
n by ζ(m) for

m > 1. This means that if we define a sequence of Frobenius limits κ0
j and their

generating function κ0(ε) in the regular case by the formulae

κ0
j =

j∑
i=0

(
(− log C)j−i

(j − i)!
lim

n→∞

(
A

(i)
n

An

))
, κ0(ε) =

∞∑
j=0

κ0
jε

j = C−ε lim
n→∞

(
An(ε)
An

)
,

(2.12)
then the relation between κ0(ε) and the generating function

κ(ε) =
∞∑

j=0

κjε
j = lim

z→∞

Ψ(z, ε)
Ψ(z)

(2.13)

is given simply by

κ0(ε) =
1

Γ(1 + ε)
κ(ε). (2.14)

This is exactly the same relation (if we replace ε by c1(X)) as that between the
gamma class and the modified gamma class of a Fano variety X (see § 1.5). In § 2.4
we will explain how to compute the limits in both (2.12) and (2.13) (which in any
case determine each other by (2.14)) quickly and with a very high accuracy. We
will also discuss some results of these numerical computations.

2.2. Frobenius limits from the hypergeometric point of view. Here we
prove the formula (0.4) for the Frobenius limits in the Apéry case using Apéry’s
original formula (0.1) for his numbers as finite sums of products of binomial coeffi-
cients, or terminating hypergeometric series. This method is fairly computational
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and uses identities that were found experimentally and whose proofs are not par-
ticularly enlightening, but has the advantages of being completely elementary and
applicable in principle to all linear differential equations of this type, even if they
are not modular. It also gives very easy proofs of the gamma conjecture in the
10 cases of Iskovskikh’s list corresponding to hypergeometric differential equations.

The idea is to mimic Apéry’s original proof of the irrationality of ζ(3), where he
studied the second solution A∗

n of the recursions (0.2) with initial conditions A∗
0 = 0,

A∗
1 = 1 (the generating function of this solution also satisfies an inhomogeneous

version of the original differential equation, although with the right-hand side t
rather than 1) and proved that the limiting ratio limn A∗

n/An is equal to 1
6ζ(3). He

did this by finding an explicit formula for A∗
n of the form

∑n
k=0

(
n
k

)2(n+k
k

)2
Q(n, k),

where Q(n, k) is a suitably chosen elementary function involving partial sums of ζ(3)
(see [19] and [20]). When looking for similar formulae for the numbers A

(i)
n with

small i, we found experimentally a number of identities of this type that gave the
correct values for 1 6 i 6 3 and for all n up to some large number. Any of
these identities could be used to evaluate the Frobenius limits in question. One
choice, which has a particularly simple form, is reproduced in Proposition 3 below
together with a proof by the standard method of telescoping sums. To find both the
identities and their proofs, we made an Ansatz for the functions denoted by Qi(n, k)
and Rn,k(ε) in Proposition 3. It has the form indicated there, but with unknown
coefficients (the three numerical coefficients of H

(i)
n+k, H

(i)
k and H

(i)
n in the case

of Qi(n, k) and the four coefficients in Q(n, k) of εi in the case of Rn,k(ε)). Then
we determined the values of these coefficients by a computer calculation. This proof
is therefore not especially aesthetic, but (as already mentioned) has the advantage
of being in principle applicable to the Frobenius deformations of other differential
equations that do not necessarily have a modular interpretation.

Proposition 3. For n, k > 0 set

an,k(ε) =
(

n

k

)2(
n + k

k

)2

exp
( 3∑

i=1

Qi(n, k)
εi

i!
+ O(ε4)

)
,

where

Q1(n, k) = 4Hn+k − 4Hk, Q2(n, k) = 4H
(2)
k − 8H

(2)
n+k,

Q3(n, k) = 32H
(3)
n+k −H

(3)
k − 14H(3)

n .

Then

An(ε) =
n∑

k=0

an,k(ε) + O(ε4).

Proof. Define Rn,k(ε) ∈ Q(n, k)[ε]/ε4 by the formula

Rn,k(ε) = 4(2n + 1)
(
2k2 + k − (2n + 1)2

)
+

(
16k2 + 8(4n + 3)k − 4(2n + 1)(12n + 5)

)
ε + 16(2k − 5n− 2)ε2

+
(
−16 +

14(2n + 1)k
3n2(n + 1)2

(2n2 + 2n− k)
)

ε3 + O(ε4).
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Using the easily checked identity

(n+1+ε)3
an+1,k(ε)
an,k(ε)

−P (n+ε)+(n+ε)3
an−1,k(ε)
an,k(ε)

= Rn,k(ε)−Rn,k−1(ε)
an,k−1(ε)
an,k(ε)

in Q(n, k)[ε]/ε4 and induction on K, we find that

K∑
k=0

(
(n + 1 + ε)3an+1,k(ε)−P (n + ε)an,k(ε) + (n + ε)3an−1,k(ε)

)
= Rn,K(ε)an,K(ε)

for all K > 0. Taking K > n shows that the sequence
∑n

k=0 an,k(ε) satisfies the
defining recursion for the sequence An(ε). Since these sequences also have the same
initial values (0 for n = −1, 1 for n = 0), they are equal. �

Corollary. We have

lim
n→∞

An(ε)
CεAn

= exp
(
−2ζ(2)ε2 +

17
6

ζ(3)ε3 + O(ε4)
)

.

Proof. For large n, the maximum of an,k =
(
n
k

)2(n+k
k

)2
over 0 6 k 6 n is sharply

peaked at k = n
(
1/
√

2 + o(1)
)

since the ratio an,k/an,k−1 is equal to

(n + k)2(n− k + 1)2

k4
≈

(
n2

k2
− 1

)2

.

It follows that
n∑

k=0

an,k(ε) ∼
( n∑

k=0

an,k

)
exp

(
4 log

(
1 +

√
2
)
ε− 2ζ(2)ε2 +

17
6

ζ(3)ε3 + O(ε4)
)

. �

By (2.12) and (2.14), the statement of the corollary is equivalent to the for-
mula (0.4) predicted by the gamma conjecture. This completes the proof of this
conjecture in the Apéry case.

We mention that for each of our 17 families as well as for other Dn-equations
arising as Picard–Fuchs equations, there are formulae like (0.1) expressing the coef-
ficients An as ordinary or multiple finite sums of products of binomial coefficients
(terminating hypergeometric series). For example, the ‘Landau–Ginzburg models’
yield such formulae expressing An as the constant term of P (x, y, z)n for some
Laurent polynomial P (x, y, z). One could therefore in principle study each of the
other cases using the same idea of inserting appropriate factors into these formulae.
We did not try to do this since the modular approach (discussed in the next sub-
section) is much simpler and works in a uniform way in all cases. We can, however,
use the combinatorial approach to give an easy direct proof of Theorem 3 in all
ten cases of Iskovskikh’s list for which the corresponding differential operators are
hypergeometric. This is useful since it includes the two cases with N = 1 in which
the modular approach fails (or at least needs a modification) because the func-
tion F1 =

√
E4 is not a holomorphic modular form. Note, however, that the case
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(N, d) = (2, 4) corresponds to the Fano variety P3 and is therefore a particular case
of Dubrovin’s results in [21] (see also [5]) which prove the gamma conjecture for
all Pn, and all hypergeometric cases are essentially known from the work of Iritani
(see § 2.4). We nevertheless include our proof here since it is elementary and fits
with the other cases considered.

We begin with a remark that applies to all 17 cases, not only the hypergeometric
ones. Namely, it suffices to prove Theorem 3 in those 10 cases of Iskovskikh’s list
that have d = 1. Indeed, comparing the conclusion (1.17) of Theorem 3 with the
formula (2.14) which relates the Frobenius limits for the differential operators L
and L̃, we see that the theorem now takes the simple form

κ0
N,d(ε) = 1 + 0 · ε +

2
d2N

π2ε2 +
µN

d3N
ζ(3)ε3 + O(ε4), (2.15)

where κ0
N,d(ε) means the function κ0(ε) as defined by (2.12) in the case (N, d) of

the list (1.1) (so that the function κ0 in the Apéry case which was used as an
illustration in § 2.1 would be κ0

6,1), but with the constant C = 17+12
√

2 appearing
in (2.12) replaced in the other 16 cases by limn→∞ A

1/n
n , which is the reciprocal

of the smallest positive root of Q(t). But the power series ΦN,d(t) is in this case
simply ΦN,1(td). Hence the passage from (N, 1) to (N, d) replaces An and An(ε)
by An/d and An/d(ε) (interpreted as 0 when d - n) and C by C1/d. It follows that
κ0

N,d(ε) = κ0
N,1(ε/d) to all orders, not just up to O(ε4).

This remark reduces the number of hypergeometric cases to be studied from 10
to 4, namely, to those when 1 6 N 6 4 and d = 1. In these cases the coefficients of
the power series Φ(t) =

∑∞
m=0 Antn are quotients of products of factorials as given

by the following table:

N 1 2 3 4

An
(6n)!

(3n)!n!3
(4n)!

n!4
(3n)!(2n)!

n!5
(2n)!3

n!6

In each case we write the expression for An as
∏

r((rn)!)νr and notice that it
also makes sense for non-integer values of n if we interpret x! as Γ(1 + x). Then
the Frobenius-deformed numbers An(ε), which are defined by the same recursion
(here of length 2 rather than 3 as before) with initial value A0(ε) = 1, can be
written simply as An(ε) = An+ε/Aε. On the other hand, since

∑
r rνr = 0 in all

cases (otherwise the series Φ(t) would have radius of convergence zero), Stirling’s
formula gives the asymptotics Ax ∼ αxν/2Cx as x → ∞, where α =

∏
r(2πr)νr/2,

ν =
∑

r νr, C =
∏

r rrνr . Hence,

κ0(ε) = C−ε lim
n→∞

An(ε)
An

= C−ε lim
n→∞

An+ε

AnAε
=

1
Aε

=
∏
r

Γ(1 + rε)−νr

= exp
(∑

r

νr

(
−γrε +

ζ(2)
2

r2ε2 − ζ(3)
3

r3ε3 + · · ·
))

and, since
∑

rνr = 0,
∑

r2νr = 24/N and
∑

r3νr = 3µN/N in all four cases
1 6 N 6 4, this completes the proof of Theorem 3 in the ten hypergeometric cases.
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2.3. Frobenius limits from the modular point of view. The method
described in the preceding subsection in Apéry’s case depends on a complicated
and artificial-looking identity. We now give a more natural proof using the modular
parametrizations of our differential equations as discussed in § 1.3. This approach
works in a uniform way in all cases with N > 1 in Iskovskikh’s list, that is, in 15
of the 17 cases. Since the remaining two cases with N = 1 are hypergeometric and
have already been treated, this completes the proofs of Theorems 3 and 1.

By the remark made in the end of the previous subsection, it suffices to prove
the theorem in the nine cases with d = 1 and N belonging to the list {2, . . . , 9, 11}.
After our preparation, this is fairly easy now. In each case the differential operator L
is of the form indicated in Proposition 1 (equation (1.11)), where H(τ) = HN (τ) is
the Eisenstein series of weight 4 defined in (1.14). By (2.5) the first four Frobenius
functions satisfy the differential equations LΦ0 = LΦ1 = LΦ2 = 0 and LΦ3 = 1,
which on the modular side take the form (Φj(t(τ))/F (t))′′′ = δj,3H(τ) for 0 6 j 6 3.
(Here “ ′ ” means 1

2πi
d
dτ as in § 1.3.) In view of the asymptotic form of the Frobenius

functions Φj(t) at the point t = 0, which corresponds to q = 0 under the change of
variables 2πiτ = log q = log t + O(t), this means that

Φj(t(τ)) =
(2πiτ)j

j!
F (τ), j = 0, 1, 2, Φ3(t(τ)) = H̃(τ)F (τ), (2.16)

where H̃(τ) is the Eichler integral of H(τ), defined by H̃ ′′′ = H and normalized by

H̃(τ) =
(2πiτ)3

3!
+ O(q) as q → 0.

But from (1.14) we have

H̃(τ) =
∑
M |N

hM

M
G̃4(Mτ), (2.17)

where

G̃4(τ) =
(2πiτ)3

1440
+

∑
n>1

n−3qn

1− qn

is the corresponding normalized Eichler integral of G4(τ). But it is well known and
elementary to prove that G̃4 satisfies the functional equation

G̃4(τ)− τ2G̃4

(
−1

τ

)
=

ζ(3)
2

(τ2 − 1)− π3i

6
τ (2.18)

for all τ ∈ H. (This follows from the transformation property G4|4S = G4 by 3-fold
integration using ‘Bol’s identity’, which asserts that (F |−2γ)′′′ = F ′′′|4γ for all
holomorphic functions F and any Möbius transformation γ. This identity implies
that the expression on the left of (2.18) is at most a quadratic polynomial, which
we then calculate using the fact that the L-function of G4 is equal to ζ(s)ζ(s− 3).)
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Substituting this into (2.17) and using the antisymmetry property (1.15), we get

Nτ2H̃

(
− 1

Nτ

)
+ H̃(τ) =

∑
M |N

hM

2M
ζ(3)(M2τ2 − 1) =

µN

N
ζ(3)(Nτ2 + 1), (2.19)

where µN is the same as in (1.16). (A similar calculation is carried out in [3], § 1.2.)
The calculation of the Frobenius limit now follows. Indeed, (2.16), (2.19) and the
anti-invariance of F under |2WN imply that if we set

(k0, k1, k2, k3) =
(

1, 0,
2π2

N
,
µN

N
ζ(3)

)
,

then Φj(t(τ))−kjF (τ) is a WN -invariant function on the upper half-plane for every
j ∈ {0, 1, 2, 3}. But this means that these four expressions, regarded as functions
of t = t(τ), are regular at the value t = t(τN ) = 1/C corresponding to the fixed
point τN = i/

√
N of the involution WN and hence have radius of convergence that

is greater than the radius of convergence 1/C of the series Φ(t). It follows that the
Frobenius limit κ0

j = limt→1/C Φj(t)/Φ(t) is equal to kj . This completes the proof
of (1.17) in all cases with N > 1.

Finally, we make some remarks about the missing case N =1. Here the function
H1(τ) = E6(τ)/

√
E4(τ) = 1 − 624q + 64368q2 − · · · is no longer a modular form,

but from the transformation property H1|4S = −H1 and Bol’s identity we still have

H̃1(τ) + τ2H̃1

(
−1

τ

)
= µζ(3)(τ2 + 1)

for some complex number µ, so that the only thing missing is the evaluation
µ = µ1 = 62. Of course, this evaluation follows from our alternative proof of
the formulae for the Frobenius limits in terms of the hypergeometric expansion
of
√

E4, and we have also checked it numerically to high precision, but we have not
found a purely modular proof. Such a proof could possibly be given by imitating the
calculations in [22], where the Eichler integral of the very similar almost-modular
form ∆(τ)/

√
E6(τ) of weight 3 is related to the zeros of the Weierstrass ℘-function.

2.4. Higher Frobenius limits: beyond the gamma conjecture. Here we
briefly discuss the values of the Frobenius limits κj (or rather of the equivalent
limits κ0

j ) for j > 3.
Since all our results here are numerical, we first say briefly how to calculate κ0

j

and κj to very high accuracy and very quickly. (Of course, one does not really need
both since they are related by (2.14). But being able to do the calculations in two
ways provides a nice verification of the numerical correctness of the procedure.)
For κj one can use (0.3) directly with a moderately large value of z like z = 100
(much smaller values actually suffice) and, since the convergence is exponential, this
works well. For κ0

j one cannot use (2.12) directly because the ratio of C−εAn(ε)
to An converges to its limit κ0(ε) only like 1/n. Instead we use the fact that An

has an asymptotic expansion (in Apéry’s case; the others are of course similar) of
the form

An ∼ A(n) := 2−9/4π−3/2 Cn+1/2

(n + 1/2)3/2
P

(
1

64
(
n + 1

2

)√
2

)
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for a certain power series P (X) = 1 + 30X + 274X2 − 17132X3 + · · · with eas-
ily computable rational (and conjecturally integral) coefficients determined by the
property that A(n) satisfies the same recursion as An. Then

κ0(ε) = C−ε lim
n→∞

An(ε)
A(n)

= lim
n→∞

An(ε)
A(n + ε)

.

The latter expression converges faster than any power of n. Hence taking a mod-
erately large number of coefficients of P and a moderately large value of n, we get
very precise values for the power series κ0(ε). (For example, using 100 terms of P
and taking n = 100 gives the first 15 coefficients κ0

j to 300 decimal digits in less
than 10 seconds on a normal PC.)

We did these calculations (to 300 digits) for both κj and κ0
j in the V12 case and

several others, each time finding agreement of the two series in (2.14) to the precision
of the calculation. We then tried to recognize the coefficients κ0

j beyond the range
j 6 3, where their values were predicted by the gamma conjecture and proved by
our calculations in the last two subsections. It turned out that up to j = 10 (in the
V12 case) these values were always polynomials in Riemann zeta values (and also
in the Euler constant γ if we work with κj instead). The results are cleaner if we
use the coefficients λj of the generating function

∞∑
j=1

λjε
j = log(κ0(ε)).

In this case the first ten values are given (within the accuracy of the calculation)
by the formulae

λ1 = 0, λ2 = −2ζ(2), λ3 =
17
6

ζ(3), λ4 = −3ζ(4),

λ5 =
7
3
ζ(5), λ6 = −2

3
ζ(6)− 1

72
ζ(3)2, λ7 = −5

3
ζ(7) +

1
6
ζ(3)ζ(4),

λ8 =
29
12

ζ(8)− 11
18

ζ(3)ζ(5), λ9 =
8
9
ζ(9) +

5
3
ζ(3)ζ(6) +

11
3

ζ(4)ζ(5) +
17
648

ζ(3)3,

λ10 = −147
5

ζ(10)− 59
18

ζ(3)ζ(7)− 121
18

ζ(5)2 − 17
36

ζ(4)ζ(3)2,

which involve only Riemann zeta values, as already stated. But for the 11th coef-
ficient we find

λ11 = 66ζ(11)+
59
3

ζ(4)ζ(7)+
110
3

ζ(5)ζ(6)+
215
36

ζ(8)ζ(3)+
187
108

ζ(3)2ζ(5)+
2
3
ζ(3, 5, 3),

where the last term involves the multiple zeta value

ζ(3, 5, 3) =
∑

0<`<m<n

1
`3m5n3

= 0.002630072587647 . . .

instead of the ordinary ones. This suggests that the higher Frobenius limits may
be interesting periods in general and that at least in some cases they are connected
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with multiple zeta values. We make a few final remarks in this direction. First,
the first weight in which the ring of multiple zeta values is not generated over Q by
Riemann zeta values is 8, and the dimension of the space of multiple zeta values in
both this weight and weight 10 is larger by 1 (more properly, by at most 1, since the
required statements on linear independence have not yet been proved). However,
neither of these values appear in our computations, and the first non-trivial multiple
zeta value that we see is ζ(3, 5, 3) of weight 11. This suggests a connection with
Brown’s ‘single-valued multiple zeta values’ [23], which also diverge from the ring of
ordinary zeta values for the first time in weight 11. However, the connection is not
quite clear since the new single-valued multiple zeta value in weight 11 (modulo
polynomials in Riemann zeta values) is not a rational multiple of ζ(3, 5, 3), but
rather a rational linear combination of ζ(3, 5, 3) and the product of ζ(3) and the
non-trivial double zeta value ζ(3, 5). However, a private communication from Brown
suggests that there may be an explanation connected with the duality property
of D3-equations (mentioned in § 1.2) and with his calculations in [24]. Finally, we
mention that in the other non-hypergeometric cases we looked at we again found
polynomials in Riemann zeta values for the Frobenius limits up to a certain weight
but not beyond, and that we could not always recognize the higher values (like κ7

in the case (N, d) = (9, 1)). This phenomenon is presumably related to the fact
that Fano varieties like V12 can be obtained as successive hyperplane sections of
Fano varieties of higher dimension, but only up to a certain point, and this is
precisely the range in which the gamma conjecture for these higher-dimensional
Fano varieties can predict the values expressible as polynomials in Riemann zeta
values. For example, the variety V12 can be obtained as a 7-fold iterated hyperplane
section of a certain 10-dimensional Fano variety with Picard rank 1 (namely, the
orthogonal Grassmannian of isotropic 5-planes in C10). We have checked in this
case that the prediction of the gamma conjecture does indeed agree with the values
of λj found numerically for all j 6 10.

2.5. Related work. Further references. The gamma conjecture in our hyper-
geometric cases (which correspond to complete intersections in toric varieties) fol-
lows essentially from the celebrated quantum Lefschetz theorem of Givental [25] and
Iritani’s work [26]; we have given a proof for the sake of completeness. Dubrovin [21]
has computed all other asymptotic expansions in the case of projective spaces.
Another exposition of this case is given in [4], and our statement of the gamma
conjecture may be regarded as an explicit and Fano-specific version of the condi-
tion of ‘compatibility with the Stokes structure’ in that paper. Przyjalkowski [27]
defined weak Landau–Ginzburg models for Fano varieties and proposed candidates
for weak Landau–Ginzburg models in our 17 cases. He discovered that the number
of irreducible components in the resolution of the central fibre (which corresponds
to the point t = ∞ in our notation) is one more than the number h1,2 of the
corresponding Fano variety. The relation between the Hodge numbers of Fano vari-
eties and reducible fibres of their Landau–Ginzburg models is explained in [28].
Galkin established the modularity of ‘G-Fano varieties’ [29]. He computed the
‘Apéry constants’ for many homogeneous spaces and introduced what he called
the ‘Apéry class’ in [30]. The work of van Enckevort and van Straten [31] per-
tains to the case of Calabi–Yau (rather than Fano) 3-folds, but there is an implicit
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relation to the topology of Fano 4-folds, again by the quantum Lefschetz princi-
ple. Finally, the modularity of Fano 3-folds of all Picard ranks has recently been
announced by Doran, Harder, Katzarkov, Lewis, and Przyjalkowski.
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Birkhäuser Boston, Boston, MA 1998, pp. 141–175.

[26] H. Iritani, “An integral structure in quantum cohomology and mirror symmetry for
toric orbifolds”, Adv. Math. 222:3 (2009), 1016–1079.

[27] V. V. Przyjalkowski, “Weak Landau–Ginzburg models of smooth Fano threefolds”,
Izv. Ross. Akad. Nauk Ser. Mat. 77:4 (2013), 135–160; English transl., Izv. Math.
77:4 (2013), 772–794.

[28] L. Katzarkov, M. Kontsevich, and T. Pantev, Bogomolov–Tian–Todorov theorems
for Landau–Ginzburg models, 2014, arXiv: 1409.5996.

[29] S. Galkin, G-Fano threefolds are mirror-modular, Preprint IPMU, 10-0150, 2010.
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