
SOME PROBLEMS RELATED TO POLYLOGARITHMS

D. Zagier

1) Erdős-Stewart-Tijdeman for function fields (cf [2], pp. 390-391). Let F be a
field, S = {p1, . . . , ps} a set of primes. We set

X(S) = {x | x and 1− x are S-units}.

Question For a given value of s = |S|, how big can |X(S)| be?

In the case F = Q one knows that the number N(s) := max
|S|=s

|X(S)| is bounded above by

1000 · 50s (Evertse) and below by e(2−o(1))
√

s/ log s for s large (Erdős-Stewart-Tijdeman),

and one expects that N(s) = exp(s
2

3
+o(1)) . For number fields, Evertse’s result still holds

(with an appropriately modified bound), but the situation for the lower bound is less clear.
(The proof of Erdős-Stewart-Tijdeman applies the pigeonhole principle to the solutions of
the equation A + B = C in integers having only prime factors from S, and seems to be
specific to Q.) The really interesting question, however, is the function field case:

Problem Is there a lower bound for |X(S)| in the case F = Q(t) which grows more than
polynomially in s?

A consequence of this would be the existence of non-trivial functional equations for poly-
logarithms at any level, since the number of conditions required to make an element
∑

ni [xi] ∈ Q[X(S)] belong to the mth Bloch group grows like sm, and an element of the
mth Bloch group for Q(t) is a functional equation for Lim(z).

2) Ladders (cf. [2], pp. 387-389). For α ∈ Q, α not a root of unity, define

δ(α) = dimKer

( ∞
⊕

i=0

Z → Q
×
)

,

(ci)i≥0 7→ αc0

∞
∏

i=1

(1− αi)ci .

It is known that this is always finite. If δ(α) ≥ k [Q(α):Q] then one gets examples of
polylogarithmic relations (“ladders”) up to order m = 2k + 2, the best example known
being provided by Lehmer’s algebraic number of degree 10, for which δ(α) is at least
≥ 73 (Cohen-Lewin-Zagier, with 2 extra ones added by Niklasch), yielding polylogarithmic
relations for all Lim up to m = 16.

Problem How big can δ(α) be? Is there a global upper bound? Find examples with big

ratio δ(α)
deg(α) , where deg(α) denotes the degree of the minimal polynomial of α over Q.
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3) Rational conformal field theories. Let A be a symmetric n × n−matrix with

rational coefficients. Then look for x ∈
(

C− {0, 1}
)n

such that

1− x ≡ xA mod (C∗)tors ,

i.e. 1− xi = ζi
∏

j x
aij

j for all i, where ζi is a root of unity. Since these are n equations
in n unknowns, the solution set is generically 0-dimensional, so that a typical solution
x = (x1, . . . , xn) belongs to Q

n
. One immediately checks that

∑n
i=1 xi ∧ (1− xi) = 0, so

that ξ :=
∑n

i=1 [xi] defines an element of the second Bloch group of Q.

Problem Find (some, or all) matrices A such that

i) ξ is zero in the Bloch group (i.e. ξ is a linear combination of 5-term relations).

¿From Borel’s theorem and the known identification of the Bloch group and the Bloch-
Wigner function D with K3 and the regulator, we see that i) is equivalent to

n
∑

i=1

D(xσ
i ) = 0 , ∀σ ∈ Gal(Q/Q) .

Since D|R ≡ 0, one has the related problem

i′) find A with solutions (x1, . . . , xn) which are totally real algebraic numbers.

For instance, for n = 1, A = (a11) = (pq ), the problem is to find p, q such that all roots of

xp + xq = 1 are real, and it is easily seen that the only solutions are a11 = 1, 1
2 , 2.

The problem arises in conformal field theory [1] where it is conjectured that the clas-
sification of so-called rational conformal field theories (which includes the famous ADE
classification with Dynkin diagrams as a very special case) is equivalent to the classifica-
tion of matrices A satisfying i) or i′). A third property which is believed to be equivalent
to these two is that for some vector b ∈ Qn and number c ∈ Q the series

fA,b,c(q) :=

∞
∑

r1,...,rn=0

q
1

2
rArt+brt+c

(q)r1 · · · (q)rn
, (q)r := (1− q)(1− q2) · · · (1− qr),

is a modular function. In the example A = (1) above, the corresponding values of (b, c) are
(0,− 1

48 ), (
1
2 ,

1
24 ), and (− 1

2 ,
1
24 ), the modularity of (for instance) the first of these following

from the classical identity

f1,0,− 1

48

(q) =
η(τ)2

η(τ/2)η(2τ)
,

where η(τ) denotes the Dedekind eta function and q = e2πiτ . For A = (2) the function
fA,b,c is modular for (b, c) = (0,− 1

60 ) or (1, 11
60 ) by virtue of the well-known Rogers-

Ramanujan identities.

4) K−groups by hand. Show “by hand” that the second Bloch group of Q is torsion
i.e. any linear combination

∑

ni[xi], (ni ∈ Q, xi ∈ Q− {0, 1}) which satisfies

∑

ni

(

xi ∧ (1− xi)
)

= 0
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is a rational combination of 5-term relations.

(This corresponds to the fact thatK3(Q)⊗Q = 0. The analogous problem for the vanishing

ofK2(Q)⊗Q would be to show that any element in
∧2

(Q×) is a rational linear combination
of elements x ∧ (1− x), and this does have an elementary solution. See Milnor’s book on
algebraic K−theory, chap.11.)

5) Enlarged Mordell-Weil group. There is a well-known analogy

(elliptic curve) E/Q ←→ F (number field)

(rational points) E(Q) ←→ O×
F (unit group)

(Shafarevich group) ∐∐ ←→ Cl(F ) (class group)

(integral points) E(Z) ←→ X(∅) (exceptional units).

(*)

(Here “integral points” means integral points of an affine model of E and “exceptional
units” are elements u of F such that both u and 1 − u are units.) This analogy is most
visible and best known in the context of the Birch-Swinnerton-Dyer conjecture, in which
the rank, covolume, and torsion subgroup of E(Q) and the (conjecturally finite) order of
∐∐ enter in the same way as the corresponding invariants of O×

F and the order of ClF enter
the Dirichlet class number formula.

Problem Can one find natural extensions of E(Q), each of finite rank but with the ranks
not bounded, which correspond under this analogy to the groups O×

F,S={S-units}, S a

finite set of prime ideals in F? One aspect of the analogy (∗) is that the 4-term exact
sequence

1→ O×
F → F× →

⊕

p

Z→ ClF → 0 (1)

(sum over prime ideals p of OF ), can be used as a model for the sequence

0 −→ E(Q) −→ E(A) −→ Form(E/A,Q) −→ ∐∐ −→ 0 (2)

where A denotes the ring of adeles of Q and Form(E/A,Q) is the group of Q-forms of
E/A, i.e. Q-isomorphism classes of pairs (C, φ) where C is a curve defined over Q and φ
an isomorphism E → C over A (cf. [3]). The groups O×

F,S lie in the second group of (1)
and eventually exhaust it, so it might be reasonable to try to solve the problem by taking
some subgroups of E(A). What we don’t want is to enlarge E(Q) to E(K), [K : Q] <∞,
eventually ending up with E(Q) rather than E(A). That would be analogous to replacing
O×

F,S by the unit group of larger fields, rather than to non-units of the original field F .
The problem can therefore be seen as the elliptic analogue to that of finding the whole of
a number field F if we have been given only the units (say, numerically).

The connection (and potential application) to polylogarithms is as follows. Generalizing
the Bloch-Wigner dilogarithm function D(z) = ℑ

(

Li2(z) + log |z| log(1− z)
)

one has the

elliptic dilogarithm function DE(z) =
∑

n∈Z
D(qnz) for a point z ∈ C×/qZ = E(C) on an

elliptic curve E/C. If E is defined over Q and
∑

i niPi is a formal integral linear combina-
tions of points of E(Q) satisfying certain auxiliary conditions (found experimentally by H.
Cohen and myself and then corrected and refined by Rolshausen, Wildeshaus, Goncharov
and Levin), then

∑

i niDE(Pi) is conjecturally a rational multiple of the value at s = 2 of
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the Hasse-Weil zeta function at s = 2, and there are similar conjectural formulas, involving
higher elliptic polylogarithms, for other special values of L-series associated to E. The
problem with these conjectures is that, unlike the situation for number fields where there
are (conjecturally, and also experimentally) always enough linear combination of elements
of the field to satisfy the conditions defining the higher Bloch groups, and hence to give
special values of the zeta function of the field in terms of polylogarithms, here it very
often happens that E has too few rational points to yield linear combinations satisfying
all the requisite conditions. For example, E(Q) may be the trivial group, in which case
one certainly cannot find examples, or E(Q) may have rank 1 but with a generator whose
multiples all contain different prime factors, in which case one will again not be able to
satisfy the needed conditions. This is analogous to the situation we would have in the case
of a number field F if we tried to find elements

∑

ni[xi] ∈ Z[F ] with all xi and 1 − xi

integral outside a given finite set of primes S: the number of such xi is always finite,
and if it happened to be too small then we could not satisfy all the conditions defining
the mth Bloch group. (The number of such conditions grows roughly like |S|m.) The
solution there would be obvious: simply replace the set S by a bigger one, thus increasing
both the rank of the finitely generated group O×

F,S and the cardinality of the finite set

X(S) = {x ∈ F | x, 1 − x ∈ O×
F,S}; doing this also increases the number of conditions

that have to be satisfied, but the size of X(S) grows faster and one eventually wins the
race. Here we would like to do the same thing, but are stymied by the lack of a natural
extension of E(Q) analogous to the extension O×

F,S of O×
F . If such extensions exist, then

it is reasonable to expect that the elliptic dilogarithm function DE will be defined on
these groups also and that for sufficiently large extensions one will be able to find as many
combinations as one wants which belong to the image of the Beilinson-Bloch regulator
map and hence conjecturally give special values of the L-series associated to E and its
symmetric powers.
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