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Abstract. We give a formula for the number of elements in a fixed conjugacy class of a symmetric
group whose product with a cyclic permutation has a given number of cycles. A consequence is a
very short proof of the formula for the number εg(n) of ways of obtaining a Riemann surface of given
genus g by identifying in pairs the sides of a 2n-gon. This formula, originally proved by a considerably
more difficult method in [1], was the key combinatorial fact needed there for the calculation of the
Euler characteristic of the moduli space of curves of genus g. As a second application, we show that
the number of ways of writing an even permutation π ∈ SN as a product of two N -cycles always lies

between 2(N − 1)!/(N − r + 2) and 2(N − 1)!/(N − r + 19/29), where r is the number of fixed points
of π, and that both constants “2” and “19/29” are best possible.

Consider the following combinatorial problem. Let C be a conjugacy class in the symmetric
group SN on N letters, and let σ ∈ SN denote a cyclic permutation. For 1 ≤ m ≤ N set

pm(C) =
1

#C
·#{π ∈ C | πσ has m cycles} ,

so that
N
∑

m=1
pm(C) = 1. The problem is to give a closed formula for the numbers pm(C).

Theorem 1. The numbers pm(C) are determined by

N
∑

m=1

pm(C) Φm(X) =
χ(C,X)

(1−X)N+2
, (1)

where χ(C,X) = det(1 − πX, V ) is the characteristic polynomial of an element π ∈ C acting on

the permutation representation V = C
N of SN and

Φ1(X) =
1

(1−X)2
, Φ2(X) =

1 +X

(1−X)3
, Φ3(X) =

1 + 4X +X2

(1−X)4
, . . .

are the polynomials in
1

1−X
defined by Φm(X) =

∞
∑

k=1

kmXk−1 ∈ Z[[X]].

Before giving the proof of this theorem, we mention a few of its consequences.

Application 1. For π ∈ SN denote by Ni(π) (1 ≤ i ≤ N) and N(π) the number of i-cycles and
the total number of cycles, respectively, so that

∑

iNi(π) = N ,
∑

Ni(π) = N(π). Since these
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are conjugacy class invariants, we also denote them Ni(C) and N(C), where C = C(π) is the
conjugacy class of π. Then

χ(C,X) =
N
∏

i=1

(1−Xi)Ni(C) (2)

is divisible exactly by (1−X)N(C), so the right-hand side of (1) has a pole of order N +2−N(C)
at X = 1. Since Φm(X) is a polynomial of degree m+ 1 in (1−X)−1, it follows from (1) that

Max{m | pm(C) 6= 0} = N + 1−N(C) ,

and in particular, that N(π) + N(πσ) ≤ N + 1 for every π ∈ SN . This is a special case of the
easily proved inequality N(g1) +N(g2) ≤ N(g1g2) +N , valid for all g1, g2 ∈ SN .

Application 2. Another easy consequence of (1) is that pm(C) = 0 unless sgn(π) = (−1)m−1

(π ∈ C). This is of course trivial anyway since pm(C) 6= 0 implies that

(−1)N−m = (−1)N−N(πσ) = sgn(πσ) = sgn(σ) sgn(π) = (−1)N−1 sgn(π)

for some π ∈ C, but it also follows from (1) and (2) together with the observation that XΦm(X)
is (−1)m−1-symmetric under X 7→ 1/X.

Application 3. In the special case when π ∈ C is cyclic, the number pm(C) is the probability that
a product of two cyclic permutations in SN has exactly m cycles, and (1) says that this number

equals
1 + (−1)N−m

(N + 1)!
times the coefficient of xm in x(x + 1) · · · (x +N). For example, for N odd

the probability that the product of two random cyclic permutations in SN is cyclic is 2/(N + 1),
as opposed to the probability 2/N that a random even element of SN is cyclic.

Application 4. The most interesting special case of (1), however, and the main reason for this
note, is the case when N = 2n and C is the conjugacy class of free involutions, i.e., any π ∈ C
has n cycles of length 2. Here pm(C) = 0 if m > n + 1 or n + 1 −m is odd, by the observations
in “Application 1” and “Application 2.” The number pn+1−2g(C) equals εg(n)/(2n − 1)!!, where
(2n− 1)!! = |C| = 1× 3× · · ·× (2n− 1) and εg(n) is the number of ways of identifying in pairs the
sides of a 2n-gon to obtain an oriented surface of genus g. (This is because any orientation-reversing
pairwise gluing π of the sides gives an oriented surface of some genus g, and the resulting surface
is triangulated with N(πσ) vertices, n edges, and one 2-simplex, so that 2− 2g = N(πσ)− n+ 1
by Euler’s formula.) On the other hand, χ(C,X) = (1−X2)n by (2), so (1) becomes

1

(2n− 1)!!

∑

0≤g≤n/2

εg(n) Φn+1−2g(X) =
(1 +X)n

(1−X)n+2
(3)

or, comparing the coefficients of Xk−1 on both sides,

1

(2n− 1)!!

∑

0≤g≤n/2

εg(n) k
n+1−2g = CoeffXk−1

[

(1 +X)n

(1−X)n+2

]

= CoeffTn+1

[

1

2

(1 + T

1− T

)k
]

, (4)

where the last equality follows from the residue theorem or by computing in two ways the coefficient
of Xk−1Tn+1 in (1 + T )/(1− T −X −XT ).

Formula (4) was proved by a considerably more complicated method in [1] and was the main
combinatorial ingredient in the calculation given there of the Euler characteristic of the moduli
space of curves of genus g. Actually, the formula was used there in the form

εg(n) =
2n−2g (2n− 1)!!

(n+ 1− 2g)!
Coeffu2g

[(

u

sinhu

)2(
u

tanhu

)n ]

,
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which can be obtained from (4) either by susbstituting T = tanhu and applying the residue
theorem or else directly from (3) by observing that

e−x Φm

(

e−x
)

= (−1)m
dm

dxm

(

1

ex − 1

)

=
m!

xm+1
+O(1) (x → 0)

and then comparing coefficients of u2g−2−n in both sides of (3) with X = e−2u. The same method
applies to the general case and leads to the following equivalent form of the main theorem:

pm(C) =
1

m!
CoeffxN+1−m

[(

x

1− e−x

)N+2

e−x χ
(

C, e−x
)

]

. (5)

Application 5. It is well-known that every even permutation π ∈ SN is the product of two
N -cycles. Let R(π) be the number of such representations. It is easy to see that

R(π) = (N − 1)! p1(π) . (6)

On the other hand, it is also easy to verify that the average of pm(π) over all π ∈ SN for any

m ≥ 1 is just the coefficient of ym in the polynomial
(

y+N−1
N

)

. For m = 1 this is 1/N , so (6) gives

Average
{

R(π) | π ∈ SN , π even
}

=
2 (N − 1)!

N
.

We will show that

Min
{

R(π) | π ∈ SN , π even
}

≥
2 (N − 1)!

N + 2
,

so that the minimum value of R(π) is only slightly less than its average value. In fact, we will
prove the following stronger and rather amusing result.

Theorem 2. Let π ∈ SN be an even permutation with r fixed points, 0 ≤ r ≤ N . Then

2 (N − 1)!

N − r + 2
≤ R(π) ≤

2 (N − 1)!

N − r + 19
29

(7)

and the constants 2 and 19
29 appearing in the denominators are both best possible.

We now give the proofs of the two theorems.

Proof of Theorem 1. A well-known formula, valid for any finite group G and conjugacy classes
A, B, C ⊆ G, says that

#
{

(a, b, c) ∈ A×B × C | abc = 1
}

=
|A| |B| |C|

|G|

∑

χ∈Ĝ

χ(A)χ(B)χ(C)

χ(1)

(sum over the characters of the irreducible representations of G). An equivalent form of this is

1

|C|

∑

c∈C

F (bc) =
∑

χ∈Ĝ

χ(b)χ(C)

χ(1)

(

1

|G|

∑

A

|A|χ(A)F (A−1)

)

(8)
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for any b ∈ G and any class invariant F : G → C. We apply it to G = SN , b = σ, and
F (π) = ΦN(π)(X). Let V0 denote the irreducible (N−1)-dimensional subrepresentation of V = C

N

and χr (0 ≤ r ≤ N − 1) the character of the irreducible representation Λr(V0). Clearly

N−1
∑

r=0

χr(π) (−T )r = det(1− π T, V0) =
χ(π, T )

1− T
(∀π ∈ G). (9)

In particular, χr(σ) = (−1)r since χ(σ, T ) = 1− TN by (2). Hence

N−1
∑

r=0

|χr(σ)|
2 = N =

|G|

|C(σ)|
=

∑

χ∈Ĝ

|χ(σ)|2

(orthogonality relation for characters!), so χ(σ) = 0 for all χ 6∈ {χ0, . . . , χN−1} and (8) becomes

1

|C|

∑

π∈C

ΦN(πσ)(X) =
N−1
∑

r=0

(−1)r χr(C)
(

N−1
r

)

(

1

N !

∑

A

|A|χr(A) ΦN(A)(X)

)

. (10)

But by formulas (9) and (2) we have

N−1
∑

r=0

(

1

N !

∑

A

|A|χr(A) k
N(A)

)

(−T )r =
∑

N1+2N2+···=N

kN1+N2+··· (1− T )N1(1− T 2)N2 · · ·

1N12N2 · · · N1!N2! · · · (1− T )

=
1

1− T
CoeffuN

[ ∞
∏

j=1

∞
∑

n=0

kn(1− T j)nunj

jn n!

]

=
1

1− T
CoeffuN

[(

1− uT

1− u

)k]

.

Multiplying by Xk−1 and summing over all k ≥ 1, we find

N−1
∑

r=0

(

1

N !

∑

A

|A|χr(A) ΦN(A)(X)

)

(−T )r =
1

1− T
CoeffuN

[

1− uT

1− u−X + uXT

]

=
(1−XT )N−1

(1−X)N+1

or, comparing the coefficients of (−T )r on both sides,

1

N !

∑

A

|A|χr(A) ΦN(A)(X) =

(

N − 1

r

)

Xr

(1−X)N+1
.

Substituting this into (10) and using (9) again, we obtain the desired formula (1).

Proof of Theorem 2. Write Ni for Ni(π), so that r = N1, and denote by fπ(k) the polynomial
∑N

m=1 pm(π)km. Theorem 1 can be expressed in terms of fπ by the generating function

φπ(y) =
∞
∑

k=1

fπ(k) y
k−1 =

χ(π, y)

(1− y)N+2
=

1

(1− y)N+2

N
∏

i=1

(1− yi)Ni (11)

and we want to compute p1(π) = f ′
π(0). For this we use:
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Lemma. Let f(k) be a polynomial with f(0) = 0 and φ(y) =
∑∞

k=1 f(k)y
k−1 ∈ C

[

1
1−y

]

. Then

f ′(0) =

∫ ∞

0

φ(−t) dt .

Proof. We may assume f(k) =
(

k+r−1
r

)

for some r ≥ 1, since any polynomial with zero constant

term is a linear combination of these. Then
∫∞

0
φ(−t)dt =

∫∞

0
(1 + t)−r−1dt = 1/r = f ′(0).

Applying the lemma to the polynomial f = fπ, we find

p1(π) = f ′
π(0) =

∫ ∞

0

φπ(−t) dt = 2

∫ 1

0

φπ(−t) dt ,

where the last identity follows from the fact that yφπ(y) is invariant under y 7→ 1/y since π is even
(cf. “Application 3” above). Now substitute t = x/(1− x) and use (11) to get

p1(π) = 2

∫ 1/2

0

φπ

( −x

1− x

) dx

(1− x)2
= 2

∫ 1/2

0

N
∏

i=2

[

(1− x)i − (−x)i
]Ni

dx . (12)

The lower bound in the theorem follows easily. Indeed, for i ≥ 2 we have

(1− x)i − (−x)i ≥
[

(1− 2x) + x2
]i/2

− (x2)i/2 ≥ (1− 2x)i/2 ,

so

p1(π) ≥ 2

∫ 1/2

0

(1− 2x)(N−N1)/2 dx =
2

N −N1 + 2

with equality if N = N1 + 2N2, and in view of (6) this is equivalent to the lower bound in
equation (7). (Recall that r = N1.) For the other direction, we use the estimates

(1− 3x+ 3x2)2/3 =
[

(1− 2x)3 + 2(2x2 − x)2 + (x2 − x)2
]1/3

≥ 1− 2x = (1− x)2 − x2

(1− 3x+ 3x2)i/3 = [(1− x)3 + x3]i/3 ≥ (1− x)i + xi ≥ (1− x)i − (−x)i if i ≥ 3

to get

p1(π) ≤ 2

∫ 1/2

0

(1− 3x+ 3x2)(N−N1)/3 dx =: A(N −N1) .

An easy analysis shows that A(k) = 2/(k + ck) where ck decreases monotonically from c2 =
1.24409 . . . to c8 = 0.64164 . . . and then increases monotonically to a limiting value of 1 as k → ∞,
with c9 = 19

29 and ck ≥ 19
29 for all k except 7 and 8. This proves the second inequality in (7) for

all cases except N = N1 + 7 or N = N1 + 8 and shows also that it is best possible. (Take π with
r = N − 9 fixed points and three 3-cycles; then (12) shows that p1(π) = A(9) = 2/(N − r + 19

29 ).)
Finally, for the two cases where k = N − r has the value 7 or 8 we must look at the finite list
of partitions of k as

∑

i≥2 iNi and for each one check that the value of the integral in (12) is

≤ 2/(k + 19
29 ). (The integrand in (12) is a polynomial, so the ten integrals in question are easy to

compute). This completes the proof of the theorem.

Remarks. The author would like to thank Professor T.A. Springer for helpful conversations
and in particular for the observation that only the characters χr contribute to the calculation of
pm(C). The observation that the combinatorial result in [1] could in principle also be obtained
by calculating the numbers pm(C) for the conjugacy class of free involutions in S2n was made to
me shortly after [1] appeared by A. Odlyzko, and an explicit calculation along these lines is given
in the paper [3] by D.M. Jackson, but with a longer derivation than the one here. Another proof
of the combinatorial formula in question was given by Itzykson and Zuber [2], and a completely
different proof of the Euler characteristic formula, not relying on a triangulation of the moduli
space, by Kontsevich [4].
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