
Applications of the representation theory of finite groups

Appendix by D. Zagier to
“Graphs on Surfaces and Their Applications”, by S. Lando and A. Zvonkin

This appendix consists of two sections. In the first we give a self-contained and fairly complete
introduction to the representation and character theory of finite groups, including Frobenius’s
formula and a higher genus generalization. In the second we give several applications related to
topics treated in this book.

1. Representation theory of finite groups

1.1. Irreducible representations and characters. Let G be a finite group. A (finite-
dimensional; we will always assume this) representation (V, π) of G is a finite-dimensional com-
plex vector space V and a homomorphism π : G → GL(V ). Thus each g ∈ G defines a linear
map v 7→ π(g)v from V to V , with π(g1g2) = π(g1)π(g2). One often drops the “π” and writes
the action simply as v 7→ gv. Alternatively, one often drops the “V ” and simply denotes the
representation itself by π. The definition given here corresponds to left representations; one also
has right representations (where v 7→ vg with v(g1g2) = (vg1)g2); this leads to an isomorphic
theory, by replacing g by g−1.

We call two representations V and V ′ isomorphic, denoted V ≃ V ′, if there is a G-equivariant
isomorphism from V to V ′, and write V ∼= V ′ if such an isomorphism has been fixed. If V is a
(left) representation of G and A a complex vector space, then both V ⊗CA and HomC(A, V ) are
(left) representations in the obvious way (g(v⊗ a) = (gv)⊗ a, (gφ)(a) = gφ(a)). If dimC A = k,
then both of these representations are isomorphic to V ⊕ · · · ⊕ V (k copies), the isomorphisms
being canonical if one has chosen a basis of A. Similarly, the dual space V ∗ = HomC(V,C) is in
a natural way a right representation of G via (φg)(v) = φ(gv) and the space HomC(V,A) is also
a right representation, isomorphic to k copies of V ∗. Finally, if V and V ′ are two representations
of G, then we write V ⊗G V ′ for the quotient of V ⊗C V ′ by the relation gv ⊗ v′ = v ⊗ gv′ and
HomG(V, V

′) for the set of G-equivariant linear maps from V to V ′; these are simply vector
spaces, without any natural G-action.

A representation V ofG is called irreducible if it contains no proper subspace which is invariant
under the action of G. As a simple example, let G = Sn and V = Cn with the obvious action
of G by permutation of the coordinates. Then V is not irreducible, since it contains the two
subspaces W1 = {(x, . . . , x) | x ∈ C} and W2 = {(x1, . . . , xn) ∈ Cn | x1 + · · · + xn = 0}, of
dimensions 1 and n−1 respectively, which are obviously invariant under the action of G. On the
other hand, these two representations are irreducible and V is their direct sum. More generally,
one has:

Lemma 1. Any representation of G is a direct sum of irreducible ones.

Proof. Pick a G-invariant non-degenerate scalar product on V . (To obtain one, start with any
positive-definite scalar product and replace it by the obvious average over G.) If V is not already
irreducible, it contains a proper G-invariant subspace W . But then the orthogonal complement
W⊥ of W is also G-invariant, and V = W ⊕W⊥. The result now follows by induction on the
dimension. �

This will be used in conjunction with the following property of irreducible representations:

Lemma 2 (Schur’s Lemma). Let V and V ′ be two irreducible representations of G. Then

the complex vector space HomG(V, V
′) is 0-dimensional if V 6≃ V ′ and 1-dimensional if V ≃ V ′.

The space HomG(V, V ) is canonically isomorphic to C.
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Proof. Since neither V nor V ′ has a non-trivial G-invariant subspace, any non-zero G-equivariant
map φ : V → V ′ has trivial kernel and cokernel. Hence HomG(V, V

′) = {0} if V and V ′ are not
isomorphic. If they are, then we may assume that V ′ = V . Then for any eigenvalue λ of φ, the
map φ− λ has a kernel and therefore is zero. Hence HomG(V, V ) ∼= C canonically. �

These two lemmas already suffice to prove one of the first basic facts of the theory, the “first
orthogonality relation for characters.” If (V, π) is an irreducible representation, we define its
character as the function χπ(g) = tr(π(g), V ) from G to C. Then we have:

Corollary (First orthogonality relation). Let (V, π) and (V ′, π′) be two irreducible repre-

sentations of G. Then

1

|G|

∑

g∈G

χπ(g)χπ′(g) =

{
1 if π ≃ π′,

0 otherwise.
(1)

Proof. The dimension of the space V G of G-invariant vectors in any representation V of G
is given by dim(V G) = |G|−1

∑
g∈G tr(g, V ). (Proof. The linear map v 7→ |G|−1

∑
g∈G gv is

a projection from V to V G, so its trace equals dimV G.) Apply this to the G-representation
HomC(V, V

′) ∼= V ⊗C V
′∗, with G acting by g(v, φ) = (gv, φ ◦ g−1). (Recall that V ′∗ is naturally

a right representation of G, so that we have to replace g by g−1 when we act from the left.) Then

the trace of g ∈ G equals χπ(g)χπ′(g), and the dimension of
(
Hom(V, V ′)

)G
= HomG(V, V

′) is 1
or 0 by Schur’s Lemma. �

Now let {(Vi, πi)}i∈I be a full set of non-isomorphic irreducible representations of G. Lemma 1
tells us that any representation V of G is isomorphic to a direct sum

⊕
i∈I

Vi ⊕ · · · ⊕ Vi︸ ︷︷ ︸
ki

of the

representations Vi or equivalently, by what was said above, that

V ∼=
⊕

i

Vi ⊗C Ai
∼=

⊕

i

HomC(Bi, Vi) (2)

for some ki-dimensional vector spaces Ai and Bi over C, but we do not yet know that these
spaces, or even the multiplicities ki, are independent of the decomposition chosen. The following
lemma shows that this is true and gives a canonical description of the spaces Ai and Bi.

Lemma 3. Let V be an arbitrary representation of G. Then we have canonical G-equivariant

isomorphisms
⊕

i∈I

Vi ⊗C HomG(Vi, V )
∼
−→ V , V

∼
−→

⊕

i∈I

HomC(HomG(V, Vi), Vi) (3)

given by sending x⊗ φ ∈ Vi ⊗HomG(Vi, V ) to φ(x) and v ∈ V to the homomorphism φ 7→ φ(v)
from HomG(V, Vi) to Vi. Conversely, given any decompositions of V of the form (2), there are

canonical isomorphisms Ai
∼= HomG(Vi, V ) and Bi

∼= HomG(V, Vi) as complex vector spaces.

Proof. Since both isomorphisms in (2) are additive under direct sums, we may assume by
Lemma 1 that V is irreducible, say V = Vj for some j ∈ I. Then both statements in (3)
follow immediately from Lemma 2, since Vj ⊗C C ∼= HomC(C, Vj) ∼= Vj . The proof of the last
statement, which will not be used in what follows, is similar and will be left to the reader. �

We next introduce the group algebra C[G]. This is the set of linear combinations
∑

g∈G αg[g]

(αg ∈ C) of formal symbols [g] (g ∈ G), with the obvious addition and multiplication. It can be
identified with Maps(G,C) via α(g) = αg. The group algebra is a left and right representation

of G via g1[g]g2 = [g1gg2], or equivalently (g1αg2)(g) = α(g−1
1 gg−1

2 ) if α is a map from G to C.
The central result of the representation theory of finite groups is the following assertion.
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Theorem 1. Let G be a finite group. Then there is a canonical (G × G)-equivariant algebra
isomorphism

C[G] ∼=
⊕

i∈I

EndC(Vi) (4)

sending [g] to the collection of linear maps πi(g) : Vi → Vi.

Proof. For any representation V of G, HomG(C[G], V ) ∼= V as G-representations, since an
equivariant map φ : C[G] → V is uniquely determined by φ([1]) ∈ V , which is arbitrary.
Applying this to V = Vi (i ∈ I) and then applying the second isomorphism in (3) to V =
C[G], we obtain the assertion of the theorem. We can also obtain the isomorphism (4), in the
reverse direction, by applying the first isomorphism in (3) to V = C[G] and using the canonical
isomorphisms HomG(Vi,C[G]) ∼= V ∗

i and Vi ⊗C V ∗
i
∼= HomC(Vi, Vi) ∼= EndC(Vi). �

Essentially all important general facts about representations of finite groups are corollaries
of this theorem. To state them, let us introduce the notation C for the set of conjugacy classes
in G and R for the set of isomorphism classes of irreducible representations. (Of course R and
the index set I used above are in canonical bijection, but we will no longer need to have picked
representatives for the elements of R.) Since the value of the character χπ(g) depends only
on the isomorphism class of π and the conjugacy class of g, we can write, with some abuse
of notation, χπ(C) for any π ∈ R and C ∈ C. For instance, with these notations the first
orthogonality relation (1) becomes

∑

C∈C

|C|χπ(C)χπ′(C) = |G| δπ,π′ (π, π′ ∈ R) . (5)

Then Theorem 1 has the following consequences.

Corollary 1. The cardinality of R is finite and
∑

π∈R

(dimπ)2 = |G| . (6)

Proof. Compare the dimensions on both sides of (4). �

Corollary 2. The sets C and R have the same cardinality: there are as many irreducible

representations of G as there are conjugacy classes in G.

Proof. A basis for the center Z(C[G]) of C[G] is clearly given by the elements eC =
∑

g∈C [g]

(C ∈ C). On the other hand, EndC(Vi) is the matrix algebra MdimVi
(C), with 1-dimensional

center. Hence the algebra isomorphism (4) tells us that |C| = dimC Z(C[G]) = |R|. �

Corollary 3 (Second orthogonality relation). Let C1, C2 ∈ C. Then

∑

π∈R

χπ(C1)χπ(C2) =

{
|G|/|C1| if C1 = C2,

0 otherwise.
(7)

Notice that this formula agrees with (6) when C1 = C2 = {1}, since χπ(1) = dimπ.

Proof. This follows from equation (5) and Corollary 2, since these imply that the matrix(
|C|1/2|G|−1/2χπ(C)

)
π∈R, C∈C

is square and unitary, and the inverse of a unitary matrix is

also unitary. But we can also obtain (7) directly (and then, if we wish, deduce (5) from it) by
computing the trace of the action of (g1, g2) ∈ C1 × C2 on both sides of (4). The action of
(g1, g2) on the basis {[g]}g∈G of C[G] is given by the permutation [g] 7→ [g1gg

−1
2 ] (as before, we

have to invert g2 to turn the right action into a left one), so its trace is the number of fixed
points of this permutation, which is clearly |G|/|C1| if g1 and g2 are conjugate and 0 otherwise.

On the other hand, the trace of (g1, g2) on EndC(π) = π ⊗C π∗ equals χπ(g1)χπ(g2). �
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1.2. Examples. We illustrate the theory explained in §1.1 in a few important special cases.

Abelian groups. If G is a cyclic group of order n, with generator γ, then there are n obvious
1-dimensional (and hence irreducible!) representations of G given by V = C and γv = ζv with
ζ ∈ C a (not necessarily primitive) nth root of unity. By the dimension formula (6), these are
the only irreducible representations. More generally, for any finite abelian group one sees easily
that all irreducible representations of G are 1-dimensional (because the commuting operators
π(g) on any representation V have a common eigenvector, or alternatively by reducing to the
cyclic case) and that the corresponding characters are simply the homomorphisms from G to C∗.

Symmetric groups of small order. The symmetric group Sn has two 1-dimensional repre-
sentations 1 (the trivial representation, V = C with all elements of G acting as +1) and εεεn (the
sign representation, V = C with odd permutations acting as −1) and an (n − 1)-dimensional
irreducible representation Stn which is the space W2 ⊂ Cn mentioned at the beginning of this
section. For n = 2 and n = 3, the dimension formula (6) shows that these are the only irreducible
representations (and Stn ≃ εεεn for n = 2), with character tables given by

1 εεε2 |C| 1 εεε3 St3 |C|

Id 1 1 1 Id 1 1 2 1

(12) 1 −1 1 (12) 1 −1 0 3

(123) 1 1 −1 2

(Here the numbers on the right show the size of the conjugacy classes, needed as weights to
make the columns of the table orthogonal; the rows are orthogonal as they stand.) For n = 4,
the orthogonality relations again have a unique solution and the character table must take the
form

1 εεε4 A St4 St4 ⊗ εεε4 |C|

Id 1 1 2 3 3 1

(12) 1 −1 0 1 −1 6

(123) 1 1 −1 0 0 8

(12)(34) 1 1 2 −1 −1 3

(1234) 1 −1 0 −1 1 6

for some 2-dimensional irreducible representation A of S4. We can construct A explicitly as
{(xs)s∈S |

∑
xs = 0}, where S is the 3-element set of decompositions of {1, 2, 3, 4} into two

(unordered) subsets of cardinality 2. The reader may wish to attempt constructing “by hand”
the 7×7 character table for the group S5, where the dimensions of the irreducible representations
are 1, 1, 4, 4, 5, 5 and 6.

Observe that in the above tables for Sn the character values χπ(g) are all integers. This is
a general fact. For arbitrary finite group representations, χπ(g) is a sum of roots of unity and
hence an algebraic integer, and its Galois conjugates are simply the values of χπ(g

ℓ) with ℓ ∈ Z

prime to the order of g. (This is because the action of Gal(Q/Q) on roots of unity is given by
ζ 7→ ζℓ with ℓ prime to the order of ζ.) For G = Sn, however, g

ℓ and g are conjugate since they
have the same cycle structure, so χπ(g) is Galois invariant and hence belongs to Z.

Symmetric groups of arbitrary order. We will not give a complete account of the gen-
eral representation theory of Sn here, since it is a little complicated and there are many good
accounts, but will only mention some highlights, following the approach given in the beautiful
paper [OV], which we highly recommend to the reader. The statements given here will be used
only in §2.3. We denote by Rn the sets of isomorphism classes of irreducible representations of
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Sn. We will also consider Sn−1 as a subgroup of Sn (namely, the set of elements fixing n), and
similarly for all Si, i < n.

A. The first basic fact is that each irreducible representation of Sn, when restricted to the
subgroup Sn−1, splits into the direct sum of distinct irreducible representations of Sn−1. For
π ∈ Rn and π′ ∈ Rn−1 we write π′ ≺ π if π′ occurs in π|Sn−1

, so π|Sn−1
= ⊕π′≺ππ

′. Similarly,
each π′ ≺ π when restricted to Sn−2 splits into a sum of irreducible rerpresentations π′′ of Sn−2,
and continuing this process, we see that π splits canonically into a direct sum of 1-dimensional
spaces Vξ indexed by all possible chains ξ : π1 ≺ · · · ≺ πn = π with πi ∈ Ri. (Specifically, we
have Vξ = V1 ⊂ · · · ⊂ Vn = π where each Vi is Si-invariant and isomorphic to πi.) Notice how
unusual this behavior is: for general finite groups G it is more modern, and of course better, to
think of representations as actions of G on abstract vector spaces, without any choice of basis,
rather than as collections of matrices satsifying the same relations as the elements of G, but for
the symmetric groups the irreducible representations come equipped with their own nearly (i.e.,
up to scalar multiples) canonical bases, and we have matrices after all!

B. The next key idea is to introduce the so-called Jucys-Murphy element

Xn = (1 n) + (2 n) + · · · + (n− 1 n)

of the group algebra Z[Sn]. We can write this element as e[T ]n − e[T ]n−1
, where e[T ]n ∈ Z(Z[Sn])

as in the proof of Corollary 2 above is the sum of all elements in the conjugacy class [T ]n of
T = (1 2) ∈ Sn and e[T ]n−1

is the corresponding element for n − 1. Since e[T ]n is central,
by Schur’s lemma it acts on each π ∈ Rn, and hence on each subrepresentation π′ ≺ π, as
multiplication by a scalar νπ(T ) (which belongs to Z by the remark on integrality made above),
and similarly e[T ]n−1

acts on π′ as a scalar νπ′(T ), so Xn acts on π′ as multiplication by the
number an = νπ(T ) − νπ′(T ). By induction on i it follows that for each chain ξ = (π1, . . . , πn)
each element Xi ∈ Z[Si] ⊂ Z[Sn] acts on πi−1 as multiplication by some integer ai(ξ), so we can
associate to the chain ξ a weight vector a(ξ) = (a1(ξ), . . . , an(ξ)) ∈ Zn.

C. Conversely, the weight vector a(ξ) determines ξ (and hence also π) completely, and there
is a complete description of which vectors a = (a1, . . . , an) ∈ Zn occur as weight vectors. (The
conditions are (i) a1 = 0, (ii) for each j > 1, we have |aj − ai| = 1 for some i < j, and (iii)
if ai = aj for some i < j then both ai − 1 and ai + 1 occur among the ak with i < k < j.)
Furthermore, two weight vectors a, a′ ∈ Zn correpond to the same representation π if and only
if they are permutations of one another, so that π is uniquely characterized by the function
f : Z → Z≥0 defined by f(r) = #{i | ai = r}, and this sets up a bijection between Rn and the
set of finitely supported functions f : Z → Z≥0 satisfying f(r + 1) − f(r) ∈ {0, |r| − |r + 1|}
for all r and

∑
r∈Z

f(r) = n. These functions in turn correspond bijectively to the elements

of the set Yn of Young diagrams (= subsets Y ⊂ N2 such that (x, y) ∈ Y ⇒ (x′, y′) ∈ Y
whenever 1 ≤ x′ ≤ x, 1 ≤ y′ ≤ y) of cardinality n, the correspondence f ↔ Y being given by
f(r) = #{(x, y) ∈ Y | x− y = r} and Y = {(x, y) ∈ N2 | min(x, y) ≤ f(x− y)}. In the bijection
between Rn and Yn obtained in this way one has π′ ≺ π if and only if the corresponding Young
diagrams Y ′ ∈ Yn−1 and Y ∈ Yn satisfy Y ′ ⊂ Y .

D. Finally, there is an explicit inductive procedure, given by the so-called Murnaghan-

Nakayama rule, to compute the value of the character χπ(C) for any π ∈ Rn and conjugacy
class C ⊂ Sn in terms of the Young diagram associated to π and the partition of n associated
to C. However, we will not use this and do not give the details here, noting only that the case
C = [T ]n, which will be needed in §2.3, follows from B. and C. above.
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1.3. Frobenius’s formula. We end §1 by describing a formula which has applications to
combinatorial problems in many parts of mathematics and in particular to several of the topics
treated in this book; some of these applications will be discussed in §2. This formula computes
the number

N (G;C1, . . . , Ck) := #
{
(c1, . . . , ck) ∈ C1 × · · · × Ck | c1 · · · ck = 1

}

for arbitrary conjugacy classes C1, . . . , Ck ∈ C in terms of the characters of the irreducible
representations of G. Note that N (G;C1, . . . , Ck) is independent of the order of the arguments,
because the identity cici+1 = ci+1(c

−1
i+1cici+1) lets us interchange Ci and Ci+1.

Theorem 2 (Frobenius’s formula). Let G be a finite group and C1, . . . , Ck conjugacy classes

in G. Then

N (G;C1, . . . , Ck) =
|C1| · · · |Ck|

|G|

∑

χ

χ(C1) · · ·χ(Ck)

χ(1)k−2
, (8)

where the sum is over all characters of irreducible representations of G.

Before giving the proof, we note three special cases. If k = 1 or k = 2, then (8) reduces to
the orthogonality relation (7), applied to (C1, 1) or (C1, C

−1
2 ), respectively. For k = 3, we write

(C1, C2, C3) = (A,B,C−1) with A, B, C ∈ C. Then N (G;C1, C2, C3) = nC
AB , where

nC
AB = #

{
(a, b) ∈ A×B | ab ∈ C

}
.

The integers nC
AB are nothing but the structure constants (i.e., the numbers defined by eAeB =∑

C nC
ABeC) of the center of the group ring Z[G] with respect to the basis {eC} defined in the

proof of Corollary 2 above. Formula (8) therefore describes the ring structure of this commutative
ring in terms of the character theory of G. This formula plays a role in mathematical physics
in connection with the so-called “fusion algebras.”

Proof. If C is any conjugacy class of G, then the element eC =
∑

g∈C [g] is central and hence,
by Schur’s lemma, acts on any irreducible representation π of G as multiplication by a scalar
νπ(C). Since each element g ∈ C has the same trace χπ(g) = χπ(C), we find

|C|χπ(C) =
∑

g∈C

χπ(g) = tr(π(eC), V ) = tr(νπ(C) · Id, V ) = νπ(C) dimπ

and hence

νπ(C) =
|C|

dimπ
χπ(C) =

χπ(C)

χπ(1)
|C| . (9)

Now we compute the trace of the action by left multiplication of the product of the elements
eC1

, . . . , eCk
on both sides of (4). On the one hand, this product is the sum of the elements

[c1 · · · ck] with ci ∈ Ci for all i, and since the trace of left multiplication by [g] on C[G] is
clearly |G| for g = 1 and 0 otherwise, the trace equals |G|N (G;C1, . . . , Ck). On the other hand,
the product of the eCi

acts as scalar multiplication by
∏

νπ(Ci) on π and hence also on the
(dimπ)2-dimensional space EndC(π). Formula (8) follows immediately. �

Theorem 2 has a clear topological interpretation. Let X be the 2-sphere with k (numbered)
points P1, . . . , Pk removed. Then π1(X) is a (free) group on k generators x1, . . . , xk with
x1 · · ·xk = 1, and N (G;C1, . . . , Ck) simply counts the number of homomorphisms ρ from π1(X)
to G with ρ(xi) ∈ Ci for each i. As explained in the text of the book, if G acts faithfully on some
finite set F , then each such homomorphism corresponds to a (not necessarily connected) Galois
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covering of X with fibre F , Galois group G, and ramification points Pi, such that for each i the
permutation of the elements of a fixed fibre induced by the local monodromy at Pi belongs to the
conjugacy class Ci. Hence N (G;C1, . . . , Ck) counts the coverings with these properties. Observe
that the above-mentioned invariance of N (G;C1, . . . , Ck) under permutation of its arguments is
clear from this topological point of view.

A natural idea is now to generalize this to ramified coverings of Riemann surfaces of arbitrary
genus g ≥ 0. In view of the structure of the fundamental group of a k-fold punctured surface of
genus g, this boils down to computing the number

Ng(G;C1, . . . , Ck) = #
{
(a1, . . . , ag, b1, . . . , bg, c1, . . . , ck) ∈ G2g × C1 × · · · × Ck |

[a1, b1] · · · [ag, bg] c1 · · · ck = 1} .

The result, given in the theorem below, turns out to be surprisingly simple, but was apparently
not given in the classical group-theoretical literature and was discovered first in the context
of mathematical physics ([DW], [FQ]). The proof is an almost immediate consequence of the
special case g = 0.

Theorem 3. With the same notations as above, we have for all g ≥ 0

Ng(G;C1, . . . , Ck) = |G|2g−1 |C1| · · · |Ck|
∑

χ

χ(C1) · · ·χ(Ck)

χ(1)k+2g−2
. (10)

Proof. Note that [a1, b1] · · · [ag, bg] = a1(b1a1b
−1
1 )−1 · · · ag (bgagb

−1
g )−1 and that, for a and a′ in

the same conjugacy class A, there are |G|/|A| elements b ∈ G with bab−1 = a′. Hence

Ng(G;C1, . . . , Ck) =
∑

A1,...,Ag∈C

|G|

|A1|
· · ·

|G|

|Ag|
N (G;A1, A

−1
1 , . . . , Ag, A

−1
g , C1, . . . , Ck) .

Now applying Theorem 2 we find

Ng(G;C1, . . . , Ck) = |G|g−1|C1| · · · |Ck|×

∑

A1,...,Ag∈C

|A1| · · · |Ag|
∑

χ

χ(A1)χ(A1) · · ·χ(Ag)χ(Ag)χ(C1) · · ·χ(Ck)

χ(1)k+2g−2

= |G|g−1|C1| · · · |Ck|
∑

χ

χ(C1) · · ·χ(Ck)

χ(1)k+2g−2

(∑

A∈C

|A|χ(A)χ(A)

)g

.

The theorem now follows from the case π = π′ of the orthogonality relation (5). �

We observe that, by formula (9), both Frobenius’s formula and its higher genus generalization
can be written more naturally in terms of the eigenvalues νπ(C) than the character values χπ(C).
In particular, equation (10) when expressed in terms of the νπ(C) takes the simple form

Ng(G;C1, . . . , Ck) = |G|2g−1
∑

π∈R

νπ(C1) · · · νπ(Ck)

(dimπ)2g−2
. (11)
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2. Applications

In this section we give several applications of the character theory of finite groups in the case
when G = Sn, the symmetric group on n letters. In this case the conjugacy classes are described
simply by the partitions of n, the conjugacy class of an element g ∈ Sn with d1 one-cycles, d2
two-cycles, etc., corresponding to the partition λ = 1d12d2 · · · of n. It turns out that much of the
part of the information which we are interested in can be captured by any of three polynomials
Φg(X), Pg(r) or Qg(k) which mutually determine each other but which encode the interesting
combinatorial information about g in different ways.

2.1. Representations of Sn and canonical polynomials associated to partitions. In
this subsection we define the three polynomials Φg(X), Pg(r) or Qg(k) mentioned above and
prove their main properties. Applications to several of the topics treated in the main text of the
book will then be given in 2.2–2.4. Since each of these three polynomials depends only on the
conjugacy class C of g ∈ Sn or equivalently only on the partition λ ⊢ n corresponding to C, we
will also use the notations ΦC(X), PC(r) or QC(k) and Φλ(X), Pλ(r) or Qλ(k).

We recall from §1.2 the standard irreducible representation Stn = Cn/C of Sn of dimension
n− 1. We define Φg(X) as the characteristic polynomial of g on Stn:

Φg(X) = det
(
1 − g X, Stn) . (12)

It is easy to see that, if g has the cycle structure 1d12d2 · · · , then the characteristic polynomial
of g on Cn = Stn ⊕ 1 is simply

∏
(1−Xi)di , so in terms of λ we have

Φλ(X) =
(1−X)d1(1−X2)d2 · · ·

1 − X
(λ = 1d12d2 · · · ) . (13)

This is the first of our three polynomials.
From linear algebra, we know that the coefficient of Xr in the characteristic polynomial of

any endomorphism φ of a finite-dimensional vector space V equals (−1)r times the trace of the
endomorphism induced by φ on the rth exterior power

∧r
(V ). We therefore have

Φg(X) =
n−1∑

r=0

(−1)r χr(g)X
r , (14)

where we have abbreviated

χr(g) := tr(g, πr) , πr :=
∧r

(Stn) (0 ≤ r ≤ n− 1) .

We shall show below that the representations πr are irreducible and distinct, so the χr are
distinct characters of Sn. We have χr(1) = dimπr =

(
n−1
r

)
. Now, since there is a unique

polynomial of degree n − 1 having specified values at any n specified points, we can define a
polynomial Pg(r) by the requirements that degPg ≤ n− 1 and that

Pg(r) =
χr(g)

χr(1)
=

(
n−1
r

)−1
χr(g) (0 ≤ r ≤ n− 1) . (15)

This is our second polynomial attached to (the conjugacy class of) g.
Finally, we recall the notations ℓ(g) =

∑
di and v(g) =

∑
(i − 1)di for the number of cycles

of an element g of Sn and for its complement v(g) = n− ℓ(g). (Again, since both depend only
on the conjugacy class of g, we will use the alternative notations ℓ(C), v(C) or ℓ(λ), v(λ) as the
situation requires.) Let σ denote the cyclic element (1 2 . . . n) of Sn. We then define

QC(k) =
1

|C|

∑

g∈C

kℓ(gσ) (16)

for any conjugacy class C of Sn. This is our third polynomial.



9

Before stating the main result, which describes how each of the three polynomials just de-
fined determines the other two, we need two simple (and well-known) lemmas concerning the
representations πr.

Lemma 4. The representations πr =
∧r

(Stn) (0 ≤ r ≤ n−1) of Sn are irreducible and distinct.

Proof. Set V = π0 ⊕ · · · ⊕ πn−1, a representation of G = Sn of dimension 2n−1. By the
results of §1, we know that V can be decomposed uniquely as ⊕π∈Rm(π)π, where R is a
set of representatives of the isomorphism classes of irreducible representations of G and the
multiplicities m(π) are non-negative integers. Since V is by construction a sum of n non-
trivial representations, we have

∑
m(π) ≥ n. Define χV : Sn → C by χV (g) = tr(g, V ).

Then χV decomposes as χV =
∑

m(π)χπ. We define a scalar product on the vector space of

conjugacy-invariant functions f : Sn → C by (f1, f2) = |G|−1
∑

g∈G f1(g)f2(g) . By equation (1)

(first orthogonality relation) we know that the characters χπ of the irreducible representations
of G form an orthogonal basis for this vector space with respect to this scalar product, so
(χV , χV ) =

∑
m(π)2. If we can show that (χV , χV ) = n, it will follow that

∑
(m(π)2−m(π)) ≤ 0

and hence that each multiplicity m(π) equals 0 or 1, with m(π) = 1 for exactly n distinct
irreducible representations of G, proving the lemma.

To calculate (χV , χV ), we first use equations (14) and (13) to obtain that

χV (g) =
n−1∑

r=0

χr(g) = Φg(−1) =

{
2(d1+d3+··· )−1 if d2 = d4 = · · · = 0,

0 otherwise

for g with the cycle structure
∏

idi . Since the number of elements with this cycle structure is
n!/

∏(
di! i

di), we obtain

(χV , χV ) =
1

n!

∑

g∈Sn

|χV (g)|
2 =

1

4

∑

d1, d3, d5,···≥0
d1+3d3+5d5+···=n

4d1+d3+d5+···

d1! d3! d5! · · · 1d1 3d3 5d5 · · ·

=
1

4
· coefficient of xn in

∏

i≥1
i odd

e4x
i/i = n ,

since 4
∑

i odd

xi

i
= 2 log

1 + x

1− x
and

(1 + x

1− x

)2
= 1 + 4

∑
n≥1

nxn. �

Lemma 5. The value of the character of an irreducible representation π of Sn on the conjugacy

class of the cyclic element σ ∈ Sn is given by

χπ(σ) =

{
(−1)r if π ≃ πr for some r, 0 ≤ r ≤ n− 1,

0 otherwise.

Proof. The first statement follows immediately from formulas (14) and (13), since

n−1∑

r=0

(−1)r χr(σ)X
r = Φσ(X) =

1−Xn

1−X
=

n−1∑

r=0

Xr .

The second then follows immediately from the second orthogonality relation for characters, since∑
π∈R |χπ(σ)|

2 = n!/(n− 1)! = n =
∑n−1

r=0 |χr(σ)|
2 . �
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Theorem 4. For any integer n ≥ 1 there are canonical linear isomorphisms between the three

n-dimensional vector spaces

〈1, X, . . . , Xn−1〉 , 〈1, r, . . . , rn−1〉 , 〈k, k2, . . . , kn〉 ,

such that the three polynomials ΦC(X), PC(r) and QC(k) correspond to one another for every

conjugacy class C in Sn. These isomorphisms are given by Φ ↔ P ↔ Q, where Φ(X), P (r) and
Q(k) are related by the generating function identities

Φ(X) =
n−1∑

r=0

(−1)r
(
n− 1

r

)
P (r)Xr = (1−X)n+1

∞∑

k=1

Q(k)Xk−1 , (17)

or alternatively in terms of bases of the three vector spaces by

(1−X)n−1−s ↔

(
n− 1− r

s

)/(n− 1

s

)
↔

(
s+ k

s+ 1

)
(0 ≤ s ≤ n− 1) (18)

or

Xs(1−X)n−1−s ↔ (−1)s
(
r

s

)/(n− 1

s

)
↔

(
k

s+ 1

)
(0 ≤ s ≤ n− 1) . (19)

These isomorphisms are equivariant with respect to the three involutions ∗ defined by

Φ∗(X) = (−X)n−1Φ(1/X), P ∗(r) = P (n− 1− r), Q∗(k) = −Q(−k) , (20)

under which the polynomials ΦC(X), PC(r) and QC(k) are invariant or anti-invariant according

to whether C is a conjugacy class of even or odd permutations.

Proof. The fact that the formulas (17) give isomorphisms between the spaces in question can be
checked either directly or by using the binomial theorem to check that the collections of functions
listed in (18) or in (19), each of which forms a basis for the relevant vector space, satisfy the
identities in (17). The equivariance of the isomorphisms with respect to the involutions (20)
follows most easily by noting that these involutions exchange the bases given in (18) and (19)
up to a factor (−1)s. The fact that Φg(X) and Pg(r) are related by the first formula in (17)
follows immediately from equations (13) and (14) above. The statement about the invariance or
anti-invariance of Φg, Pg and Qg under the involutions ∗ is easy in each case (although of course
it would suffice to verify only one of them and then use the rest of the theorem): for Φg it follows

immediately from formula (13) and the fact that sgn(g) = (−1)v(g) with v(g) =
∑

(i− 1)di ; for
Pg it follows from (15) and the fact that ∧n−1−r(Stn) is dual to the tensor product of ∧r(Stn)

with the sign representation εεεn (because ∧d−rV ⊗ ∧r(V )
∧
→ ∧d(V ) is a perfect pairing for any

d-dimensional vector space V and ∧n−1(Stn) = εεεn); and for Qg it follows from the fact that
ℓ(gσ) = n − v(gσ) ≡ v(g) + 1 (mod 2) for any g ∈ Sn. The only thing we have to show is
therefore that the polynomials ΦC(X) and QC(k) are related by the generating series identity

∞∑

k=1

QC(k)X
k−1 =

ΦC(X)

(1−X)n+1
, (21)

for any conjugacy class C in Sn. For this we use the following lemma.
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Lemma 6. For any integers n, r and k with 0 ≤ r ≤ n− 1 we have

1

n!

∑

g∈Sn

Pg(r) k
ℓ(g) = coefficient of Xk−1 in

Xr

(1−X)n+1
.

Proof. By a calculation similar to the one in the proof of Lemma 4, we have

1

n!

∑

g∈Sn

Φg(Y ) kℓ(g) =
∑

d1, d2, ...
d1+2d2+···=n

kd1+d2+···

d1! d2! · · · 1d1 2d2 · · ·
·
(1− Y )d1(1− Y 2)d2 · · ·

1− Y

=
1

1− Y
· coefficient of un in

∞∏

i=1

exp

(
k(1− Y i)ui

i

)

=
1

1− Y
· coefficient of un in

(
1− uY

1− u

)k

= coefficient of Xk−1 in
(1−XY )n−1

(1−X)n+1
, (22)

where the last equality follows either by using residue calculus to get

1

1− Y
Resu=0

((
1− uY

1− u

)k
du

un+1

)
= −ResX=1

(
(1−XY )n−1

(1−X)n+1

dX

Xk

) (
u =

1−X

1−XY

)

= +ResX=0

(
(1−XY )n−1

(1−X)n+1

dX

Xk

)

or else from the geometric series identity
∞∑

k=1

Xk−1

(
1− uY

1− u

)k

=
1− uY

1− u−X + uXY
=

1

1−X
+ (1− Y )

∞∑

n=1

(1−XY )n−1

(1−X)n+1
un .

The lemma follows by comparing the coefficients of (−1)r
(
n−1
r

)
Y r on both sides of (22). �

Remark. Lemma 6 implies that

1

n!

∑

g∈Sn

Pg(r) k
ℓ(g) =

(
k + n− r − 1

n

)
−

(
n− r − 1

n

)

as polynomials in r and n, since both sides of this identity are polynomials in k and r, both
have degree ≤ n− 1 in r, and they agree for k ∈ N and for r = 0, 1, . . . , n− 1.

We can now complete the proof of equation (21) and hence of Theorem 4. Frobenius’s formula
(Theorem 2) in the case k = 3 can be rewritten in the form

1

|C|

∑

c∈C

F (bc) =
∑

π

χπ(b)χπ(C)

(
1

|G|

∑

A∈C

|A|
χπ(A)

χπ(1)
F
(
A−1

))

for any finite group G, conjugacy classes A and C of G, and class function (= conjugacy-invariant
function) F : G → C, where the sum is over all irreducible representations of G. Specializing to
G = Sn and b = σ and using Lemma 5, we find

1

|C|

∑

c∈C

F (σc) =
n−1∑

r=0

(−1)rχr(C)

(
1

n!

∑

g∈G

Pg(r)F
(
g−1

))
.

Now specializing further to F (g) = kℓ(g) and using Lemma 6 and equation (14) gives

QC(k) = coefficient of Xk−1 in
ΦC(X)

(1−X)n+1
. �

We mention two simple consequences of Theorem 4 which will be used later.
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Corollary 1. Let λ = 1d12d2 · · · be a partition of n. Then the polynomial Pλ(r) has degree

v(λ) =
∑

(i− 1)di and leading coefficient (−1)v(λ)K(λ), where

K(λ) =
(n− 1− v(λ))!

(n− 1)!
1d12d2 · · ·ndn . (23)

The polynomial Qλ(k) has degree v(λ) + 1 and leading coefficient
(∏

idi
)
/(v(λ) + 1)! .

Proof. From equation (13) we see that Φλ(X) ∼ (n−1)!
(n−1−v(λ))! K(λ) (1 − X)n−1−v(λ) as X → 1.

But this means that Φλ(X) is a linear combination of the basis elements (18) with s ≤ v(λ),

with the coefficient for s = v(λ) being (n−1)!
(n−1−v(λ))! K(λ). The correspondence (18) then tells us

that Pλ and Qλ have the degrees and leading coefficients stated. �

Corollary 2. The polynomial Qλ(k) takes integer values for k ∈ Z. Moreover, the value of

Qλ(k) for k ∈ N depends only on the numbers n− d1, d2, . . . , dk−1, the first few being

Qλ(0) = 0, Qλ(1) = 1, Qλ(2) = n+ 2− d1, Qλ(3) =

(
n+ 3− d1

2

)
− d2 .

Proof. Equations (21) and (13) give

QC(k) = coefficient of Xk−1 in (1−X)d1−n−2(1−X2)d2(1−X3)d3 · · · (1−Xk−1)dk−1 . �

Remark. The fact that degQλ ≤ v(λ) says that ℓ(gσ) ≤ v(g) for all g ∈ Sn. Equivalently,
v(g)+ v(gσ) ≥ n− 1 = v(σ). This is a special case of the general fact that v(g1)+ v(g2) ≥ v(g3)
for any three elements g1, g2, g3 ∈ Sn with product 1, which can be seen most easily by noticing
that v(gi) is the codimension of the fixed point set of gi acting on Cn (or on its irreducible
subspace Stn) and that codimensions of subspaces behave subadditively. The statement that
the polynomial Qλ(k) depends only on n− d1 and the di with i ≥ 2 says that it is stable under
the inclusions Sn ⊂ Sn+1 and hence depends only on the class of g in S∞. This is not difficult
to see directly from the definition, but there does not seem to be any obvious reason why the
value of Qλ(k) for k ∈ N depends only on the di with i < k or why it is an integer.

2.2. Examples. We give a number of examples of the polynomials introduced in §2.1 for special
conjugacy classes and for small values of n.

Trivial element: g = 1. Here the cycle structure is simply 1n, so equation (13) gives Φ1(X) =
(1−X)n−1, while from equations (4) and (5) we immediately get P1(r) = 1 and Q1(k) = k.

Transposition: T = (12). Now the cycle structure is 1n−22, so equation (13) gives

ΦT (X) = (1−X)n−3(1−X2) = (1−X)n−2(1 +X) . (24)

From equation (14) we therefore obtain

χr(T ) =

(
n− 2

r

)
−

(
n− 2

r − 1

)
=

(
n− 3

r

)
−

(
n− 3

r − 2

)

(with the obvious conventions when r < 2), so from (15) and the formula χr(1) =
(
n−1
r

)
we

obtain

PT (r) = 1 −
2r

n− 1
(25)

while equation (17) or (18) or (19) gives

QT (k) = k2 .

Note that this last formula, unlike the formulas for ΦT (X) and PT (r), is independent of n. This
is a special case of the above-mentioned fact that Qg(k) is stable under Sn ⊂ Sn+1 .
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Cyclic permutation: σ = (12 · · ·n). Here the cycle structure is simply n1, so, as we have
already seen, Φσ(X) = 1 +X + · · ·+Xn−1 and χr(σ) = (−1)r. However, the explicit forms of
the polynomials Pσ and Qσ are quite complicated, as can be seen from the examples for n = 5
and 6 below.

Free involution: τ = (12)(34) · · · (n − 1n). Here n must be even, say n = 2m. The cycle
structure of the conjugacy class of τ is 2m, so (13) gives

Φτ (X) =
(1−X2)m

1−X
= (1 +X)(1−X2)m−1 (26)

and hence

χr(τ) = (−1)[(r+1)/2]

(
m− 1

[r/2]

)
,

but here again the polynomials Pτ and Qτ have no simple closed form.

Small n. Finally, to give the reader a better feel for the Φλ ↔ Pλ ↔ Qλ correspondence,
we give a complete table of these three polynomials for partitions of n with 1 ≤ n ≤ 6. For

convenience we tabulate the polynomial P̃λ(t) := P
(
n−1
2 − t

)
instead of Pλ(r), since by the last

statement of Theorem 4 this is an even or an odd polynomial in t for all λ. The stability of Qλ

mentioned in the remark at the end of the last section is visible in this table: for example, the
first seven entries in the column giving Qλ(k) for n = 6 agree with the values for n = 5.

n λ P̃λ(t) Qλ(k) Φλ(X)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 11 1 k 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 12 1 k 1−X

21 2t k2 1 +X
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 13 1 k 1− 2X +X2

1121 t k2 1 −X2

31 1

2
(3t2 − 1) 1

2
(k3 + k) 1 + X +X2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 14 1 k 1− 3X + 3X2

−X3

1221 2

3
t k2 1− X − X2 +X3

1131 1

8
(4t2 − 1) 1

2
(k3 + k) 1 −X3

22 1

6
(4t2 − 3) 1

3
(2k3 + k) 1 + X − X2

−X3

41 1

6
(4t3 − 5t) 1

6
(k4 + 5k2) 1 + X + X2 +X3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 15 1 k 1− 4X + 6X2

− 4X3 +X4

1321 1

2
t k2 1− 2X + 2X3

−X4

1231 1

4
t2 1

2
(k3 + k) 1− X − X3 +X4

1122 1

3
(t2 − 1) 1

3
(2k3 + k) 1 − 2X2 +X4

1141 1

6
(t3 − t) 1

6
(k4 + 5k2) 1 −X4

2131 1

4
(t3 − 2t) 1

4
(k4 + 3k2) 1 + X − X3

−X4

51 1

24
(5t4 − 15t2 + 4) 1

24
(k5 + 15k3 + 8k) 1 + X + X2 + X3 +X4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 16 1 k 1− 5X + 10X2

− 10X3 + 5X4
−X5

1421 2

5
t k2 1− 3X + 2X2 + 2X3

− 3X4 +X5

1331 1

80
(12t2 + 5) 1

2
(k3 + k) 1− 2X + X2

− X3 + 2X4
−X5

1222 1

20
(4t2 − 5) 1

3
(2k3 + k) 1− X − 2X2 + 2X3 + X4

−X5

1241 1

60
(4t3 − t) 1

6
(k4 + 5k2) 1− X − X4 +X5

112131 1

90
(4t3 − 9t) 1

4
(k4 + 3k2) 1 − X2

− X3 +X5

1151 1

384
(16t4 − 40t2 + 9) 1

24
(k5 + 15k3 + 8k) 1 −X5

23 1

30
(4t3 − 13t) 1

3
(k4 + 2k2) 1 + X − 2X2

− 2X3 + X4 +X5

2141 1

240
(16t4 − 64t2 + 15) 1

15
(k5 + 10k3 + 4k) 1 + X − X4

−X5

32 1

640
(48t4 − 216t2 + 115) 1

40
(3k5 + 25k3 + 12k) 1 + X + X2

− X3
− X4

−X5

61 1

960
(48t5 − 280t3 + 259t) 1

120
(k6 + 35k4 + 84k2) 1 + X + X2 + X3 + X4 +X5
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2.3. First Application: Enumeration of polygon gluings. This is the combinatorial
question which was discussed in Chapter 3 in connection with the evaluation of the (orbifold)
Euler characteristic of the moduli space of curves of genus g. The problem was to count the
number εg(m) of ways to identify in pairs (with reverse orientation) the sides of a (2m)-gon such
that the closed oriented surface obtained has a given genus g. Clearly this is the same as the
number of free involutions in S2m whose product with the standard cyclic permutation σ has
m+ 1− 2g cycles, so formula (16) gives

Qτ (k) =
1

(2m− 1)!!

∑

0≤g≤m/2

εg(m) km+1−2g , (27)

where τ denotes any free involution (and where we have used that the conjugacy class of τ has
cardinality (2m− 1)!!). On the other hand, from equations (21) and (26) we get

∞∑

k=1

Qτ (k)X
k−1 =

Φτ (X)

(1−X)2m+1
=

(1 +X)m

(1−X)m+2
,

which we can rewrite equivalently by using the same calculation as in the last line of (22) (with
n replaced by m+ 1 and Y by −1) as

Qτ (k) =
1

2
· coefficient of um+1 in

(
1 + u

1− u

)k

.

Since the sum on the right-hand side of (27) is the polynomial denoted Tm(k) in §3.1, this
reproduces the evaluation of εg(m) in terms of generating functions given in Theorem 3.1.5.

The proof just given follows the exposition in [Z], where the identity (21) was proved and a
few other applications were given. We mention two briefly:

• the probability that the product of two random cyclic permutations in Sn has exactly ℓ
cycles is (1+(−1)n−ℓ) times the coefficient of xℓ in

(
x+n
n+1

)
. In particular, for n odd the probability

that such a product is cyclic equals 2
n+1 , as opposed to the probability that a random even

element of Sn is cyclic, which equals 2
n .

• the number of representations of an arbitrary even element of Sn as a product of two cyclic

permutations is ≥ 2(n−1)!
n+2 , as opposed to the average number of such representations for even

permutations, which equals 2(n−1)!
n .

2.4. Second Application: The Goulden-Jackson formula. Our second application, again
reproducing a result proved by a different method within the main text of the book, is the
formula of Goulden-Jackson given in various forms in Theorems 1.5.12, 1.5.15, 1.6.6 and 5.2.2.
The problem, in our present language, is to count the “Frobenius number”N (Sn;C0, C1, · · · , Ck)
of (k + 1)-tuples (c0, . . . , ck) ∈ C0 × · · · × Ck when C0 is the class of the cyclic element σ ∈ Sn

and C1, . . . , Ck are arbitrary conjugacy classes in Sn. The Goulden-Jackson formula says that
this number is 0 if v = v(C1) + · · · + v(Ck) is less than n − 1 and gives an explicit formula for
it when v(C1) + · · ·+ v(Ck) = n− 1. We give a somewhat more general result.

Theorem 5. Let C1, . . . , Ck be arbitrary conjugacy classes in Sn and C0 the class of the cyclic

element σ. Then

N (Sn;C0, C1, . . . , Ck) =
(−1)n−1

n
|C1| · · · |Ck| ·∆

n−1
(
PC1

· · ·PCk

)
(0) , (28)

where PCi
(r) is the polynomial of degree v(Ci) associated to the conjugacy class Ci as in §2.1

and ∆ denotes the forward differencing operator ∆P (r) = P (r + 1)− P (r).

For the conjugacy class C of Sn corresponding to a partition λ = 1d1 · · ·ndn of n, let us write

N(C) for the number N(λ) = (d1+···+dn−1)!
d1! ··· dn!

defined in 1.5.11. Then we have:
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Corollary (Goulden-Jackson formula). Let the Ci be as in the theorem. Then the number

N (Sn;C0, C1, . . . , Ck) vanishes if the number v := v(C1) + · · ·+ v(Ck) is less than n− 1 and is

given by
1

(n− 1)!
N (Sn;C0, C1, . . . , Ck) = nk−1 N(C1) · · ·N(Ck) (29)

if v = n− 1.

Proof. The theorem is an immediate consequence of Frobenius’s formula (Theorem 2) and
Lemma 5, which says that χ(C0) equals (−1)r if χ = χr and vanishes for all other irreducible
characters, together with definition (15), which together give

N (Sn;C0, C1, . . . , Ck) =
1

n
|C1| · · · |Ck|

n−1∑

r=0

(−1)r
(
n− 1

r

)
PC1

(r) · · ·PCk
(r) .

The corollary follows immediately from the theorem together with Corollary 1 above and the
formula |Ci|K(λi) = nN(λi) (compare equation (23) and the definition of N(λ)), since the
polynomial PC1

(r) · · ·PCk
(r) has degree v and the mth difference of a polynomial of degree v is

0 for m > v and equal to m! times the leading coefficient of the polynomial if m = v. �

Remarks. 1. The fact that N (Sn;C0, C1, . . . , Ck) = 0 unless v ≥ n − 1 is also obvious from
the remark at the end of §2.1, which says that the function v satisfies the triangle inequality and
hence necessarily v(c1)+ · · ·+v(ck) ≥ v(c0) if c0c1 · · · ck = 1. It also follows from the topological
interpretation of N (Sn;C0, C1, . . . , Ck) as the counting function for ramified coverings of S2

with ramification types Ci, since v − n − 1 equals the Euler characteristic of the total space of
the covering, which has the form 2−2g ≤ 2 because a covering one of whose ramification types is
cyclic is necessarily connected. This shows also that the number N (Sn;C0, C1, . . . , Ck) vanishes
unless v ≡ n− 1 (mod 2). To see this from Theorem 5, it is convenient to rewrite formula (28)
in the form

nN (Sn;C0, C1, . . . , Ck)

|C1| · · · |Ck|
= ∆n−1

+

(
P̃C1

· · · P̃Ck

)
(0) , (30)

where P̃C(t) = PC

(
n−1
2 − t

)
is the shifted version of PC(r) mentioned in §2.2 and ∆+ is the

symmetric difference operator ∆+f(t) = f(t+ 1
2 )− f(t− 1

2 ). This expression obviously vanishes

if v 6≡ n − 1 (mod 2) because of the symmetry property P̃C(−t) = (−1)v(C)P̃C(t) and the fact
that ∆+ reverses the parity of an even or odd function.

2. As a special case, we can take C1 = · · · = Ck = [T ], the class of transpositions in Sn.

Then P̃Ci
(t) = 2t

n−1 by formula (25), so equation (30) gives

N
(
Sn; σ, T, . . . , T︸ ︷︷ ︸

k

)
= nk−1 ∆n−1

+

(
tk
)∣∣

t=0
.

Using the identity

∆n−1
+

(
tk
)∣∣

t=0
=

n−1∑

r=0

(−1)r
(
n− 1

r

)(n− 1

2
− r

)k
=

dk

duk

(
eu/2 − e−u/2

)n−1
]
∣∣
u=0

and the residue theorem, we can write this equivalently as

N
(
G; σ, T, . . . , T︸ ︷︷ ︸

k

)
= k! · nk−1 · Sg(n) for k = n− 1 + 2g (g ≥ 0), (31)
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where Sg(n) is the polynomial of degree g in n given by

Sg(n) = coefficient of u2g in

(
sinhu/2

u/2

)n−1

=
n− 1

n− 1 + 2g
· coefficient of s2g in

(
s/2

asinh s/2

)n+2g−1

, (32)

the first values of which are given by

S0(n) = 1, S1(n) =
n− 1

24
, S2(n) =

(n− 1)(5n− 7)

5760
. (33)

Formula (31) for N (Sn;σ, T, . . . , T ) was given in [SSV].

3. Another observation is that, from formula (10) together with the fact that χ(σ) = χ(σ)3

for all irreducible characters χ of Sn (Lemma 5), we have the formula

Ng(Sn;σ, C1, . . . , Ck) = n2g N (Sn;σ, . . . , σ︸ ︷︷ ︸
2g+1

, C1, . . . , Ck) (34)

for the “generalized Frobenius number” of Theorem 3, for any integer g ≥ 0 and any conjugacy
classes C1, . . . , Ck in Sn. This allows one to generalize Theorem 5 to the case of ramified
coverings of a Riemann surface of arbitrary genus with cyclic ramification at at least one point.

In view of the very simple form of equation (34), it might be of interest to give a direct
combinatorial or topological proof, without using character theory.

In the rest of this subsection, we show how one can use Theorem 5 to give explicit formulas
for N (Sn;C0, C1, . . . , Ck) for arbitrary values of v. The calculation and the results are consid-
erably simplified if we use the symmetric formula (30) instead of (28), but still rapidly become
complicated as the number 2g = v − n+ 1 grows.

The main step in the calculation is a refinement of Corollary 1 of Theorem 4 giving more

leading terms of Pλ(r) (or equivalently, of P̃λ(t)) for an arbitrary conjugacy class λ of Sn. Write
λ = n1 + · · ·+ ns = 1d12d2 · · · and define invariants ℓh(λ) (higher moments) of λ by

ℓh(λ) = nh
1 + · · ·+ nh

s =
∑

i≥1

ih di (h = 0, 1, . . . ), (35)

so that ℓ0(λ) = ℓ(λ), ℓ1(λ) = n. Assign to ℓh(λ) the weight h. Then we have:

Lemma 7. The polynomial P̃λ(t) = Pλ

(
n−1
2 − t

)
has the form

P̃λ(t) = K(λ)

(
1 + a1(λ) t

v(λ)−2 + a2(λ) t
v(λ)−4 + · · ·

)
,

where K(λ) is given by (23) and each aj(λ) is a universal polynomial of weighted degree ≤ 2j
in n and the invariants ℓh = ℓh(λ) with h even, the first two values being

a1(λ) = (ℓ0 + 1)ℓ0
ℓ2 − 1

24
−

(n− 1)n(n+ 1)

24
,

a2(λ) = (ℓ0 + 3)(ℓ0 + 2)(ℓ0 + 1)ℓ0
5(ℓ2 − 1)2 − 2(ℓ4 − 1)

5760

−
(n− 1)n(n+ 1)

24
(ℓ0 + 1)ℓ0

ℓ2 − 1

24
+

(n− 3)(n− 2)(n− 1)n(n+ 1)(5n+ 7)

5760
.
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Proof. We already know that P̃λ(t) is a polynomial of degree and parity v(λ) and hence has the

form K(λ)
∑

j aj(λ)t
v(λ)−2j for some numbers aj(λ). Define a power series Φ̃λ(u) ∈ Q[[u]] by

Φ̃λ(u) = e(n−1)u/2 Φλ(e
−u). Then equations (14) and (15) give

Φ̃λ(u) =
n−1∑

r=0

(−1)r
(
n− 1

r

)
P̃λ

(n− 1

2
− r

)
e(

n−1

2
−r)u

= K(λ)
∑

j≥0

aj(λ)
dv(λ)−2j

duv(λ)−2j

[n−1∑

r=0

(−1)r
(
n− 1

r

)
e(

n−1

2
−r)u

]

= K(λ)
∑

j≥0

aj(λ)
dv(λ)−2j

duv(λ)−2j

[(
eu/2 − e−u/2

)n−1
]

= K(λ)
∑

j≥0

aj(λ)
dv(λ)−2j

duv(λ)−2j

[∑

g≥0

Sg(n)u
n−1+2g

]

= (n− 1)!K(λ)
∑

j, g≥0

aj(λ) Ŝg(n)
un−v(λ)−1+2j+2g

(n− v(λ)− 1 + 2j + 2g)!
,

where Sg(n) is as in (32) and

Ŝg(n) =
(n− 1 + 2g)!

(n− 1)!
Sg(n) =

1

(n− 1)!
∆n−1

+

(
tn−1+2g

)∣∣
t=0

, (36)

a polynomial of degree 3g in n. On the other hand, from formula (13) and the expansion

ex/2 − e−x/2 = x exp

( ∞∑

h=2

Bh

h

xh

h!

)
= x exp

(x2

24
−

x4

2880
+ · · ·

)
,

where Bh denotes the hth Bernoulli number, we have

Φ̃λ(u) =
∏

i≥1

(
eiu/2 − e−iu/2

)d∗
i

=
(∏

i

idi
)
· uℓ(λ)−1 · exp

( ∞∑

h=2

Bh

h
ℓ∗h(λ)

xh

h!

)

=
(n− 1)!K(λ)

(n− 1− v(λ))!
un−v(λ)−1

(
1 +

ℓ∗2(λ)

24
u2 +

5ℓ∗2(λ)
2 − 2ℓ∗4(λ)

5760
u4 + · · ·

)
,

where d∗i = di − δi,1 and ℓ∗h(λ) =
∑

i≥1 i
hd∗i = ℓh(λ)− 1. Comparing with the previous formula

for Φ̃λ(u), we find

a0(λ) = 1 ,

a1(λ) + Ŝ1(n) =
(n+ 1− v(λ))!

(n− 1− v(λ))!

ℓ∗2(λ)

24
,

a2(λ) + Ŝ1(n) a2(λ) + Ŝ2(n) =
(n+ 3− v(λ))!

(n− 1− v(λ))!

5ℓ∗2(λ)
2 − 2ℓ∗4(λ)

5760
,

etc. The lemma now follows by induction on j. �
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Returning to the situation of Theorem 5, we consider arbitrary conjugacy classes Ci ↔ λi

(i = 1, . . . , k) of Sn. From Lemma 7 we get

k∏

i=1

P̃λi
(t) =

( k∏

i=1

K(λi)

)(
tv + a1(λ1, . . . , λk) t

v−2 + a2(λ1, . . . , λk) t
v−4 + · · ·

)

where v =
∑

v(λi) as before and

a1(λ1, . . . , λk) =
∑

1≤i≤k

a1(λi) , a2(λ1, . . . , λk) =
∑

1≤i<j≤k

a1(λi)a2(λj) +
∑

1≤i≤k

a2(λi) ,

etc. Substituting this into equation (30) and recalling that |Ci|K(Ci) = nN(Ci), we find

1

(n− 1)!

N (Sn;C0, C1, . . . , Ck)

nk−1 N(λ1) · · ·N(λk)
=

1

(n− 1)!
∆n−1

+

(∑

j≥0

aj(λ1, . . . , λk) t
v−2j

)∣∣
t=0

=

g∑

j=0

Ŝg−j(n) aj(λ1, . . . , λk) (v = n− 1 + 2g),

where the polynomials Ŝg−j(n) are given by (36) and (32). This is the desired generalization of
the Goulden-Jackson formula (29) to the case of ramified coverings of S2 by surfaces of arbitrary
genus g with at least one cyclic ramification point. We note the case g = 1 separately since it is
not too complicated:

Corollary. With the notations of Theorem 5 and its corollary, we have

1

(n− 1)!

N (Sn;C0, C1, . . . , Ck)

nk−1 N(C1) · · ·N(Ck)
=

k∑

i=1

ℓ(Ci) (ℓ(Ci) + 1)
ℓ2(Ci)− 1

24
− (k − 1)

n3 − n

24

if v(C1) + · · ·+ v(Ck) = n+1, where ℓ2(Ci) denotes the sum of the squares of the lengths of the

cycles in the conjugacy class Ci.

2.5. Third Application: “Mirror symmetry in dimension one”. “Mirror symmetry”,
originally discovered in the context of mathematical physics (string theory) and intensively stud-
ied during recent years, is a predicted duality between certain families of Calabi-Yau manifolds.
It manifests itself on several levels, one of which has to do with the counting functions (Gromov-
Witten invariants) that enumerate the holomorphic mappings C → X of complex curves C into
a Calabi-Yau manifold X representing a given class in the second homology group of X.

A Calabi-Yau manifold of dimension n is a complex (projective) n-manifold X such that the
space of holomorphic i-forms on X is 0-dimensional for 0 < i < n and 1-dimensional for i = n.
The original mirror symmetry phenomenon concerned the case n = 3, but it was observed by
Dijkgraaf [D1] that it also occurs in the far simpler case n = 1. Here “Calabi-Yau” is just a
synonym of “genus one”, and the coefficients of the counting functions merely enumerate the
generic mappings Y → X, appropriately weighted, from curves of genus g to a given complex
curve X of genus 1, where both g and the degree n of the mapping are fixed. Here “generic”
means that exactly two sheets of the covering come together over every ramification point, so
that each point of X has either n or n− 1 preimages, and “appropriately weighted” means, as
usual, that each covering is counted with a weight equal to the reciprocal of the number of its
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automorphisms over X. Note that, by the Riemann-Hurwitz formula, a covering of the above
type will be ramified over precisely 2g − 2 points of X.

The problem is therefore to compute h0(2g − 2, n), where h0(k, n) denotes the number of
(weighted) isomorphism classes of connected n-sheeted coverings of a given Riemann surface
X of genus 1 with generic ramification over k given points of X. If we denote by h(k, n) the
corresponding number without the connectedness condition, then a standard argument gives the
relation ∑

n>0

∑

k≥0

h0(k, n)
Xk

k!
qn = log

(
1 +

∑

n>0

∑

k≥0

h(k, n)
Xk

k!
qn

)
, (37)

while another standard argument gives the formula

h(k, n) =
1

n!
N1(Sn;T, . . . , T︸ ︷︷ ︸

k

) (38)

for h(k, n) in terms of the generalized Frobenius number N1(Sn;T, . . . , T ) of (k + 2)-tuples
(a, b, c1, . . . , ck) ∈ (Sn)

2 × [T ]k with [a, b]c1 · · · ck = 1 as introduced in §1.3. (The number
h0(n, k) counts the tuples which generate a subgroup of Sn acting transitively on {1, . . . , n},
but since we have no closed formula for this we must use (37) and (38) instead.)

From formulas (38) and (11) with g = 1 we find

h(k, n) =
∑

π∈Rn

νπ(T )
k

where Rn as in §1.2 denotes the set of irreducible representations of Sn and νπ(T ) (π ∈ Rn) as
in §1.2 and §1.3 is the eigenvalue of

∑
g∈[T ]n

g on the representation π. From this we obtain

∑

k≥0

h(k, n)
Xk

k!
=

∑

π∈Rn

eνπ(T )X = Hn(e
X) , (39)

where
Hn(u) =

∑

π∈Rn

uνπ(T ) ∈ Z[u, u−1] ,

a symmetric Laurent polynomial in u which for small values of n can be computed directly from
the information given in §1.2:

H2(u) = u+ u−1 ,

H3(u) = u3 + 1 + u−3 ,

H4(u) = u6 + u2 + 1 + u−2 + u−6 ,

H5(u) = u10 + u5 + u2 + 1 + u−2 + u−5 + u−10 ,

H6(u) = u15 + u9 + u5 + 2u3 + 1 + 2u−3 + u−5 + u−9 + u−15 .

In general, we see fromB. andC. of §1.2 that, if π ∈ Rn corresponds to the function f : Z → Z≥0

and to the Young diagram Y ∈ Yn, then

νπ(T ) =
∑

r∈Z

rf(r) =
∑

(x,y)∈Y

(x− y) .
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Either of these descriptions leads to a formula for Hn(u), but a more convenient formula is
obtained by using a third parametrization of the irreducible representations of Sn: if π corre-
sponds to the function f and the Young diagram Y , denote by s = f(0) = max{i | (i, i) ∈ Y }
the number of diagonal elements in Y and let

ai = max{j | (i+ j − 1, i) ∈ Y } , bi = max{j | (i, i+ j − 1) ∈ Y }

be the number of elements of Y to the right of or above the point (i, i) ∈ Y , respectively, so
that Y is described as

⋃s
i=1

(
[i, i+ ai − 1]×{i} ∪ {i}×[i, i+ bi − 1]

)
. Then we have

n =
s∑

i=1

(ai + bi − 1) , νπ(T ) =
s∑

i=1

((
ai
2

)
−

(
bi
2

))
, (40)

andRn is parametrized by the set of tuples (s, (a1, . . . , as), (b1, . . . , bs)) satisfying the inequalities
a1 > · · · > as > 0, b1 > · · · > bs > 0 and the first of equations (40). This gives the generating
function identity

∑

n≥0

Hn(u) q
n = coefficient of ζ0 in

∏

a≥1

(
1 + u(

a

2) qa−1 ζ
)
·
∏

b≥1

(
1 + u−(b2) qb ζ−1

)
.

This can be written more symmetrically by shifting a and b by 1
2 to get

∑

n≥0

Hn(u) q
n = coefficient of ζ0 in

∏

m∈{ 1

2
, 3
2
, 5
2
,... }

(
1− um2/2 qm ζ

) (
1− u−m2/2 qm ζ−1

)
.

(Here we have multiplied ζ by −q1/2u1/8, which does not affect the coefficient of ζ0.) Combining
this with the previous formulas, we obtain the following theorem, due to Douglas [Do] and
Dijkgraaf [D1].

Theorem 6. For g ≥ 1, let Fg(q) =
∑

n≥1 h
0(2g−2, n) qn ∈ Q[[q]] denote the counting function

of generically ramified coverings of a genus 1 Riemann surface by Riemann surfaces of genus g.
Then

∞∑

g=1

Fg(q)
X2g−2

(2g − 2)!
= log

( ∞∑

n=0

Hn

(
eX

)
qn

)

= log
(
coefficient of ζ0 in

∏

m∈Z≥0+
1

2

(
1− um2/2 qm ζ

)(
1− u−m2/2 qm ζ−1

))
.

This theorem has an interesting corollary, which was discovered and proved in the language of
mathematical physics by Dijkgraaf [D2] and Rudd [R] and proved from a purely mathematical
point of view in [KZ]. Recall that a modular form of weight k on the full modular group Γ =
SL(2,Z) is a function F (z), defined for complex numbers z with ℑ(z) > 0, which has a Fourier
expansion of the form F (z) =

∑∞
n=0 a(n)e

2πinz with coefficients a(n) of polynomial growth

and which satisfies the functional equation F
(
az+b
cz+d

)
= (cz + d)kF (z) for all

(
a b

c d

)
∈ Γ. A

quasimodular form of weight k on Γ is a function having a Fourier expansion with the same
growth condition and such that for each value of z the function (cz+d)−kF

(
az+b
cz+d

)
is a polynomial

in (cz + d)−1 as
(
a b

c d

)
∈ Γ varies. The ring of modular forms is generated by the two functions

E4(z) = 1 + 240
∞∑

n=1

n3 qn

1− qn
= 1 + 240q + 2160q2 + 6720q3 + · · ·
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and

E6(z) = 1− 504
∞∑

n=1

n5 qn

1− qn
= 1− 504q − 16632q2 − 122976q3 − · · ·

of weight 4 and 6, respectively, where q = e2πiz, while the ring of quasimodular forms is generated
by these two functions together with the quasimodular form

E2(z) = 1− 24
∞∑

n=1

n qn

1− qn
= 1− 24q − 72q2 − 96q3 − · · ·

of weight 2. Theorem 6 then implies:

Corollary. For all g ≥ 2, Fg(q) is the q-expansion of a quasimodular form of weight 6g − 6.

We omit the proof, referring the reader to the papers cited above. The first example is

F2(q) =
1

27345

(
5E3

2 − 3E2E4 − 2E6

)
= q2 + 8q3 + 30q4 + 80q5 + 180q6 + · · · ,

which leads easily to the amusing closed formula h0(2, n) =
n

6

∑
d|n(d

3 − nd) for the number of

coverings (generically ramified, with fixed ramification points) of an elliptic curve by Riemann
surfaces of genus 2. In general, however, the generating functions Fg(q) do not have integral
coefficients, e.g. F3(q) begins

1
12q

2 + 20
3 q3 + 102q4 + 2288

3 q5 + · · · .
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