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Abstract This informal paper, an expanded version of the short talk given by
the second author at the conference on the occasion of the 300th anniversary of
Seki’s death, is slightly non-standard in nature and perhaps requires a short ex-
planatory preamble. The authors are not professional historians of mathematics,
and no attempt has been made to interpret the material discussed from a his-
torical viewpoint. Instead, the first section contains several specific mathematical
comments, from the point of view of a contemporary professional mathematician
(D.Z.), on a few of the problems and solutions of Seki and of his predecessors
in China and Japan, pointing out places where the mathematical content is un-
expectedly naive or unexpectedly sophisticated, or where particular mathematical
features of the problems permit deductions about their authors’ methods or views.

The second section concerns the thorny question of possible contacts that Seki or
his disciple Takebe Katahiro may have had with European mathematics as a result
of the Dutch presence in Dejima and their yearly visit to the Edo court. In partic-
ular, we describe the results of a search (by S.W.-Z.) through the archives of the
Dutch East India Company for the years in question that yielded details of a meet-
ing between Takebe and the Dutch but show clearly that there was, at least on this
occasion, no serious discussion of any scientific or mathematical questions. We also
mention a few other arguments militating against the thesis that there was any direct
impact of European mathematics .
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1 The mathematics of Seki and his predecessors
seen from a modern standpoint

In this section we discuss some of the aspects of the Japanese mathematics of the
17th century, and of the Chinese mathematics on which it is based, which are sur-
prising from a contemporary point of view.

It is of course a commonplace that the nature of scientific progress, like that of
any other human activity, is heavily dependent on the culture and social context in
which it takes place, and it is in no way surprising that the Japanese mathematics
of the Edo period, or the earlier Japanese and Chinese mathematics on which it is
based, should often be very different from ours. But there are specific aspects which
are startling to a contemporary mathematical eye, either because seemingly simple
points are often overlooked or ignored, or, conversely, because the level of sophis-
tication sometimes appears unexpectedly high. Of course any such reaction from a
modern mathematician is anachronistic and based entirely on hindsight. Yet mathe-
matics has an intrinsic rhythm and internal “necessariness” which all its practition-
ers feel, and particular interest therefore attaches to instances where the background
or traditions of earlier mathematicians led them to see things in a way strange to us.
We will list a number of such cases occurring in the works used or written by Seki,
and will formulate a number of specific questions whose answers will doubtless be
known to specialists in some cases and unknowable in others, but some of which
may perhaps suggest interesting topics for further investigation.

Essentially all of our examples are taken from the book [?] by Annick Horiuchi,
where they are discussed in their historical context. The English translations of the
problems and of passages from this book are taken from [?].

1.1 A problem on volumes

Our first example comes from the Introduction to Mathematics [算学啓蒙 Suanxue
Qimeng] by Zhu Shijie [朱世傑], published in 1299, which was one of the most in-
fluential Chinese mathematical texts in the early Edo period and of which a Japanese
version with detailed commentary would be published by Takebe in 1690.

Problem 34 of the last chapter Unlocking of Roots [開方釋鎖 kaifang shisuo],
discussed in [?, pp. 74–75], reads as follows in the original Chinese and in English
translation:

今有立方.立圓.平方.古圓田.徽圓田.各一。共積三万三千六百二十二尺二百分尺之三
十七。只云立方面不及立圓径四尺.多如徽圓径三尺。立圓径如平方面三分之一。古圓
周与立方面適等。問五事各幾何。
答曰立方面二十四尺。立圓径二十八尺。平方面八十四尺。古圓周二十四尺。徽圓径二
十一尺。
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One now has a cube, a sphere, a square, an old circular field and a Hui circular field. The
total accumulation is 33622 chi1 and 37 200ths of a chi. It is said only that the side of the
cube is 4 chi less than the diameter of the sphere and 3 chi more than the diameter of the
Hui circle, that the diameter of the sphere is equal to a third of the side of the square, and
that the circumference of the old circle and the side of the cube are equal. One asks for the
values of the five quantities.
Answer : Side of cube is 24 chi, diameter of sphere 28 chi, side of square 84 chi, circumfer-
ence of old circle 24 chi, diameter of Hui circle 21 chi.

Here the word “accumulation” means the sum of all the areas and volumes con-
cerned. The phrase “old circular field” means a field in the shape of a circle with
the lü [率] (fixed ratio, the Chinese word for π) being taken to be the ancient value
of 3, while the “Hui circular field” is one where π is taken to be the value 3.14 as-
cribed to the third century mathematician Liu Hui [劉徽]. In modern terminology,
the problem can therefore be stated as A+B+C +D+E = 33622 37

200 with

A = a3 , B = t b3, C = c2 , D =
1

4 ·πold
d2 , E =

πHui

4
e2

together with the supplementary conditions a = b−4 = e+3, b = c/3, d = a, where
πold = 3 and πHui = 3.14 are the “old lü” and the “lü of Liu Hui” and t is the fixed
ratio (=ratio of the volume to the cube of the diameter) for the sphere.

Seen from a modern perspective, the problem and its solution have a number of
peculiarities. The most striking, of course, is the use of two different values for π
in the same problem, which is quite incomprehensible for us. It is already strange
to find Zhu using the “ancient” value of 3 when far more accurate values were al-
ready given in the Nine Chapters [九章算術 Jiuzhang Suanshu] and commentaries
to them (e.g., Liu Hui himself gave the value 3.1416 and not just 3.14 as Zhu as-
sumes; cf. [?, pp. 145–148]. But the simultaneous occurrence of two circles with
differing values of π indicates a rather nebulous understanding of the relationship
between the circumference and area of circles. Of course, this may have been merely
an homage to the Ancients, or simply a more poetic way of writing the algebraic
problem “a3 + tb3 +c2 + 1

12 d2 + 3.14
4 e2 = 33622 37

200 ” in words, in which case it is an
entirely legitimate procedure. In any case, this passage suggests our first question:

Q1. How did the idea of π (or of other fixed geometric ratios [定法 teihō in
Japanese]) evolve in China and Japan? At what stage was it clearly realized that π
is a single well-defined number which in principle can be calculated to any desired
accuracy?

The next point is the addition of areas and volumes, something that is not only
not correct, but also rather unnatural, since figures of different dimensions cannot be
juxtaposed, and was, for instance, not a possible operation in classical Greek math-
ematics, where figures were considered geometrically rather than being expressed
in terms of units like the Chinese chi. (One can even speculate that this difference
of approaches may have actually impeded the development of algebraic notions or
notations in Greece, since it was not until Diophantus that polynomials were consid-

1 chi [尺 shaku in Japanese] is a unit of length, which is an equivalent of a foot. (editor)
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ered, and may perhaps have correspondingly abetted the rather early development
of algebraic ideas in China.) Our second question is therefore:

Q2. At what point was it clearly realized that lengths, areas and volumes are
incommensurable and must be given in different units (here, chi, chi2 and chi3),
and that expressions involving mixed exponents must be expressed in terms of pure
numbers rather than lengths?

The third point is the startling disparity between the very approximate values
of π used (even the “lü of Liu Hui” is only a 3-digit approximation) and the very
precise value 33622 37

200 given for the total volume. It is clear to us, but evidently
not to the Chinese mathematicians of the 13th century, that it makes little sense to
give the latter to 8 significant digits when the former is given to only 3- or even
1-digit accuracy, and we will see the same lack of understanding of the meaning of
significant figures recurring in some of the other problems we consider below, even
by much later mathematicians. This suggests our third question:

Q3. At what point were the rules for calculating with approximate values first un-
derstood, viz., that numbers that are being multiplied or divided ought to be specified
to the same relative precision (number of significant digits), and numbers that are
being added or subtracted to the same absolute precision (position of the first uncer-
tain digit)? In any case, the author (ostensibly Seki, but probably Takebe Katahiro:
cf. [?, p. 183]) of the Configurations for the Extraction of Roots [開方算式 Kaihō
Sanshiki] [?, pp. 257–268] understood these rules well and used them absolutely cor-
rectly when describing the numerical determination of the root of 11 + 8x + x2 = 0
to high precision [?, p. 184].

The next point again concerns “fixed ratios,” but this time for the sphere. Like
other Chinese mathematicians of the period, Zhu gives values for the numbers solv-
ing his problem, but no indication of how one obtains them, nor any verification that
they actually satisfy the terms of the problem. Doing the calculation, we find that
they do so only if the ratio t is taken to be 9/16. If we assume the formula t = π/6
for the ratio of the volume of the sphere to the cube of its diameter, this would cor-
respond to a value of π = (3/2)3 = 3.375, a lü which has certainly never occurred
in the literature and which is clearly much too big. From this we can see that the
relation of the ratios associated to the circle and the sphere was not known at this
time, and can deduce that the value for the sphere which is being used is 9/16 (as
opposed to 1/2 or 0.523, which is what one would get with t = π/6 if one used
the “old” or the “Hui” value for π , respectively). And indeed, this deduction can be
confirmed: Problem 53-1 of the famous Jinkōki [塵劫記]2 by Yoshida Mitsuyoshi
[吉田光由] gives 48 chi as the diameter of a sphere of volume 62208 chi3, again cor-
responding to a value of 9/16 of the ratio t =V/d3 (and again illustrating the invalid
mixing of approximate and precise numbers). In the commentary to this problem in
the modern Japanese edition of the Jinkōki [?, p. 149] it is stated that this value is
taken from the Unified Foundations of Mathematics [算法統宗 Suanfa Tongzong]
of Cheng Dawei [程大位], which was published in 1592, 35 years before the Jinkōki
but almost 300 years after the Introduction to Mathematics, while according to the

2 Jinkō [塵劫] is a Buddhist term meaning an eternal time or an extremely large number. (editor)
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English edition [?, p. 178] it can be found already in the Nine Chapters. Tables of
the successive (Occidental or Oriental) values of π can, of course, be found in many
places in the literature, but they are always based on the “π” of the circle (defined
either as the circumference divided by the diameter or as the area divided by the
square of the radius, the equality of these two definitions having been known for a
very long time), not for the sphere. This suggests the following questions:

Q4. When was the value 9/16 for t first used, and where did it come from? (It is
not a particularly good value, being considerably further from the correct value π/6
than the simpler fraction 1/2.) When was it first improved?

Q5. When was the relation C = 4π/3 between the constants for the sphere and for
the circle first found (the relationship V = A/3 between the volume and the surface
area of a sphere of radius 1, which follows by considering an inscribed polyhedron
with small triangular faces, is much easier and was presumably known earlier), and
was it discovered independently in both the East and the West? In any case the
correct formulas were known to Takebe [?, p. 266].

The final—and perhaps most interesting—aspect of Zhu’s problem which we
wish to discuss is that a very complicated input, with values of 3 and 3.14 for π
and a total “accumulation” of 33622 37

200 , leads in the end to a very simple answer in
which a, . . . ,e are all two-digit whole numbers. This, too, is typical of the ancient
Chinese and Japanese mathematical texts: the problems are almost always “fixed”
so that, even when the statements are very complicated, the numerical solutions
are simple. This is on the one hand nice for the solver, who knows when he has
found the right answer, but on the other hand unfair since the author, who usually
gives no method of derivation for the solution, starts out knowing the answer and
therefore does not actually need to possess any method that would work in general.
Moreover, problems “fixed” in this way can also be solved in an easy way, surely not
intended: if one knows that the answer is going to come out in small integers, one
can find it without really “solving” the problem at all by trial and error, e.g. here by
taking one of the unknowns (say a, the side of the cube) as celestial element [天元
tianyuan] or chosen independent variable, expressing the other unknowns in terms
of this one (here b,c,d,e = a + 4,3a + 12,a,a− 3), and then trying each integer
value a = 4, 5, . . . in turn until finding the one for which the total accumulation
a3 +tb3 + . . . takes on the specified value. From our point of view the whole process
seems questionable—the author has “cheated” by working from the answer to the
problem rather than inversely, and has given his readers or students the possibility of
“cheating” by guessing rather than calculating the answer required—but presumably
it did not seem so at the time. In any case, we can ask:

Q6. At what point or by what stages did the shift between problems constructed
from known solutions and problems solvable by generally applicable methods oc-
cur? Was this distinction ever recognized explicitly by mathematicians of the pe-
riod?
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1.2 The formula for arc length in the Jugairoku

In the Jugairoku [竪亥録]3 by Imamura Tomoaki [今村知商], published in 1639,
formulas are given relating the diameter, chord, sagitta (“arrow”), and arc of a cir-
cle segment. These formulas, discussed in detail by Horiuchi [?, pp. 34–38] are as
follows:

d c a
s

d = diameter [径 kei]
c = chord [弦 gen]
s = sagitta [矢 shi]
a = arc [弧 ko]

d = s + c2/4s ,

c =
√

4s(d − s) ,

s =
(
d −

√
d2 − c2

)
/2 ,

a2 = 4s
(
d + s/2

)
.

The first three of these are equivalent to the formula (c/2)2 +(d/2− s)2 = (d/2)2,
which follows from Pythagoras’s theorem, and are exact, whereas the last is an
approximation. (The exact formula is of course transcendental and requires infinite
series, as Takebe discovered in 1722.) No derivation for this formula is given. In [?],
a partial explanation is suggested, namely, that this formula yields the values a = 0
for s = 0, which is obviously correct, and a2 = 5d2/2 if s = d/2, which is correct if
one uses π =

√
10, as Imamura did. But this explanation is not sufficient: there are

even simpler formulas which would give these two special cases (e.g. a2 = 10s2),
but they would give very poor approximations for other values of s, whereas Ima-
mura’s formula is uniformly very good, with an error never exceeding one part in
75. Horiuchi also goes on to say that the Chinese tradition was to use quadratic in-
terpolations, but even then one has a choice of formulas, since any formula of the
form a2 = ksd + (10− 2k)s2 would give the “right” special values for s = 0 and
s = d/2. One can then ask on what mathematical basis, short of carrying out the
much more complicated analysis later given by Takebe and others, one might obtain
this simple and very good formula. Here we can offer two explanations, with the
hope that experts will be able to say whether one of them might correspond to the
procedure Imamura actually used. The first is to consider the asymptotic behavior
when s tends to 0, rather than merely the value at s = 0.

a
d

c

It is obvious from a picture that, when s is very small, a is approximately equal to c,
so Imamura’s second formula gives a2 ≈ c2 ≈ 4sd and hence k = 4.

3 Jugai [竪亥] is the name of a legendary person in China. (editor)
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This explanation seems simple and palatable to us, but it is not at all clear that
such an argument would have been natural to a Japanese mathematician of the pe-
riod, and indeed from the talk given by Prof. Morimoto at the Seki memorial con-
ference it seems that even the far more sophisticated Takebe did not employ such
asymptotic arguments, but used only precise values based on polygons [?, p. 355].
In the case at hand, one can imagine that one simply looks at the pictures for a
square and a hexagon, respectively, embedded in a circle.In both cases all the di-
mensions involved are obvious either a priori or from Pythagoras’s theorem, and
(using Imamura’s value π =

√
10) one obtains the two further known values

d
c

=
√

2 ⇒ a
c

=
π
√

2
4

= 1.118,
d
c

= 2 ⇒ a
c

=
2π
6

= 1.054.

Imamura’s formula gives 1.122 and 1.052, respectively, for these two special cases,
in excellent agreement with these “exact” values.

1

2

d =
√

2 ,

c = 1 ,

s =
√

2 − 1
2

,

a =
π
√

2
4

,

1

1
d = 2 ,

c = 1 ,

s = 1 −
√

3
2

,

a =
2π
6

.

Of course, it may be that neither of these explanations is correct. Horiuchi men-
tions that the formula a2 = c2 + 6s2, equivalent to Imamura’s, is given by Isomura
Yoshinori [磯村吉徳] in the Mathematical Methods without Doubts [算法闕疑抄
Sanpō Ketsugishō] of 1659 as being based on an unspecified “rule of augmentation”
[増術 zōjutsu], and also suggests an earlier interpolation method of the Chinese cal-
endarists as a possible, but non-verifiable, source for Imamura’s formula. In any
case, we can formulate:

Q7. Is there any evidence that could help one decide where the formula for the
arc length in the Jugairoku came from, and in particular whether it was based on the
considerations of the special cases c/d = 1/

√
2 and c/d = 1/2 or on the limiting

behavior as c/d tends to 0?

1.3 The value of πππ in the Sanso

In the Sanso [算俎] (or Mathematical Chopping-Board), published in 1663, Mu-
ramatsu Shigekiyo [村松茂清] computes π by using polygons of 8, 16, 32, . . . ,
215 = 32768 sides to obtain the series of approximations:
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p3 = 3.061467
p4 = 3.121445
p5 = 3.136548

...
p13 = 3.1415925765
p14 = 3.14159263433
p15 = 3.1415926487

The method is fine, although not original (it goes back to the Nine Chapters, and
of course in the West to Archimedes), but there are several odd things about Mura-
matsu’s use of it that seem worth commenting on:

(a) Muramatsu calculates to a very high precision, ending up with 8 correct digits
of π , but, at least according to the discussion in [?], only seems to care about the
first three digits, writing that we can neglect the digits 1 and 6 (of 3.1416) but that
we do not find any deviation from 3.14 (the value that he ascribes to “Master Meng
[孟] from Jin [晋] and Liu Hui from Wei [魏],” although, as already mentioned, Liu
Hui actually also gave 3.1416 and Zu Chongzi [祖沖之] had given the much more
accurate approximation 355/113 in the 5th century). To a modern mind it seems
incredible that one would go to such lengths just to decide between two much older
and primitive values, and discard most of what one had calculated with such efforts,
bringing us back to the question Q1 formulated in connection with Zhu Shijie’s use
of π .

(b) The calculations are carried out to unnecessarily high precision: Muramatsu
calculates the sides of each of the successive polygons to 20 decimal digits, even
though he could surely have seen after the first few steps that he was gaining only
about half a digit of precision with each iteration and therefore, if he was planning
to stop with the 215-gon, was not going to get more than about 8 digits anyway. This
is a further instance of the same lack of understanding of the meaning of precision
that we already saw in the problem by Zhu Shijie (question Q3).

(c) On top of this he was very lucky, because he made three numerical mistakes
in his calculation (each of which, of course, persists through all further iterations
of the doubling procedure), but each of them occurred only after the 10th digit and
therefore did not affect the correctness of the 8 digits which his calculation was in
principle capable of producing.

(d) Most importantly, he failed to give any discussion or do any analysis, even a
crude one, of the numbers he obtained, not even saying explicitly that they seemed
to be converging to a well defined limit or that the persistence of certain digits (those
shown underlined in the display above) suggested the correctness of the first 8 digits
he had obtained. Had he been the genius that Takebe was, he would have thought
of looking at the successive differences (and then perhaps even at the differences
of these differences, and then again at the differences of these) and recognized the
rules governing these differences, thus obtaining, as Takebe did, many more digits
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of π without needing to calculate polygons of any larger size than he already had
calculated.

1.4 Seki’s solution of a problem of the Kokon Sanpōki

In the Hatsubi Sanpō [發微算法] (translatable as something like “Mathematics with
Humble Determination”), the only work which Seki Takakazu [関孝和] published
during his lifetime, he gave solutions for all of the fifteen bequeathed problems [遺
題 idai] that had been posed by Sawaguchi Kazuyuki [澤口一之] in the Treatise of
Ancient and Modern Mathematics [古今算法記 Kokon Sanpōki] of 1671 as a chal-
lenge to future mathematicians. We make a few observations here on his solution
to the 4th problem, and then in Subsection ?? discuss some peculiar features of the
problem itself as well as of Problem No. 14, the most complicated of the fifteen.

Problem 4 is stated in the Treatise of Ancient and Modern Mathematics in the
following terms:

今有甲乙丙立方各一。只云甲積与乙積相併共寸立積十三万七千三百四十坪。又乙積
与丙積相併共寸立積十二万千七百五十坪。別甲方面寸為實開平方之見商寸与乙方面寸
為實開立方之見商寸及丙方面寸為實開三乗方之見商寸各三和一尺二寸。問甲乙丙方面
各幾何。

We have now A,B and C which are each a cube. It is told only that the volume of A and the
volume of B together are 137 340 tsubo4, and also that the volume of B and the volume of
C together are 121 750 tsubo. Furthermore it is told that the quotient in sun5 obtained by
placing the side of A as the dividend and opening the square, the quotient in sun obtained by
placing the side of B as the dividend and opening the cube, and the quotient in sun obtained
by placing the side of C as the dividend and opening the square multiplied three times, make
together 1 shaku and 2 sun. One asks for the values of the sides of A, B and C.

Stated in modern notation, the problem asks us to find (numerically) the values of
three numbers a, b and c satisfying the simultaneous equations

a3 + b3 = 137340 , b3 + c3 = 121750 , 2
√

a+ 3√b+ 4
√

c = 12 . (1)

Seki’s solution, discussed in detail in [?, Chapter 6] (whose notations we follow), is
truly amazing. He first replaces the three concrete numbers 137340, 121750 and 12
by letters, say N, N′ and N′′. He then chooses as tianyuan [天元] or basic indepen-
dent variable the quantity x = 4

√
c and defines

m = N′′ − x , n = N′ − x12 , o = N − n

so that m = 2
√

a+ 3√b, n = b3, o = a3 and the problem has been reduced to finding x
such that m = 6

√
o+ 9

√
n. So far, nothing very surprising. But now he introduces the

six new quantities

4 tsubo [坪] is a unit of area and volume. A tsubo means normally about 4m2 but it is used here to
mean 1 sun3. (editor)
5 sun [寸 cun in Chinese] is a unit of length equal to 0.1 shaku+ 3cm. (editor)
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p = 36m14 + 9m2o2 ,

q = 252m5n + 126m8o ,

r = 126m10o ,

s = 9m16 + 72m7n+18mno + 36m4o2 ,

t = m18 + 84m6o2 + n2 ,

u = 2m9n + 168m3no + 84m12o +o 3

and then gives the answer to the problem in the form of the remarkable formula

o2 p3 + 3o2 pq2 + 3opru+3opst +3oqrt +3oqsu+3ors2 +or3 + t3 +3tu2

= 3o2 p2q+o2q3 +3oprt +3opsu+3oqru+3oqst +3or2s+os3 +3t2u+u3

(here some misprints in [?] have been corrected), which when multiplied out gives
an equation of degree 108 for x. Of course he gives no justification for the correct-
ness of this solution, let alone any indication of how one should go about finding
it—this was done later by Takebe Katahiro [建部賢弘] in the Hatsubi Sanpō Endan
Genkai [發微算法演段諺解] or “Commentaries in the Vernacular on the Hatsubi
Sanpō,” published in 1685—but it is indeed correct. The following aspects strike us
particularly:

(a) The solution is incredibly complicated. Even verifying its correctness is te-
dious and would be seen by most mathematicians today as something that cannot
reasonably be done without using an electronic computer, while to find this solution
from scratch would appear to a modern mathematician to require modern algebraic
tools like Gröbner bases.

(b) Seki doesn’t actually write out the full equation of degree 108 for x, but
merely says that one can do so if so desired and then solve it by the standard Chinese
method. One can wonder—and the question is posed explicitly in [?]—whether he
himself wrote out or solved this equation. The answer is surely negative, for at least
three reasons: First of all, the calculation is so complicated that it would surely have
defied even his extraordinary computational abilities, since the polynomial equation
in question has the form

x108 − 9x102 + 648x101 − 19440x100 + 312030x99 − 2835000x98 + · · ·
· · · + 81269204840575541641931959162093580030265561696577407234048x

−17950384405105760735882746260880728828976788057421374643904 = 0 .

Secondly, no matter how modest he was, he would surely have given some indica-
tion of having done such a mammoth calculation if he had actually performed it.
Thirdly, the solution as he wrote it out contains one or two minor inaccuracies (one
coefficient and one exponent are written incorrectly), so that if he had actually mul-
tiplied everything out and found the value of x numerically “by the Chinese method”
he would have discovered that it failed to satisfy the conditions of the original prob-
lem.
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(c) Less trivial is the remark that it would in any case have been superfluous
to do this numerical computation, and that for the same reason Seki’s entire solu-
tion, brilliant though it is, is totally unnecessary if one merely wants to solve the
given problem numerically, which is ostensibly his goal (and anyway is the best one
can hope for, since, as we know today, polynomial equations of high degree can-
not in general be solved exactly in closed form). Indeed, suppose that one were to
make the effort and write out the polynomial P(x) of degree 108 completely. The
“Chinese method” consists of either binary interpolation or some form of Newton’s
method, so in its crudest (but numerically quite sufficient) form would consist in
finding two values of x for which P(x) takes on opposite signs and then repeatedly
bisecting the interval they define and retaining only the half which includes a sign
change. But this method works perfectly well for the original problem, without the
necessity of any elimination theory at all! Indeed, taking the “tianyuan” to be (say)
x = 2

√
a (here Seki’s choice x = 4

√
c would serve equally well), we can rewrite the

original problem as f (x) = 12, where f (x) := x + 9√137340− x6 + 12√x6 −15590.
The algebraic function f (x) could be calculated numerically just as easily as the
polynomial function P(x), since the four arithmetic operations and the numerical
extraction of square and cube roots with the use of counting rods [算木 sangi] were
familiar procedures at Seki’s time, and by calculating successively the values

f (5) ≈ 10.02 f (6.0) ≈ 11.9228 f (6.06) ≈ 11.9877
f (6) ≈ 11.92 f (6.1) ≈ 12.0300 f (6.07) ≈ 11.9983
f (7) ≈ 12.61 f (6.2) ≈ 12.1327 f (6.08) ≈ 12.0089

...
...

...

one would obtain after just a few steps an accurate numerical value for x and hence
also for a, b and c :

x = 6.07158517504163027357 · · ·
a = 36.86414653778530412872 · · ·
b = 44.35167618766745730349 · · ·
c = 32.55638211638110312958 · · ·

In other words, it is just as easy to solve the original problem as it is to solve the
“simpler” one to which Seki reduces it, and by exactly the same method. Whether
Seki was aware of this, of course, must remain moot. We can nevertheless ask:

Q8. Were interpolation methods or “Newton’s method” ever used by wasan
mathematicians for the numerical solution of (non-polynomial) algebraic equations?

(d) Finally, we pose a question concerning an algebraic aspect of Seki’s solution.
To perform his elimination, he needs to repeatedly transform algebraic equations of
the form Q(x,

√
y) = 0 or Q(x, 3

√
y) = 0, where y is a polynomial in x, into purely

polynomial equations for x. The method to do this (stated by Takebe in the Endan to
the Hatsubi Sanpō and mentioned by Prof. Komatsu in his talk at this conference [?])
is based on the two algebraic identities
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A + B = 0 ⇒ A2 − B2 = 0 , (2)
A + B + C = 0 ⇒ A3 + B3 + C3 − 3ABC = 0 . (3)

Then in the first case we can split up the polynomial Q(x,η) into even and odd
powers of η =

√
y to rewrite the given equation as Q0(x,η2)+ηQ1(x,η2) = 0 and

use (2) to replace this by the purely polynomial equation Q0(x,y)2−yQ1(x,y)2 = 0,
and similarly in the second case split up Q(x,η) according to the values modulo 3
of the exponents of η = 3

√
y to rewrite the equation as Q0(x,η3) + ηQ1(x,η3) +

η2Q2(x,η3) = 0 and use (3) to replace this by the polynomial equation Q0(x,y)3 +
yQ1(x,y)3 +y2Q2(x,y)3 −3yQ0(x,y)Q1(x,y)Q2(x,y) = 0. The identities (2) and (3)
can be verified easily by using the factorizations A2 − B2 = (A + B)(A − B) and
A3 +B3 +C3−3ABC = (A+B+C)(A2 +B2 +C2−AB−AC−BC), but the second
of these is not obvious and in any case does not explain on what basis the expression
A3 +B3 +C3−3ABC was found originally. More synthetic proofs of (2) and (3), not
requiring one to know the answers in advance, can be given using substitution rather
than factorization:

B = −A ⇒ B2 = (−A)2 = A2 ,

C = −A−B ⇒ C3 = (−A−B)3 = −A3 −3A2B−3AB2 −B3

= −A3 −B3 +3ABC .

Q9. Can one determine whether the equations (2) and (3) for elimination of
square and cube roots were first obtained by wasan mathematicians by factorization,
by substitution, or by some other method? Cf. [?, p. 150].

1.5 On Problems 4 and 14 of the Kokon Sanpōki

In the last subsection we discussed Seki’s solution of Problem 4 of the Kokon Sanpō
ki, but not where the problem itself comes from. We observed above that the Chi-
nese and Japanese tradition usually involved “fixing” problems in advance so that,
even if the data in the problem was complicated (like the number 33622 37

200 in Zhu’s
problem), the answer came out in simple integers (like 24, 28, . . . in that problem).
But here the situation is different: the two numbers 137340 and 121750 in equa-
tion (1) are just as complicated as the number occurring in Zhu’s problem, but the
solution, as we saw above, is very far from being integral. Why, then, did Sawaguchi
choose the specific numbers 137340 and 121750? The following simple numerical
experiment suggests that they were not random choices. We look at the decompo-
sitions of 12 as a sum of three positive integers (there are only 55 of them, so this
is easily done), and in each case define a, b and c as the square, cube, and fourth
power, respectively, of the three summands. Then in one case, viz., a = 49, b = 27,
c = 16, we find that two of the sums of their cubes differ by only a few units from
the numbers in Sawaguchi’s problem. True, the sums of cubes in question are the
wrong ones, since for these values of a, b and c one has
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a3 + b3 = 137332 , a3 + c3 = 121745 , 2
√

a+ 3√b+ 4
√

c = 12 (4)

instead of (1), with a rather than b in the second equation. But the probability of this
near-coincidence being accidental is astronomically small, so we can ask:

Q10. Was Problem 4 in the Kokon Sanpōki in some way based on equation (4)?
Obviously, there is no way to decide this for sure (Sawaguchi, like everybody else

in this business, kept his secrets well), but if we take as a working hypothesis that
the two equations are in fact connected and try to imagine how the connection might
look, we may be led to relationships that can be tested in others of Sawaguchi’s prob-
lems. We first observe that, if Sawaguchi had simply started out (à la Zhu) with the
integral values 2

√
a = 7, 3√b = 3, 4

√
c = 2 to obtain the three relations (4), the prob-

lem obtained would have been much too simple for him to include in his collection
of 15 idai: a potential solver would only need to calculate 3√121745 = 49.5 · · · and
then try subtracting 493 from 137332 and 121745 to discover that the differences
were a 9th and a 12th power, respectively, making the solution immediate. So we
can imagine that Sawaguchi might have changed the problem a little to make it non-
trivial, in one of two ways:

(a) replace the numbers “137332” and “121745” in (4) by very similar numbers,
say 137340 and 121750;

(b) and/or replace the left-hand side of the second equation in (4) by b3 + c3.
If he had done merely (a), this would have had the advantage that he could be fairly
sure that the new problem, even if he did not know how to solve it analytically,
was non-defective (i.e., had a unique real solution). Doing (b) as well, to give the
problem as actually stated in the Kokon Sanpōki, would not have this property, and
it is quite possible that Sawaguchi simply made a mistake in transcription. In that
case, the problem he meant to give (namely, (1) with a3 +c3 in the middle equation)
would have had a solution in numbers very close to integers:

2
√

a = 7.00007044 · · · ,
3√b = 3.00001517 · · · , 4

√
c = 1.99991437 · · · .

If this hypothesis is true, then we would expect some others of his problems to have
the same property, and indeed, we will now see that this is the case.

Problem 14, discussed in detail at the lecture by Professor Komatsu [?] at this
conference, is the most complicated of the 15 idai in the Sanpōki, since it leads
(as Seki showed) to a polynomial equation of degree 2× 36 = 1458. The problem
requires finding four points in the plane such that the differences of the cubes of the
six distances x, y, z, u, v, w between them have given values:
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x
y z

u vw
x3 − y3 = 271 ,

y3 − z3 = 217 ,

z3 − u3 = 60.8 ,

u3 − v3 = 326.2 ,

v3 − w3 = 61 .

(5)

These five equations alone would lead to an indeterminate problem in the six un-
knowns and must be supplemented by a sixth equation

P(x, . . . ,w) := (u2 + v2 −w2)(x2y2 +w2z2) + (v2 +w2 −u2)(y2z2 +u2x2)
+(w2 +u2 − v2)(z2x2 + v2y2) −u2x4 − v2y4 −w2z4 −u2v2w2 = 0

expressing the fact that the four vertices are coplanar. (The polynomial P, divided
by 144, gives the square of the volume of a tetrahedron with edges of length x, . . . ,w
and hence vanishes if the vertices lie in a plane.) This last equation, as discussed in
[?], is contained in the Sanso and hence was known to both Sawaguchi and Seki.

In his talk, Professor Komatsu cited the numerical solution

x = 10.0000056403 , y = 9.0000069815 , z = 8.0000083910 ,

u = 7.6699093899 , v = 5.0000228360 , w = 4.0000359240 .

calculated by Dr. Kinji Kimura (cf. [?]) using Gröbner bases and a numerical com-
putation library. These approximate values certainly fit in with the prediction of
being, in five cases out of six, very close to integers. Let us suppose that Sawaguchi
started with the arbitrarily chosen simple integral values

x = 10, y = 9, z = 8, v = 5, w = 4 (6)

for five of the unknowns. Then substituting them into the equation P(x, . . . ,w) = 0
he would have ended up with the quadratic equation

100u4 − 6065u2 + 10726 = P(10, 9, 8,u, 5, 4) = 0

for u2, giving the numerical value

u =

√
1213+69

√
273

40
= 7.6698551213 · · · (7)

for the sixth unknown u. These numbers would have led in turn to the values

x3 − y3 = 271 , y3 − z3 = 217 , z3 − u3 = 60.80790567 · · · ,
u3 − v3 = 326.19209432 · · · , v3 − w3 = 61
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for the data of the problem. These are strikingly similar to the numbers in (5), the
only difference, apart from the degree of precision chosen for the non-integral num-
bers, being that one has 60.8 instead of 60.08. This suggests:

Q11. Was the number 60.08 in Sawaguchi’s problem originally 60.8 ? Was the
intended solution the one given by (6) and (7)?

Here we have a definite prediction that can be checked against the documentary
evidence. In the facsimile copy of the Hatsubi Sanpō [?], the number in question is
given as 60.08, but of course Seki might easily have made an error of transcription
in copying from the Kokon Sanpōki. To check this, Prof. Komatsu kindly asked the
director of a wasan exhibition at Tokyo University of Science that was being held
concurrently with the conference to show us an original edition of the Sanpōki that
was on display there. Rather disappointingly, the number there also had a clear “0”
[零 rei] before the “8”. However, later we noticed that the problem as cited in 1914
by Smith and Mikami [?, p. 101] indeed gave the relevant number as “60.8,” which
suggests that there must be different original editions of the Sanpōki and that there
was a copying error at some stage. Furthermore, the numerical solution of the prob-
lem as given in (5) is

x = 9.9977624076 , y = 8.9972373104 , z = 7.9965030158 ,

u = 7.6660952225 , v = 4.9910355706 , w = 3.9859690172 ,

while the solution for the problem with 60.08 replaced by 60.8 is

x = 10.0000057162 , y = 9.0000070570 , z = 8.0000089315 ,

u = 7.6699096344 , v = 5.0000228647 , w = 4.0000357259 .

The latter numbers are very much closer to the ones given by Kimura, suggesting
that he, too, must have used a source in which the third number in Sawaguchi’s
problem appeared as 60.8 rather than 60.08.

We have given this numerical analysis at some length because the details of the
various numerical coincidences give concrete and rather convincing support to hy-
potheses which would otherwise by their nature be somewhat speculative. To go
further, of course, one should search for more cases of the same phenomenon. Our
next question is therefore:

Q12. Are there other problems, by Sawaguchi or other authors of the time, whose
solutions involve numbers very close to integers and which thus may have been
constructed starting from integral solutions?

We mention one final point. If the above reconstruction is correct and Sawaguchi
really intended his problem to have the solution given by equations (5) and (6),
then one can wonder whether he might not have attempted to give a version having
a solution consisting entirely of integers. To do this, he would have had to find a
solution in integers of the indeterminate problem P(x, . . . ,w) = 0, and could then
simply have given the values of the differences x3 − y3, . . . ,v3 −w3 as the data in
the other five equations of his problem. In fact the equation P(x, . . . ,w) = 0 does
have various integral solutions, examples being (x,y,z,u,v,w) = (17,13,8,9,11,5),
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(22,17,19,4,8,6), or, with x > y > z > u > v > w, (27,24,17,13,11,9). Of course,
these are not particularly easy to find without a computer, although they are easy
enough to verify numerically, but there are many other problems (in particular, those
concerning Pythagorean triples, i.e., right triangles with sides of integral length)
whose formulations in terms of geometry that was familiar at this epoch would have
been quite natural and which can be solved by hand, either by systematic analysis
or by trial and error. This suggests our final question:

Q13. Were any problems of what we now call Diophantine analysis ever consid-
ered by Japanese mathematicians during the Edo period?

2 Did Seki or Takebe learn any mathematics from the Dutch?

The mathematics of Seki and Takebe, seen from the point of view of the twenty-first
century, is a “quantum jump” beyond of that of their Chinese or Japanese prede-
cessors, and it is of course a very natural question whether this progress was due
entirely to the natural genius of these two mathematicians or whether they were di-
rectly or indirectly inspired by the mathematics done in Europe during the preceding
decades. Western authors in the early twentieth century tended to say that there of
course must have been such an inspiration. But they give little evidence, and a mod-
ern reader cannot help feeling that this is often simply a reflection of their a priori
belief that the miracles of Western science could not have been discovered by the
members of such a different culture.

For instance, George Sansom, in his well-known book Japan, A Short Cultural
History [?], quotes Engelbert Kaempfer, who came to Nagasaki in 1690 as a physi-
cian for the Dutch, as having said that the Japanese “had little taste for speculative
philosophy, which . . . they thought an amusement proper for lazy monks” and then
goes on to say

The crowning triumph of the Western intellect, the great gift which at that time Europe
might have made to them, they were either unprepared or unwilling to receive, for, to quote
the same authority, they knew “nothing of mathematics, more especially of its deeper and
speculative parts” [?, p. 421].

In a footnote [?, p. 428], he adds that—whereas the Chinese seemed to have made
few advances after their discoveries of the 12th and 13th centuries—

The Japanese worked out an original method of the differential calculus from hints coming
through the Dutch, and in general they appear to have displayed remarkable ingenuity in
application of a limited knowledge; but Kaempfer’s judgement as to their backwardness in
theory seems to have been correct.

But he gives no evidence at all for his assertion that the progress made by the
Japanese was based on “hints coming from the Dutch.”

Similarly, in the well-known history of Japanese mathematics by Smith and
Mikami, we find a somewhat vague reference to “others whose names are not now
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remembered” who “might have formed a possible medium of communication with
the West in the time of Seki,” followed by the more specific passage

. . . we have the record of two men who were in touch with Western mathematics. These men
were Hayashi Kichizaemon and his disciple Kobayashi Yoshinobu, both of them interpreters
in the open port of Nagasaki. Each of these men knew the Dutch language, and each was
interested in the sciences, the latter being well versed in the astronomy of the West. . . .
While it is probable that these men did not know much of the European mathematics of the
time, it is inconceivable that they were unaware of the general trend of the science, and that
they should fail to give to inquirers some hint as to the nature of this work. [?, pp. 140–141]

and then, in summary, the following:

The conclusion appears from present evidence to be that some knowledge of European
mathematics began to find its way into Japan in the seventeenth century; that we have no
definite information as to the nature of this work beyond the fact that mathematical astron-
omy was part of it; that there is no evidence that Seki or his school borrowed their methods
from the West; but that Japanese mathematicians of that time might very well have known
the general trend of the science and the general nature of the results attained in European
countries [?, pp. 141–142].

But the authors give little evidence, either here or later, to substantiate the last of
these assertions, and in general it has to be said that this book, despite the eminence
of the first author as a historian of Western mathematics and the preeminence of the
second author as a historian of Japanese mathematics, is marred in many places by
the Western prejudices of its first author (cf. [?, p. XXVI, footnote 3]).

The question about Western influence obviously cannot be resolved easily, at
least without further evidence coming to light, and certainly not by the present au-
thors. But we would like to add a few intrinsic arguments concerning the various
“hints from the Dutch” theses, and then give some concrete documentary evidence
supporting the opposing viewpoint, that Seki and Takebe had not had any direct
contact with the mathematics which had been done in Europe between the closing
of Japan in 1639 and the lifting of the partial ban on foreign books in 1720.

The first and most obvious argument is that at least some of the discoveries of
Seki and Takebe cannot have come from Western sources simply because they pre-
dated them. The most notable of these is of course Seki’s independent discovery of
determinants, which were found also by Leibniz in 1693 but published only after his
(and a fortiori after Seki’s) death, and which were treated in much greater generality
by Seki; here even Smith and Mikami speak of a “marked proof of Seki’s genius”
and concede that “Seki was not only the discoverer but that he had a much broader
idea than that of his great German contemporary” [?, pp. 124–125]. A further ex-
ample are the Bernoulli numbers, which Seki discovered independently of Jacob
Bernoulli and actually published earlier (the publications by Seki and Bernoulli,
both posthumous, are from 1712 and 1713, respectively). This example is in some
ways even more striking than the first, since determinants are an essential mathe-
matical tool which must inevitably be discovered when one studies systems of lin-
ear equations (as had been done in the East for centuries), while Bernoulli numbers
constitute a far more specific discovery that is not an inevitable consequence of any
particular “general trend in the science.” Seki’s theory of elimination, too, although
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undoubtedly based in part on Chinese precedents, goes much further than anything
that European mathematicians could have done at the time, or indeed for the next
hundred years. Knowing that in these cases the discoveries were his, why should we
doubt that other discoveries that Seki made, even when these occurred later than in
the West, were wholly his own?

Secondly, and no less importantly, the level of the mathematical advances we are
speaking of is so high that it is hard to imagine how they could have been transmit-
ted by general osmosis or “hints.” Before the lifting of the ban, these hints would
have had to come via the Dutch. But, as Goodman, who studied the Dutch-Japanese
interaction more intensively than any other historian, says,

Further, the Dutch who came to Japan were hardly trained scientists and were no more able
to respond to scientific inquiries abroad than they would have been at home . . . the over-
whelming proportion of Japanese contact with Hollanders was with the average employees
of the Dutch East India Company . . . [?, pp. 64–65].

And even if one imagines, despite the inherent unlikeliness and the lack of any evi-
dence to this effect, that at some point there was a member of the Dutch contingent
who was versed in the state-of-the-art mathematics of the day and had Japanese
interlocutors capable of and interested in learning this material, it would still have
been impossible for the former to transmit his knowledge to the latter because of
the linguistic barriers involved. One must remember that, while in the 16th century
there were a number of Europeans (principally Jesuit missionaries) who had spent
years in Japan and had mastered the language, and of Japanese who had become
fluent in various European languages, the situation was completely different during
the first half of the Edo period, when the bakufu followed a deliberate policy of pre-
venting linguistic competence on either side, demanding that members of the Dutch
contingent (in particular, the opperhoofd or ship’s captain) be replaced every year so
that they could not learn too much about Japan and themselves providing Japanese
interpreters with a very inadequate knowledge of the Dutch language. There was no
serious training of interpreters before the lifting of the ban, and no Dutch-Japanese
dictionary until 1745. That sophisticated abstract mathematical ideas like interpo-
lation or the series development of functions could have been discussed in such a
context seems very unlikely.

In a related vein, one must remember that not only the language, but also the
backgrounds, the styles of presentation and above all the aims of the research itself
were so different in the two cultures that it is by no means clear that a Japanese
mathematician, exposed in an unsystematic way to a piece of Western mathematics,
would have been able to appreciate it (just as, of course, a Western mathematician
would not have been able to appreciate Japanese mathematics without long expo-
sure to it). And indeed, even as late as 1811 a Japanese mathematician who had seen
Western mathematics was able to write with obvious conviction that “foreign math-
ematics is not on so high a plane as the mathematics of our own country,” (quoted
in [?, p. 172]).

Of course, European mathematical knowledge transmitted in written form might
have been understood by a qualified mathematician working imaginatively against
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the language barrier. But despite the vague comments of Sansom or of Smith–
Mikami, there seems to be no evidence that such texts were available before 1726,
the date of the importation of the Encyclopedia of Calendrical Mathematics暦算全
書 Lisuan Quanshu] by Mei Wending [梅文鼎], into which Takebe had the marks
necessary for Japanese to read the Chinese text inserted. Thus, when Smith (we as-
sume that it was he) challenges the credit given to Takebe for his infinite series for
the square of the arc, writing

The series seems, however, to have been given by Pierre Jartoux, a Jesuit missionary, res-
ident in Peking . . . There is a tradition that Jartoux gave nine series, of which three were
transmitted to Japan, and it seems a reasonable conjecture that Western learning was respon-
sible for his work, that he was responsible for Takebe’s series, and that Takebe explained
the series as best he could [?, pp. 154–155],

he gives a few internal arguments for this thesis, such as the somewhat awkward and
unconvincing presentation of the series in Takebe’s text, but again no documentation
that Takebe had seen the series that were transmitted to Japan. (In fact, a footnote
to the passage says that the three series in question appeared in a book by Mei Ku-
cheng [梅殻成] with unknown date and without evidence that they reached Japan in
this period, i.e., before Takebe’s Fukyū Tetsujutsu [不休綴術] containing his infinite
series was published.) In the book by Horiuchi, as well as a much more careful
analysis of the Jartoux issue [?, pp. 296–298], we find a different possibility for the
path that might have led Takebe to infinite series:

. . . Seki’s treatise on faulty problems bristles with ideas, more or less well-mastered, on the
relations between the coefficients and the roots. It is also the place where Seki proceeds for
the first time to the extraction of a literal magnitude in an equation with literal coefficients.
So we are in the presence here of a new extension of the use of literal notation, an extension
that will later inspire Takebe to express the square root of a quadratic equation in the form
of an infinite series [?, p. 182].

Later, there is a careful analysis of Seki’s procedure of the arc, giving a coherent
background on which Takebe’s series could have arisen without any Western input,
and ending with the remarks

Here again, the methods brought into play by Seki to treat the problem are incomparable
with those of his predecessors . . . We thus see that Seki extended the use of this algebraic
tool to contexts where it was assumed a priori that there existed a functional relation be-
tween two geometric quantities even though the expression for this relation was not yet
known. Here we touch an essential feature of Seki’s works, that of having considerably en-
larged the domain of use of algebraic techniques. Mikami very early stressed the historical
importance of the solution proposed by Seki, which he considered more important than the
exact solution later obtained by Takebe . . . Mikami here forcefully asserts that, if Seki had
not introduced algebraic techniques into this domain, Takebe’s solution would never have
seen the light of day [?, p. 251].

One final argument—admittedly of a more subjective nature—is on the level of
mathematical style and of the personalities of the protagonists. Written mathemat-
ics is characterized not only by its contents, but by the way in which the author
sees and presents the discoveries that he is expounding. Seki’s approach to alge-
braic problems, as indicated in the passage just quoted, was extraordinarily original
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and innovative, but Seki himself, who was steeped in and deeply respectful of the
Chinese tradition, typically couched his exposition in the context of this tradition,
and indeed may well have believed that he was working within it even when in
fact he was doing something very new. We saw one example of this in the first part
of this paper, where he formulated his solution of a problem of Sawaguchi as if
he were presenting an algorithm for the numerical determination of the sought-for
root, but in fact showed no interest in actually finding this root but instead describes
a purely algebraic procedure for expressing the solution of the problem as the root
of a polynomial—a modern mathematician malgré lui. He presents the elimination
theory in the traditional language of sangi [算木] but uses these in a new way, very
different from his predecessors in Japan or China, and of course even more different
from the way in which any European mathematician, had he achieved the same re-
sults, would have formulated them. If Seki had been exposed, even tangentially, to
Western mathematical thinking, then surely one can speculate that this might have
affected the presentation, as well as the contents, of what he wrote. As to Takebe,
it can be mentioned that he was particularly noted for his honesty, that he was far
more inclined to speak of his own weaknesses in mathematics than to take unearned
credit for things he had not done, and that he explicitly expressed his enthusiasm
about ideas in astronomy coming from Europe when he learned about them after
the lifting of the ban [?, pp. 225–226]. There seems to be no reason to think that he
would have kept silent about recent beautiful mathematics done by Europeans if he
had known about or made use of it.

We now turn to the documentary evidence. We have already mentioned that
the bakufu [幕府], fearful of the Hollanders’ acquiring too much knowledge about
Japan, required that the ship’s captain be replaced every year. The East India Com-
pany, which was just as interested in ensuring that precisely this knowledge should
be available, therefore had each opperhoofd keep a very detailed diary and made
sure that several transcriptions of it should be made, so that at least one copy would
survive the perilous return trip to Holland. These diaries, preserved in their entirety
in the Dutch National Archives in The Hague, constitute a miraculous record, of
a dimension perhaps unparalleled by any other historical document, of the rela-
tions between the Dutch contingent and the Japanese during the entire Edo period.
A search through the diaries of the relevant years failed to turn up any evidence
of an actual exchange of information on any kind of mathematical question what-
soever. There was one fully documented personal encounter between Takebe and
the Hollanders in 1727 in which Takebe put detailed questions to the Dutch. These
questions concerned such issues as the way the Dutch put out fires, how they named
their sons, whether they used matches, fans, or ear-picks, and whether they were ac-
quainted with black magic (the complete list of questions is given in the Appendix),
but absolutely nothing specifically scientific, let alone mathematical. Indeed, there
is no indication anywhere in the diaries that the Dutch were even aware that Takebe
(whom they knew only as an ambassador of the Shogun and consistently referred to
as “the Imperial Minion”) was a mathematician at all. The only thing indicating that
they had recognized Takebe’s ability is a diary entry a few pages later in which the
captain tells how a defective Dutch watch was said to have been repaired by Takebe
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and that he “gladly believed this” because, on the occasion when Takebe had asked
him the thirty questions, he had observed “that nature had not spared in dispensing
knowledge to him, but that he is versed in different sciences and is a fine erudite
man” (“in verschejde wetenschappen ervaaren en een fijn doorsleepen man is”). But
this is still very far from a technical discussion of mathematics! And indeed, in the
entry for the very day on which Takebe put his thirty questions, the captain describes
how at the end of their meeting the Japanese continued with various “mathematical,
astronomical and geometric propositions, . . . to which 〈I〉 responded never to have
learned the said Sciences, with which the interrogation came to an end.” This agrees
well with the comment of Goodman cited above.

In summary, the documentary evidence, though admittedly inconclusive, seems
to us to give more support to the view that the Japanese did not learn any mathemat-
ically interesting facts from the Dutch than to the view that they did do so.

Appendix: Takebe’s questions to the Dutch in Dejima

We give here a translation of the part of the diary entry for March 25, 1727, that
enumerates the questions put by Takebe. The rest of the text, describing the sea-
bass that the Japanese presented to the Dutch and wished to watch them to eat,
a meeting with the Imperial watchmaker, and the captain’s inability to respond to
the “mathematical, astronomical and geometric propositions” put forward by the
Japanese delegation, is omitted.

Tuesday 25th
In the morning around ten o’clock came the Senior Interpreter Kizits with Lord

Takebe Fiko Sira Sama accompanied by three of the First Servants of his Imperial
Majesty named [Master] Faomi Foukan, Maayeda Kioriso-o and Ito ga au, arrived,
mutually having exchanged some compliments, 〈they〉 sat down, 〈and〉 the follow-
ing questions were asked, such as

Firstly — the four elements, whether they are known to us, and how they were named;
Secondly — the Elements, whether we don’t apply them to the human body;
Thirdly — the twelve Zodiac signs, whether we know them, how they are named, and
whether these are applied to anything;
Fourthly — compasses, what about the compass which points wrongly, whether this by
some means can be discovered and demonstrated;
Fifthly — whether without compass, East can be shown and by what means;
Sixthly — whether East and West are known;
Seventhly — whether we have lanterns in use like the Japanese: if so, how and from which
kind of material they are made;
Eighthly — whether witchcraft, or black magic, is known to us and is in use;
Ninthly — on which day we rest, and on which ones we work, 〈and〉how these are called;
Tenthly — Sunday, how long it has been in use, and why so named;
Eleventhly — the measure of an ikken [1.92 m.], and whether others are in use and how
they are named;
Twelfthly — 〈whether〉 the gantang [measure used for rice and pepper, ca. 8 1/2 liters] is
used by us, or whether 〈there are〉 others and how these are then named;
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Thirteenthly — the dai ching [steelyard balance], whether it is used for the money that is
paid out daily, or for what;
Fourteenthly — Dutch houses, whether they are like the Japanese, then how they are built;
Fifteenthly — warehouses, how they are built by the Hollanders;
Sixteenthly — the Lords’ or big manor houses, whether they aren’t distinguishable from
ordinary men’s houses;
Seventeenthly — whether when there is a fire in Holland, whole streets burn down at once
like in Japan;
Eighteenthly — how and by what a fire is extinguished;
Nineteenthly — rice, wheat, barley, buckwheat and other grains, how they are presented;
Twentiethly — rice as well as other grains, whether they can be stored in Holland and on
Jakarta longer than a year;
Twenty-firstly — the names which are born by somebody for a thousand years or less,
whether the descendants may continue to bear them;
Twenty-secondly — whether the Daimyo or other great 〈persons〉 don’t change their
names when they get another function;
Twenty-thirdly — whether the Hollanders like the Japanese have two names in use, i.e.
how one names each other daily and the other in writing, that is when one signs one’s name;
Twenty-fourthly — when to the father or to the master of a house a son is born, whether
he himself gives the name or whether the name is given by Dutch priests, and whether like
with the Japanese the name then is used for a signature seal;
Twenty-fifthly — the sulfur-match, whether it is used by us Hollanders, and from what it
is made;
Twenty-sixthly — fire, when one wants to keep it, how this is done;
Twenty-seventhly — ink, from what substance it is made;
Twenty-eighthly — quills, from what they are made;
Twenty-ninthly — ear-picks, whether they are used by us;
Thirtiethly — fans, whether they are in use by the Hollanders.
Which above-mentioned questions 〈I〉 answered according to my knowledge of science
shortly and concisely, . . .
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2. Seki Takakazu [関孝和]: Hatsubi Sanpō [發微算法] (translatable as something like “Mathe-
matics with Humble Determination”), 1674; [?], pp. 103–120; Facsimile edition, Wasan Insti-
tute (2003).
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