From quadratic functions
to modular functions

D. Zagier

Abstract. We study certain functions defined in a very simple way as sums of pow-
ers of quadratic polynomials with integer coefficients and discover that these functions
have several surprising properties and are related to many other subjects, including Dio-
phantine approximation, special values of zeta functions, modular forms, and Dedekind
sums.

Part I. Sums of quadratic polynomials

1. An extremely simple function

We start with the following very elementary construction. Pick a positive integer,
say 5. Now for any real number z we consider all quadratic functions with integer
coeflicients and discriminant 5 which are negative at infinity and positive at x, i.e.
Q(X)=aX?+bX +cwitha,b,c€Z, b* —4ac=15, a <0, and az® + bx+c > 0.
By definition the number (J(z) is positive for each such function @, and we ask
for the sum of these numbers, i.e., for the value of the function

A= Y Q@) 1)
disc(Q)=5
- Qz)>0>Q(0)

We will see below that this sum converges, so that A is a well-defined function
R—R.

First Surprise. The function A(x) has the constant value 2.

We illustrate this by calculating a few values of A(z) numerically. In general
it is not obvious how to do this, since we do not yet know anything about the
convergence of the series. But when x is rational there is no problem, since then
the sum in (1) is actually finite. For instance, if the function Q(X) = [a,b,c] ==
aX? + bX + ¢ occurs in the sum (1) for z = 0 then @ < 0 < ¢, s0 5 = b2 + 4|a||c|
and @ must be either [-1,1,1] or [-1, —1,1]; and more generally, if Q occurs for
r = p/q then 5¢* = |bq ~ 2ap|? + 4]al|ap? + bpg + c¢?|, which bounds each of a, b
and c. In this way we can find the functions @ occurring in (1) and compute the



1148 D. Zagier

value of A(z) for any rational value of z. The results for the three simplest values
=0, % and % are given by the following tables:

Q Q(0) Q Q(1/2) Q Q(1/3)
[-1,1,1] | 1 ~1,1,1] | 5/4 [-1,1,1] | 11/9
~1,-1,1]| 1 [1,-1,1] | 1/4 ~1,-1,1] | 5/9
Sum: 2 [-1,3,-1]{ 1/4 [-5,5,~1] 1/9
[-5,5,—1] | 1/4 [-11,7,-1] | 1/9
Sum: 2 Sum: 2

What about irrational values of z7 Here the identity 5 = (2az — b)? — 4aQ(z)
and the inequalities ¢ < 0 < Q(z) imply that |b — 2az| < /b, so there are at
most five values of b for any given value of a. We can therefore write a com-
puter program in which a runs over the values —1,-2,..., —M for some large
integer M; for each a and each integer b € (2ax — v/5,2az + /5) the com-
puter checks whether b2 = 5 (modd4a) and, if this is true, prints out the form
Q = la, b, (b*> — 5)/4a] and the value of Q(z). For z = 1/x, for instance, a com-
puter search up to the bound M = 100, 000 found only six functions @) satisfying
the conditions a < 0 < Q(x), viz., the four occurring in the above table for 1/3
(which is, after all, very near to 1/7) and the two further functions [—409, 259, —41]
and [—541, 345, —55]. Adding up the corresponding values of Q(1/m) gave (to five
places beyond the decimal point) the sum 1.99998. This gave numerical support to
the assertion that A(x) = 2 for all £ and also suggested that the non-occurrence
of forms in the range 541 < |a| < 100,000 was only a temporary effect and that
if we went on we would find further quadratic forms whose values at 1/7 add up
to the missing 0.00002. Indeed, extending our search to M = 300,000 we find two
further Q’s and the following table:

Q Q(1/m)

[-1,1,1] 1.21699
[-1,-1,1] 0.58037
[5,5,—1] 0.08494
[~11,7,~1] 0.11364

[—409, 259, —41] 0.00190
[—541, 345, —55| 0.00215
[~117731, 74951, —11929] | 0.00001
[—133351,84893, —13511] | 0.00001

Sum: 2.00000
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Of course, if A(1/7) truly is equal to 2, then the sequence of Q’s can never
terminate, since then 1/7 would satisfy a quadratic equation Q1 (z)+. ..+ Qn(z) =
2 over Z. (This equation cannot be trivial because each Q; has a negative leading
coefficient.) The same argument applies to any other transcendental mumber, or
any algebraic number of degree > 2, so our “Surprise” has a surprising corollary,
of which we will indicate a direct proof in §10:

Corollary. Let ¢ be a real number which is not rational or quadratic over Q. Then
there are infinitely many quadratic forms Q(X) = aX? +bX + ¢ of discriminant 5
with a < 0 and Q(z) > 0.

We close this section by a graph illustrating the terms contributing to the
sum (1) for £ = 0, 1/3, 1/2 and 1 and the constancy of the function A(z). The
rest of the paper will be devoted to explaining and generalizing this phenomenon.

sum =2

x=0}x=1/3 x=1/2 x=1
[-1-1,1] [-1,3.-1]

e
AT\ T

Figure 1

2. Generalization to other discriminants,
and special values of L-series

There is, of course, nothing special about the choice of discriminant 5, and we can
generalize the function A(z) by defining

Ap{z) = E max(0,az® + bz +¢c) (x € R). {2)
a,b,c€Z, a<0,
b2 —4ac=D

Here D is a positive integer which is congruent to 0 or 1 modulo 4 (otherwise
the sum is empty) and not a perfect square. {The case of square D is somewhat
different and will be treated in §7.) The “surprise” of §1 then remains true, except

for the value of the constant. We state this as a theorem, the proof of which will
be given in §6.
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Theorem 1. For every D the function Ap(z) has a constant value ap.

‘We can verify this experimentally, and at the same time find the value of ap,
by the same algorithm as in §1. (In particular, the same proof as given there shows
that the sum defining Ap(z) is finite whenever z is rational.) Here is a table of
values up to D = 30:

D[5 8 12 13 17 20 21 24 28 29
aDl2 5 10 10 20 22 20 30 40 30

To get an explicit formula for ap, we use the theorem to write ap as Ap{0).
Then, recalling that the [a, b, ¢] occurring in (2) for z = 0 are those with ¢ > 0 > q,
we find the formula

w= ¥ a2 ®)

bEZ, |bjl<VD.b=D (mod 2)

where o1 (n) denotes the sum of the divisors of a positive integer n. And suddenly
our elementary construction has led us into the realin of more serious mathematics,
for the expression occurring in (3) has occurred previously in the literature as a
formula for an important invariant of algebraic number theory. To explain this,
we suppose that D is a fundamental discriminant, i.e., that it is the discriminant
of a real quadratic field K. (The general case will be treated later.) Associated
to D are two important Dirichlet series: the Dirichlet L-series Lp(s) = L(s, xp) of
the character xp(n) = (D/n) (Kronecker symbol) and the Dedekind zeta-function
Cp(s) = (x(s) of the quadratic field K. They are defined for R(s) > 1 by

Lo(s) = Lo, xp) = 3 2200,
n= 1 (4)

(p(s) =Cr(s) =) W

(where a in the second sum ranges over non-zero ideals of Og) and for other s € C
by analytic continuation (resp. meromorphic continuation in the case of (x(s),
which has a simple pole at s = 1), and satisfy the functional equations

s—1/2
Lp(1 =) = i Lofe)
D5~ 1/2F( )2 (5)
Cp(l—s)= *55—1—1:(—1‘1,—“( p(s)
2

and the relation

¢ols) = ¢(s)Lp(s), (6)
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where ((s) is the Riemann zeta function. From these we obtain in particular the
equalities

D3/2 3D3/2
9r3 Lp(2) = - (p(2).

It has been known for a long time that the number occurring in this formula
is rational and can be given, for instance, by the formula — an_ll xp(n)yn?/2D.
In 1969 Siegel [Si] found a completely different formula based on the study of
Eisenstein series for the Hilbert modular group associated to K. His formula (as
simplified by Cohen [Col], [Co2] and myself [Z2]; the original version was somewhat
more complicated) expresses (x(—1) as 1/60 of the expression on the right-hand
side of (3). So we have the following

Lp(-1) = -12¢p(-1) = -

7t

Supplement to Theorem 1. Suppose that D is the discriminant of a real qua-
dratic field K. Then the number ap occurring in Theorem 1 is given by

ap — —5L(—1, XD) = 60(}{(—1). (7)

The proof of (7) which we gave here was purely computational, depending on
the explicit formula (3) and Siegel’s formula for (x(—1). Later (in §8) we will see
the intrinsic reason why ap is related to (x(—1).

3. Second generalization:
cubes instead of first powers

Being mathematicians, we naturally generalize again. This time, instead of chang-
ing the “5” in (1) to another value, we try a different power of the summand,
defining

B(z) = Z max (0, (az® + bz +¢)®) (z €R), (8)

a.b,c€Z, a<0, ’
b2—dac=5

Note that the series (8), unlike (1), converges uniformly for all z, since Q(z) =
O(1/a) and the number of contributing (s per value of a is bounded. And now
we find:

Second Surprise. The function B(zx) also has the constant value 2.

We can check this numerically the same way as we did for A(z) in §1, the sum
being finite for x rational and convergent (indeed, far more rapidly convergent
than before) for z irrational. For instance, cubing the values of Q(x) listed in §1
for the three rational numbers 0, 1 and §, we find B(0) = 1+1 = 2, B(}) =
1254 LE14] = 9 B(3) = 1BLELBEIHL — 9 and similarly for ¢ = 1/7 the values
tabulated in §1 give
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Q Q/m)?

[-1,1,1] 1.80243511584123887281298722803
[-1,~1,1] 0.19548456121216942259483309670
[-5,5,—-1] 0.00061290145140734893903713558

[-11,7,-1] 0.00146740473128344118486462838
[—409,259, —41] 0.00000000682021406025480759889
[—541,345, —55] 0.00000000994368585373007613108

[—117731, 74951, —11929] | 0.00000000000000050535245763529
[—133351, 84893, —13511] | 0.00000000000000049513093654604

Sumn: 2.000000000000060000000000000000

The convergence is very fast, with just 8 terms of the series (8) giving us 30 digits
of accuracy.
Of course, just as in §2, we can generalize to discriminants other than 5, setting

Bp(z)= Y. max(0,(az®+bz+c)®) (z€R), (9)

a,b,c€Z, a<0,
b2 —4dac=D

and we again find that these functions are always constant, although—contrary to
what our “Second surprise” might suggest-—the values are not in general the same
as those of Ap. In other words, we have:

Theorem 2. For every D the function Bp(z) has e constant value Bp.

The number B, is given by a formula exactly analogous to equation (3), namely:

o = > «(20) (10)

bEZ, |bj<VD.b=D (mod 2)

where o3(n) for a positive integer n denotes the sum of the cubes of the divisors
of n. Again, the results of [Si], [Co2] and [Z2] tell us that this is equal to a special
value of a Dirichlet series, namely (for D a fundamental discriminant)

3D7/? 135D7/2
Bp = Lp(—3) = 120(p(~3) = FLD(‘Q = —2—7T'§—CD(4)- (11)

Here is a table of the first few values of the numbers Gp.

D!5 8 12 13 17 20 21 24 28 29
Bp l 2 11 46 58 164 274 308 522 904 942

Finally, we should answer a question which the reader might have had: why
cubes and not squares? One answer, of course, is that it works. A more illuminating
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answer is that the function Q(x)?, like Q(z), is positive only on an interval of finite
length, whereas Q(z)? is always > 0, so that the sum with max(0, Q(z)?) would
always diverge. Of course, if we wrote max(0, Q(z))? instead of max(0,Q(z)?),
then we would get a convergent series, but this is a less natural expression. In fact,
it is possible to do something with even powers as well, but ounly by looking at a
more complicated sum. See §9.

4. A new phenomenon

It is now clear how the pattern should go on. We replace the function (1), for
instance, by the corresponding sum of fifth powers,

C)= Y max(0,(a2®+bz+c)°) (z€R), (12)
a,b,c€Z, a<0,
b?—4ac=5

and more generally define Cp(x) by the same sum but with discriminant D instead
of discriminant 5. Then C(z) should have the constant value 2, and more generally
Cp(x) should be a constant function of z for every D, its value being the integer

+p defined by
D-»?
Yo = E 0‘5( 1 ), (13)

beZ, b|<vVD,b=D (mod 2)

where g5(n) denotes the sum of the 5th powers of the divisors of n.
Unfortunately, this nice theory is not true. Instead, we have:

Third Surprise. The function C(z) is not a constant function of z.

Of course this is easy to check. For instance, from the values given in §1 we see
that C(0) =15 + 15 = 2 but .
of ) -5+ 1P +1°+1° 3128
2) 45 1024

# 2.

Indeed, we see without doing any calculation at all that > Q(z)™ could not be a
constant function of z for every (odd) value of m, because the value of this sum
for £ = 0 equals 1™ + 1™ = 2, while for other rational values of z we get the sums
of the mth powers of other finite collection of rational numbers, and these clearly
cannot always be independent of m.

But if the function Cp(z) is not constant, what is it? Since we expected the
value of Cp(x) to be equal to the number yp defined by (13), it is reasonable
to look at the values of the difference C%(z) := Cp(x) — vp. Calculating in the
way explained in §1 for a few values of 2 (we choose rational x so that the sum is
finite and the value of C%(z) is also a rational number), we obtain the following
table:
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D 5 8 12 13
¥p = Cp(0) 2 35 310 490
Ccy(%) 135/128 —135/64 405/32 —1485/128

CH(3) 5120/6561  —10240/6561 20480/2187 —56320/6561
CH(%) | 16875/32768 —16875/16384 50625/8192 —185625/32768

An inspection of these values leads to our

Fourth Surprise. The functions C%(x) for different discriminants D are propor-
tional.

Stated differently, this says that the function Cp(xz) has the form
CD(:L') =YD +5D@(.’L') (14)

with ép independent of z and ®(z) independent of D. We normalize by taking
J5 = 1. Then the first few values of &(z) = CY(2) can be read off from the first
column of the above table, while the first few values of dp are as follows:

D[5 8 12 13 17 20 21 24 28 29
5D[1 —2 12 —11 -2 8 42 —108 112 —33

Equation (14) says that the functions {Cp(z) | D > 0} span a two-dimensional
vector space, while Theorems 1 and 2 said that the vector spaces spanned by
{Ap(z)} and {Bp(z)} were one-dimensional. The answer in the general situation,
when the exponent 1, 3 or 5 is replaced by an arbitrary odd number (which for
later purposes we denote k — 1} is given by:

Theorem 3. For every positive even integer k and every positive non-square dis-
criminant D, the function Fi p : R — R defined by

Fepl@= >  max(0,(az® +bz+0c)*) (15)
a.b.ce€Z, a<0.
b? —dac=D

s a linear combination, with coefficients depending on D and k, of a finite collec-
tion of functions depending only on k.

In other words, the functions Fj p for k fixed and D varying span a space of
finite dimension. In fact the dimension is [k/6] + 1, as we will see later.

5. What is going on?

The results of §4 naturally suggest several questions, in particular the following:

e Why are the functions F» p(z) = Ap(z) and Fy p(z) = Bp(z) constant but
the function Fg p(z) = Cp(x) is not?
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e Is there a relationship between the numbers vp and ép and the value of
Lp(—5) analogous to the relationships between ap and Lp(—1) and between Sp
and Lp(—3) described earlier?

® What is the nature of the function ®(x) in (14)? And what about its coeffi-
cient 057

We describe the answers to these questions briefly here. (The proofs will be
given later.) We begin with the question about the relationship with special values
of L-series. Note that the function Fy p(z) defined in (15) is periodic with period 1,
so it has a well-defined average value.

Theorem 4. For all k and D the average value of Fy, p(z) equals 2<4D((11_—;16c))

We will prove this in §8. Accepting it for the moment, we can deduce from (14)
that the numbers vp and §p are related to {p(—5) by

Cp(—5) _ 16380 _ 6
2C(—11) ~ 691 (p(—5) = ——~Lp(-5),

where A is the average value of the periodic function ®(z). Applying this to D =5,
8 and 12, for instance, and using the known values of Lp(—5), we find the three
equations

Yp + Aép =

1742 23465 218530
24+ ="t 35—22=""" 31 =22
+A 6oL A 501 310+ 12X B0
which agree (fortunately!) and all give the value A = %%. We can therefore
rewrite (14) in the alternative form
65
Cp(z) = W@LD(_S) + dp®o(x), (16)

where ®y(x) = ®(z) — X is a periodic even function with average value 0.
Our next object is to identify ®g(x). A graph of this function is shown in
Figure 2. The graph looks very smooth, but this is misleading. In fact, we have:

Fifth Surprise. The function ®(z) is not C*°, or even C'°,

Proof. From the definition of Cp(z) it follows that C'p(z), and hence also ®(z),
has the property that its value at a rational argument z = p/q has the form m/q'°
with m € Z. We claim that the only smooth functions f{z) which can have this
property are polynomials of degree < 10. (This will imply our statement, since
®(r) is non-constant and periodic and hence certainly not a polynomial.) To see
this, we note that the 10th derivative of f(z) is given by the formula

10
10 n
(10) = T —1)" 10 ) .
F1(z) Q;@m(;( )'Q (n)f(x+ Q))
If = p/q and we let @ tend to infinity through multiples of ¢, then every term
in the sum is an integer, so f1%(z) is integral at all rational arguments and hence,
if continuous, is constant. O
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Figure 2

To recognize the mysterious function ®(z) or its renormalized variant ®q(x),
we could try looking at some special values. But a few specimens were already
listed above and they were not very enlightening. A better approach turns out
to be to look at the Fourier expansion. Since ®¢(z) is even and periodic and has
average value 0, it has a Fourier cosine expansion of the form

oG
By(z) = Z Cp, €OS 21T

n=1

with real coefficients ¢,,. Computing numerically, we find, e.g.,
¢ = 1.01067994278313526 . . ..

This is again not too revealing, but if we renormalize the further coefficients by
dividing by c¢;, then something interesting does happen: the quotients ¢, /¢, are
(to high numerical precision) rational numbers, the first three values being

ca 3 c3 28 cy 23

el 256" ¢ 19683’ ¢, 65536

The denominator of ¢, /c; is in each case a divisor of n'!, and multiplying by n'!
to get integers we obtain the values

2“2—2 — o4, 3“% = 252, 4“% — —1472,
1 1 1
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which any number-theorist recognizes at once: they are the first values of the
Ramanujan tau-function, defined by the expansion

qJJa-ag*=>"r(n)g" @)
n=1 n=1

The meaning of this function is also well-known: the expression occurring on the
right-hand side of (17) is the Fourier expansion of a cuspidal modular form of
weight 12 on the full modular group SL(2,Z), and 12 is the lowest weight for
which such a modular form exists. (See §11 for a very brief review of the theory
of modular forms.) So we can finally give the “real” answer to the first and most
puzzling of the questions above, namely:

The reason why the function Fi p(x) behaves differently for k > 6 than it does for
k=2 and k = 4 is that there are cusp forms of weight 2k on SL(2,Z) fork > 6
but not for k < 6.

Thus, starting with our totally elementary “sums of powers of quadratic polyno-
mials” construction, we have been led inexorably to the theory of modular forms,
one of the cornerstones of modern number theory. The reason for this connec-
tion will be explained in Part IIL. First, however, we give the proofs of Theorems
1-3, which are completely elementary, and discuss some further refinements and
variants of these theorems.

Part I1. Proofs, refinements, complements

6. Proofs of Theorems 1-3

Let A(z) be the sum defined by (1). We ignore the question of convergence for
the moment, either assuming it or else considering only x € Q, where the sum is
finite. We calculate:

22 A(1/z) — Alz) = Z max(0,a + bz + cx?) — Zmax((), ax® +bx +c)
a<0 a<0
(all summations extend over (a,b,c) € Z* with b2 — 4ac = 5)
= Zmax((), az® + bz +c) —- Z max(0, az® + bz +c)
c<0 a<(
(here we have interchanged a and ¢ in the first sum)
= Z max(0, az® + bx +c) — Z max (0, ax? + bx + c)
c<0<a a<0<c
(because the terms with a and ¢ both negative in the two previous sums cancel;

note that ac can never vanish since 5 is not a square)

= Z max(0, az® + bz + ¢) + Z min(0, ax? + br + ¢)
a>0>¢ a>0>c
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{here we have replaced a, b and ¢ in the second sum by their negatives)

= ) (aa®+bz+0) (18)
a>0>c
(because max{X, 0) + min(X, 0) = X for any X € R)
=(@?+z-1)+(2*-2~1)
(because the only two polynomials az? + bz + ¢ with integer coefficients, discrim-
inant 5, and a >0 > care z? £z — 1)
=2z¢% —2

(this step is left to the reader).

Tt follows that the function A%(x) := A(z) — 2 satisfies the functional equation
2 A%(1/z) = A%(z) as well as the obvious invariance property A%(z +1) = A%(z),
and since A°(0) = 0 and every rational number can be reduced to 0 by a finite
number of iterations of the transformations £ — x4 1 and z — 1/ (Euclidean
algorithm), this shows that A%(z) = 0 for all x € Q. This proves our “First
surprise” for rational values of z. If we assume that A(z) is continuous (which
can in fact be proved in an elementary way), then we deduce that A(z) = 2 for
all real . Without this assumption, we at least deduce that the sum in (1) is
always convergent and that A(z) < 2 for all z € R. (Proof. If for some value of =
the sum either diverged or had a value bigger than 2, then, since all summands
are positive, there would be finitely many quadratic functions ¢ whose sum at z
already exceeded 2, and the sum of their values at a sufficiently nearby rational
number would also exceed 2, a contradiction.)

Now, to prove Theorem 1, we must replace 5 by an arbifrary non-square dis-
criminant D. The argument up to (18) remains the same and gives

PAp(i/z) - Ap@)= Y. (a2*+bato), (19)
b2 —dac=D
a>0>¢

but now we no longer know explicitly what forms [a, b, ¢] contribute to this sum.
However, there are only finitely many (independent of z), because the equation
D = b*—4ac = b +4]ac| bounds all three coefficients, so the right-hand side of (19)
is a quadratic polynomial in x. Moreover, it is easy to see what this polynomial is:
the coefficient of z2 is the number defined by the right-hand side of equation (3),
the constant term is the negative of this, and the coefficient of z is 0 (because for
every form contributing to the sum we also have a form with the opposite value
of b). In other words, we have

z?Ap(1/z) — Ap(x) = ap(z® — 1) (20)

for every D. Now the rest of the argument goes just like in the special case D = 5:
the function A%, (x) = Ap(z) — ap vanishes for z = 0 and satisfies the functional
equations A),(z + 1) = A} (z) and z2A4%(1/z) = A% (z), and from this it follows
as before that A% (x) vanishes for all rational arguments and therefore, assuming
continuity, for all real arguments.
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We now turn to B(z). The same calculation as for A(zx), but with all summands
cubed, gives

28B(1/z)-B(z) = Z (az’+bz+c)® = (2 +2—1)%+ (2% —2—1)% = 225 -2,

b?—4ac=>5
a>0>c¢

and from this we deduce exactly as before that the function B%(z) = B(z) — 2
vanishes at all rational and hence at all real values of z. (This time there is no
problem of continuity, since the series defining B(z) converges uniformly.) For
general D, however, things are not quite so obvious. The calculation up to (18) is
unchanged and gives

#°Bp(1/z) — Bp(x) = Pap(z) = Y. (az®+bz+c)*. (21)

b%—4ac=D
a>0>¢

It is clear that the right-hand side is a polynomial of degree 6, even (replace b by
—b in the sum), and anti-invariant under P(z) — 28P(1/z), so it has the form
Py,p(z) = Bpz° + Bpz* — Bpz” — p (22)
with Bp given by equation (10) and some B}, € Z. But to complete the argument,
we have to know that (7, vanishes. For any particular value of D this can be
checked by numerical calculation, e.g. for D = 8, 12 and 13 we find
Pig(@)= (22 -2+ (22 -1 + (2? + 22 - 1)® + (2? — 22 — 1)°
=112% — 11,
Pyia(z) = (2® — 3)3 + (322 — 1)% + (222 + 22 — 1)3
+ (22 — 22— 1)3 + (2% + 22 — 2)3 + (4% — 22 — 2)°
= 46z° — 46,
Pris() =@ +z~-3P° + (2 -2 33 + (822 +2-1)°
+ (82 —z— 12+ (@? + 3z —1)® + (22 — 32— 1)°
= 58z° — 58,
but it is not immediately clear why this should always happen. The argument that
it is so is the key to the whole phenomenon discussed in the paper and, as we will

see in Part III, also to the relationship with the theory of modular forms. From
equation (21) and the fact that Bp(x) is even and periodic, we deduce

Pyplx+1)— P4,D($)

o+ 1)SBD(%+1) — Bp(z+1) - a:GBD(%> + Bo(z) (23)
= @+1)°Bo (1~ —= ) ~2*Bp(5 +1) =2°Pup(3 +1).

A direct calculation shows that the polynomial z% — 1 satisfies the functional
equation P(z + 1) — P(z) = z®P(1 + 1/x) but that the polynomial z* — z2 does
not, so from (22) and (23) we deduce that 8, = 0, and we conclude as before.
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Turning now to the bth powers, we see clearly what changes: the calculation
for C(z) is just the same as for A(z) and B(z), but this time we find

(®+z—-1)°+ (22— 2 —1)° = 22"° + 102 — 302° + 302* — 1022 — 2 # 5 (z'" - 1),
so C{z) — s cannot vanish identically. For general D we find

z'%Cp(1/z) — Cp(x) = Pep(z):== Y, (e’ +bz+c)®
b?2 —4ac=D
a>0>c¢

where Ps p(z) has the form
Ps.p(z) = vp(z" — 1) + vp(z® — 2°) + 5 (2® — 2*) (24)

with vp as in (13) and some coefficients v, and «7,. The same calculation as
in (23) shows that Ps p(z + 1) = Ps p(z) + 9P p(1 + 1/z), and substituting
(24) into this we find that v}, = —3vp or (setting ép := v /10, which is always
an integer)

Ps p(z) =vp(z'® = 1) +106pz*(z® —1)® = vp(z'* — 1)+ 0p(Ps 5(z) — 2(z** — 1)),

and by the now familiar argument this implies equation (14) with ®(z) := C(z).
The argument obviously works for all k. For & and D as in Theorem 3, we set

Pip(@) = Y, (as®+bz+c)f ' eZlz] (25)
b? —dac=D
a>0>c¢

Then the same calculation as before shows that Fj. p and Py p are related by
#*2F. p(1/z) — Fy.,.p(z) = Pe.p(x) (26)

and that P, p belongs to the (finite-dimensional) vector space ﬂﬁg'k_2 of all poly-
nomials satisfying the functional equation P(zx + 1) = P(z) + z2*72P(1 + 1/z).
It follows that Fj p(x) is a linear combination of finitely many (more precisely:
dim Qﬂjk_z) functions of = depending only on k, the coefficients being simply the
coordinates of the polynomial Py p with respect to some fixed basis of the space
QH;L w—g- Lhis proves Theorem 3, with a relatively explicit description of the linear
combination whose existence it asserts.

7. Modifications when the discriminant is a square

When D is a square, Theorems 1-3 with the definitions given earlier do not hold. It
turns out that they remain true if we modify the definitions. We assume throughout
the section that D = m? is a positive square, and denote by A} (z), B (z) and
F} p(zx) the expressions on the right-hand sides of equations (2), (9) and (15). We
will see that the “right” definitions of Ap, Bp and Fy p in this case are the sums
of these expressions with simple correction terms. Let us start as in Part I with
some experimental data. We consider the simplest case D = 1 and compute the
sums in {2) and (9) for some simple rational values of z. The functions defined by
(2) and (9) are periodic and even, so we can restrict to values between 0 and 1/2.
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If = has the form 1/n with n positive, then one can show without too much trouble
that the quadratic forms @ = [a, b, ¢] of discriminant 1 with ¢ < 0 and Q(z) > 0
are given by @ = [-7,1,0] with r ranging from 1 to n — 1. The corresponding
values of Q(z) are (n — r)/n?, so we find

(3 =2 () =" FG) =S G ) =

For the other fractions in [0, %] with denominator less than 8, we find the values

Q |aem Q |aeem Q |eem
[-1,1,0] | 6/25 [-1,1,0] | 10/49 [-1,1,0] | 12/49
[-2,1,0] | 2/25 [—2,1,0] | 6/49 [—2,1,0] | 3/49
[—6,5,—1] | 1/25 [-3,1,0] | 2/49 [—6,5,—1] | 2/49
[-12,7,-1] | 1/49 [-10,9,—2] | 1/49

and hence
* _ % _ 9 * —
AR =% Bi) == 40 -%
Bi(3) =z A3 =% Bi(3) =01
Looking at all this data we are led to conjecture the following formula for A}(x)
and B (z):

Proposition. Let x be a real number between 0 and 1. Then

> Q@) =3 -z +1) - i), > QP =iz -1)? (27)
disc(@Q)=1 disc(Q)=1
a<0<Q{(x) a<0<Q(z)

where k(z) = 1/¢? if x = p/q with (p,q) = 1 and x(zx) = 0 if x s irrational.

We will give a direct (and quite amusing) proof of this in §10 using continued
fractions. For now we continue to more general square discriminants. We want
to find a modification of Ap(z), Bp(z) and more generally Fi p(x) such that
Theorems 1-3 remain valid. Moreover, in order for the formulas (7) and (11) to
remain true for D = 1 (the only square discriminant which is fundamental; we
have not yet defined Lp(s) for D not fundamental), the values of the constant
functions A, (z) and Bi(z) should equal oy = ~5Li(—1) = —5¢(—1) = & and
B1 = L1(—3) = ((—3) = 135- In view of (27) this means that we have to define

. 1 1 . 1
Ai(e) = Ai(2) - 5Ba(a) + 5r(2),  Bile) = Bi(a) - 7Ba(x)
for 0 < z <1, where

1 1
By(z) =2® -z + & ]B4(x)::c4—2z3+x2—-§6
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denote the 2nd and 4th Bernoulli polynomials. (We use the letter B because Bp(x)
has already been assigned a different meaning.) For = not between ¢ and 1, we
must replace Br(z) (k = 2, 4) by Bx(x) = Bi(z — [z]), the periodic version of the
Bernoulli polynomial, in order to achieve the desired periodicity. For larger square
values of D we find experimentally that the right formulas are

Ao () = Aipala) - %Bz (ma) + %m2ﬁ(:v),

2 (28)
B2 (.’L‘) = B:ﬂ (.’E) - ZB;}(TYLII)),
and similarly for higher powers
1.
Fim2(x) = FY 2(%) — E]Bk (mz) (k>2). (29)

Claim. With these definitions, Theorems 1-3 remain valid also for square values
of D.

Proof. We indicate the argument briefly. The main point is to prove that the
relation (26) remains true for D = m? if we define Fy, p by (29) and P p by

Py (m) = Pl s () + % (]B%k(mx) — %2R, (-’3)) : (30)

where P} ;(x) denotes the polynomial on the right-hand side of (25). Indeed, the
same argument as in the derivation of (18) shows that

G2 (12) — Ff o (%) = Z max(0,Q(x)* 1) — Z max(0, Q(z)*1)

c<0<La a<0<c
=P pa(@) + Y, max(0,Q(@)* ) — } max(0,Qz)")
c<0=a a<0=c
= P} 2 (@) + > _{max(0, |ma| — n)*" — max(0, |ma| —na®)*'}.

n>1
Now applying to ¢t = |mz| and ¢ = |m/z| the identity

Zmax(O,t —n)f-1l = w t=>0)

n>1

[Proof: both sides vanish if 0 < ¢t < 1 and increase by t*~! when we replace ¢ by
t+ 1], we find
xzk—QFI:.,m? (1/211) - F]:‘:nﬂ (37)
B (ma) — By(mz) __pe_aBe(m/) — Bu(m/x)
k k '
In view of the definitions {29) and (30) this is the desired equation (26), at least

for k > 2, but in fact also for k = 2 because the extra term «x(z) in (28) satisfies
?k(1/2) = k().

= PItmﬂ (iL‘) +
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To complete the proof, we have to consider the extent to which equation (26)
characterizes Fy p. In proving the constancy of (for instance) Ap{(z) for non-
square D, we used that the coefficient of 22 in (19) was equal to the same num-
ber ap, given by (3), as the value of Ap(0), so that the function A}, = Ap — ap
was not only invariant (up to automorphy factors) under SL(2,Z), but also van-
ished at 0 and hence at all rational numbers. Here this would not be true without
the second correction term %Dm(x) in (28). Indeed, denoting by a7}, the expression
defined by the right-hand side of (3) when D is a square, we find from (30) that
P, p(x) equals ap(z? — 1) with ap = o}, — & + 3D, so Ap(0), if Ap(z) is to
be constant, must have this value ap, and this is achieved precisely by including
the second correction term in (28). In general, the freedom on rational numbers of
a function F on R satisfying F(z + 1) = F(z) = 22" F(1/z) is given precisely by
multiples of the function x(z)", since this function satisfies the given functional
equations and the values of such an F' at all rational points are determined by its
value at a single point. But for £ > 2 the function Fy p(z) is continuous (because
the series defining F 1, converges uniformly and By, () is also continuous), so the
multiple of the (a priori possible, but discontinuous) extra term x(z)*~! must be
Zero. 0

We have shown in particular that the equations Ap(z) = ap, Bp(x) = Bp
and (14) (with the same function ®(z)} as before) remain true for square values
of D. Here is a table of the numbers ap, Bp, yp and dp for some small squares
(including the case .D = 0 for which the function Fj p will be defined in the next
section):

D 0 1 4 9 16 25 36
120p |—3 5 35 125 275 605 875
1208p | 3 1 121 2161 15481 78001 261481
252yp | —3 —1 251 16631 389339 4590935 33565139
1200p | 0 1 -56 9 704 1705 —504

8. The average value of Fi, p(x)

‘We now turn to the evaluation of the average value of the even periodic function
Fy p. The answer was stated in §5 as Theorem 4 in terms of a special value of
the L-function Lp(s), but so far we have defined this only for fundamental dis-
criminants D. We first explain how the definition is extended to arbitrary positive
discriminants, and then describe the (very simple) proof of the theorem.

We discussed in §2 the definitions and main properties of the functions Lp(s)
and (p(s) = ((s)Lp(s) defined by equation (4) when D is the discriminant of a
real quadratic field K. In particular, the values of these functions at negative odd
arguments § = 1 — &k (k > 2 even) are rational numbers, and the values at the
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corresponding positive arguments s = +k are rational multiples of a power of 7
times the square root of D, because of the functional equations (5). In [Co3], Henri
Cohen defined a number-theoretical function H(k, D) for all positive even k and
all nonnegative integers D satisfying the two properties:

(i) H(k,D)= Lp(1—k) when D is 1 or the discriminant of a real quadratic field,
and
(i) Y p_oH(k,D)g" is a modular form of weight k + § on I'g(4).

(The definition of a modular form of half-integral weight will be recalled in §14.)
The number H(k, D) is defined as ({1 — 2k) if D = 0 and otherwise as a certain
multiple of Lp, (1 — k), where Dq is the discriminant of the field Q(v/D). More
specifically, if D is congruent to 2 or 3 modulo 4, then H(k,D) = 0, while if D
is congruent to 0 or 1 modulo 4, then D = Dy f? for some positive integer f and
H(k, D) is defined as the product of H(k, D) = Lp,(1 — k) with a simple Euler
factor depending on the prime factors of f, the simplest case being

H(k, Dop?) = (p2k_1 - (%)p’f‘l + 1)H(k,Do)

(Dp fundamental, p prime).

(31)

In [Z3], I gave intrinsic definitions (i.e., not depending on the representation
D = Dy f?) of two Dirichlet series Lp(s) and (p(s) for every D, satisfying the func-
tional equations (5) and (6) and such that the special value of Lp(s) at s=1—k
agrees with Cohen’s function H(k, D) for every positive even integer k and positive
discriminant D. The definition of {p(s) is

1
(n(s)= Y, Z O.0) (32)
QeQp/T (x,y)eZ?/Tq ’
Q(z.y)>0

where Qp denotes the set of all Q = [a, b, ¢] € Z3 with discriminant 2 — 4ac = D
(now thought of homogeneously as quadratic forms Q(x,y) = az? + bry + cy?
instead of quadratic functions Q(z) = ax? + bz + ¢), T is the group PSL(2,7),
acting on quadratic forms in the usual way, and I'g = {y € T' | Qo-y = Q} denotes
the stabilizer of @ in I', which for D positive and non-square is always an infinite
cyclic group, its generator corresponding to the basic solution of Pell’s equation
or to the fundamental unit of the quadratic field Q(+v/D). If D is the discriminant
of a real quadratic field K, then the first sum corresponds to the sum over the
ideal classes of K and the second sum equals ), N(a)~° with a running over the
integral ideals in a single ideal class, so the new definition coincides with (4). If
D is a positive non-square, then {p(s) is a simple multiple of Cax m)(s) and the
function Lp(s) := {p(s)/¢(s) is holomorphic and agrees at negative arguments
s =1—k with Cohen’s H(k, D). If D = 1, then {p(s) = ((s)? and Lp(s) = ¢(s),
and finally for D = 0 one has {p(s) = ((s)((25 — 1) and Lp(s) = {(2s — 1).
Using this definition, we can give quite an easy proof of Theorem 4 for all
discriminants D > 0. We first observe that the double summation over Q € Qp/T



From quadratic functions to modular functions 1165

and (z,y) € Z%/Tq in (32) can be combined into a single sum:

(p(s) = > —Q_(;—)s
@Gaye@pxzyr Y
Q(z,y)>0
Now observing that every non-zero element of Z? is SL(2, Z)-equivalent to a unique
point of the form (m 0) with m > 1 and that the stabilizer of (m,0) is the group
I'so generated by ( ) we can rewrite this as

CD(S)=Z > (10)s ey 3 Q(110)s {(2)ZND(TL)

m=1 Q€Np /I QeNp /T
Q{(m,0)>0 Q(1,0)>0

where Np(n) denotes the number of integers b modulo 2n with 62 = D (mod 4n).
(The last step is obtained by writing Q = [n, b, (D —b?)/4n] with b2 = D (mod 4n)
and noting that the action of I'y, corresponds simply to shifting b by multiples
of 2r.) On the other hand, the average value of Fy p{x) is given by

(Fr,p)av = /0 Fr,p(z)dz = > Br(Q);

Q=la,b,c]€Np Toe
a<Q

where B:(Q) = [ max(0, @(z))*~'dz. Making the substitution z = :—"—J-g—f;‘[—ﬁ, we
find
1 ! 1 I‘(k)I‘(l)
— k—1/2) 1—k - k=l g 2
/Bk(Q) cxD Ial s Ck 92k—1 /;1(1 i ) dt 92k—1 F(k-{— %) '
and hence, since the number of @ € Qp /T with first coefficient a = —n < 0 is
precisely Np(n),

(Pi,p)av = cxDF /23 NDf(cn) exD* 2 C](32(»71:)) ; ?()1(1:2:)) ’

n=1
where the last equality follows from the functional equation (5). This completes
the proof of Theorem 4.

If D is a square and Fy p is defined by (29), then Theorem 4 still remains
true, since the above calculation shows that the average value of Fy; ,(z) has the
expected value and the correction term —By(mz)/k in (29) (as well, of course,
as the second correction term x(z) in (28), which is non-zero only on a set of
measure 0) has the average value zero. Finally, for D = 0 we simply define Fy p(z)
as the constant function

Fio(z) = %gu _k) (all 7 €R). (33)

(This definition will be needed in §14, where it will be shown that the numbers
Fy p(x) are the Fourier coefficients of a modular form of weight & + L for every
z € R.y Then the average value of Fj ¢ is also 2( (1 — k), and this agrees with
Theorem 4 because (p(s) = {(s)((2s — 1).
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9. Sums over quadratic forms in an equivalence class

For each discriminant D, the set Qp of quadratic functions [a, b, c] of discrimi-
nant D decomposes into a finite number of orbits Ay, ..., Ay of classes under the
action of the group I' = PSL(2,Z). When D is the discriminant of a real quadratic
field K, for instance, h is equal to the class number of K, the correspondence be-
tween ideal classes and I'-equivalence classes of forms being given by assigning
to each ideal class the class of the norm form of an ideal belonging to it. It is
reasonable to ask whether the construction studied in this paper still works when
we sum only over the quadratic functions or forms in a single class. The answer
is that they do, but only after certain symmetrizations with respect to two invo-
lutions on the set 0 p /T of classes. We explain this very briefly. We will consider
only the case of non-square discriminants. This is not a serious restriction, since
the division into classes when the discriminant equals m? is simply a question of
congruences modulo m and not very interesting, and has the advantage that we
do not have to worry about the extra complications which were discussed in §7.
For each class A € Qp /T and each (not necessarily even) integer k > 2, define

Fia@= Y max(0,(az®+bz+c)*). (34)
la.b,cle A
a<0

Then Fy p(z) is the sum of the F} 4 with A ranging over Qp /I, but Theorems 1-3
are not true for each F 4 separately, e.g., the functions Fy ,(z) and Fy 4(x) are
not constant in general. The reason is that in the derivation of (18) we had to
replace the form Q by —@Q at one point, and —@ in general belongs to a dif-
ferent I™-equivalence class than Q. For the same reason, the polynomial P 4(x)
defined by restricting the summation in (25) to |a,b,c] € A does not satisfy the
functional equation on which the argument of §6 depended. However, if we set

~A=1{-Q| Qe A} and
Fio a(z) = Fi 4(2) + (=1)"F{ _ a(2),

. ke (35)
P a(x) = Pga(x) + (=1)"P; _a(),
then the same argument as in §6 establishes the identity
&2 4(~1/x) — Fy, a(z) = Pr,a(x) (36)

in place of (26). (Note the minus sign in the first argument, which was omitted
in (26) because the functions Fy, p and Py p are even. We could if we wished restrict
here also to even or odd functions by symmetrizing or antisymmetrizing with
respect to the seeond involution A +— A’ := {[a,—b,d] | {a,b,c] € A} on Qp/T,
but there is no particular reason to do so.) Now everything works as in the previous
case, except that we have more freedom, since we can now treaf both even and odd
values of k and both even and odd polynomials. Equation (36) and the periodicity
of Fy 4(x) imply that the polynomial P = Py 4 satisfies the period equation

P(z) = P(1+2)+ (z + 1)2’*-213(;%). (37)



From quadratic functions to modular functions 1167

For k = 2, 3, 4, 5 and 7 the only solutions of this equation are the multiples of
the polynomial £2*~2 — 1, so with the same argument as in the proofs of Theo-
rems 1 and 2 we find that each of the functions Fy 4 is constant for these values
of k. Finally, the value of this constant (and more generally, the average value of
the function Fy 4(z) even when it isn’t constant) can be calculated by the same
method as in §8 and is equal to a simple multiple of the value of the partial zeta
function of A (= the inner sum in (32)) at the argument s = 1—k. Observe that the
constancy and non-vanishing of (for instance) Fj 4 has a nice corollary: for every
real number z and every I'-equivalence class A there is at least one @ € A (in-
finitely many if z is irrational) such that x lies between the zeros of the quadratic
function Q.

The period equation (37) is intimately related to modular forms, as will be
recalled in §11 (for instance, the integers k = 2, 3, 4, 5, 7 where its solution space
is one-dimensional are just the values of £ > 1 for which there are no cusp forms
of weight 2k on SL(2,Z)), and the functions Fy 4 and P, 4 can also be related to
modular forms (cf. §13). The polynomials P, _4(z) also have an interesting apphi-
cation to the problem of classifying “rational period functions” (rational functions
satisfying the functional equation (37) for some negative k), as explained in {ChZ].

10. Connections with Diophantine
approximation and continued fractions

So far our analysis of the function A(x) and its generalizations was based on the
functional equation (26). In this section we briefly discuss a more direct approach,
in which we look directly at the quadratic forms of a given discriminant for which
a given real number z lies between their two real roots. We will consider only two
cases: the case when D = 1 and k = 2 or 4, where we will give an elementary
direct proof of the proposition formulated in §7, and the analysis of the special
forms which appeared in the table given in §1 for D =5, z = 1/7.

We start with the proof of equation (27). Let z be a real number between 0
and 1 and write x as a continued fraction

1
z:———l———z[O,nl,ng,...] (38)
Mty
ng + —
with ny,n,,... > 1. (We suppose for the moment that = is irrational, so that the

continued fraction does not terminate.) Define real numbers dg,d;,0ds, ... induc-
tively by

50 = 1, 61 =Zx, 6j+1 =0j-1 TL]'(SJ‘ (] _>_ 1) (39)

Note that n; = [6;~1/§;], so that 1 = §y > §; > d2 > ... > 0. The successive
quotients §;1/8; are just the continued fractions [nj, nj11,...], while the numbers
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d; themselves are given by d;11 = |p; — g x| where p;/q; = [0,n1,...,n;] is the
jth continued fraction approximation to z.

It is an exercise which we leave to the reader to check that the values at = of
the quadratic functions @ = [a, b, | of discriminant 1 with @ negative and Q(z)
positive are precisely the numbers §;(d;_1 — nd;) with j > 1l and 1 < n < n;.
It follows that Aj(z), the expression given by the first sum in (27), is equal to
> j>1€j, where

n i

=Y 8;(8;-1 — nd;) = (n;6;)(8;—1 — L(ny +1)4;).
n=1

Using (39), we can rewrite this as
&5 = §(85-1 = 0541) (851 — 8 + 8j11) = 3(07 1 — 874 + ;0541 — 8;18),

and this implies that the sum }_; £; telescopes:

J
> &j = 3(88 — 0o + 03) — $(85 — 656,41+ 6741)- (40)

Letting J — oo in (40) and observing that §; tends rapidly (indeed, exponentially
rapidly) to 0, we deduce

Al(z) = ZEJ_ 102 — 661 + 63) = 3(1 — z + 27),
j=1

which is the first of equations (27) in the case when z is irrational. If z = p/q is
rational, then the argument is the same except that the continued fraction (38)
termmates at some n ;. Then d; =1/q and d741 = 0, so the right-hand side of (40)
equals 3(1 — z + %) — 1¢~2, proving the first of equations (27) in this case also.
For the sums of the cubes the argument is similar, but the calculation is messier:
we have Bf(z) = } ¢} with

n;

= 3 8% (8-1 — nd;)® = —(n0;)* (202) + (n;8;)%(826;-1 — 16%)

n=1

= (n36,)* (387871 — 307051 + §67) + (n30;) (8785, — 38707_1 + 3978;1)

= 307021 (8j-1 — ;)% — $071185(8; — bj1)°

and the series again telescopes:

Z = 1626280 — 01)2 — 162,,6%(85 — bu41). (41)

Letting J — oo, we obtain B (z) = 1z?(z — 1)? as claimed. Here the rational
values of x do not behave differently since if J is the length of the continued
fraction then §; > 6;4; = 0 and hence the second term in (41) vanishes. If we
attempted to repeat the same argument for fifth powers, we would simply find an
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expression which did not telescope, so that we would fail to get a closed formula.
for the sum Cj(z) = Y. Q(x)°. (But it would be pretty hard to see from that
point of view that the true reason for this failure is the existence of cusp forms of
weight 121)

The computation just given, although not completely obvious, was relatively
easy because it was possible to describe in closed form the quadratic functions of
discriminant 1 with g < 0 < Q(z) in terms of the continued fraction expansion
of z. For non-square discriminants it is far less clear how to do this. However,
in studying the functions @ arising in the table given in §1 for the special case
D =5, z = 1/x, it became apparent that there was in fact a strong pattern.
Specifically, each quadratic function @@ which appeared on the list was obtained
from the preceding one by applying a fairly simple element of SL(2,Z), and using
this observation it was possible to write a computer program which generated all
of the Q’s very quickly. For instance, the 30th function () turns out to be the
polynomial

Q(z) = — 535055621994441675779>
+ 340626988278096109055¢ — 54212468934964085845

of discriminant 5, with Q(1/7) =~ 9.31 x 1071°, T have not yet been able to find
a complete description of all the functions @ on the list, but a partial (empir-
icall) description is that the functions Q) occurring are all of the expressions
0% + 68,0541 — 62, and some of the expressions 67 —§;d;1— 067, ;, where the linear
forms 6; € Z + Zzx are defined as at the beginning of this section by the continued
fraction expansion of ¢ = 1/m. If this is true, then the exponential decay of the §;
explains the rapid convergence of the series A(x).

Part ITI. The modular connection

11. Periods of modular forms

For an even integer n > 0, denote by 9, the set of polynomials P{x) of degree
< n and by 20,, the subset of polynomials satisfying the period equation

" z
P(z) = P(1+z)+(z +1) P(Hl). (42)
Note that the group I' = PSL(2,Z) acts on U, by
nf0E+b
P(@) = (Pl-)(@) = (ez +d)"P( )
for v = (‘c’ 3) € I', and that (42) can be rewritten in the form P{(1-T —T") =0,

where T and T” denote the generators { (I) i ) and ( ; (1) ) of I'. (Here we have extended

the action of the group I to an action of the group ring Z[T'] in the obvious way.)
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Tt is an (amusing) exercise to check that
Pc %, <= P|(1+8)=P|(1+U +U? =0,

where § = ((1) _01) and U = (i _01) are the standard generators of T" of order 2
and 3. (Hint: We have T = US and T’ = U?S, and if the polynomials P|(1+ S)
and P|(1+ U + U?) coincide then they must both vanish since UL, = {0} for
n > 0.) It is also easy to check that if 20, (resp. 20;,) denotes the subspace of 20,
consisting of even (resp. odd) polynomials, then 25, = 25} @ 20 (i.e., the even

and odd part of a polynomial belonging to 20,, again belong to 20,,) and that
P et « Pz +1) = P(z) £2"P(1+1/z);

in particular, the notation agrees with the notation 20, , used at the end of §6.
The basic property of 23,, is

Pe%,, P(x)=F(z)-z"F(—1/z) for some periodic F

43
= Pe,. (43)

(Here “periodic” means periodic of period 1, 1.e. F(z+1) = F(x).) This is precisely
the property which we used in §6 and §9 to deduce that Prp € 204, , and
P4 €W s.

The theory of periods says that there is an intimate connection between the
spaces 2, and modular forms on I'. Recall that a modular form of weight &k
on T' (k a positive even integer) is a holomorphic function in the complex upper
half-plane $ = {z € C | 3(z) > 0} satisfying the functional equation

_ . —kefAZ+D
1) = (Flen(e) = (e + ) F(5) (44)
for all matrices v = ('c‘ Z) € I' and having a Fourier expansion of the form
f) =) amg" (g:= ). (45)
n=0

In view of the fact that (45) already forces the T-invariance of f and that 7'
and § generate I, it is sufficient to require (44) only for the matrix v = 5, where
it takes on the simpler form f(—1/z) = 2% f(z). We denote by 9 the space of
modular forms of weight k£ on I" and by &, the space of cusp forms, defined by
the additional requirement that ag = 0 in (45). The simplest and most famous
examples of modular forms on T are the Eisenstein series
_ B - n
Gr(z) = ok + Z Or-1(n)g
n=1
for k > 4 (here By is the kth Bernoulli number and o,(n), as earlier in this
paper, denotes the sum of the vth powers of the divisors of an integer n) and
the discriminant function A(z) given by the Fourier expansion (17), which belong
to My and to S o, respectively. The function Ga(z) is not a modular form, but is
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related to A by —48wiG2(2) = A/(2)/A(z) and is “nearly modular” of weight 2

(more precisely, it satisfies (G2l|27)(z) = Ga(2) + 4= 5 instead of (44)). The

space MMy, is finite-dimensional, with dimension given by

. S L7V if k=2 (mod12),

dim Iy, = 1 := { %k/ 12} +1 otherwise.
This implies relations like Gg = 120G3 and A = 8000G — 147G2. The space My,
splits as (Gy) ® &y, for all k > 4. Tt is 1-dimensional (spanned by Gy ) precisely for
five weights k£ = 4, 6, 8, 10 and 14, while ;5 is spanned by G2 and A.

On the other hand, an elementary calculation shows that 29, is 1-dimensional,
spanned by 2" — 1, for n = 2, 4, 6, 8 and 12, and is 3-dimensional, spanned by the
three polynomials

201, 28— 32%+ 32 — 22, 42% — 2527 + 422° — 254° + 4a, (46)
for n = 10, and more generally, that
dimQH;:_2 =ng, dimW, ,=n;—1
for all integers k > 4. This suggests that there might be canonical isomorphisms
T M W, 7T B Wi,

Such isomorphisms are given by the theory of periods. Let f be a form in 99, with
Fourier expansion given by (45). We define the Eichler integral of f by

o

f(z) — Z _S_]giL)leZwinz

n=1
and set

re(z) = f(z) — 22 f(=1/2).

If f is a cusp form, then the (k — 1)st derivative of f is a multiple of f, and
from this and the modularity of f it follows by a simple calculation that the
(k — 1)st derivative of r¢(z) is 0 and hence that r; € Dy_,. Equation (43) with
P=vr; F= f now implies that the polynomial r 7(2) belongs to W5, and the
maps ¥ : &5 — Qﬁf_z are defined by sending f to the even or odd part of the
polynomial 7¢(z). For f not cuspidal the situation is slightly different because the
(k — )st derivative of f differs from f by a constant, and hence r; as defined
above is no longer a polynomial. However, a simple calculation shows that it still
is a linear combination of powers 2% with —1 < d < k — 1, so that its even part
is still a polynomial belonging to U)o and hence to Wy _9, and in this way the
map 71 extends to all of My. It sends the Eisenstein series Gy, to a multiple of the
polynomial X*~2 —1 € 29} .
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12. Eichler integrals on the real line,
and generalized Dedekind symbols

As an example of what we just explained, take the cusp form A € G;5. We have

A - T\N) orinz A X 1
K=y Wemine Rz)—29A(-2) =rafe) (e,
n=1
where ra belongs to 2010 and hence is a linear combination of the three func-
tions (46). In fact it has the form

691 o 2(22 = 12422 - 1)(22 —4)
- 0_q_ 9 2 2 143
ra(z) =wy (z 1 36 (z#—1) ) + dw_ 1680

for two real numbers wy and w_ (called the periods of A). On the other hand,
it is known that 7(n) = O(n®) (or indeed O(n®) for any ¢ > 11/2, by Deligne’s
theorem), so the series defining A converges on the real axis and we can write its
value there as w, @ (z) + iw_d_(x) with

&, (z) = w_ Z T(n) cos(2mnx), @_(x)= Z rln) - sin(2mnz).  (47)

n=1 n=1

Then ®,(z) is a continuous (indeed, 4 times differentiable) even function on R
satisfying ’
@ (z+1)—24(2) =0,

1 691

10 10 2.2 3
il T —1- = -1
x <I>+( ) o (z)== 1 35 % (= )

and ®_(z) is an odd continuous function satisfying similar transformation laws.
Note that the periods w. are only canonically normalized up to rational factors.
We have normalized wy in such a way that ®(0) = 1. But then equations (48)
imply by induction on the size of the numerator and denominator that ®,.(x) is
rational for every rational value of x, with a denominator dividing the 10th power
of the denominator of z. In other words, the function on Z? defined by

(48)

O r(n)  2mmp
D, (p,q) = E Z STy cos ——q— (49)
n=1

takes on integer values. This function satisfies the homogeneity, periodicity and
parity properties

Dy (kp,kq) = k"D, (p,q), D+(p+4,9)=Ds(p,q) =Di(~p.q), (50)
and the reciprocity law
691
Di(p,q) — D+(q.p) =¢'° —p"* - —36—12"’<12(¢;12 -p%)?, (51)

and is uniquely characterized by these properties (and the normalization
D(1,0) = 0). Similar properties apply to the function D_(p,q) = ¢'°®_(p/q),
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except that it is an odd function of p and satisfies the reciprocity law

D_(p,q) + D—(g,p) = mlﬁpq(q2 —p%)2(p" — 4¢°)(4p® — &°). (52)

{The normalization of w_ was chosen so that this function, too, takes on infteger
values with no common factor.) We call the functions AL{p,q) the even and odd
Dedekind symbols associated to the modular form A, because they are very analo-
gous to the classical Dedekind sum or Dedekind symbol (which is also periodic in p
and satisfies a reciprocity law like (52)). Actually, this is more than an analogy:
the construction described here for A, which obviously can be carried through for
any other cusp form on SL(2,Z), also can be made sense of for Eisenstein series,
including the “nearly modular” Eisenstein series G2, and the odd Dedekind sym-
bol attached to Gy is precisely the classical Dedekind sum. (The odd Dedekind
symbols attached to Eisenstein series of higher weights are classical analogues of
the Dedekind sum involving higher Bernoulli polynomials rather than B;, while
the even Dedekind symbol of Gy is the uninteresting function (p,q) + ¢*~2.) We
do not carry this out here, since the details are a bit technical and we have strayed
somewhat from the main theme of this paper. We do, however, give a small table
of values of the two Dedekind symbols associated to A (restricting to p and ¢
coprime and 0 < p < ¢/2, as we can do by virtue of the homogeneity, periodicity,
and parity properties):

g|p| Di(pa) D-(p,9) P Di(p,q) D-(p,q)
10 1 0 1| 178460401 84240
2|1 —1049 0 2| —60349199 106920
31| —20399 20 3| —259357199 48600
4|1 12076 405 8|1| 766572976 289170
5|1] 3132025 3564 3| —765788624 298890
2 | —8012423 2268 9 |1| 2690752401 852720
61| 30839551 20020 2| 647603601 1321320
4| —3345823599 473640

The relationship between Dedekind sums and the period functions and Eichler

integrals of modular forms has been observed by several people. It is discussed in
detail in [Fu].

13. The modular explanation of Fy, p(x)
In terms of the notation just introduced, the assertion made in §5 about the

function ®o(z) = (z) — 20 is simply that it is a multiple of the function ®.(z)
defined by (47), the multiple being determined by any of the values of ®(x) given
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in §4 to be —X = —g%. The proof is by now evident: the proof of Theorem 3
given in §6 shows that ®y(x) satisfies the same functional equations as in (48)
except with the polynomials on the right multiplied by ~\, and these functional
equations together with the continuity obviously determine the function uniquely.
However, this is an ad hoc explanation and not very satisfactory, and one can ask
whether the second term in (16) has a natural interpretation as the even part of
the Eichler integral of some canonical cusp form of weight 12 associated to the
discriminant D. In fact such a form exists, and is very simple.
To any k > 2 and any positive discriminant D we associate the function

fen) =Dz S L (eg), (53)

2
v (az? +bz+¢)

where the sum is over all quadratic functions with integer coefficients and discrim-
inant D and Cj, is an unimportant normalizing factor. It is easily seen that fir p
is a cusp form on SL(2,Z) of weight 2k. These functions were introduced in the
appendix of [Z1] for no particular reason other than their natural definition and
analogy to Eisenstein series (in which one sums the —kth powers of all linear func-
tions rather than of all quadratic functions of given discriminant). In [KZ1] and
[Ko2] they were shown to have a more intrinsic meaning in terms of the theory of
modular forms of half-integral weight (we will discuss this in more detail in §14),
and in [KZ2] their even period functions were shown to be given by the formula

+ CD(l ) X2k—1 —1)— 4
r (fr.0)(®) = 51— 2k)( ) = Prx,p(z) (54)
for all D (even including square D, with the definition of the polynomial P, p(z)
modified as in (30)). In view of (26), this means that the function Fj p(z) on R
(defined by (15) for non-square D and by (29) when D is a square) has the Fourier
expansion

Frp(z) = gg(ll o) + Z:J) akzi( 1) cos(2mnz), (55)

where a; p(n) is the nth Fourier coefficient of the cusp form f; p.

The proof of (54), apart from (rather a lot of) technical details, is very simple.
One of the standard formulas for the period polynomial r;(x) of a cusp form
f € Gy, is as a multiple of the integral fo 2)(z — z)**~2dz (taken along the
positive imaginary axis). If we apply this deﬁmtmn to f = frp, look at the
integrals coming from each summand separately (which we are not quite allowed
to do; this is one of the technical details), symmetrize with respect to ¢ — —x
(since we want only the even period polynomial) and combine the integrals coming
from the quadratic functions [a, b, ¢} and [a, —b, ¢}, then we obtain a sum of terms

of the form
fo's ( .17)2"‘ —2
/oc (az2+bz+c)kd

where the integral is now over the whole imaginary axis. But this integral is zero by
the calculus of residues unless the zeros of the quadratic function az? +bz+¢ lie on
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opposite sides of the imaginary axis, and therefore the (main contribution to the)
even period polynomial of fi. p is given by a finite sum over quadratic polynomials
[a,b, c] with diseriminant D and @ > 0 > ¢, as in (25). It is also possible to
prove (55) directly, without considering (54) or making use of the results of [KZ2]:
the computation of the constant Fourier coefficient of the periodic function Fj, p(z)
was given in §8, and a rather similar calculation permits one to write the higher
Fourier coefficients in a form which can be compared conveniently with the Fourier
expansion of fi p(z). The details are left to the interested reader.

All of these modular calculations carry over to the case of equivalence classes
of quadratic forms which was discussed in §9. For each such class A one defines a
cusp form f 4(z) € Gay by restricting the summation in (53) to [a,b,c] € A, and
then by taking appropriate symmetrizations and antisymmetrizations one can get
both the odd and even parts of P} 4(z) (resp. F 4(x)) as odd or even parts of
the period polynomials (resp. Eichler integrals restricted to the real line) of these
cusp forms. We refer the reader to [KZ2] for the details.

14. The relation to modular forms of half-integral weight

Modular forms of half-integral weight have been known for a long time, the simplest

example being the Jacobi theta function 6(z) = Y7 g" which transforms

under the action of the group To(4) = {(¢7) | ¢ = 0 (mod4)} by 6(2h) =
e(cz + d)'/20(z) for some 4th root of unity e. They became of great interest in
the T0’s because of Shimura’s discovery of a correspondence between modular
forms of half-integral and integral weights. In general this correspondence is quite
complicated and is neither surjective nor injective, but in certain simple cases
Kohnen [Kol] found versions of the Shimura lifting which are isomorphisms. In
particular, if we define 9. ,/, for any even integer k > 0 to be the space of
functions g(z) such that g(2)/8(z) transforms under I'g(4) like a modular form of
weight & and ¢ has a Fourier expansion of the form

9(2) = > e(D)g” (g=e*") (56)

D>0, D=0or1 (mod4)

(“Kohnen plus-space”), then MMy, ;/o and My, are isomorphic as vector spaces,
and even as modules over the ring of Hecke operators. This latter point says that
for modular forms f € 9y, having multiplicative Fourier coefficients, like Gy
or A, there is a corresponding form g € &y /9, unique up to multiplication by
a scalar, such that the quotient of ¢(Dp?) by (D) is given by a simple formula
involving the pth Fourier coefficient of f. In particular, the form corresponding
to Gy is the modular form Hi(z) = 350 H(k, D)¢” mentioned in §8, and the
Hecke compatibility property is equation (31). For k = 2 and k = 4 this says that
the series

Az) =Y apg® = - + Zq+ Bq+2¢° + 5¢° + 12¢° +10¢'2 + 10¢" + ..
D30
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and

B(z) =Y Boa® = 75 + tha+ Zq* + 2¢° +11¢° + 2 ¢° +46¢'2 + 58¢'% + ..
D>0

(where we have taken the coefficients from the tables in Sections 2, 3 and 7) belong
to M52 and My 5, respectively. For the latter function this is immediately obvious
from the formula (10) for 8p (to which 1/120 must be added when D is a square
because of the second term in (30)), since this equation just says that B(z) is the
product of 6(z) = 1+2¢+2¢*+2¢°+. .. with G4(42) = 555 +¢*+9¢5+28¢2+. .,
which is a modular form of weight 4 on I'g(4) because G4(z) is a modular form of
weight 4 on SL(2,Z). For A(z) the idea is the same but this time A(z) is given by

A(z) = 6(2)G2(4z2) + —;— f: m2q™ = 0(z)G2(42) + 8—711_26'(2*),

m=1

where the second term comes from the second correction term in the definition
of a2 given in §7, and the modularity follows from the “near modularity” of G2
mentioned in §11.

These two examples would make us expect that also the coefficients yp and dp
in (14) are the coefficients of a modular form of half-integral weight, and indeed
this is true. In particular, the cusp form in 9;5, corresponding to the discriminant
function A € ;5 is the function

D(2)= > 0pg” = 350~ &' +4° ~20° + H¢° +12¢" — 11" + ..
D>0

This can be seen “by hand” by observing that 106p equals the coefficient
in (24), ie.

1, 1 3.2 4 9% — D (D—bQ)
— — = — 1 - —
p 07" = 1o Z (10a°6° + Ba®c) E 3 o3 1 R
b2 —dac=D lol<vD
a>0>c¢ b=D (mod 2)

where if D is a square the quantity o3(0) which then appears in the formula must
be interpreted as 1/240, the constant term of the Fisenstein series G4. This gives
the representation

D(z) = -2171,04(42«)9'(2;) - #G{i@z)e(z)

of D(z), and the modularity follows. The same works for the other coefficients;
for instance, one can give a modular proof of the vanishing of the coefficient 8,
in (22} (which we deduced in §6 in an elementary way from the “period polynomial”
property of Py p) by writing

5% — D D - ?
!/ 2 2.0\
By = E (3ab® + 3a°c) =3 E n 01( 1 )
b?—dac=D lbl<vD
a>0>c b=D {(mod2)
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and deducing a representation of Y Bnq” as an element of My /2 With constant
term 0 and hence as the zero form. The method works in general and expresses the
coefficient of ™ in Py, p(z) for every n as the Dth Fourier coefficient of a modular
form of weight k+1/2 which is a combination of derivatives (the so-called “Cohen
bracket”, introduced in [Co3]) of an Eisenstein series and the function 6. (More
precisely, for n < k/2 it is the nth Cohen bracket of Gy_2,(42) and 8(z).) The
details of the calculation, which are quite easy, are given in [KZ2], pp. 218-219.
The modularity property in question also follows from equation (55), since it was
shown in [KZ1] and [KZ2] that the function Qk(z,2’) = 3. fr,p(2)e*™P% is a
modular form of weight k£ + % in 2’ and is in fact the “kernel function” for the
above-mentioned Shimura correspondence between the spaces G 1/ and Gax.
(This means that the Petersson scalar product of any function f € Gy, with
Qx(-,z") is the Shimura lift of f.)

In summary, we have indicated in this section the proof, or several proofs, of
the fact that the function T3 (2) := 3_ g F,p(%)¢” is a modular form of weight
k+ 1 for any real number z. Substituting the definition of Fy p from (15), (29)
(resp. (28) in the case k = 2) and (33), we find that T(z) has the expansion

Z (aw2 + b + C)k—lqb2—4ac

(a,b,c)eZ?
2
ax?+br+c>0>a (57)

1 - B( )m2_|_6 K’(z)i 2 m?
% E\TRT )q k2o m=1m qa .

m=—co

{Note that, although we obtained this by expanding the double sum

> >

D>0b2—~4ac=D

we do not have to write the condition 4% —4ac > 0 explicitly in the first summation
in (57) because it follows automatically from the inequalities @ < 0 < az? + bz +c
by the same identity b — 4ac = (2ax + b)? — 4a{ax? + bx + ¢) which played a role
in §1.) This formula is interesting because it has the form of a general theta series,
i.e., a sum of the form 3" P(x)q?®) where Q is a quadratic form on a lattice L and
P a spherical function with respect to the quadratic form Q. In the classical case
when @ is a positive definite quadratic form and P a homogeneous polynomial, it
is known that such a theta series is a modular form of weight equal to the sum of
the degree of P and half the rank of L. Here the sum has the same form (except
for the two last sums in (57), which are much “thinner” than the first one and
must be interpreted as some kind of a boundary term), except that the quadratic
function (a, b,c) +» b% — 4ac is indefinite and the summation is only over a cone
(defined by the two linear inequalities a < 0 and az? + bz + ¢ > 0, x being fixed),
but the final result is still the same. This example suggests that there may be an
arithmetic theory of theta series attached to indefinite quadratic forms in which
the summation runs over the intersection of the lattice with some simplicial cone
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on which the guadratic form is positive and the result is still a modular form of
the expected weight and level.

[ChZ]
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