L-Series of Elliptic Curves, the Birch-Swinnerton-Dyer
Conjecture, and the Class Number Problem of Gauss
by D. Zagier

1. Elliptic eurves over Q. Consider a Diophan-
tine equation in two variables, L.e.,, a polynomial
equation f{z,y) = 0 with rational coefficients
which we want to solve in rational numbers.
Already in the works of Diophantus it is clear
that the level of difficulty of this problem is
very different for different classes of polynomials
F. T f is guadratic, then, given one solution
{zo, o), one can find all solutions in terms of a
rational parameter ¢ by solving the linear equation
(1/u)f{zo + u, yo -+ tw) =0 (this method was used
sporadically long before, and systematically by,
Diophantus). For cubic and certain quartic f,
there are methods in Diophantus’ works—and
later much more extensively in Fermat’s—for
studying the rational solutions of f =0 and,
particularly, for constructing new solutions ount
of known ones. For higher degree f no general
method for getting solutions has ever been found,
Poincaré reslized that this division into three
classes depends on the topology of the set of
complex points of the curve X defined by the
equation f(z,y) = 0 {or rather by its projective
version f{x,y,2) = 0), i.e., on the genus ¢ of the
Riemann surface X{C). If g = 0 the set of rationsl
points X(Q), if nonempty, is isomorphic to P{Q).
If g = 1 then X(Q}, if nonempty, has the structure
of an sbelisn group. (In this case the curve can
always be put into the standard Welerstrass form

(n Y =dz®~az—b (g,be),

and the group structure is 0 = point at infinity,
~P=(z~y) f P={29), P+Q@+R=101if
P,g,R € X(Q) are collinear.) I ¢ > 2 then
we know by Faltings’ recent work that X{§) is
a finite set (“Mordell conjecture”);- no further
structure is known. The most interesting case
from & Diophaptine point of viewisthus g =1, in
which case we eall X an elliptic curve and write
E instead of X. Here Poincaré conjectured, and
Mordell proved, that the sbelian group E{(Q) is
finitely generated; the structure theorem for such
groups then gives
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for some integer r > 0 and some finite abelian
group . For s given curve E one can find ¥ by
a finite slgorithm, while for ¥ we can get upper
bounds by descent {Fermat) and lower bounds by
exhibiting independent solutions; if we are lucky,
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these agree. It is known exactly what groups ¥
can oceur: ¥ has the structure Z2/(2n—1)Z, Z/2nZ,
or 2/2Z x Z/2nZ for some n € N, depending on
whether 42° — az —b in (1) has 0,1, or 3 rational
roots (this is elementary), and a deep theorem of
Magzur (1977) says that n is then <5, <6, 0or £ 4,
respectively, all fifteen cases occurring infinitely
often. As for 7, it is known by recent examples
of Mestre (1983, 1984} that values as large as 14
oceur, and it is conjectured that all values can
oecur.

By (2) the number of rational solutions of
f{z,%y) == 0 is finite or infinite according to whether
r=0 or r > 0. In fact, we can even get
an asymptotic estimate for the number N(4)
of rational solutions P = (z,y)} for which the
numerator and denominator of z are less than A
in sbsolute value, namely

@) N(4)~Cllog AY?  (A— )

with the same » a8 in {2) and some C > 0.
Indeed, part of the proof of (2) consists of
showing that there is a positive definite quadratic
form (“height’) h: EQ)®R — R with A(P)-
log max {|num z(P)}, |den z(P)|} bounded {such
an h is clearly unique). Equation {3) follows by
counting points in an r-dimensional ellipsoid of
diameter = (log A)'/2, the constant C being given
by
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where R (the regulator} is the determinant of the
gymmetric r X r matrix defining &k w.rt. a Z-basis
of EQ)/F (so R=1ir=0R=h{F)ifr=1
and Py is a generator of E(Q)/¥). Note that (3)
yields an elementary definition of both r and the
ratio R/|¥|* which does not refer at all to the
group structure on E{Q). As examples, we have

{8) Fermat’s equation a® 4 5® = ¢3 {which can
be put into Weierstrass form y? = 42 ~27 bya =
y~9,b=6z, c=y-+9); here r=0, C=|F|=3;

by y?~y=1°~z; here r=1,{F|=1,C=
8.8464916.. ;

{c) y? = 423~ 282425, here r = 3, |[F| = 1, C =
6.48553546. .. {cf. [2]).

2. The conjecture of Birch and Swinnerton.
Dyer. Around 1960, Birch snd Swinnerton-Dyer
formulated a conjecture which determines r, and



to some extent C, in {3). The idea is that
a curve with a large value of r (or, given 7,
with a large value of C) has an especially large
number of rational points and should therefore
have & relatively large number of solutions modulo
s prime p on the average as p varies. More
precisely, let N(p) be the number of pairs of
integers z,y (mod p) satisfying (1) as a congruence
{mod p); then the BSD conjecture in its crudest
form ssys that we should have an asymptotic
formula
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analogous to (3} with the same r and a constant
€y > 0 related to C. (The “Riemann hypothesis
for elliptic curves”, proved by Hasse in 1933, says
that |N{p) ~ p] < 24/7, so at least we know that
(N{p)+1)/p — 1 in (5).) For a more precise
formulation it is convenient to introduce the L-
series of E. This is a Dirichlet series defined by
an Euler product

1
p)/v* +p/p?
(Re(s) > 3/2),

where * means that the Euler factor must be
modified for the finitely many *bad” primes
dividing 2{e® — 27b%), for which (1) becomes
singular modulo p. It is conjectured that Lg(s)
hss an analybic continusation to all s, I this
is 80, then Lp bas a Taylor expansion Lgp(s) =
Co{s ~1)™ + .- for some integer m > 0 and
constant Cp 5 0, snd the BSD conjecture says
that the order of vanishing m should equal the
rank r and the constant Cp should be given by {5]

@ Lgls) R

(s—1)m |F|?

where B and ¥ are as before, {1 > 0 is & simple
rational multiple {depending on the “bad” primes}
of the elliptic integral ’
f"" dz

T 4z3 —ax—b
{ry = largest real root of 42° — gz —~b=10), and §
is an integer square which is supposed to be the
order of & certain group I, the Tate~Shalarevich
group of E (however, III is not even known to be
finitel}.

We are still very far from a proof of the BSD
conjecture, although there are many numerical
caleulations supporting it (see [2] for an example
and & description of the algorithms used to
compute the various terms in {7)). The following
partial results are known:

1. If £ is 8 Weil curve (cf. §3), as is conjecturally
alwsys the case and verifisble in any particular
case, then Lg(1} is a rational multiple of Q1 (note
that this is compstible with {7), since if Lg{l)£0

8) Lg(s)=]]"

Ch = Him {1+ 8,
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we should have r == 0, i = 1}; in certain cases one
can show that it is a rational sguare multiple,

2. If E has complex multiplication (for elliptic
curves over Q this hapspens if and only if the
j-invariant  1728a%/(a® — 270°) tekes on
one of thirfeen integral walues 0, 1728,
-~3375,..., —262537412640768000), then m =0 =
r =0, i.e., if Lz(1) 0 then (1) has only finitely
many rational solutions.

3. B is a Weil curve, thenm=1=sr > 1, ie,,
if Lg(1) =0 and Li(1) # 0 then (1) has infinitely
many rationsl solutions.

4. If E is a Weil curve with Lg(1) =0 and r =1,
then Lp(1) is a rational multiple of 1R, and this
multiple can sometimes be shown to be a square.

5. There exist carves B with m=r =3, e.g,
the eurve —139y* = 28 4 102% — 20z - 8.

Result 1 is elementary except for the statement
about squares, which follows from a result of
Waldspurger. Result 2 is a theorem of Coates and
Wiles (1977). Results 3-5 follow from a theorem
of Benedict Gross and myself, announced in [3],
whose statement will be explained in the next
section.

3. Heegner points. We call £ 5 Weil curve if
for some integer N there is a2 nontrivial msap
¢ : Xo{N) — E(C) defined over Q; here Xp(N) =
5/To(N}U {cusps}, where 5 is the complex upper
balf-plane and [g{N) is the modular group
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Such s map exists if and only if the function

fe)= 3" afm)etmine,
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where a(n) are the coefficients of the Dirichlet
series Lg{s), i8 & modular form of weight 2 on
To{N), ie.,

j(az+b

- 2 5.
L) =+ P
w0 b
for all (c d) €Te(N).

These curves are called Weil curves because Weil
{1967) proved that the standard conjectures on
the analytic continuation and functional equation
of the L-series of E and its twists by Dirichlet
characters imply the existence of ¢; the possibility
that all elliptic curves over § might arise as
quotients of Jacobians of modular curves Xo(N)
had already been raised some yesrs earlier by
Taniyama. That a given elliptic curve is a Weil
curve can be checked by a finite algorithm (this
has been done in hundreds of cases), and we will
assume from now on thal our curves are Weil
curves, sinece otherwise the analytic continuation
of Lz is not known and the BSD conjecture makes
no sense. In perticulsr, Lg{s} is entire and the
parity of its order m st s =1 is known: m s

) € SLg(Z) | ¢ = 0(mod N)}.



even or odd according to whether the sign of the
functional equation of Lg is 41 or —1, and this in
turn depends on whether f satisfies f(—1/Nz)=
—~N2z3f(z) or f(—1/N2)=+N2?f(z).

Assuming, then, the existence of ¢, we have
the following construction of points on E, due
essentially to Heegner. Let d < 0 be the
discriminant of an imeginary quadratic field K,
and assume that (d, n) = 1 and d = %(mod 4N) for
some integer B. Then the set of 2 € 9 satisfying
& quadratic equation e2® +b2+c=0witha=
0(mod N}, b= f(mod 2N), c € Z, b* ~dac = d
is I'o{N)-invariant and has finitely many orbits
modulo To{N). ¥ 2z,...,2, are representatives
for these (h will in fact be the class number
of K), then the points ¢&{z;),...,¢{(2n) € E(C) are
defined over a certain extension (the “Hilbert class
field”) of K, but their sum Fy is defined over
K. Moreover, under complex conjugation Py goes
to —ePy, where ¢ is the sign of the functional
equation of Lg{s). Thus, if €= —1, so that by
the BSD conjecture we expect E(Q) to have odd,
and hence positive, rank, then 2F; € E(Q), while
if € = 41 then 2P; has the form (z,yV/d), with
z and y rational, and therefore gives & rational
point on the “twisted” curve

(8) E@ : gy? = 42 —az ~b.

Changing the choice of § with 8% = d(mod 4N)
changes F; at most by sign; we will suppress this
dependence in our notation. Then the result of
Gross and mysell mentioned in §2 says—in the
case that the sign of the functional equstion is
-1, 8o that Lg(1} =0 and 25; € E(Q)—

@) Lewl)lp(t)=c Qpe - Qg -h(2Fy),

where Qpw and (g are the periods occurring in
the BSD conjecture for E(®) and E, h is the height
function on B(Q) defined in §1, and ¢ is & simple
nonzero rational number. The number Qpw+/|d]
is independent of d. If the sign of the functional
equation of Lg is 4-1, the formula becomes

{10} Le(i)Lgw(l)=c Qg Qg - hgw(2Pa),

where hpa is the height function on EUNQ).
Actually, the result proved is more general in two
respects: the heights are computed already on the
Jacobian of X{ N}, rather than on its quotient E,
and the heights of the individual 2; (rather than
only their sums Py} are computed; however, since
XolN) is not, in genersl, elliptic, nor z; rational
over Q, the full statement cannot be given without
explaining height theory for curves of arbitrary
genus snd over arbitrary number felds,

Notice that (9) implies statements 3 and 4 at
the end of §2. Indeed, ¥ E is & Weil curve
with m = 1, then the sign of the functional
equation is —1 and L:(1) # 0; the same theorem
of Waldspurger mentioned at the end of §2 implies
that we can find a d such that Lpwa(l) # 0, and
then (9) implies that Py has nonzero height and,
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hence, infinite order in E(Q). Moreover, by 1
we know that Lgw(1)/Qpw is rational, so (9)
also gives the rationality of Li{1)/Qzh(Fy) in
this case; i E(Q) has rank 1, then A{P;) 8 2
(square) integral multiple of the regulator R, and
4 follows, the staterment sbout squares being a
consequence of the corresponding statement in 1
applied to E@. Note that the mysterious factor
S={I11} in (7) has disappeared and is replaced
by something like the sguare of the index of the
subgroup of E{Q) generated by all Heegner points
P;. Finally, 5 also follows by applying (i0) to the
curve E : y* = 2% -102° — 20z -8 (which is 2 Weil
curve with N == 37) and d = —139; here Lg{1) 0
and Py =0, 35 we will prove in §4, so (10)
shows that L. (1) vanishes; since Lga(s) has a
functional equation with sign —1 and Lygs(1) #0,
it follows that m = 3 for the curve E(¥ (that
7 = § is elementary). Observe, by the way, that 5
is elementary if 3 ie replaced by » smaller number:
take a Weil curve with rank r =0, 1, or 2; then, if
r ==, the number Ly(1) must be nonzero {or we
would have a counterexample to BSD), and this
can be checked numerieally; if » =1 we need only
check that the sign of the functional equation of
Lz is —1 and that L;(1) is nongzero; and if r =2
we can prove Lg{1) = 0 by calculating the rationsl
number Lg(1)/{1 in 1 and then prove m =2 by
verifying that the sign of the functional equation
is +1 and L5(1)# 0. (For E 2 Weil curve, Lg
and its derivatives at s==1 can be compuied by
rapidly convergent series; cf. [2].) However, to get
5 we must show that Ly(1) =0, and this can only
be done by using some such formula as (9), since
the verification that = number is zero, unlike the
verification that a number is nonzero, can never
be carried out by numerical computation alone,
We should also say a word about the history of
the sbove formulas. The Heegner points Py were
defined by Birch snd studied extensively by Birch
and Stephens from a numerieal point of view; they
formulated conjectures equivalent to (9) and {10)
{cf. [1]). Gross was led by other considerations
coming from the theory of descent fo conjecture
more general formulas of the same type, and he
also saw that there might be some possibility of
proving them by using local height theory on the
modular curves Xy(N) to compute the heights
of Heegner points and by using the theory of
modular forms (in particular, “Rankin’s method™)
to compute the derivative of Lg{silpwis) at
g =1. He then suggested to me a systematic
attack on the problem from both sides, and the
collaboration took the following rather amusing
course: one of us would find 2 method to compute
one piece of the formuls, on either the height
or the L-series side of the formuls (usually the
I-series side succumbed frst), and communicate
it to the other, and then the form of the result
would suggest the method by which a piece of the
expression on the other side could be evaluated.
At the end of this process, both sides of the



purported equality had been caleulated explicitly
as a sum of about s dozen terms, some of them
quite complicated; these matched perfectly, and
this provided the proof—without, however, giving
the least inkling of why the height of the Heegner
point and the derivative of the L-series should
have anything to do with one smother. It is to
be hoped that this rather unsatisfactory state of
affairs will eventually change.

4, Application to the class number problem
of Gauss, Of the three consequences of (9) and
(10) given in §2, the last ome—the assertion
of the existence of s single elliptic curve with
m == 3—appesrs to be the most special and
least interesting. Yet it is this result which
leads to the most dramatic application, the final
solution of a problem stated by Gauss nearly
200 years sgo. The problem concerns class
numbers of binary quadratic forms and appears
at first sight very remote from questions about
the Diophantine analysis of cubic equations; that
there is & connection is a beautiful discovery made
by Goldfeld a few years ago. We review the
history briefly.

In Article 303 of the Disquisitiones Gauss
deseribes extensive computations of class numbers
of imaginary quadratic fields (or, rather, of posi-
tive definite binary quadratic forms, an equivalent
problem} and observes that the sequence of dis-
eriminants with a given class number & seems to
end for each value h. Thus, the last d with h{d} =

"1 is apparently 163, the last with h = 2, 427, and
the last with A == 3, 807 (Gauss uses a different
normalization, so his values look different from
these). The proof of this remained an entirely
open problem for over & hundred years. Around
1916, Hecke showed that
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with an effective constant C if the IL-series
La{s)==5"(d/n)n"* has no zeros near g =1, thus
solving Gauss’s problem under the assumption
of the generslized Riemann hypothesis. Then,
in 1933, Deuring showed that the falseness of
the {ordinary)} Riemann hypothesis would imply
B(d} > t for |d| lsrge enmough. This was a
decisive step, for, soon after, Mordell showed
that h(d) goes to infinity with [d] if the Riemann
hypothesis is false, and Heilbronn {1934) proved
the ssme if the generalized Riemann hypothesis is
false; together with Hecke’s result, this provided
an unconditional proof of Gausy's claim on the
finiteness of the set of d with a given value of k{d).
A vear later Siegel proved the definitive result
of this type by showing that h(d) > Cle)|d|'/?*
as d — —oc for any € > 0. But his result, like
those of Deuring, Mordell, and Heilbronn, was
ineffective in & very bassic sense, since it said
something like this: if no L-series has & zero in
the interval [1 — €/10, 1], then k{d} > Cyle)ldjt/*<

hd)y>C
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with an effectively computable constant Cole) by
Hecke’s theorem; if Lg,(s) has such s zero for
some discriminant do, then h{d) > Ci(e)jd|t/*
for all d, where Ci{c) is given explicitly but
depends on dy. Thus, to decide, say, whether
there is 2 d < —907 with h{d) = 3, we must either
know that the generalized Riemann hypothesis
is true, or else have our hands on a particular
counterexample; until we have this, the problem
is in some sense just as unsolved as if Siegel's
result were unknown.

No further progress was made on the problem
for general values of & for the next forty yesrs,
although the special (and most interesting) ease of
class number 1 was solved by important work of
Heegner (1952) and Baker and Stark (1969); the
last two authors also settled the ecase & == 2, but
the methods failed for larger class numbers. The
final breakthrough came in 1975, when Dorian
Goldfeld proved a deep and entirely unexpected
theorem to the effect that the existence of & single
L-function with appropriate analytic properties
and a zero of sufficiently high order at the
gymmetry point of its funetional equstion could
be used fo give an effective lower bound for h(d)
which goes to infinity 88 d — ~c0. What Gross
and I did was to produce such 2 function.

Goldfeld’s argument is a long and difficult piece
of analytic number theory. A simplification and
very clear exposition of it was given in & recent
Bourbaki talk by Joseph Oesterlé [4], which we
recommend to the interested reader {thie paper
also containg references to Goldleld’s work and
to previous work on the class number problem).
Here we give only a brief indication of the way
that the L-series with a triple zero is used to
obtain analytic information. Suppose we have
a diseriminant d with |d] very large; we want
to show that h = h{d) is also large. We may
assume that the Legendre symbol (d/37) is 0 or
-1, because if {4/37)==1 then 37 is the nomm of
a prime ideal p in (i(v’&) and 37" is the norm of
the principal ideal p® and, hence, the norm of an
integer (= +yvd)/2 (z,y €Z, y #0), 0

n_Z2+yid 4

37 i > e

and we already have the desired effective lower
bound for k. From {d/37) =8 or —1 it follows
that the L-series of E(9), where E is the particular
elliptic curve mentioned in 5 of §2, has s minus sign
in its functional equation and, hence, the product
Lis}) = Lg{sjLpw{s) has a functional egustion
with a plus sign (say y(s)L{s) = +~4{2~s}L{2~ 3}
with an appropriate [-factor +{s)) and 8 zero of
order at least 4 st 8 =1. On the other hand,
the same srgument which gave {d/37) s 1 shows
that {d/p) = —1 for &ll small primes p { d {namely
all p < [df4]}/%; in fact, with an argument given
in {4, p. 10], one can extend this to all p <
|74V Y1) with at most one exception). This



means that (d/n) = Nn) for most small integers
n, where A\(n) is the Liouville function, defined
by Mpi--p.) = (—1) for any primes py,...,pr-
But Lgw(s) is the twist of Lg(s) by (d/') (i.e,
if Lg(s) = a(n)n—*, then Lgw(s)=>_d{n)n—2
with a(n) = {d/n)a(n) for all n prime to d), so this
means that the function L[{s) should not differ
too much from the function R(s) = Lg(s)Lg (),
where Lg(s) = E)\(n Ja{n)n—° (“not too much”
can be made precise by an analysis of the Dedekind
zeta~function of Q(v/d)). The function R(s) is
nothing other than the Raukin zeta-function of
the modular form Y a(n)e?™"* associated to the
elliptic curve E and has been extensively studied
in the theory of modular forms. In particular, it is
known to have a meromorphic continuation with
all poles to the left of the line Re(s)=1 and a
simple vero at s = 1. Since L(s) has at least a
quadruple zero at s ==1, the functions [(s) and
R(s) do not have the same qualitative behavior,
_ and this contradicts the above assertion that L(s)
and R(s) are close to one another if A is very
small compared to |df. The actual contradiction
is obtained by comparing the two integrals

/ OHE A(s)L(s) CFE A(5)R(s)

C—iso (8 1)3 C—iw (8—1)3

(C any constant > 1). The first is identically zero
because the fact that ords—1 L(s) > 3 permits us to
move the path of integration from Re(s)=C > 1
to Re(s) =2—C < 1, and then the oddness of
the integrand under s — 2 — s implies that the
integral is minus itself. The second integral is
nonzero because it is dominated by the nontrivial
residue at s == 1; this residue has the form
Alog |d} 4 B, because R(s) is independent of d and
~(s) has the form |d|*~o(s), with o(s) independent
of d. On the other hand, by estimating the
difference of L(s} and R(s), one can show that
the difference of the two integrals is O(h), and
together this leads to the desired contradiction if
|d| is large enough. Actually, we have somewhat
oversimplified the picture, and the analytic details
are more complicated if d is composite. The final
result obtained in [4] is the estimate
rd) >C-I]

p,d(l‘%) log 1

for all d, where € is an absolute and effectively
computable constant (Goldfeld’s original result
was somewhat weaker), and, in particular,
h{—~p) > €' log p for p prime. Good numerical
values for C and C’ have not yet been obtained,
but this should soon be done.

Finally, we give the proof—postponed in §3—
that the Heegner point F_j3¢ vanishes on an
elliptic curve of conductor 37. One can check

ds and ds
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whether P = 0 on any Weil curve and for any
d by a finite computation, but here there is a
pretty argument, found by Gross, which requires
essentlally no calculation. The class number of
—139 is 3, and for the three points z; defined in
§2 (with N =37 and 8 = 3) we can choose

—344v139 7144139 and ~151 4-4+/139
2.37 7 10-37 10-37

These satisfy 37z = (a2 b)/(cz+d) with (& ) =
(‘—3 "o ) ~77 —3 )’ and (34 - ) € 8L2(2), respec-
tively, the value of {cz+ d) in each case being

(3+41v/139)/2. From the well-known transforma-
tion equation
az+b

A(cz +d

of the “diseriminant” function

—qT] t—gp

n=1

) = (cz +d)*?A(2)

Alz) (g=€"=,2€9),

it now follows that the function

_uf AR) 34iV130
9(z) = VaGn) 2

-

n=1

)2_3+i\/1_§§
2

(=

vanishes at 2y, 22, and z3. On the other hand,
92} is T'g(37)-invariant, has a triple pole at 2 =
oo, and has no other poles (since A # 0 in £),
so these are the only three zeros. Therefore,
(21) + (22) + (23) — 3(c0) is & principal divisor on
Xo(37), 50 ¢(21)+ ¢(22)+ ¢(22) = 0 € E(C) for any
map ¢ from X,(37) to an elliptic curve B with
¢(o0) = 0.

1— q37n
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