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1. A Supply of Modular Forms

The word ‘modular’ refers to the moduli space of complex curves (= Riemann
surfaces) of genus 1. Such a curve can be represented as C/A where A C C is
a lattice, two lattices A; and As giving rise to the same curve if A, = AA; for
some non-zero complex number A. (For properties of curves of genus 1, see the
lectures of Cohen and Bost/Cartier in this volume.) A modular function assigns
to each lattice A a complex number F(A) with F(A;) = F(Ap) if Ay = AA;.
Since any lattice A = Zuw,+Zw, is equivalent to a lattice of the form Z7+7Z with
7 (= w1 /wa) a non-real complex number, the function F' is completely specified
by the values f(r) = F(Zr + Z) with 7 in C \ R or even, since f(7) = f(—7),
with 7 in the complex upper half-plane H = { 7 € C | S(r) > 0}. The fact
that the lattice A is not changed by replacing the basis {wy,w2} by the new
basis aw; + bwa,cwy + dws (a,b,¢,d € Z, ad — be = £1) translates into the

modular invariance property f (m_:‘_}-g) = f(7). Requiring that 7 always belong
et

to §) is equivalent to looking only at bases {w;,ws} which are oriented (i.e.
S{wy fws) > 0) and forces us to look only at matrices (ﬁ 3) with ad — be = +1;
the group PSLy(Z) of such matrices will be denoted Iy and called the (full)
modular group. Thus a modular function can be thought of as a complex-valued
function on § which is invariant under the action 7 — (ar + b)/(ct + d) of I
on §). Usually we are interested only in functions which are also holomorphic
on §j (and satisfy a suitable growth condition at infinity) and will reserve the
term ‘modular function’ for these. The prototypical example is the modular
invariant j(r) = e72™" 4 744 + 196884¢2™" + ... which will be defined below
(cf. Section B). However, it turns out that for many purposes the condition of
modular invariance is too restrictive. Instead, one must consider functions on
lattices which satisfy the identity F(A;) = A¥F(Az) when A; = AA; for some
integer k, called the weight. Again the function F is completely determined by
its restriction f(7) to lattices of the form Zr + Z with 7 in 9, but now f must
satisfy the modular transformation property

ar+b

or + 7) = (e + d)*f(r)

(1) £(

rather than the modular invariance property required before. The advantage of
allowing this more general transformation property is that now there are func-
tions satisfying it which are not only holomorphic in £}, but also ‘holomorphic
at infinity’ in the sense that their absolute value is majorized by a polynomial in
max{1,S(r)~!}. This cannot happen for non-constant I'i-invariant functions
by Liouville’s theorem (the function j(7) above, for instance, grows exponen-
tially as S(r) tends to infinity). Holomorphic functions f : § — C satisfying
(1) and the growth condition just given are called modular forms of weight %,
and the set of all such functions—clearly a vector space over C—is denoted by
My or My(I). The subspace of functions whose absolute value is majorized
by a multiple of I(7)~%/2 is denoted by Si or Si(I'%), the space of cusp forms
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of weight k. It is a Hilbert space with respect to the Petersson scalar product
® (ho) = [ HF@d (Bees,
1

where we have written 7 as v + iv and dp for the SL(2, R)-invariant measure
v 2 dudv on H.

The definition of modular forms which we have just given may not at first
look very natural. The importance of modular forms stems from the conjunction
of the following two facts:

(i) They arise naturally in a wide variety of contexts in mathematics and
physics and often encode the arithmetically interesting information about a
problem.

(ii) The space My is finite-dimensional for each k.

The point is that if dim M = d and we have more than d situations giving rise
to modular forms in Mg, then we automatically have a linear relation among
these functions and hence get ‘for free’ information—often highly non-trivial—
relating these different situations. The way the information is ‘encoded’ in the
modular forms is via the Fourier coefficients. From the property (1) applied
to the matrix (4 2) = (; i) we find that any modular form f(r) is invariant
under 7+ 741 and hence, since it is also holomorphic, has a Fourier expansion
as Yy, an€?™7_ The growth conditions defining M} and S} as given above are
equivalent to the requirement that a, vanish for n < 0 or n < 0, respectively
(this is the form in which these growth conditions are usually stated). What
we meant by (i) above is that nature—both physical and mathematical—often
produces situations described by numbers which turn out to be the Fourier
coeflicients of a modular form. These can be as disparate as multiplicities of
energy levels, numbers of vectors in a lattice of given length, sums over the
divisors of integers, special values of zeta functions, or numbers of solutions of
Diophantine equations. But the fact that all of these different objects land in
the little spaces My forces the existence of relations among their coefficients.
In these notes we will give many illustrations of this type of phenomenon and
of the way in which modular forms are used. But to do this we first need to
have a supply of modular forms on hand to work with. In this first part a
number of constructions of modular forms will be given, the general theory
being developed at the same time in the context of these examples.

A Eisenstein series
The first construction is a very simple one, but already here the Fourier coef-

ficients will turn out to give interesting arithmetic functions. For & even and
greater than 2, define the Eisenstein series of weight k by

@) Gi(r) = 2(27&'11))’: Z (m'r +n)k
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where the sum is over all pairs of integers (m,n) except (0,0). (The reason
for the normalizing factor (k — 1)!/2(2m4)*, which is not always included in
the definition, will become clear in a moment.) This transforms like a modular
form of weight k because replacing G¢(7) by (er+d)*Gx( %’%‘—g) simply replaces
(m,n) by (am + cn,bm + dn) and hence permutes the terms of the sum. We
need the condition k > 2 to guarantee the absolute convergence of the sum (and
hence the validity of the argument just given) and the condition & even because
the series with ¥ odd are identically zero (the terms (m,n) and (—m,—n)
cancel).

To see that G, satisfies the growth condition defimng My, and to have our
first example of an arithmetically interesting modular form, we must compute
the Fourier development. We begin with the Lipschitz formula

—2mi)* - -1 _2mirz

r=1

which is proved in Appendix A. Splitfing the sum defining Gy into the terms
with m = 0 and the terms with m 5 0, and using the evenness of % to restrict

to the terms with n positive in the first and m positive in the second case, we
find

(k—1)! 1
Gi(T) = (2 z)k Z kT Z ( (2mi)* Z 5 (mT +n)k)

k/2
— ( 1)(2 ()Ii C(k)+ Z Zrk —~1 21rzrm1'

m=1 r=1

h = 3% L is Riemann’s zeta function. The number CDi2(=Dle(p
where C(s)—ﬁgl—r;m emann’s zeta function. The number *—=Fr—=(( )

1s rational and in fact equals ——%, where B} denotes the kth Bernoulli number

zk
{ = coefficient of Z = in ——x—l) it is also equal to £((1—k), where the definition
of {(s) is extended to negative s by analytic continuation (for all of this, cf.

the lectures of Bost and Cartier). Putting this into the formula for G} and
collecting for each n the terms with rm = n, we find finally

@) G)=—pr+ 2 oha(m)” = 20—+ D ks ()™,

n=}

where o¢_1(n) denotes 3., r*=1 (sum over all positive divisors r of n) and
we have used the abbreviation ¢ = ¢?™'", a convention that will be used from
now on.

The right-hand side of (4) makes sense also for k = 2 (B; is equal to %)
and will be used to define a function Ga(7). It is not a modular form (indeed,
there can be no non-zero modular form f of weight 2 on the full modular group,
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since f{r)dr would be a meromorphic differential form on the Riemann surface
$/I'1U{oco} of genus 0 with a single pole of order < 1, contradicting the residue
theorem). However, its transformation properties under the modular group can
be easily determined using Hecke’s trick: Define a function G5 by

Gy(1) =53 — \O(Z (mr+n)ilmT+”l)

The absolute convergence of the expression in parentheses for ¢ > 0 shows
that G transforms according to (1) (with k¥ = 2), while applying the Poisson
summation formula to this expression first and then taking the limit ¢ \, 0
leads easily to the Fourier development G3(7) = G2(7) + (8xv)™ (r = u +
iv as before). The fact that the non-holomorphic function G% transforms like
a modular form of weight 2 then implies that the holomorphic function Go
transforms according to

® eI = raran -Gt (¢hen).

47y

The beginnings of the Fourier developments of the first few Gy are given
by

Gafr) = ———+q+3q +4¢° +7¢* +6¢° +12¢5 + 84" +15q +-
Gu(r) = 2i0 + g + 99 +28¢° + 73¢* + 12645 + 252¢° + - -
Ge(r) = 5(1)4 + ¢ + 33¢% + 2444° + 1057¢* + -
Gs(r) = 4—;5 +q+129¢% + 2188¢% + -
Gho(7) = ~%Z+q+513q + -
Gra{r) = 62520 + ¢ +2049¢% + -
Gia(r) = *-2—4 + ¢+ 8193¢% +-

Note that the Fourier coefficients appearing are all rational numbers, a special
case of the phenomenon that Mg in general is spanned by forms with rational
Fourier coefficients. It is this phenomenon which is responsible for the richness
of the arithmetic applications of the theory of modular forms.

B The discriminant function

Define a function A in § by

(6) An=qJla-a  (res, ¢=").
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Then

%((:)2 - Izii' (27ri7' +24) log(1— ‘1'))

)

(o] rqr
=27ri<1 - 24}31 -
—q

r=1

= —487i (-% + i(z r)q") = —48miGa(r).

n=1 rin

The transformation formula (5) gives

1 ACGED _ AW c
(er + d)? A(ﬁ;ﬁ_ﬁ) A(T) et +d
or
d ar +b d

—(logA(—=)) = — 2).

p (log (CT T d)) @ log(A(7)(er + d)'?)
Integrating, we deduce that A( Z:—-Itg equals a constant times (er + d)2A(7).
Moreover, this constant must always be 1 since it is 1 for the special matrices
(25) = (}1) (compare Fourier developments!) and (23) = (°7!) (take 7 =

¢ !) and these matrices generate Iy. Thus A(7) satisfies equation (1) with
k = 12. Multiplying out the product in (6) gives the expansion

(1) A(r) =q—24¢* +252¢> — 1472¢* + 4830¢° — 6048¢° + 840547 — - --

in which only positive exponents of ¢ occur. Hence A is a cusp form of weight
12.

Using A, we can determine the space of modular forms of all weights.
Indeed, there can be no non-constant modular form of weight 0 (it would be
a non-constant holomorphic function on the compact Riemann surface $/7; U
{o0}), and it follows that there can be no non-zero modular form of negative
weight (if f had weight m < 0, then f12AI™! would have weight 0 and a
Fourier expansion with no constant term). Also, My is empty for k odd (take
a=d= -1, b=¢=0in (1)), as is M,. For k even and greater than 2, we have
the direct sum decomposition M = (G) @ Sk, since the Eisenstein series Gy
has non-vanishing constant term and therefore subtracting a suitable multiple
of it from an arbitrary modular form of weight k produces a form with zero
constant term. Finally, Sy is isomorphic to Mi—i12: given any cusp form f of
weight k, the quotient f/A transforms like a modular form of weight k — 12,
is holomorphic in $ (since the product expansion (6) shows that A does not
vanish there), and has a Fourier expansion with only nonnegative powers of ¢
(since f has an expansion starting with a strictly positive power of g and A an
expansion starting with ¢'). It follows that Mj has finite dimension given by

E | <0024681012 14 16 18 ... k ... k+12 ..,
dmMg| 0 101111 2 1 2 2 ...d... d+1
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It also follows, since both G and A have rational coefficients, that M has
a basis consisting of forms with rational coefficients, as claimed previously;
such a basis is for instance the set of monomials A'Gg_19; with 0 < I <
(k —4)/12, together with the function A¥/12 if £ is divisible by 12. We also get
the first examples of the phenomenon, stressed in the introduction to this part,
that non-trivial arithmetic identities can be obtained “for free’ from the finite-
dimensionality of M. Thus both G2 and Gs belong to the one-dimensional
space Ms, so they must be proportional; comparing the constant terms gives
the proportionality constant as 120 and hence the far from obvious identity

n—1
o7(n) = 03(n) +120 Y _ o3(m)os(n — m).

m=1
Similarly, (240G4)® — (504G¢)? and A are both cusp forms of weight 12 and
hence must be proportional. (Cf. Cohen’s lectures for the interpretation of this
identity in terms of elliptic curves.) In fact, one deduces easily from what has
just been said that every modular form is (uniquely) expressible as a polynomial
in G4 and Gs.

Comparing the Fourier expansions of the first few G as given in the last
section and the dimensions of the first few M} as given above, we notice that
St is empty exactly for those values of k for which the constant term — B /2k
of Gy, is the reciprocal of an integer (namely, for k£ = 2, 4, 6, 8, 10 and 14).
This is not a coincidence: one knows for reasons going well beyond the scope of
these lectures that, if there are cusp forms of weight k, there must always be
congruences between some cusp form and the Eisenstein series of this weight.
¥ this congruence is modulo a prime p, then p must divide the numerator of
the constant term of G (since the constant term of the cusp form congruent
to Gy modulo p is zero). Conversely, for any prime p dividing the numerator
of the constant term of (g, there is a congruence between G and some cusp
form. As an example, for £ = 12 the numerator of the constant term of Gy is
the prime number 691 and we have the congruence Giz = A (mod 691) (e.g.
2049 = —24 (mod 691)) due to Ramanujan.

Finally, the existence of A allows us to define the function

() = (240G4)° _ (1+240g+2160¢° +---)°
A q—24q% +252¢% +---
= ¢~ 4 744 4 196884q + 21493760q> + - - -

and see (since G3 and A are modular forms of the same weight on I}) that
it is invariant under the action of I'; on §. Conversely, if ¢(7) is any modular
function on $ which grows at most exponentially as S(r) — oo, then the
function f(1) = ¢(r)A(r)™ transforms like a modular form of weight 12m and
(if m is large enough) is bounded at infinity, so that f € Mys,,; by what we
saw above, f is then a homogeneous polynomial of degree m in G§ and A, so
¢ = f/A™ is a polynomial of degree < m in j. This justifies calling j{7) ‘the’
modular invariant function.
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C Theta series

We will be fairly brief on this topic, despite its great importance and interest
for physicists, because it is treated in more detail in the lectures of Bost and
Cartier. The basic statement is that, given an r-dimensional lattice in which
the length squared of any vector is an integer, the multiplicities of these lengths
are the Fourier coefficients of a modular form of weight 5. By choosing a basis
of the lattice, we can think of it as the standard laitice Z" C R”; the square-
of-the-length function then becomes a quadratic form ¢ on R” which assumes
integral values on Z", and the modular form in question is the theta series

Bq(r) =) ¢?.

z€Zr

In general this will not be a modular form on the full modular group Iy =
PSLy(Z), but on a subgroup of finite index. As a first example, let r = 2 and
Q be the modular form Q(z1,z2) = =2 +x2, so that the associated theta-series,
whose Fourier development begins

Oq(t) =1+4q+4¢” +0¢° +4¢* +8¢° +0¢° +0g" +4¢* +- -+,

counts the number of representations of integers as sums of two squares. This
is a modular form of weight 1, not on Iy (for which, as we have seen, there
are no modular forms of odd weight), but on the subgroup Io(4) consisting of
matrices (‘: 3) with ¢ divisible by 4; specifically, we have

601 3) = (-0 (er+ )Ba(r) |

for all (2 3) € I(4). To prove this, one uses the Poisson summation formula
to prove that O¢g(—1/47) = —2irOq(7); together with the trivial invariance
property Og(7+1) = Og(r), this shows that 8¢ is a modular form of weight 1
with respect to the group generated by (g '0%) and ( (1, i , which contains I'y(4)
as a subgroup of index 2.

More generally, if Q : Z™ — Z is any positive definite integer-valued qua-
dratic form in r variables, r even, then @g is a modular form of weight r/2
on some group Ip(N) = {(% Z) € It | ¢ =0 (mod N)} with some character x
(mod N), i.e.

O (‘C‘:ig) = x(d)(er +d)7*Oq(r)  forall ( Z) € Iy(N).
The integer N, called the level of @, is determined as follows: write Q(z) =
15! Az where A is an even symmetric rxr matrix (i.e., 4 = (aj), aij = aji € Z,
aii € 27); then N is the smallest positive integer such that NA™? is again
even. The character x is given by x{d) = (-3—) (Kronecker symbol) with
D = (=1)"/2 det A. For the form Q(z1, ;) = 77 + 2§ above, we have A= (27),
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N =4, x(d) = (=1){¢"1/2_ As a further example, the two quadratic forms
Qi(z1,72) = 2} 4+ z122 + 625 and Qa(z1,72) = 222 + 2122 + 322 have level
N = 23 and character x(d) = (=22) = (&); the sum Og,(7) + 20¢,(7) is an
Eisenstein series3+2 3 oo (3° ajn X( d))q"™ of weight 1 and level 23 (this is a spe-
cial case of Gauss’s theorem on the total number of representations of a natural
number by all positive definite binary quadratic forms of a given discriminant),
and the difference @q, —@gq, is two times the cusp form ¢ [, (1—¢")(1—¢?*"),
the 24th root of A(7)A(237).

If we want modular forms on the full modular group It = PSLy(Z), then
we must have N = 1 as the level of @; equivalently, the even symmetric matrix
A must be unimodular. This can happen only if the dimension r is divisible by
8 (for a proof using modular forms, cf. Section D of Part 2). In dimension 8
there is only one such quadratic form @ up to isomorphism (i.e., up to change
of base in Z?*), and O is a multiple of the Eisenstein series G4. In dimension 16
there are two equivalence classes of forms @, in dimension 24 there are 24, and
in dimension 32 there are known to be more than 80 million classes. A theorem
of Siegel tells us that the sum of the theta-series attached to all the @ of a given
dimension r, each one weighted by a factor 1/|Aut{Q)], is a certain multiple of
the Eisenstein series G /2. Notice the applicability of the principle emphasized
in the introduction that the finite-dimensionality of the spaces My, combined
with the existence of modular forms arising from arithmetic situations, gives
easy proofs of non-obvious arithmetic facts. For instance, the theta-series of the
unique form ¢} of dimension 8 must be 240G, (since it has weight 4 and starts
with 1), so that there are exactly 24003(n) vectors z € Z?® with Q(z) = n for
each n € N; and the two forms of dimension 16 must have the same theta-series
{(since dim Mg = 1 and both series start with 1), so they have the same number
(= 48007(n)) of vectors of length n for every n. This latter fact, as noticed by J.
Milnor, gives examples of non-isometric manifolds with the same spectrum for
the Laplace operator: just take the tori R16/Z1¢ with the flat metrics induced
by the two quadratic forms in question.

Finally, we can generalize theta series by including spherical functions. If
@ : Z" — Z is our quadratic form, then a homogeneous polynomial P(z) =
P(zy,... ,z,) is called spherical with respect to Q if AgP = 0, where Ag is
the Laplace operator for Q) (i.e. Ag = Zj %} in a coordinate system (y) for
which @ = 3 y?, or Ag = 2(52-,... , 32 )A7 (32, .. , 52=)" in the original
coordinate system, where Q(z) = 2’ Az). If P is such a function, say of degree
v, then the generalized theta-series

Oq.p(r) = > P(z)¢%"

€l
is a modular form of weight 7 + v (and of the same level and character as for
P =1), and is a cusp form if v > 0. As an example, let
& &

4 2.2 4 4.
gg—i—&—g, P((E},.’tz)-xl —6271.’132-}-.’172 5

Qz1,32) =2} + 23, Ag =
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then 10 p = ¢—4¢%+0¢®+16¢*—14¢°+- - - belongs to the space of cusp forms
of weight 5 and character (=2) on I'h(4), and since this space is 1-dimensional
it must be of the form

A(T)I/GA(ZT)1/12A(4T)1/6 =gq H(l _ qn)2+2ng(n’4).

n=1

That P(z) here is the real part of (z; +4iz2)* is no accident: in general, all spheri-
cal polynomials of degree v can be obtained as linear combinations of the special
spherical functions ((*Az)”, where { € CT is isotropic (i.e., Q({) = -%—C tAC = 0).
Still more generally, one can generalize theta series by adding congruence con-
ditions to the summation over x € Z" or, equivalently, by multiplying the
spherical function P(z) by some character or other periodic function of z. As
an example of a spherical theta series of a more general kind we mention Free-
man Dyson’s identity

1 o222t 22 g2 g2
Ar) = Z (-—2—8-8— H (z; —J:j)) q( i+zotagtaytzg)/10

(%1,-.. ,28)EZ® 1<i<ji<s
z1+- -t T5=0
;=i (mod 5)

for the discriminant function A of Section B.

D Eisenstein series of half-integral weight

In the last section, there was no reason to look only at quadratic forms in
an even number of variables. If we take the simplest possible quadratic form
Q(z1) = 22, then the associated theta-series

()= ¢ =1+2¢+2¢" +2¢° +---
necZ

is the square-root of the first example in that section and as such satisfies the
transformation equation

9(3:2) = e(er + d)7(r) v(‘c‘ Z) € In(4)
for a certain number € = ¢, 4 satisfying €* = 1 (e can be given explicitly in terms
of the Kronecker symbol ( %)) We say that 6 is a modular form of weight 1.
More generally, we can define modular forms of any half-integral weight r + %
(r € N). A particularly convenient space of such forms, analogous to the space
M; of integral-weight modular forms on the full modular group, is the space
M., 1 introduced by W. Kohnen. It consists of all f satisfying the transforma-

tion law f(2ZEL) = (ec,a(er + d)F )2+ f(r) for all (% ]) € Io(4) (equivalently,
F/6%7t1 should be I'h(4)-invariant) and having a Fourier expansion of the form

EnZﬂ a{n)g® with a{n) = 0 whenever (—~1)"n is congruent to 2 or 3 modulo
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4. For r > 2 this space contains an Eisenstein series G,. +1 calculated by H.
Cohen. We do not give the definition and the calculation of the Fourier expan-
sion of these Eisenstein series, which are similar in principle but considerably
more complicated than in the integral weight case. Unlike the case of integral
weight, where the Fourier coefficients were elementary arithmetic functions, the
Fourier coefficients now turn out to be number-theoretical functions of consid-
erable interest. Specifically, we have

Gryy(r) = > H(rn) ¢"

n=0
{(—1)"n=0 or 1 (mod 4)

where H(r,n) is a special value of some L-series, e.g. H(r,0) = ((1-2r) = -—ZL
(where ({s) is the Riemann zeta-function and By, the mth Bernoulli number),
H(r,1) = ((1 — r), and more generally H(r,n) = La(1l —r) if the number
A = {—1)"n is equal to either 1 or the discriminant of a real or imaginary
quadratic field, where the L-series L o(s) is defined as the analytic continuation
of the Dirichlet series 3 o0 (4)n~?. These numbers are known to be rational,
with a bounded denominator for a fixed value of r. The first few cases are

Gr3(7) = 135 — 154 — 134" ~ 3¢’ ~ "~ B’ -2 - 24" - ' — 4

3%(T)——2~1——9q _5‘1 16 ¢ —3¢° —6g't — 74q12 16q15__:321q16._.

G1(r) = 55 + e+ 159" +2¢° +11¢° + 50" + 460" + 58¢ -
Go1(m) = —giz +3¢° + 54" +32¢" +57¢° + B¢ + 52¢7 +992¢"° - -
2

In each of these four cases, the space M, r+l is one-dimensional, generated by
G,y 1; in general, M, 1 has the same dimension as Ms,.

Just as the case of G2, the Fourier expansion of G,/ still makes sense
for r = 1, but the analytic function it defines is no longer a modular form.
Specifically, the function H(r,n) when r = 1 is equal to the Hurwitz-Kronecker
class number H(n), defined for n > 0 as the number of PSLy(Z)-equivalence
classes of binary quadratic forms of discriminant —n, each form being counted
with a multiplicity equal to 1 divided by the order of its stabilizer in PSL(Z)
(this order is 2 for a single equivalence class of forms if n is 4 times a square,
3 for a single class if 2 is 3 times a square, and 1 in all other cases). Thus the
form G375 = ), H(n)q™ has a Fourier expansion beginning
Gy(r) = —11;2-+;q3+%q4+q7+q8+q“+§
As with G we can use ‘Hecke’s trick’ (cf. Section A) to define a function G},
which is not holomorphic but transforms like a holomorphic modular form
of weight 3/2. The Fourier expansion of this non-holomorphic modular form
differs from that of G/, only at negative square exponents:

q12+2q15+—g—q16+q19+2q20+3q23
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G3(1) = ZH(n)q + 3 Bnfroyg "

16x ‘/— fez

where v denotes the imaginary part of 7 and 8(¢) the function [ z73/2 ¢~ dz,
which can be expressed in terms of the error function.

E New forms from old

The words ‘new’ and ‘old’ here are not being used in their technical sense—
introduced in Part 2—but simply to refer to the various methods available for
manufacturing modular forms out of previously constructed ones.

The first and obvious method is multiplication: the product of a modular
form of weight & and one of weight [ is a modular form of weight &+ . Of
course we have already used this many times, as when we compared G2 and
Gg. We also found the structure of the graded ring M, = @ M}, of all modular
forms on the full modular group I: it is the free C-algebra on two generators
G, and Gy of weights 4 and 6. The modular forms on a subgroup I' C I of
finite index also form a ring. For instance, for I' = I'3(2) this ring is the free

C-algebra on two generators G?) and G4 of weights 2 and 4, where

G2 () = Ga(r) - 2Ga(2r) = +Z(Z d) Ligriragt
dodd

(this is a modular form because Go (1) —2G2(27) can also be written as G5(7)—
2G%(27), and G} transforms like a modular form of weight 2 on I';}. In general,
the graded ring of modular forms on I" will not be a free algebra, but must be
given by more than 2 generators and a certain number of relations; it will be
free exactly when the Riemann surface $/1'U{cusps} has genus 0. We also note
that the ring of modular forms on I" contains M, (I'1) = C[G4, Gs] as a subring
and hence can be considered as a module over this ring. As such, it is always free
on n generators, where n is the index of I' in I'. For instance, every modular
form of weight k on I'p(2) can be uniquely written as A(T)G(zz)(r)+B(T)G4(T)+
C()Ga(27) where A € My_y, B, C € My—y (example: GP(r)2 = LGy(7) +
1G4(27)).

The next method is to apply to two known modular forms f and g of
weights k and [ H. Cohen’s differential operator

®)  Flfig)=(2ri)™ 2(—1)” G [t Tl

where v is a nonnegative integer and F®#), g{#) denote the uth derivatives
of f and g. As we will see in a moment, this is a modular form of weight
k + 1+ 2v on the same group as f and g. For v = 0 we have Fy(f,¢) = fg,
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so the new method is a generalization of the previous one. For ¥ = 1 we have
F(f.9) = 5;—:[1 f'g — kfg']; this operation is antisymmetric in f and ¢ and
satisfies the Jacobi identity, so that it makes My_3 = @ M,_2 into a graded

n
Lie algebra. For v positive, F,(f,g) has no constant term, so that F}, maps
M @ M; to Skyi42,. The first non-trivial example is Fi(Gy,Gs) = —glgA,
which gives the formula

rlmy = ST g5 5 (6a— th)oalen()
at+b=n

for the coefficient 7(n) of ¢"™ in A. (Notice that this identity involves only
integers; in general, it is clear that F), maps functions with integral or rational
Fourier coefficients to another such function.) As another example, observe that
applying F,, to two theta series O¢,; associated to quadratic forms @; : Z" — Z
(7 = 1,2) gives rise to a theta-series attached to the form Q; @ Q. : Z"+"2 - Z
and a spherical polynomial of degree v. For instance, if §(7) = Zq”2 is the
basic theta-series of Welght = on Ip(4), then one checks easily that ng(e, )]
is the function Og p = Ezh oyl — 62ial + £3)g®i+*3 discussed at the end
of Section €. Thus the construction of modular forms via theta-series with
spherical functions is a special case of the use of the differential operator F,.

‘We now sketch the proof that F, maps modular forms to modular forms.
If f is a modular form of weight k¥ on some group I', then for (‘; f’i) € I and
@ € Z>q the formula

0 D S e

is easily proved by induction on x (to get from y to g+ 1, just differentiate and
multiply by (cr + d)?). These transformation formulas can be combined into
the single statement that the generating function

- 1

F(r = ————————————()'r T
(10)  f(r, X) ;m(kﬂ_lﬂf“um (renXeC)

satisfies

at +b X
cer+ d (er + d)?

(11) f( ) =(cr +d)¥ X/ (er+d) f(T,X) ((¢Cz 2) er)

Writing down the same formula for a second modular form ¢ of weight [, we
find that the product

i3 = Y, e B X

v=0
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is multiplied by (7 + d)**! when 7 and X are replaced by 22E and %

cr+ (c1'+d {er+d)?°
and this proves the modular transformation property of F,(f,g) for every v.
Finally, we can get new modular forms from old ones by applying the ‘slash

operator’

ar + b

() = (Fler)(r) = (det ) 2(er + ) ~FF ()

to an f of weight k on I', where v = (“ 3) is a 2x2 integral matrix which does

not belong to I" (if y € F of course, then f|.v = f by definition). This will in
general be a modular form on some subgroup of I' of finite index, but often by
combining suitable combinations of images f|;v we can obtain functions that
transform like modular forms on I" or even on a larger group. Important special
cases are the operators

Vi f(7) :m_%(ﬂk(?g)) = f(mr), Unf(r)= m%_lz -ﬂk 1 J )(r)

7=1

(m € N), which map }_ a(n)g™ to > a(n)g™" and to Y a(rmn)g", respectively.
Both map forms of weight k on I'o(N) to forms of the same weight on Ig{mN);
if m divides N, then Uy, even maps forms on I5(N) to forms on I3(N). Some-
times, applying Up, can even reduce the level, which is always a good thing. For
instance, if f = > a(n)q” is a modular form of even weight k£ on Iy(4), then
Uaf = a(2n)g™ is a modular form of weight k on I3(2), and if f has the addi-
tional property that a(n) = Q whenever n = 2 (mod 4), then Uy f = 3 a{4n)g™
even belongs to My = M(I1). Such f occur, for instance, when one multiplies
(or applies the operator F, to) two forms g; € Mr1+% , 92 € M, 1 with
ry +re =k —1 (resp. r{ +re = k —2v — 1), since then r; and r; have opposite
parity and consequently one of the g's contains only powers ¢" with n =0 or
1 (mod 4), the other only powers with n = 0 or 3 (mod 4). This situation will
arise in Part 3 in the derivation of the Eichler-Selberg trace formula.

Important operators which can be built up out of the Vi, and U, are the
Hecke operators, which are the subject of the next part.

T Other sources of modular forms

We have described the main analytic ways to produce modular forms on Iy and
its subgroups. Another method comes from algebraic geometry: certain power
series Y a(n)g™ whose coefficients a(n) are defined by counting the number of
points of algebraic varieties over finite fields are known or conjectured to be
modular forms. For example, the famous “Taniyama-Weil conjecture’ says that
to any elliptic curve defined over Q there is associated a modular form ) a(n )¢
of weight 2 on some group Io(N) with p + 1 — a(p) equal to the number of
points of the elliptic curve over F, for every prime number p. However, this
cannot really be considered a way of constructing modular forms, since one
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can usually only preve the modularity of the function in question if one has an
independent, analytic construction.

In a similar vein, one can get modular forms from algebraic number theory
by looking at Fourier expansions Y a(n)g™ whose associated Dirichlet series
> a(n)n™* are zeta functions coming from number fields or their characters.
For instance, a theorem of Deligne and Serre says that one can get all modular
forms of weight 1 in this way from the Artin L-series of fwo-dimensional Galois
representations with odd determinant satisfying Artin’s conjecture (that the
L-series is holomorphic). Again, however, the usual way of applying such a
result is to comstruct the modular form independently and then deduce that
the corresponding Artin L-series satisfies Artin’s conjecture.

In one situation the analytic, algebraic geometric, and number theoretic
approaches come together. This is for the special class of modular forms called
‘CM’ (complex multiplication) forms: analytically, these are the theta series
Og,p associated to a binery quadratic form @ and an arbitrary spherical func-
tion P on Z?; geometrically, they arise from elliptic curves having complex mul-
tiplication (i.e., non-trivial endomorphisms); and number theoretically, they are
given by Fourier developments whose associated Dirichlet series are the L-series
of algebraic Hecke grossencharacters over an imaginary quadratic field. An ex-
ample is the function 33, . (=i~ 62222 +ad)g"ite = ¢ 12, (1—gny2+amd)
which occurred in Section C. The characteristic property of these CM forms
is that they have highly lacunary Fourier developments. This is because bi-
nary quadratic forms represent only a thin subset of all integers (at most
O(z/(log z)1/2) integers < z).

Finally, modular forms in one variable can be obtained by restricting in
various ways different kinds of modular forms in more than one variable (Jacobi,
Hilbert, Siegel, ...), these in turn being constructed by one of the methods of
this part. The Jacobi forms will be discussed in Part 4.
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2. Hecke Theory

The key to the rich internal structure of the theory of modular forms is the
existence of a commutative algebra of operators T, (n € N) acting on the
space My of modular forms of weight k. The space M} has a canonical basis of
simultaneous eigenvectors of all the T,; these special modular forms have the
property that their Fourier coefficients a(n) are algebraic integers and satisfy
the multiplicative property a(nm) = a(n)a(m) whenever n and m are relatively
prime. In particular, their associated Dirichlet series 3 a(n)n™* have Euler
products; they also have analytic continuations to the whole complex plane and
satisfy functional equations analogous to that of the Riemann zeta function.
We will define the operators T}, in Section A and describe their eigenforms
and the associated Dirichlet series in Sections B and C, respectively. The final
section of this part describes the modifications of the theory for modular forms
on subgroups of PSLy(Z).

A Hecke operators

At the beginning of Part 1 we introduced the notion of modular forms of higher
weight by giving an isomorphism

F(4) s f(r) = F(Zr + 1),

(1) f("') = F(A) = wz_kf(wl/wz) (A = Zw; + Zuwy, S‘(wl/wg) > 0)

between functions f in the upper half-plane transforming like modular forms
of weight k and functions F of lattices A C C which are homogeneous of weight
—k, F(AA) = A ¥ F(A). If we fix a positive integer n, then every lattice A has
a finite number of sublattices A’ of index n, and we have an operator T,, on
functions of lattices which assigns to such a function F the new function

2) ToF(A)=n*" Y F(A)
A'CA
[A:A]=n

(the factor n*~1 is introduced for convenience only). Clearly T, F" is homoge-
neous of degree —k if F is, so we can transfer the operator to an operator T}, on
functions in the upper half-plane which transform like modular forms of weight
k. This operator is given explicitly by

(3) T f(ry=n*" > (er+d)*f(

(2%)er\Ma

ar+b)
er+d

and is called the nth Hecke operator in weight k; here M, denotes the set of
2 x 2 integral matrices of determinant n and I'1\ M, the finite set of orbits
of M,, under left multiplication by elements of I = PSL;(Z). Clearly this
definition depends on k and we should more correctly write Tx(n)f or (the
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standard notation) f|;7T,, but we will consider the weight as fixed and write
sitaply T, f for convenience. In terms of the slash operator

(ad — be)k/? (a'r + b)

b
) = e ia (7=(‘Z‘d), a,b,c,d € R, ad — be > 0)

introduced in Part 1E, formula (3) can be expressed in the form

T.f(r)y=n%"1 Y fln

Ilepl \Mn

From the fact that |; is a group operation (i.e. fiz(7172) = (Flev)le72 for 71, 72
in GLF(R)), we see that T}, f is well-defined (changing the orbit representative
1 to ypu with -y € I'y doesn’t affect fi,p because fly = f) and again transforms
like a modular form of weight k on Il ((Tnf)|yy = Twnf for v € I because
{py | p € I\ My} is another set of representatives for It \ M,,). Of course,
both of these properties are also obvious from the invariant definition (2) and
the isomorphism (1).

Formula (3) makes it clear that T}, preserves the property of being holo-
morphic. We now give a description of the action of T;, on Fourier expansions
which shows that T, also preserves the growth properties at infinity defining
modular forms and cusp forms, respectively, and also that the various Hecke
operators commute with one another.

o0
Theorem 1. (Z) If f(1) is @ moduler form with the Fourier ezpansion Y. ap,q™
m=0

(q = €2™7 ), then the Fourier expansion of Tof is given by
o
1 /nm
@ rufr) = 3 (3 ) an
m=0 d[n,m

where Ed[n’m denotes a sum over the positive common divisors of n and m.
In particular, Tpf is again ¢ modular form, and is ¢ cusp form if f i3 one.
(ii) The Hecke operators in weight k satisfy the multiplication rule

(3) Taly = Z d Toamyaz-

dln,m
In perticular, T, T = TiyTh for alln and m and T, Ty, = Ty if 1 and m are
coprime.

Proof. If p = (‘c‘ Z) is a matrix of determinant n with ¢ £ 0, then we can choose
3 ! o
a matrix v = (':, g,) € PSLy(Z) with %; = and v 1u then has the form

(37). Hence we can assume that the coset representatives in (3) have the form
p=(2%) with ad = n, b € Z. A different choice 7(3 %) (v € PSLy(Z)) of
representative also has this form if and only if v = :l:( é 1) with r € Z, in which
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case (0 :i:(“ b+dr) so the choice of p is unique if we require a, d > 0 and
0b< d Hence

T, f(r) = k1 Z Zd—kf(m—-i— b)
a,d>0 b=0
ad=n
Substituting into this the formula f = 3" a(m) ¢™ gives (4) after a short calcu-
lation. The second assertion of (i) follows from (4) because all of the exponents
of ¢ on the right -hand side are > 0 and the constant term equals a(0)or—1(n)
(ox—1(n) as in Part 1A), so vanishes if a(0) = 0. The multiplication properties
(5) follow from (4) by another easy computation. O

In the special case when n = p is prime, the formula for the action of T,
reduces to

T, 1(r) = Zf(”“)m pr) = 3 atmp) g™+ S alm) g™,

]_0

m=0 m=0

ie., Tp = Up +p*~1V, where U, and V, are the operators defined in 1E. (More
generally, (4) says that T, for any n is a linear combination of products UV,
with ad = n.) The multiplicative property (5) tells us that knowing the T,
is sufficient for knowing all Ty, since if n > 1 is divisible by a prime p then
Tn = n/pr if p2 ’[n, T, = Tn/pr — pk_lTn/pz if pzln.

To end this section, we remark that formula (4), except for the constant
term, makes sense also for n = 0, the common divisors of 0 and m being simply
the divisors of m. Thus the coefficient of ¢™ on the right is just a(0)or—1(m)
for each m > 0. The constant term is formally a(0) Y32, &~ = a(0)¢(1 — k),

but in fact we take it to be $a(0)((1 — k) = —a(O)g—k—. Thus we set

(6) Tof(7) = a(0) G(T) (f=Y alm)q™ € My);

m=0

in particular, 75 maps My to My and Tpf = 0if f is a cusp form.

B Eigenforms

We have seen that the Hecke operators T, act as linear operators on the vector
o0
space Mg. Suppose that f(r) = 3. a(m)¢™ is an eigenvector of all the Ty,

N m=0
1.€.,

(7) Tof = Anf (¥n)

for some complex numbers A,,. This certainly sometimes happens. For instance,
if £ = 4, 6, 8, 10 or 14 then the space My is 1-dimensional, spanned by the
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Eisenstein series G of Part 1A, so T,,Gy, is necessarily a multiple of G for every
n. (Actually, we will see in a moment that this is true even if dim Mg > 1.)
Similarly, if £ = 12, 16, 18, 20, 22 or 26 then the space Si of cusp forms of
weight k is 1-dimensional, and since T}, preserves Sk, any element of Sy satisfies
(7). From (7) and (4) we obtain the identity

(®) dna(m) = Y & a(5)

din,m

by comparing the coefficients of ¢™ on both sides of (7). In particular, Ana(1) =
a(n) for all n. It follows that a(1) # 0 if f is not identically zero, so we can
normalize f by requiring that a(1) = 1. We call a modular form satisfying (7)
and the extra condition a(1) = 1 a Hecke form (the term ‘normalized Hecke
eigenform’ is commonly used in the literature). From what we have just said,
it follows that a Hecke form has the property

(9) An = a(n) (Vn),

i.e., the Fourier coefficients of f are equal to its eigenvalues under the Hecke
operators. Equation (5) or (8) now implies the property

(10) a(n)a(m) = Z dkt a(%—?

din,m

for the coefficients of a Hecke form. In particular, the sequence of Fourier coef-
ficients {a(rn)} is multiplicative, i.e., a(1) = 1 and a(nm) = a(n)a(m) whenever
n and m are coprime. In particular, a(p* ... pJ') = a(p1*). .. a(p]*) for distinct
primes py, ..., Py, so the a(n) are determined if we know the values of a(p”) for
all primes p. Moreover, (10) with n = p”, m = p gives the recursion

(1) a(p™") = a(p) a(p”) ~ p*a(p") (rz1)

for the coefficients a(p”) for a fixed prime p, so it in fact is enough to know the
a(p) (compare the remark following Theorem 1).

By

Examples. 1. The form G = 5%

o
+ Z og-1(m)¢™ € M; is a Hecke form

m=1
for all k > 4 with Ap = a(n) = o4—1(n) for n > 0 and X = a(0) = —% (cf.
(8)). In view of (4), to check this we need only check that the coeflicients a(n)
of G satisfy (10) if n or m > 0; this is immediate if n or m equals 0 and can
be checked easily for n and m positive by reducing to the case of prime powers
(for n = p*, ox_1(n) equals 1 4+ p*~! + -+ + p**=1) which can be summed
as a geometric series) and using the obvious multiplicativity of the numbers

U'k..j(n).

2. The discriminant function A of Part 1 belongs to the 1-dimensional
space Syp and has 1 as coefficient of ¢!, so it is a Hecke form. In particular,
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(10) holds (with £ = 12) for the coeflicients a{n) of A, as we can check for
small n using the coefficients given in (7) of Part 1:

a(2)a(3) =—24x252 = —6048 = a(6) , a(2)? = 576 =—1472+2048 = a(4)+42".

This multiplicativity property of the coefficients of A was noticed by Ramanu-
jan in 1916 and proved by Mordell a year later by the same argument as we
have just given.

The proof that A is a simultaneous eigenform of the T, used the property
dim Sy = 1, which is false for £ > 26. Nevertheless, there exist eigenforms in
higher dimensions also; this is Hecke’s great discovery. Indeed, we have:

Theorem 2. The Hecke forms in My form a basis of My for every k.

Proof. We have seen that Gy is an eigenform of all T,,. Conversely, any modular
form with non-zero constant term which is an eigenform of all T, (n > 0) is
a multiple of Gy by virtue of equation (6) of Section A. In view of this and
the decomposition Mg = (Gr) @ Sk, it suffices to show that Si is spanned by
Hecke forms and that the Hecke forms in Si are linearly independent. For this
we use the Hilbert space structure on Sy introduced in the introduction of Part
1 (eq. {2)). One checks from the definition (3) that the T}, are self-adjoint with
respect to this structure, i.e. (Tnf,9) = (f,Tng) for all f, g € Sy and n > 0.
(For n = 0, of course, T, is the zero operator on Si by equation (6).) Also,
the T,, commute with one another, as we have seen. A well-known theorem of
linear algebra then asserts that Si is spanned by simultaneous eigenvectors of
all the transformations T},, and we have already seen that each such eigenform
is uniquely expressible as a multiple of a Hecke form satisfying (10). Moreover,
for a Hecke form we have

a(n) (£, f) = (@(n)f, f) = Onf, ) = (Tuf, f)
= (£, Taf) = (£, Anf) = (f,a(n)f) = a(n) (£, f)

by the self-adjointness of T, and the sesquilinearity of the scalar product.
Therefore the Fourier coefficients of f are real. If g = Y b(n)¢" is a second
Hecke form in Sj, then the same computation shows that

a(n)(f,9) = (Tuf,9) = (f, Tag) = B(n) (f,9) = b(n) (f,9)

and hence that (f,g) = 0 if f # ¢. Thus the various Hecke forms in Sy are
mutually orthogonal and a fortiori linearly independent. g

‘We also have

Theorem 3. The Fourier coefficients of @ Hecke form f € Sy are real algebraic
sntegers of degree < dim S;.
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Proof. The space Si is spanned by forms all of whose Fourier coefficients are
integral (this follows easily from the discussion in Part 1, Section B). By formula
(4), the lattice Ly, of all such forms is mapped to itself by all T,,. Let f1,... , fa
(d = dimg¢ Si = rkzlLi) be a basis for L over Z. Then the action of T, with
respect to this basis is given by a d x d matrix with coeflicients in Z, so the
eigenvalues of T, are algebraic integers of degree < d. By (9), these eigenvalues
are precisely the Fourier coefficients of the d Hecke forms in Si. That the
coefficients of Hecke forms are real was already checked in proving Theorem
2. O

From the proof of the theorem, we see that the trace of T,, (n > 0) acting
on My or Sk is the trace of a (d + 1) x (d+ 1) or d x d matrix with integral
coefficients and hence is an integer. This trace is given in closed form by the
Eichler-Selberg trace formula, which will be discussed in Part 3D.

Example. The space Sy4 is 2-dimensional, spanned by
A(r)? = 0g+q° — 484> + 1080 ¢* + - --
and

(240G4(7))® A(7) = ¢ + 696 ¢* + 162252 ¢° + 12831808 ¢* + - - -

If f € S24 is a Hecke form, then f must have the form (240G,)3A + AA? for
some A € C, since the coefficient of ¢! must be 1. Hence its second and fourth
coefficients are given by

a(2) =696+,  a(4) = 12831808 + 1080 ).

The property a(2)? = a(4)+2?% (n = m = 2 in (10)) now leads to the quadratic
equation
A% + 312 A — 20736000 = 0

for A. Hence any Hecke form in Sz4 must be one of the two functions

fi, fo = (240G4)* A 4 (—156 £ 12/144169) A%

Since Theorem 2 says that Ss4 must contain exactly two Hecke forms, f; and
f2 are indeed eigenvectors with respect to all the T;,. This means, for example,
that we would have obtained the same quadratic equation for ) if we had used
the relation a(2)a(3) = a(6) instead of a(2)? = a(4) + 22%. The coefficients
a1{n), az{n) of f1 and f; are conjugate algebraic integers in the real quadratic

field Q(v/144169).
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C L-series

The natural reflex of a number-theorist confronted with a multiplicative func-
o<
tion n > a(n) is to form the Dirichlet series Y a(n)n~—°, the point being that

n=1
the multiplicative property implies that a(pi*...p;") = a(p!*)...a(p;") and
hence that this Dirichlet series has an Euler product [ (3 a(p")p™ ™). We
p prime r>0
therefore define the Hecke L-series of a modular form f(7) = Y o _o a(m)q™ €
Mk by

o0

(12) i)=Y 4

(notice that we have ignored a(0) in this definition; what else could we do?).
Thus if f is a Hecke form we have an Euler product

wro= I (1490 ), )

p prime
because the coeflicients a(m) are multiplicative. But in fact we can go further,

because the recursion (11) implies that for each prime p the generating function

Ay(z) =Y a(p”)z" satisfies

Ay(e) = 1+ a(p+)am!

r=0

o o0
1+ Z a(p) a(pr)zr+1 _ Zpk—1 a(pr—-l)xr—l-l
r=0 r=1

1+ a(p)z Ap(z) — pFla? Ay(z)

i

and hence that

1

AP(I) = 1— a(p)m +pk~1x2 "

Therefore, replacing « by p~° and multiplying over all primes p, we find finally

1
L{f,s) = I;_[ T (f € My a Hecke form).

Examples. 1. For f = G} we have
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p(r-l—l)(k——l) -1
pk—l -1 ?

O Hr+1)(k-1) _ 1 1

_ P r_

Ap(z) = Z pE—1_1 z = (1 _ pk—lz) (1 _ a:)

r=0

a(pr) =1 +pk—1 4. +pr(k-—1) -

1 1
L G 3 = =
(G, 9) ]_;[ 1—op_1(p)p=® + pF-1-2¢ 1;[ (1 —pF—1-9)(1 —p—*)
={(s — k+ 1)((s),
where ((s) is the Riemann zeta function. (Of course, we could see this directly:

k-1
the coefficient of n™* in ((s —k+ 1){(s) = X a is clearly og_1(n) for
dc>1 (de)®

each n > 1.)

2. For f = A we have

1
- 1;.[ 1—7(p)p—* + pti-22’

L(4,9)

where 7(n), the Ramanujan tau-function, denotes the coefficient of ¢™ in A;
this identity summarizes all the multiplicative properties of 7(n) discovered by
Ramanujan.

Of course, the Hecke L-series would be of no interest if their definition
were merely formal. However, these series converge in a half-plane and define
functions with nice analytic properties, as we now show.

Theorem 4. (i) The Fourier coefficients a(m) of ¢ modular form of weight k
satisfy the growth estimates

(13) a(n) = 0(n*1)  (f € My), a(n) = 0(n¥)  (f €5
Hence the L-series L{f,s) converges absolutely and locally uniformly in the

k
half-plane R(s) > k in any case and in the larger half-plane R(s) > 5 +1ff
18 ¢ cusp form.

() L(f,s) has a meromorphic continuation to the whole complex plane. It

18 holomorphic everywhere if [ is @ cusp form and has ezactly one singularity,
2mi)*
(k- 1)
eztended funciion saiisfies the funciional equation

a simple pole of residue a(0) at s = k, otherwise. The meromorphically

(2n)~* I'(s) L(f,s) = (=1)¥(2r)*~* I'(k — s) L(f, k — s).

Proof. (i) Since the estimate a(r) = O(n*~!) is obvious for the Eisenstein
series G (we have ox_1(n) = nF1 Zd]n d7kt < k150 dRHL < 2kt
because k > 2), and since every modular form of weight k is a combination
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of G and a cusp form, we need only prove the second estimate in (13). If f
is a cusp form then by definition we have |f(7)] < Mv~*/2 for some constant
M >0 and all 7 = u+iv € . On the other hand, for any n > 1 and v > 0 we
have

1
a(n) = / flu + i) e 2min(ativ) gy
0

Hence
la(m)] < MyH2 g2rno,

and choosing v = 1/n gives the desired conclusion. (This argument, like most
of the rest of this part, is due to Hecke.)

(ii) This follows immediately from the ‘functional equation principle’ in
Appendix B, since the function

2]

B(v) = f(iv) — a0) = 3 a(n) e (v>0)

n=1

is exponentially small at infinity and satisfies the functional equation

1 -1 . . E 3
$(2) = 1(7)=a(0) = ()" f(iv)~a(0) = (~1)Fo*(v)}+(~1)¥a(0) v*—a(0)
and its Mellin transform [ ¢(v)v* ™ dv equals (27)~*I'(s)L(f, s). O

The first estimate in (13) is clearly the best possible, but the second one
can be improved. The estimate a(rn) = O(n*~5+¢) for the Fourier coefficients of
cusp forms on I was found by Rankin in 1939 as an application of the Rankin-
Selberg method explained in the next part. This was later improved to a{n) =
O(n%~3%¢) by Selberg as an application of Weil’s estimates of Kloosterman
sums. The estimate

k—1

(14) a(n) = O(n"T 1) (f=> an)g" € Sp),

conjectured by Ramanujan for f = A in 1916 and by Petersson in the general
case, remained an open problem for many years. It was shown by Deligne in
1969 to be a consequence of the Weil conjectures on the eigenvalues of the
Frobenius operator in the l-adic cohomology of algebraic varieties in positive
characteristic; 5 years later he proved the Weil conjectures, thus establishing
(14). Using the form of the generating function Ay(z) given above, one sees
that (14) is equivalent to

(15) la(p)] < 21)”‘"1)/2 (p prime).

In particular, for the Ramanujan tau-function T(n) (coefficient of ¢" in A) one
has

(16) Ir(p)] < 2p"1/2 (p prime).
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The proof of (16) uses the full force of Grothendieck’s work in algebraic ge-
ometry and its length, if written out from scratch, has been estimated at 2000
pages; in his book on mathematics and physics, Manin cites this as a proba-
ble record for the ratio ‘length of proof:length of statement’ in the whole of
mathematics.

D Forms of higher level

In most of these notes, we restrict attention to the full modular group Iy =
PSLy(Z) rather than subgroups because most aspects of the theory can be
seen there. However, in the case of the theory of Hecke operators there are
some important differences, which we now describe. We will restrict attention
to the subgroups I3(N) = {(Zs € It | ¢ = 0 (mod N)} introduced in Part
1.

First of all, the definition of T, must be modified. In formula (3) we must
replace It by I' = I'o(N) and M,, by the set of integral matrices (¢ 3) of
determinant n satisfying ¢ = 0 (mod N) and (a,N) = 1. Again the coset
representatives of '\ M, can be chosen to be upper triangular, but the extra.

- condition (a,N) = 1 means that we have fewer representatives than before
if (n, N} > 1. In particular, for p a prime dividing N we have T, = U, and
Tpr = (Tp)" rather than T, = U, + p*~'V, and a 3-term recursion relation for
{Tpr}. For general n, the operation of T, is given by the same formula (4) as
before but with the extra condition (d,N) = 1 added to the inner sum, and
similarly for the multiplicativity relation (5).

The other main difference with the case N = 1 comes from the existence
of so-called ‘old forms.” If N’ is a proper divisor of N, then I'5(N) is a subgroup
of I'y(N') and every modular form f(r) of weight k on I4(N') is a fortiori a
modular form on I3(N). More generally, f(M7) is a modular form of weight k
on I'g(NN) for each positive divisor M of N/N', since

(CDEDm) = (o3 € TV
ar+b, a(Mr)+bM | o .
= I 2 = N ennan + 2 =+ 9O,

The subspace of Mr(Io(N)) spanned by all forms f(M7) with f € Mg(Io(N")),
MN'|N,N' £ N, is called the space of old forms. (This definition must be mod-
ified slightly if k = 2 to include also the modular forms 3,/ y e G5(M) with
emeC, Yy min M ~lep = 0, where G} is the non-holomorphic Eisenstein series
of weight 2 on I introduced in Part 1A, as old forms, even though G itself
is not in M(I').) Since the old forms can be considered by induction on N as
already known, one is interested only in the ‘rest’ of Mg(I'o(N)). The answer
here is quite satisfactory: Mg(I5(IV)) has a canonical splitting as the direct
sum of the subspace My(Io(N))*d of old forms and a certainly complemen-
tary space My(Io(N))*e¥ (for cusp forms, Sp(Io(IV))*¥ is just the orthogonal
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complement of Sg(Io(IN))°'! with respect to the Petersson scalar product), and
if we define a Hecke form of level N to be a form in Mi(Io(N))*¥ which is
an eigenvector of T, for all n prime to N and with a(1) = 1, then the Hecke
forms are in fact eigenvectors of all the T}, they form a basis of M(IH(N))"e¥,
and their Fourier coefficients are real algebraic integers as before. For the pth
Fourier coefficient (p prime) of a Hecke form in Sk(Ip(N))"*" we have the same
estimate (15) as before if p { N, while the eigenvalue with respect to T when
p|N equals 0 if p?|N and +p*~1/2 otherwise. Finally, there is no overlapping
between the new forms of different level or between the different lifts f(MT) of
forms of the same level, so that we have a canonical direct sum decomposition

My(To(N) = @D {f(Mr) | f € Mp(Lo(N"))"*"}

MN'|N

and a canonical basis of M(I3(IV)) consisting of the functions f{M ) where
MIN and f is a Hecke form of level dividing N/M.

As already stated, the Fourier coefficients of Hecke forms of higher level
are real algebraic integers, just as before. However, there is a difference with
the case N = 1: For forms of level 1, Theorem 3 apparently always is sharp:
in all cases which have been calculated, the number field generated by the
Fourier coeflicients of a Hecke cusp form of weight k has degree equal to the
full dimension d of the space S, which is then spanned by a single form and
its algebraic conjugates (cf. the example k = 24 given above). For forms of
higher level, there are in general further splittings. The general situation is that
Sx(Lo(N))" splits as the sum of subspaces of some dimensions dy, ... ,d, > 1,
each of which is spanned by some Hecke form, with Fourier coefficients in a
totally real number field K; of degree d; over {§, and the algebraic conjugates
of this form (i.e. the forms obtained by considering the various embeddings
K; — R). In general the number r and the dimensions d; are unknown; the
known theory implies certain necessary splittings of Si(Ip(V))*”, but there
are often further splittings which we do not know how to predict.

Examples. 1. £ = 2, N = 11. Here dim M(I5(N)) = 2. As well as one old

form, the Eisenstein series

@3 - 1163011 = = + Y (Z d) "

n=1 ‘“din
11fd

of weight 2, there is one new form

f(r)= §/ANAQLT) =q-2¢ — @ +2¢* + ¢* +2¢° — 2¢" + - -,

with Fourier coefficients in Z. This form corresponds (as in the Taniyama-Weil
conjecture mentioned in Part 1F) to the elliptic curve y% — y = 2® — 22, i.e.,
p — a(p) gives the number of solutions of y* — y = 2® — z? in integers modulo
any prime p.
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2.k = 2, N = 23. Again dim Mi(I3(N))° is 1-dimensional, spanned
by G3(7) — NG5(N7), but this time Mp(Io(N))*™ = Sp(Lo(N))*" is 2-

dimensional, spanned by the Hecke form

1- V5 1++5 5— 5
fi=q- 2‘/-q2+\/5q3—~i2—\/—_q4—(1—\/5)q5——2—\/_46+-~

1445

with coefficients in Z + Z 5

and the conjugate form

¢* ~(1+VB)¢’ ~

1+v5 1-+5
fr=q - ¢~V — ——

2

obtained by replacing v/5 by —/5 everywhere in f;.

3.k =2 N = 37. Again dim M(I3(N))°Y is spanned by Gi(r) —
NG5(N7) and My (I(N))"e¥ = Sp(Io(IV))"*" is 2-dimensional, but this time
the two Hecke forms of level N

5++b
_2\/__(16 + .-

fi=qg—2¢" -3¢ +2¢* —2¢° +6¢° —¢" +---
and

fo=q+0¢" +¢* —2¢* +0¢° +0¢° — ¢ +---

both have coefficients in Z; they correspond to the elliptic curves y?> —y = 2% —2
and y? — y = 2% 4+ 2% — 3z + 1, respectively.

4.k =4, N = 13. Here dim Mx(I3(N))° is spanned by the two Eisenstein
series G4(7) and G4(N1) and My (Io{N))**¥ = Sp(Io(INV))*¢¥ is 3-dimensional,

spanned by the forms

14+/17 5 317 TFVIT
fi, f2 = q+ 2\/—q2+ $2 ¢ - ;2 g+ -
with coefficients in the real quadratic field Q( V17 } and the form
fs =q—5¢* —7¢° + 17¢* — 7¢° + 35¢° — 13¢" — - --

with coefficients in Q.

Finally, there are some differences between the L-series in level 1 and in
higher level. First of all, the form of the Euler product for the L-series of a
Hecke form must be modified slightly: it is now

1 1
L(f, S) = H 1— a(p)p—s _l_pk-—l—Zs H 1— a(p)p-—_, -

riIN N

More important, L(f, s), although it converges absolutely in the same half-
plane as before and again has a meromorphic continuation with at most a



D. Zagier 265

simple pole at s = k, in general does not have a functional equation for every
F € Mi(Iy(N)), because we no longer have the element (§ ') € I' to force

the symmetry of f(iv) with respect to v — o Instead, we have the Fricke
involation

wy: f(r) = wnf(r) = N—% 7k f(—];,—ql_)

which acts on the space of modular forms of weight & on I'o(N) because the
element (?I ";)1 of GLF (R) normalizes the group I'y(IV). This involution splits
M;i(Io(IV)) into the direct sum of two eigenspaces MiE (I3 (N)), and if f belongs

to ME(Ih(N)) then
(2m)° N*/2 D(s) L(f, ) = £(~1)¥2 (2r)* X NE=DL2 Pk — ) L(f,k — 3).

(For N = 1 we have wy = Id since (5 5') € Io(N) in this case, so My =
{0} for all k, but for all other values of N the dimension of M (IH(IV)) is
asymptotically 1 the dimension of My(I(N)) as k — co.) The involution
wy preserves the space Mi(IH(IV))"°" and commutes with all Hecke operators
T, there (whereas on the full space My(I3(N)) it commutes with T, only
for (n,N) = 1). In particular, each Hecke form of level N is an eigenvector
of wxy and therefore has an L-series satisfying a functional equation. In our
example 3 above, for instance, the Eisenstein series G5(7) —37G5(377) and the
cusp form f; are anti-invariant under wyy and therefore have plus-signs in the
functional equations of their L-series, while f; is invariant under w37 and has an
L-series with a minus sign in its functional equation. In particular, the L-series
of fi vanishes at s = 1, which is related by the famous Birch-Swinnerton-Dyer
conjecture to the fact that the equation of the corresponding elliptic curve
y? —y = % — z has an infinite number of rational solutions.
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3. The Rankin-Selberg Method and its Applications

The Rankin-Selberg convolution method is one of the most powerful tools in the
theory of automorphic forms. In this part we explain two principal variants of
it—one involving non-holomorphic Eisenstein series and one involving only the
holomorphic Eisenstein series constructed in Part 1. We will also give several
applications, the most important one being a proof of the formula of Eichler
and Selberg for the traces of Hecke operators acting on spaces of holomorphic
modular forms. The essential ingredients of the Rankin-Selberg method are
various types of Eisenstein series, and we begin by studying the main properties
of some of these.

A Non-holomorphic Eisenstein series

For r =u +iv € §j and s € C define

& &(r, s)-zzl

$(r)°

mT + s’

(sum over m,n € Z not both zero). The series converges absolutely and locally
uniformly for R(s) > 1 and defines a function which is I1-invariant in 7 for the
same reason that G in Part 1 was a modular form. As a sum of pure exponential
functions, it is a holomorphic function of s in the same region, but, owing to
the presence of v = §(7) and the absolute value signs, it is not holomorphic
in 7. The function G(7,s) is known in the literature under both the names
‘non-holomorphic Eisenstein series’ and ‘Epstein zeta function’ (in general, the
Epstein zeta function of a positive definite quadratic form @ in r variables is
the Dirichlet series E,zer Q(x)~°; if r = 2, then this equals 2°T1d—*/2G(r, s)
where —d is the discriminant of  and 7 the root of Q(2,1) = 0 in the upper
half plane). Its main properties, besides the I'-invariance, are summarized in

Proposition. The function G(r,s) can be meromorphically estended to a func-
tion of s whick is entire except for a simple pole of residue T (independent of
1) at s =1. The function G*(1,5) = #~°I'(s)G(7, s) i3 holomorphic except for
simple poles of residue % and —% at s = 1 and s =0, respectively, and saiisfics
the functional equation G*(1,s) = G*(r,1—s).

Proof. We sketch two proofs of this. The first is analogous to Riemann’s proof
of the functional equation of ¢{(s). For 7 = u +iv € § let @ be the posi-
tive definite binary quadratic form Q-(m,n) = v} |m7 + n|? of discriminant
—4 and O-(t) = 3., ez e~ ™@r(mm)t the associated theta series. The Mellin
transformation formula (cf. Appendix B) implies

G*(r,s) = %F(S)Z’[ﬂQr(m, n)] " = %/ow(ér(t) — 1)t dt.
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On the other hand, the Poisson summation formula (cf. Appendix A) implies
that ©,(1) = t@,(t), so the function ¢(t) = $(O(t) — 1) satisfies ¢(t7') =
—% + -;—t + t¢(¢t) The ‘functional equation principle’ formulated in Appendix
B now gives the assertions of the theorem.

The second proof, which requires more calculation, but also gives more
information, is to compute the Fourier development of G(7, s). The computation
is very similar to that for G¢ in Part 1, so we can be brief. Splitting up the
sum defining G(7, s) into the terms with m = 0 and those with m # 0, and
combining each summand with its negative, we find

G(r,s) = ((2s)v° +v° i ( i |mr + n|_2s> (r=u+1v).
m=1 ‘n=—co
Substituting into this formula (3) of Appendix A, we find
G(r,8) = ((2s® + = 1;“(; ) e v Z m!
2T b 3 md ol K,y Grmlrlo) 7

F(S) m>1
T;ZO

+

where K, (t) is the K-Bessel function [~ e™°**R* cosh(vu)du. Hence

G*(1,8) = (*(2s)0° + (*(2s — '~ + %% Z J:-%(In‘)K _%(zw}nlu)GZrinu’
n#o

where ¢*(s) denotes the meromorphic function 7%/2I"(s/2)¢(s) and ¢*(n) the
arithmetic function [n|” 374, d~?¥. The analytic continuation properties of G*
now follow from the facts that (*(s) is holomorphic except for simple poles
of residue 1 and -1 at s = 1 and s = 0, respectively, that ¢}(n) is an entire
function of v, and that K, () is entire in v and exponentially small in ¢ as
t — oo, while the functional equation follows from the functional equations

C*(1 —5) = (*(s) {cf. Appendix B}, 0% ,(n) =0}(n), and K_,(¢) = K,(¢). O

As an immediate consequence of the Fourier development of G* and the

identity K (¢) = 4/m/2te™", we find

hm (G*(T,S) 1/21) — %’U — %Iogv +C+2 Z _71; R(e%rimrr)

m,r=1

T 1 v dmirr 12
=5 510gv+6’——210g{1—~e T

r=1

1 !
= —5; log(v?1A()F) + C,



268 Chapter 4. Introduction to Modular Forms

where C' = lim,1(¢*(s) — (s — 1)7!) is a certain constant (in fact given by
17— 1 log 4w, where v is Euler’s constant) and A(r) the discriminant function
of Part 1. This formula is called the Kronecker limit formula and has many
applications in number theory. Together with the invariance of G(r,s) under
PSL4(Z), it leads to another proof of the modular transformation property of
A(T).

B The Rankin-Selberg method (non-holemorphic case) and
applications

In this section we describe the ‘unfolding method’ invented by Rankin and Sel-
berg in their papers of 1939-40. Suppose that F(r) is a smooth I'-invariant
function in the upper half-plane and tends to 0 rapidly (say, exponentially) as
v = ${(7) — oo. (In the original papers of Rankin and Selberg, F(r) was the
function v*%|A(7)|2.) The I'i-invariance of F' implies in particular the periodic-
ity property F(r +1) = F(7) and hence the existence of a Fourier development
F(u+iv) = 3, czcn(v)e?™™*. We define the Rankin-Selberg transform of F'
as the Mellin transform (cf. Appendix B) of the constant term eg(v) of F:

(1) R(F;s) = /000 co(v) v* 2 dv

(notice that there is a shift of s by 1 with respect to the usual definition of
the Mellin transform). Since F(u + iv) is bounded for all v and very small as
v — 00, its constant term

(2) co(v) = /(; F(u +1iv)du

also has these properties. Hence the integral in {1) converges absolutely for
R(s) > 1 and defines a holomorphic function of s in that domain.

Theorem. The function R(F;s) can be meromorphically eztended to o func-
tion of s and is holomorphic in the half-plane R(s) > % ezcept for a sim-
ple pole of residue k = %ffﬁ/ﬂ F(r)dp at s = 1. The function R*(F;s) =
77 (s)((2s)R(F;s) is holomorphic everywhere ezcept for simple poles of

residue +Zk at s =1 and s =0 and R*(F;s) = R*(F;1~s).

(Recall that du denotes the SL(2, R)-invariant volume measure v~2 du dv on
$/Iy and that the area of £/ with respect to this measure is 7/3; thus & is
simply the average value of F in the upper half-plane.)

Proof. We will show that ((2s5)R(F';s) is equal to the Petersson scalar product
of F with the non-holomorphic Eisenstein series of Section A:

3) ceR(E;) = | /}6 GO )



D. Zagier 269

The assertions of the theorem then follow immediately from the proposition in
that section.

To prove (3) we use the method called ‘unfolding’ (sometimes also referred
to as the ‘Rankin-Selberg trick’). Let I's, denote the subgroup {£(} 7) [ n € Z}
of Iy (the ‘oo’ in the notation refers to the fact that Iy, is the stabilizer in
I of infinity). The left cosets of I, in I} are in 1:1 correspondence with
pairs of coprime integers (¢, d), considered up to sign: multiplying a matrix
(¢ g) on the left by (3 ) produces a new matrix with the same second row,
and any two matrices with the same second row are related in this way. Also,
S(y(r)) = v/ler +dJ? for v = (¢ Z) € I'y. Finally, any non-zero pair of integers
(m,n) can be written uniquely as (r¢, rd) for some r > 0 and coprime ¢ and d.
Hence for ®(s) > 1 we have

1 () s
G(T>3)=§Z > WC—T(T)E)F;=C(23) Z ()"

r=1 ¢,d coprime Y€l \1

Therefore, denoting by F a fundamental domain for the action of I on £, and
observing that the sum and integral are absolutely convergent and that both
F and dy are I'i-invariant, we obtain

s [[ema = [[ 3 sty pamas

/T F 1€l \I1

=3y / / S(r)* F(r)dp.

Y€l \1 JF

Notice that we have spoiled the invariance of the original representation: both
the fundamental domain and the set of coset representatives for 'y, \ I} must be
chosen explicitly for the individual terms in what we have just written to make
sense. Now comes the unfolding argument: the different translates vF of the
original fundamental domain are disjoint, and they fit together exactly to form
a fundamental domain for the action of I', on £ (here we ignore questions
about the boundaries of the fundamental domains, since these form a set of
measure zero and can be ignored.) Hence finally

¢(25)! f /,—9 G F)du = / /ﬁ o SCY ()

Since the action of I's, on ) is given by u — u + 1, the right-hand side of
this can be rewritten as [ ( fol F(u + iv)du) v*~% dv, and in view of equation
(2) this is equivalent to the assertion (8). A particularly pleasing aspect of
the computation is that—unlike the usual situation in mathematics where a
simplification at one level of a formula must be paid for by an increased com-
plexity somewhere else—the unfolding simultaneously permitted us to replace
the complicated infinite sum defining the Fisenstein series by a single term
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3(7)® and to replace the complicated domain of integration /I by the much
simpler $)/I's, and eventually just by (0, c0). O

We now give some applications of the theorem. The first application is to
the I'-invariant function F(7) = v¥|f(7)|?, where f = Y a(n)¢™ is any cusp
form in Sy (in the original papers of Rankin and Selberg, as already mentioned,
f was the discriminant function of Part 1B, k = 12). We have

co oo
F(u + “}) — vk Z E a(n)me?ﬁ(n—m)u e-—-27r(n+m)'u

n=1m=1

and hence co(v) = vF E:’:l |a(n)[? e~*™?_ Therefore

I E-1 n)|?
R(F;s) = Z |a( n)IZ/ o e P2 dy ((lf -;+k 1 ) Z ,l:ﬁgc)l 1°

n=]1

This proves the meromorphic continuability and functional equation of the
‘Rankin zeta function’ Y |a(n)|2n~*; moreover, applying the statement about
residues in the theorem and observing that « here is just 3/7 times the Peters-
son scalar product of f with itself, we find

7 (k a{n)}?
@ (. 5) = 324yfmb(zﬂ;ﬂg.

If f is a Hecke form, then the coefficients a(n) real and 3 a(n)?n="F+! =
¢(s) Y a(n?)n=*"¥*+! by an easy computation using the shape of the Euler
product of the L-series of f, so this can be rewritten in the equivalent form

%) (D)= T Z“")

s=k

As a second application, we get a proof different from the usual one of the
fact that the Riemann zeta function has no zeros on the line R(s} = 1; this
fact is one of the key steps in the classical proof of the prime number theorem.
Indeed, suppose that ((1+ia) = 0 for some real number « (necessarily different
from 0), and let F(7) be the function G(r, (1 + ic)). Since both ((2s) and
((2s — 1) vanish at ¢ = %(1 + ia) (use the functional equation of (!), the
formula for the Fourier expansion of G(r,s) proved in the last section shows
that F(7) is exponentially small as v — oo and has a constant term co(v)
which vanishes identically. Therefore the Rankin-Selberg transform R(F}s) is
zero for R(s) large, and then by analytic continuation for all s. But we saw above
that R(F;s) is the integral of F(r) against G(r,s), so taking s = (1 — ia),
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cg(v)

co(v) - 3r~ 1A, A)
P

4 T A

v logv

Fig. 1. The constant term co(v) =023 o r(n) e *™".

G(r,s) = F(r), we find that the integral of |F(7)|? over $/I" is zero. This is
impossible since F(7) is clearly not identically zero.

Finally, we can re-interpret the statement of the Rankin-Selberg identity
in more picturesque ways. Suppose that we knew that the constant term ¢o(v)
of F had an asymptotic expansion ¢o(v) = Cov?® + Cyv™ + Coo™ +--- as v
tends to 0. Then breaking up the integral in the definition of R(F'; s) into the
part from 0 to 1 and the part from 1 to infinity, and observing that the second
integral is convergent for all s, we would discover that R(F'; s) has simple poles
of residue C; at s = 1 — A; for each j and no other poles. Similarly, a term
Cv*(logv)™ ! would correspond to an mth order pole of R(F;s) at 1 — A. But
the theorem tells us that R(F';s) has a simple pole of residue « at s = 1 and
otherwise poles only at the values s = % p, where p is a non-trivial zero of the
Riemann zeta function. It is thus reasonable to think, and presumably under
suitable hypotheses possible to prove, that ¢o(v) has an asymptotic expansion
as v — 0 consisting of one constant term & and a sum of terms C,v'~#/2 for
the various zeros of {(s). Assumning the Riemann hypothesis, these latter terms
are of the form v*/4 times an oscillatory function A cos(33(p)logv+4) for
some amplitude A and phase ¢. Figure 1 illustrates this behavior for the con-
stant term v'? 3" 7(n)2e =™ of v!2|A(7)|?; the predicted oscillatory behavior
is clearly visible, and a rough measurement of the period of the primary oscil-
lation leads to a rather accurate estimate of the imaginary part of the smallest
non-trivial zero of {(s). In a related vein, we see that the difference between
co(v) and the average value « of F for small v should be estimated by O(v¥+¢)
if the Riemann hypothesis is true and by O(v?+¢) unconditionally. Since co(v)
is simply the average value of F(r) along the unique closed horocycle of length
7! in the Riemannian manifold $/I, and since F is an essentially arbitrary
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function on this manifold, we can interpret this as a statement about the uni-
formity with which the closed horocycles on §/ I fill it up as their length tends
to infinity.

C The Rankin-Selberg method (holomorphic case)

The calculations here are very similar to those of Section B, so we can be
fairly brief. Let f(7) = Y o a(n)g™ be a cusp form of weight k on I' and
g(1) = 3o o B(n)¢™ a modular form of some smaller weight I. We assume for
the moment that £ — ! > 2, so that there is a holomorphic Eisenstein series
G of weight k& —I. Our object is to calculate the scalar product of f(7) with
the product Gx—i(7)g(7).

Ignoring convergence problems for the moment, we find (with A =% — )

(h-1)1 _(h—1) 1
G = "Gy 2 Z (mT—}-n)h @miyp ¢ > (cr + d)*’
(ii)era\nx
whence
i) ok e
s & 1))! 5 1) G atr)

o
= Y gm0 i)
(;:)€re\ s

> SO fam)e(rm),

YElNw \Fl
and consequently

i)
(h(le);)‘cm(f,cv‘h-gh f / > S(rn)* ) g(rr) du

7EP00\P1

=7EPZ\H / / S(r)* £(r) () d
- /0 (0 f(u+iv)mdu) v*2 d

o0

- /0 °° (Z a(n)%{)“e~4""”) o*2 dy

n=1

E—2) a(n) b(r)
o -y,

In other words, the scalar product of f and G, - ¢ is up to a simple factor
equal to the value at s = k — 1 of the convolution of the L-series of f and §.
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The various steps in the calculation will be justified if ff, ro\% |F()g(T)|o* du
converges. Since f(7) = O(v=%/2?) and g(r) = O(v~?), this will certainly be the
caseif £ > 20+ 2.

We can generalize the computation just done by replacing the product
Gy - g by the function F,(Gp,g) defined in Section E of Part 1, where now
h+ 14 2v = k. Here we find

(27wi)t
i e = (D _;:‘D—h,g(f))

YEL oo\

v (h+v—D+v—1) & rgt)()
e 27: ,; pl(v — p)i(h — D)1+ p — 1)! (er + d)bte—an

where in the last line we have used formula (9) of Part 1, E. The same argument
as before now leads to

i (h +v— 1) 1
(2xt) N Y oo _ .
m(ﬂFu(Gh,g)) = W./ ] F(r) g (r) du v dv
R+v—1\ (k-2)! RN oy
@) _ ( = ) > L

the steps being justified this time f k > 214+ 2v 4+ 2 or b > [+ 2. Again
the result is that the Petersson scalar product in question is proportional to a
special value of the convolution of the L-series of f and g.

D Application: The Eichler-Selberg trace formula

Fix an even weight £ > 0 and let
t(n) = tx(n) = Te(T(n), M),  °(n) = f(n) = Te(T(n), Sk)

denote the traces of the nth Hecke operator T(n) on the spaces of modular
forms and cusp forms, respectively, of weight k. If we choose as a basis for M
or Sy a Z-basis of the lattice of forms having integral Fourier coefficients {which
we know we can do by the results of Part 1), then the matrix representing the
action of T(n) with respect to this basis also has integral coefficients. Hence
t(n) and t%(n) are integers. The splitting Mr = S €P(Gs) and the formula
Tn(Gx) = 0x-1(n)Gy for k > 2 imply

(1) tr(n) =)+ op1(n) (=1, k> 2).
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Theorem. (Eichler, Selberg) Let H(N) (N > 0) be the Kronecker-Hurwitz class
numbers defined in D of Part 1 and denote by pp(t,n) the homogeneous poly-
nomaial

pk(t, n) = Z (k 2 ) )rtk-z —2r COﬁﬁXk 2 (—_—;X"l—_'_nﬁ)

0<r< s 1

of degree £ —114nt? and n (thus pa(t,n) = 1, pa(t,n) = 2 —n, pe(t,n) =
3t2n—(—n , etc.). Then

te(n) = -—% Z pe(t,n)H(4n — 2) + %Zma,x{d, n/d}F1 (k > 2),

t€Z,t2<4n din
1 1 . -
9(n) = -5 > pe(t,n)H(4n — %)~ 3 Y min{d,n/d}* (k> 4).
t€Z,t2<4n dln

There is an analogous trace formula for forms of higher level (say, for the
trace of T'(n) on Mg(I4(N)) for n and N coprime), but the statement is more
complicated and we omit it.

The equivalence of the two formulas (for £ > 2) follows from.(1), since

5 " {min{d,n/d}* + max{d,n/d}*~}

din

= %Z{dk_l + (n/d)¥ '} = ox_1(n).

din

Note also that t2(n) = 0 and t(r) = 0 for k € {2,4,6,8,10,14} and all n,

since the spaces Ms and Sy are 0-dimensional in these cases. Equating to zero
the expressions for £3(n) and tJ(n) given in the theorem gives two formulas of
the form

(2) H(4n)+2H(An—1)+...=0, —nH(4n)—2(n—1)H(4n—1)+...=0,

where the terms °..." involve only H{4m) and H{4m—1) with m < n. Together,
these formulas give a rapid inductive method of computing all the Kronecker-
Hurwitz class numbers H{N).
The importance of knowing °(n) is as follows. Let t°(r) = t(r) =

S 1t%(n)g". Then t° is itself a cusp form of weight k on I'y and its images un-
der all Hecke operators (indeed, under T(n;),... ,T(na4) for any {n,}d =dim 54
for which the nist, ..., ngth Fourier coeﬂicients of forms in S are lmearly
independent) generate the space Sk. To see this, let fi(t) = Y ., ai(n)g”
(1 € 7 £ d) be the Hecke forms in Si. We know that they form a basis
and that the action of T(n) on this basis is given by the diagonal matrix
diag(a;(n), ... ,as(n)). Hence the trace t%(n) equals a;(n)+... + aq(n) and t§
is just fi + ...+ fa, which is indeed in Si; the linear independence of the f;
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and the fact that the matrix (ai(n;))1<i j<a is invertible then imply that the d
forms T'(n;)(t%) = Z:—1 ai(n;)fi are linearly independent and hence span S
as claimed. The formula for Tr(7(n)) thus gives an algorithm for obtaining all
cusp forms of a given weight (and level).

We now sketch a proof of the Eichler-Selberg trace formula. The basic
tool we will use is the ‘holomorphic version’ of the Rankin-Selberg method
proved in the last section, but applied in the case when the Eisenstein series
G}, and the modular form g have half-integral weight. The basic identities (1)
and (2) of Section C remain true in this context with slight modifications due
to the fact that the functions G} and g are modular forms on I5(4) rather
than PSLs(Z). They can be simplified by using the operator U, introduced in
Section E of Part 1 and replacing F,(Gp,g) by Us(F,(Gp,g)), which belongs
to Mp(I)ifge My, hyle Z+ %, k=h+142v € 2Z (cf. comments at the
end of Part 1, E). In this situation, formula (2) of Section C still holds except
for the values of the constant factors occurring. In particular, if h = r +% with
r odd and we take for g the basic theta-series 8(7) =1+23 7, g of weight
3 on Iy(4), then we find
3

(f,Us(Fo(Gry g, e)))_cwz(nj)(fz - (r>1o0dd, v >0,k =r+2v+1),

where ¢, is an explicitly known constant depending only on r and v. We
want to apply this formula in the case r = 1. Here the function G/, is not a
modular form and must be replaced by the function G} /2 which was defined in
Part 1D. The function Uy(F,(G; /20 6)) is no longer holomorphic, but we can
apply the ‘holomorphic projection operator’ {cf. Appendix C) to replaceit by a
holomorphic modular form without changing its Petersson scalar product with
the holomorphic cusp form f. Moreover, for r = 1 we have v = %(k —r—1)=
%-— 1 and hence 2(k—v —1) = k, so the right-hand side of {3) is proportional to
> ﬂ:—,ﬁ |—& and hence, by formula (5) of Section B, to (£, f) if f is a normalized
Hecke eigenform. Thus finally

(f? WhOI(U‘i(F”(G;/Z’ 9)))) =Ck (f7 f)

for all Hecke forms f € Si, where ¢ depends only on k {in fact, ¢ =
—2k—1 (”:%)) But since t%(7) is the sum of all such eigenforms, and since

distinct eigenforms are orthogonal, we also have (f,t%) = (f, f) for all Hecke
forms. It follows that

) ol (Us(Fi(G3 12, 8))) = cx t(r) + ¢k Ga(7)

for some constant c}.

It remains only to compute the Fourier expansion of the function on the
left of (4). We have
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ory=>q", Gs(r)=Y H(m)™

€L m=0
and hence
Fy(8(7),Gs (7)) = (2m)™ 2:}(—1)# (” ; %) (Z * ;1":) 6= (r)GP(r)
m>0
S0

Us(F(0(7), G5(7)))

B DIPIE (A (11 F 2 tn(an - )t — )"

n=0¢2<4n p=0

= ——ck Z Z pi(t,n)H(4n — t*)g"

n=0%2<4n

(recall that k& = 2v+2). On the other hand, the difference of G /2 and Gy, is a
linear combination of terms ¢—¥ * with coefficients which are analytic functions
of v = (7). Hence the coefficient of ¢" in Us(F, (0, G}/, — G3/2)) is a sum
over all pairs (¢, f) € Z2 with 2 — f2 = 4n of a certain analytic function of
v. Applying 7o means that this expression must be multiplied by v¥~2e~4mmv
and integrated from v = 0 to v = co. The integral turns out to be elementary
and one finds after a little calculation

coefficient if ¢™ in mha(Us(F, (0, G§/2 — G3/2)))

1 [+ LAY k-1
= ZCk Z ( 2 Zmax(d, d)
t,fEL din
12— f=4n >0
Adding this to the preceding formula, and comparing with (4), we find that
the constant ¢}, in (4) must be 0 and that we have obtained the result stated
in the theorem.
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4, Jacobi forms

When we introduced modular forms, we started with functions F of lattices
A C C invariant under rescaling A — AA (A € C*); these corresponded via
F(r) = F(Z7+ Z) to modular functions. The quotient C/A is an elliptic curve,
so we can think of F' (or f} as functions of elliptic curves. It is natural to make
them functions on elliptic curves as well, i.e., to consider functions ¢ which
depend both on A and on a variable z € C/A. The equations

S(AA Az2) =B(A,2), B(Az+w)=34Az2) (AeC*, we 4)
correspond via ¢(7,2) = (Z1 + Z, z) to functions ¢ on 5 x C satisfying

ar+b z
(1) ¢(m; m) = ‘25(7',2),

drzttrim)=grz)  ((*D) el tmen)

We call a meromorphic function ¢ on § X C satisfying (1) a Jacobi function.

However, there can clearly never be a holomorphic Jacobi function, since
by Liouville’s theorem a holomorphic function on € invariant under all trans-
formations z — z +w (w € A) must be constant. Thus, just as the concept of
modular function was too restrictive and had to be extended to the concept of
modular forms of weight £, corresponding to functions on lattices transform-
ing under A — XA with a scaling factor A™¥, the concept of Jacobi functions
must be extended by incorporating appropriate scaling factors into the defini-
tion. The right requirements, motivated by examples which will be presented
in Section A, turn out to be

aTt + b z _ k 2xiNez? a b
@ ey =T s ((Jen)
and
(3) $(r,z+er+m)= e_2"iN(lzr+2£z)¢(T, z) (4,m € Z),

where N is a certain integer. Finally, just as with modular forms, there must
be a growth condition at infinity; it turns out that the right condition here is
to require that ¢ have a Fourier expansion of the form

(4) ¢(r,2) = Z Z e(n,ryq" (" (g= e (¢ = e?tiz)
n=0 rgZ
r*<4Nn

(again, the rather odd-looking condition r? < 4Nn will be motivated by the
examples). A function ¢ : §§ — C satisfying the conditions (2), (3) and (4) will
be called a Jacobi form of weight k and index N.
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Surprisingly, in most of the occurrences of modular forms and functions
in physics—in particular, those connected with theta functions and with Kac-
Moody algebras—it is actually Jacobi forms and functions which are involved.
It is for this reason, and because the theory is not widely known, that we have
devoted an entire part to these functions.

A Examples of Jacobi forms

The simplest theta series, namely the function
Br) = q" =1+2¢+2¢* +2¢° + -
n€z

introduced at the beginning of Section 1D, is actually just the specialization to
z = 0 (*Thetanullwert’) of the two-variable function

6, 2) =3 q" T =1+ (4D + (T + () +
n€Z
and similarly the transformation equation

J=ecaler o) (Ch) e, di=1)

ar +b
6<c*r+d

is just the specialization to z = 0 of the more general transformation equation

ar +b z
p(8r° 2
(cr +d er+d )
It is also easily checked that & satisfies

1 2xicz? b
= eoq(cr + d)E T (1, 2) ((‘z ) € To(4).

07, z+br+m)= g~ 2Tt T247) 0(r,z)

(just replace n by n+£ in the summation defining 8), so that §(r, z) is, with the
obvious modifications in the definition given before, a Jacobi form of weight
1/2 and index 1 on the group Io(4). The function 6(r, z) is one of the classical
Jacobi theta functions and this is the reason for the name ‘Jacobi form.’

Just as for the one-variable theta functions discussed in Part 1, if we want
to get forms of integral weight and on the full modular group, rather than of
weight 1/2 and on I'y(4), we must start with quadratic forms in an even number
of variables and whose associated matrix has determinant 1. K Q : Z%* — Z is
a positive definite quadratic form in 2k variables given by an even symmetric
unimodular matrix A (i.e. Q(z) = ;z'Az, a;; € Z, %aig € Z, det A = 1), then
for each vector y € Z2F the theta-function

(5) QQ,y(Ta z) = Z qQ(r) CB(z,y) ,
T2k

where ( = e2™* as before and B(z,y) = z* Ay is the bilinear form associated to
(), is a Jacobi form of weight ¥ and index N = (¥y). The transformation law (2)
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is proved using the Poisson summation formula as for the special case Og(7) =
0¢,0(7,0) studied in Part 1; the transformation law (3) is proved directly from
the expansion (5) by making the substitution  — = + %y; and the form of the
Fourier expansion required in (4) is clear from (5) and the Cauchy-Schwarz
inequality B(z,y)? < 4Q(z)Q(y). (This motivates the inequality r? < 4Nn in
(4), as promised.)

The next example is that of Eisenstein series. The Eisenstein series of Part
1 can be written as

Gi(r) = 3¢A~8) Y 1),

~YEL W \I

where | is the slash operator introduced in 1E and the summation is over
the cosets of I'yx = {i(é’;) | n€ Z} in It C PSLo(Z) (cf. Part 3). In the
Jacobi form context we must generalize the slash operator to a new operator
lg,n defined by

. _2xiNes?  ,ar +b z ab
(#lw)(r2) = (er+ dy 8 9 (0, L) (= (0 D en),
ol wllml)(7,2) = ETNETHUD g7 5 4 br 4 m ¢mel
k,N

(so that ¢|, v = &l, y[l,m] = ¢ if ¢ is a Jacobi form of weight k and index
N). We then define an Eisenstein series

Crn(r,2) =CB—2k) > D ((Up y)li w6 00)(r, 2)
YE\IN £EZ
or more explicitly

3N (e, a () g — 52)
(er +d)* ’

1 e
G (7, 2) = 5((3 — 2K) >
e, d,L€Z
(e,d)=1
where 7., 4 for each pair of coprime integers ¢, d denotes an element of PSLo(Z)
with lower row (¢ d). The series is convergent for & > 2 and defines a Jacobi
form of weight k£ and index N. Moreover, its Fourier expansion can be computed
by a calculation analogous to, though somewhat harder than, the one given in
1A. The result is that the Fourier coefficients are rational numbers of arithmetic
interest, expressible in closed form in terms of the function H(r,n) introduced
in Section D of Part 1 in connection with Eisenstein series of half-integral
weight. In particular, for N = 1 the result is simply

o0
Gra(r,z)= Z Z H(k —1,4n — r?) 2™i(nm+r2)
n=0{r|<Vin

That the coefficient of ¢"(” depends only on 4n — r? is not an accident: it is

ecasily seen that the transformation equation (3) in the case N = 1 is equivalent
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to the condition that the Fourier coefficient ¢(n,r) as defined in (4) depend only
on 4n —r?, while for general N (3) is equivalent to the requirement that ¢(n,r)
depend only on 4n — r? and on the residue of 7 modulo 2N. The fact that
the coeflicients of the Jacobi Eisenstein series were essentially the same as the
coeflicients of Eisenstein series in one variable but of half-integral weight is also
not accidental: There is in fact an intimate connection between Jacobi forms
and modular forms of half-integral weight, obtained by associating to the Jacobi
form ¢ the collection of functions 3, Cpu(d) g%, g =1,2,... ,2N, where C,(d)
is the common value of the ¢(n,r) with 4n —r? = d and r=p (mod 2N); each
of these 2N functions is a modular form of weight k — % with respect to some
subgroup of I, and the entire 2N-tuple satisfies a transformation law with
respect to the whole group I'y. However, we do not elaborate on this here.

The beginnings of the Fourier expansions of the first few Jacobi Fisenstein
series (of index 1) are

Gaa(r,2) =~z + (~zk¢ = 3= 3= 3¢ a0 )
(3 - -3 B ) ¢
+ (=35 -3¢ 60— B —6(" =37 -2 + -,
Goa(7,2) = —gig + (~1 + 3+ 5+ 5 — ¢ ) g
+ (B +320+57T+32¢ + 2 L+,
Gep(r2) =-S5+ (-5 - Y¢S Ut LeBgp ..

To get more examples, we can cormbine these in various ways. In particular,
the two functions

$10,1(T,2) = 882Gs(7) Gea(T, 2) + 220 G4(7) G 1 (7, 2),

(6)

$12,1(7,2) = —840 Gs(7) Gy,1(7,2) — 462 Go(7) G 1(7, 2)
are Jacobi forms of index 1 and weights 10 and 12, respectively, and in fact
are Jacobi cusp forms (i.e. n > 0, r? < 4Nn in (4)) with Fourier expansions
starting

$r01(m,2) = (C—2+ ¢ ) g+ (-2¢* —16¢+36—16¢"" —2("%) ¢* ---,
$12,1(m,2) = ((+10+ () g + (10¢> —88( — 132 — 88 +10("?) ¢ ---;

their ratio ¢12,1/d10,1 is —372 times the Welersirass p-function p(z; Z7 + Z)
from the theory of elliptic functions (cf. the lectures of Cohen and Bost/Cartier
in this volume).

Other important examples of Jacobi forms are obtained from the Fourier
developments of Siegel modular forms on the symplectic group Sp(2,%), but
we cannot go into this here since we have not developed the theory of Siegel
modular forms.
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B Known results

In this section we describe a few highlights from the theory of Jacobi forms.
(i) X ¢ # 0 is a Jacobi form of weight k and index N, then it is easily seen
by integrating % log ¢ around a fundamental parallelogram for C/(Z7 + Z)

that ¢ has exactly 2N zeros in this parallelogram (here we are counsidering 7
as fixed and ¢ as a function of z alone). In particular, ¢ cannot have a zero of
multiplicity greater than 2N at the origin, so in the Taylor expansion

¢(T>z) = XO(T) + Xl(T)z + X2(7)22 + e

the first 2N + 1 coefficients determine ¢ completely. On the other hand, one
easily sees by differentiating (2) repeatedly with respect to z and then setting
z equal to 0 that x; is a modular form in 7 of weight k (this, of course, is

obvious), x; a modular form of weight £+ 1, x, — 2",:N Xg 2 modular form of
weight k + 2, and more generally
(2miN)* (k+v—p—2)! ()
(7) EV(T) = Z 1,1 —2;;(7-)
o<z (k+v—-2)ul

a modular form of weight k£ + v for every integer v > 0. The fact that ¢ is
determined by its first 2N 41 Taylor coefficients means that we have an injective
map from the space Ji,n of Jacobi forms of weight ¥ and index N into the direct
sum My @ Mpyo @ --- @ Miyon if ks even or Mpy1 © Meys @ -+ Miyan—
if k is odd. In particular, Ji y is finite dimensional, of dimension at most
kN + O(N?).

The function &, defined by (7) has the Fourier expansion

. (k 2)1
EV(T) = (2”7’)" D ,,,(7‘., Nn) c(n,r) q,
T Z(W;“ - )

where the c(n,r) are the coefficients defined by (4) and py.(a,b) denotes the
coefficient of X in (1 — aX + X?)~4. The fact that &, is a modular form is
52

3 5. and also to the formula

related to the heat equation operator 8miN
(11) of 1E.

(ii) The bigraded ring of all Jacobi forms (of all weights and indexes) is
not finitely generated, since the forms obtained as polynomials in any finite
collection would have a bounded ratic of ¥ to N and there is an Eisenstein
series Gig,1 for all k¥ > 2. However, if we enlarge the space Ji n to the space
jk, ~ of ‘weak Jacobi forms,” defined as functions ¢ : H x C — C satisfying
the properties (2)—(4) but with the condition ‘r? < 4Nn’ dropped in (4), then
the bigraded ring @k’ N Ji,n is simply the ring of all polynomials in the four
functions Gu(r), Ge(T), ¢10,1(7,2)/A(7) and ¢12,1(7, 2)/A(T) (with ¢10,; and
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¢i2,1 as in (6) and A as in 1B) of weight 4, 6, -2 and 0 and index 0, 0, 1 and
1, respectively. In particular, A(7)Y¢(7,z) is a polynomial in Ga(r), Ge(7),
G4,1(7, z) and G ,1(7, z) for any Jacobi form ¢ of index N.

(iii) There are no Jacobi forms of weight 1 on PSLy(Z), i.e., J1,v = {0}
for all V.

(iv) One can define Hecke operators on the spaces Ji,y and compute
their traces. These turn out to be related to the traces of Hecke operators
on the spaces of ordinary modular forms of weight 2k — 2 and level N. Us-
ing these, one can construct lifting maps from Ji n to a certain subspace
Maz—2(N) C Map_o(Io(N)) which is canonically defined and invariant under
all Hecke operators. Moreover, J; y turns out to be isomorphic to the subspace
of forms in Miyr_2(N) whose Hecke L-series satisfy a functional equation with

a minus sign, i.e., to the intersection of My _o(N) with Mg,:);(f' o(IVN)) (cf.
2D).

(v) There is another kind of Jacobi form, called skew-holomorphic Jacobi
forms, for which statements analogous to those in (iv) hold but with the iso-
morphism now between the space of skew-holomorphic Jacobi forms and the
subspace of forms in My (V) having a plus sign in the functional equation of
their L-series. By definition, a skew-holomorphic Jacobi form of weight k and
index N is a function ¢ on H x C which satisfies the transformation equations
(2) and (3) but with (¢7 +d)* replaced by (¢7 +d)*!|er +d| in (2) and which
has a Fourier expansion like the one in (4) but with the condition r? < 4Nn
replaced by r? > 4Nn and with ¢*¢” multiplied by e~ =4Nm)o/N (;, — (7).
Such a function is again holomorphic in z, but the Cauchy-Riemann condition

0 1 82
3¢ = 0 of holomorphy in 7 is replaced by the heat equation —é o¢
dr ~ 8miN 022
The Fourier expansion together with the transformation property (3) can be
written uniformly in the holomorphic and non-holomorphic case as

2mi (——N—-'Z—A R(r)+i AL 3‘(r)+rz)
(8) . ¢(r,2) = > Cc(A,r)e
r,AEZ
r>=A (mod 4N)

where C(A, r) depends only on A and on r (mod 4N) and vanishes for A > 0
{holomorphic case) or A < 0 (non-holomorphic case).

(vi) There are explicit constructions of Jacobi and skew-Jacobi forms in
terms of binary quadratic forms, due to Skoruppa. For instance, if we define
C(A,r) = sgn(a), where the (finite) sum is over all binary quadratic forms
la,b,c] = az? + bay + cy® of discriminant 6% — 4ac = A with ¢ = 0 (mod N),
b=r (mod 4N) and ac < 0, then (8) defines a skew-holomorphic Jacobi form
of weight 2 and index N.
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Appendices

The following appendices describe some analytic tools useful in the theory of
modular forms.

A The Poisson summation formula

This is the identity

(1) Soztn) =Y ( /R o(#)e2mir dt) (2irs.

necZ T€EZL

where ¢(z) is any continuous function on R which decreases rapidly (say, at
least like |z]|™¢ with ¢ > 1) as # ~ oo. The proof is simple: the growth condition
on ¢ ensures that the sum on the left-hand side converges absolutely and defines
a continuous function @(z). Clearly &(z + 1) = @(z), so & has a Fourier ex-
pansion Y .z ¢r€*™% with Fourier coefficients ¢, given by fol &(z)e~ 2T dy.
Substituting into this formula the definition of &, we find

1 oo
o= / ( Y ele+ n)e"z"ir(z+n)> &
0 n=-—0
n+l oo

Z /(,9(.’1})6——2“'1 dr = ‘/.(to(m)e—-Zm'rz d.z‘,

n=—co n —00

]

as claimed. If we write ¢(f) for the Fourier transform [ (z)e 2™ dz of
0, then (1) can be written in the form Y., o(z + n) = 3 @(r)e?™*, where
both summations are over Z. The special case £ = 0 has the more symmetric
form 3, p(n) = 3, @(r), which is actually no less general since replacing
w(z) by @(z + a) replaces p(t) by H(t)e?™¢; it is in this form that the Poisson
summation formula is often stated.

As a first application, we take ¢(z) = (z + iy) %, where y is a positive
number and k an integer > 2. This gives the Lipschitz formula

Z 1 _ (*27Ti)k Eoo:rk—-l e2m'rz -(Z €H ke Z>2)
k h _ t 1 2L

neZ (z+ n) (k ! r=1

which can also be proved by expanding the right hand side of Euler’s identity

e?mz

1 T . .
E = = -7l — 27Tl “——2'-
z+mn tan 7wz 1 — g2miz
ne

as a geometric series in €2™* and differentiating k — 1 times with respect to z.
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As a second application, take p(z) = e~™**" with a > 0. Then $(t) =
—ntl fa

1
a” ze , 80 we get
(2) Z e—wa(z+n)2 f Z e~ r? 4 2xire (:C c R)
n=—c

(the formula is actually valid for all z € C, as one sees by replacing ¢(z) -
by ¢(z + iy) with y € R). This identity, and its generalizations to higher-
dimensional sums of Gaussian functions, is the basis of the theory of theta
functions.

Finally, if s is a complex number of real part greater than 1, then taking
@(z) = |z + iy| ™ with y > 0 leads to the following non-holomorphic general-
1zation of the Lipschitz formula:

. s 2wirs _ .
Z lz n nls =y Z ky/2(27ry)e (z=z+iyen, R(s)>1),

r=—0cG

where ky(t) = [ e "%(z® + 1)7*dz. The function k.(t) can be expressed
in terms of the gamma function I'(s) and the K-Bessel function K,(t) =
I3 e7teosh® cosh(vu)du (v € C, t > 0) by

ko(t) = { %%(J%l)s__ K,_1([t]) ift#0,

*——L”J"ﬂﬁj)‘*’ =0

(cf. Appendix B}, so, replacing s by 2s, we can rewrite the result as
© 1
1 w2l(s— %) ,_ 1o 1 ir
>3 = TIO o) ) 20 s Dt Kaylonpt 7

(z=z+iy€H, R(s) > %)

This formula is used for computing the Fourier development of the non-
holomorphic Eisenstein series {Part 3A).

B The gamma function and the Mellin transform

The integral representation n! = _[;]°° t"e~t dt is generalized by the definition of
the gamma fanction

(1) I(s)= /000 t*levtdt (s€C, R(s)>0).

Thus n! = I'(n + 1) for n a nonnegative integer. Integration by parts gives the
functional equation I'(s + 1) = sI'(s), generalizing the formula
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(»+ 1) = (n+1)n!

and also permitting one to define the I'-function consistently for all s € C as'a
meromorphic function with polar part (_nl!)n Hl_n at s = —n, n € Zyp.

The integral (1) is a special case of the Mellin transform. Suppose that
#(t) (¢ > 0) is any function which decays rapidly at infinity (i.e., $(¢) = O(t~4)
as t — oo for every 4 € R) and blows up at most polynomially at the origin
(i-e., ¢(t) = O(t~ %) as t — 0 for some C € R). Then the integral

Mg(s) = /0 ~ p()t° 1 dt

converges absolutely and locally uniformly in the half-plane £(s) > C and hence
defines a holomorphic function of s in that region. The most frequent situa-
tion occurring in number theory is that ¢(t) = 3 oo | cne™™ for some complex
numbers {¢y }n>1 Which grow at most polynomially in n. Such a function auto-
matically satisfies the growth conditions just specified, and using formula (1)
(with t replaced by nt in the integral), we easily find that the Mellin transform
Mé(s) equals I'(s)D(s), where D(s) = > oo, cyn™* is the Dirichlet series asso-
ciated to ¢. Thus the Mellin transformation allows one to pass between Dirichlet
series, which are of number-theoretical interest, and exponential series, which
are analytically much easier to handle.

Another useful principle is the following. Suppose that our function ¢(t),
still supposed to be small as ¢ — oo, satisfies the functional equation

J
2 ¢(%) = Z AN Rt (t > 0),

=1
where h, Aj and A; are complex numbers. Then, breaking up the integral

defining M¢(s) as fol + J;° and replacing ¢ by t™* in the first term, we find for
R(s) sufficiently large

o0 J oo
Mg(s) = /1 (zAjt":' +t"¢(t)> o ldt + /1 ()t dt
J=1
J
_ Aj * 3 h—s é’i
-‘Zs—],\j+/1 o) (t° +1*7°) =

=1

The second term is convergent for all s and is invariant under s +— h — 5. The
first term is also invariant, since applying the functional equation (2) twice
shows that for each j there is a j' with Ay = h — Aj, Ay = —A4;. Hence we
have the

Proposition. (Functional Equation Principle) If #(¢) (i > 0) ts small at infinity
and satisfies the functional equation (£) for some complex numbers h, A; and
Aj, then the Mellin transform Md(s) has o meromorphic extension to all s
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and is holomorphic everywhere ezcept for simple poles of residue A; at s = A;

(G=1,...,J), and M¢(h — s} = M¢(s).

This principle is used to establish most of the functional equations occur-
ring in number theory, the first application being the proof of the functional
equation of ((s) given by Riemann in 1859 (take ¢(2) = D oo, e=™"t 50 that
Mé(s) = n°I'(s)((2s) by what was said above and (2) holds with h = 1,
J=2 =0, = %, Ay =—4; = % by formula (2) of Appendix A).

As a final application of the Mellin transform, we prove the formula for
ks(t) stated in Appendix A. As we just saw, the function A™° (A > 0) can be
written as I'(s) ™! times the Mellin transform of e~**. Hence for a € R we have

ks(a) = I'(s)™* M¢,(s) where

o0 . 2 iy 2
by = [ emier gy \Fe—t—a st
- t

Hence ﬁ"%F(s)k3(a) = fooo e~t—4* /4t =3 gt For q = 0 this equals F(S — %),

-1
while for a > 0 it equals 2(%)8 2 _f;)o e¢ch % cosh(s — 1)u du, as one sees by

substituting ¢ = %ae".

C Holomorphic projection

We know that Sy has a scalar product (-, ) which is non-degenerate (since
(f, f) > 0 for every f # 0 in Sg). It follows that any linear functional L : S¢ —
C can be represented as f — (f, ¢1) for a unique cusp form ¢z € Si.

Now suppose that @ : §§ — C is a function which is not necessarily holo-
morphic but transforms like a holomorphic modular form of weight %, and that
&(7) has reasonable (say, at most polynomial) growth in v = S(7) as v — co.
Then the scalar product (f,®) = [/, /I vk f(r)mdp converges for every f

in S, and since f +— (f,®) is linear, there exists a unique function ¢ € S
satisfying (f, ¢) = (f, @) for every f € Si. Clearly ¢ = & if @ is already in Sy,
so that the operator my, which assigns ¢ to @ is a projection from the infinite
dimensional space of functions in §) transforming like modular forms of weight
k to the finite dimensional subspace of holomorphic cusp forms. Our object is
to derive a formula for the Fourier coefficients of mpa(®).

To do this, we introduce the Poincaré series. For each integer m € N set

e2mimy(r) ar +b ab
Pp(r) = ( %: e T aF (’Y(T)—m for7—(cd)),
=1 . . €l \ I
where the summa."iuon is olver left cosets of I'n, = {i((l) g),b € Z} in Iy. The

series converges absolutely if £ > 2 and defines a cusp form of weight k. The
same unfolding argument as in the Rankin-Selberg method (Part 3, B) shows
o0

that for a form f = 3 a{n)g™ € Si the Petersson scalar product (f,Pp) is
1
given by
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du dv

(f, Prm) —/ F() Pr(r) o
—— . dudv
N f /sa/n,,, fryetmmr ot =5
_ /co (/1 f(u'l‘i'u) e_zm'mu du) e—27rmvvk—2 dv
0 0

— /oo (a(m)e—21rmv) e~ 2mmy, k-2 g,
0

In other words, (47m)*~1 P, (1)/(k — 2)! is the cusp form dual to the operator
of taking the mth Fourier coeflicient of a holomorphic cusp form.

Now let 3 ., cn(v)e?™™* denote the Fourier development of our function
&(7) and Y oo €ng™ that of its holomorphic projection to Sk. Then

(k—2)!
(4mm)k-1

em = (Tol(2), Pm ) = (P, That(®?)) = (P, @) = (&, Prn)

by the property of Py, just proved and the defining property of mpei(®). Un-
folding as before, we find

o 1
(@, Pn) = / (/ B(u + iv)e 2mmE du) e 2R =2 gy
0 0
=/ em(v)e 2™ k=2 gy
0

provided that the interchange of summation and integration implicit in the first

step is justified. This is certainly the case if the scalar product (@, P, ) remains

convergent after replacing @ by its absolute value and P, by its majorant
P(r)= Yoran llem + d)~ke?mimAm) | We have

ﬁm(,r)< ‘62rimri+z Z |CT+d|_k

5960 (d,c)=1

=TI C(k) v k2 [G(r, = ) C(k)vk/z]
with G(r, £) the non-holomorphic Eisenstein series introduced in A, Part 3.
The estimate there shows that G(r, —2’5) — ((kY*/? = O(v!%/2) as v — o0, s0
P,.(t) = O(v*~*). The convergence of ffﬁ/l’z || Brav*~2 du do is thus assured
if @(7) decays like O(v™°) as v — oo for some positive number e. Finally, we
can weaken the condition $(1) = O(v™¢) to (1) = co + O(v™%) (¢p € C) by the
simple expedient of subtractmg co B k Z2EGi(r) from &(7) and observing that Gy
is orthogonal to cusp forms by the same calculation as above with m = 0 (G
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is proportional to Py). We have thus proved the following result, first stated by
J. Sturm under slightly different hypotheses:

Lemma. (Holomorphic Projection Lemma) Let @ : § — C be a continuous
function satisfying
(1) “(3) B(v(7)) = (er + d)*®(7) for all y = (¢ 3) €I and 7 € $; and
(2) () () =co+ O(v™°) as v = B{(7) — oo,
for some mtege'r kE > 2 and numbers ¢ € C and € > 0. Then the function

k=1

#(t) = Z cnq® with ¢, = (4—(’;—’%—),—_]'0 cn(v)e™ 2™ %9k =2 dy for n > 0 belongs
to My a'n,d satisfies (f,¢) = (f, D) for all f € 5.

As an example, take & = (G3)?, where G} is the non-holomorphic Eisen-
stein series of weight 2 introduced in Part 1A. Using the Fourier expansion
Gy = + Gz = g — 35 + Y1 01(n)q" given there, we find

81rv 8wy

1
(r) = (576 967rv + Gnier)

+ Z(———al(n) + E o1(m)or(n —m)+ *Ui(n))q ’

n=1

so that the hypotheses of the holomorphic pr03e0t1on lemma are satisfied with
kE=4,¢c0 = 5, €=1and ca(v) = (—5501(n) + Em_l oi(m)oi(n — m) +
4m,crl(n)) e~ 2™% The lemma then gives E cng™ € My with ¢, = —112 oi(n) +
Sl oi(m)or(n - m)+ 3 na‘l(n) for n > 1. Since 3 g cng™ € My = (G4), W
must have ¢, = 240cgo3 (n) ag(n) for all n > 0, an identity that the reader
can check for small values of n

Similarly, if f = Y7 anq™ is a modular form of weight | > 4, then & = fG}
satisfies the hypotheses of the lemma with k =1+ 2, ¢ = —-2,1—4a0 and € = 1,
and we find that ma(fG3) = fG2 + 471n.1f’+ € Miys.

References

We will not attempt to give a complete bibliography, but rather will indicate
some places where the interested reader can learn in more detail about the
theory of modular forms.

Three short introductions to modular forms can be especially recom-
mended:

(i) the little book Lectures on Modular Forms by R.C. Guuning (Princeton,
Ann. of Math. Studies 48, 1962), which in 86 widely spaced pages describes the
classical analytic theory and in particular the construction of Poincaré series
and theta series,
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(ii) Chapter 7 of J-P. Serre’s ‘Cours d’Arithmétique’ (Presses Universi-
taires de France 1970; English translation: Springer, GTM 7, 1973), which gives
among other things a very clear introduction to the theory of Hecke operators

"and to the applications of theta series to the arithmetic of quadratic forms, and

(iii) the survey article by A. Ogg in Modular Functions of One Variable. I
(Springer, Lecture Notes 320, 1973), which treats some of the modern aspects
of the theory and in particular the connection with elliptic curves. (The other
volumes in this series, SLN 349, 350, 475, 601, and 627, describe many of the
developments of the years 1970-76, when the subject experienced a renascence
after a long period of dormancy.)

Of the full-length books on the subject, the best introduction is probably
Serge Lang’s Introduction to Modular Forms (Springer, Grundlehren 222, 1976),
which treats both the analytic and the algebraic aspects of theory. It also
includes a detailed derivation of the trace formula for Hecke operators on the
full modular group (this is in an appendix by me and unfortunately contains an
error, corrected in the volume SLN 627 referred to above). Other texts include
Ogg’s Modular Forms and Dirichlet Series (Benjamin 1969), which gives in
great detail the correspondence between modular forms and Dirichlet series
having appropriate functional equations, as well as an excellent presentation of
the theory of theta series with spherical polynomial coefficients, G. Shimura’s
Introduction to the Arithmetic Theory of Automorphic Funcilions (Princeton
1971), which is more advanced and more heavily arithmetic than the other
references discussed here, and the recent book Moedular Forms by T. Miyake
(Springer 1989), which contains a detailed derivation of the trace formula for
the standard congruence subgroups of I';. Another good book that treats the
connection with elliptic curves and also the theory of modular forms of half-
integral weight is N. Koblitz’s Introduction to Elliptic Curves and Modular
Forms (Springer, GTM 97, 1984). Finally, anyone who really wants to learn the
subject from the inside can do no better than to study Hecke's Mathematische
Werke (Vandenhoeck 1959).

We also mention some books on subjects closely related to the theory
of modular forms: for a classically oriented account of the theory of modu-
lar functions, Rankin’s Modular Forms and Functions (Cambridge 1977) or
Schoeneberg’s Elliptic Modular Functions: An Iniroduction (Springer, Grund-
lehren 203, 1974); for the theory of elliptic curves, Silverman’s book The Arith-
metic of Elliptic curves ( Springer, GTM 106, 1986); for the modern point of
view on modular forms in terms of the representation theory of GL(2) over
the adeles of a number field, Gelbart’s Automorphic Forms on Adele Groups
{Princeton, Ann. of Math. Studies 83, 1975) or, to go further, Automorphic
Forms, Representations, and L-Functions (AMS 1979).

We now give in a little more detail sources for the specific subjects treated
1 these notes.

Part 1. The basic definitions of modular forms and the construction of the
Eisenstein series G and the discriminant function A are given in essentially
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every introduction. Serre {(op. cit.) gives a construction of A which is related to,
but different from, the one given here: Instead of using the non-holomorphic
modular form G%, he uses G itself but analyzes the effect on the value of
the non-absolutely convergent series 3 (m7 + n)~?% of summing over m and n
in different orders. This approach goes back to Eisenstein. The reader should
beware of the fact that Serre normalizes the weight differently, so that, e.g., A
has weight 6 instead of 12. The best treatment of theta series in the simplest
case, namely when the underlying quadratic form is unimodular and there are
no spherical coefficients, is also given in Serre’s book, but for the general case
one must go to Gunning’s or (better) Ogg’s book, as already mentioned. The
Eisenstein series of half-integral weight are already a more specialized topic
and are not to be found in any of the books mentioned so far. The construction
of the Fourier coefficients of the particular Eisenstein series G, 1 which we

discuss (these are the simplest half-integral-weight series, but there are others)
is due to H. Cohen (Math. Ann. 217, 1975), for r > 1, while the construction of
the series G% is contained in an article by Hirzebruch and myself (Inv. math.

36, 1976, pp.2 91-96). The development of the general theory of modular forms
of half-integral weight, and in particular the construction of a ‘lifting map’
from these forms to forms of integral weight, is given in famous papers by G.
Shimura (Ann. of Math. 87, 1973 and in the above-mentioned Lecture Notes
320); an elementary account of this theory is given in Koblitz’s book cited
above. Of the constructions described in Section E, the differential operator
F, is constructed in the paper of H. Cohen just cited, but is in fact a special
case of more general differential operators constructed by Rankin several years
earlier, while the ‘slash operators’ and the operators V,,, and Uy, are treated in
any discussion of Hecke operators for congruence subgroups of SL(2,Z) and in
particular in Chapter VII of Lang’s book. Finally, the topics touched upon in
Section F are discussed in a variety of places in the literature: the connection
between modular forms of weight 2 and elliptic curves of weight 2 is discussed
e.g. in Silverman’s book or the Springer Lecture Notes 476 cited above; the
theorem of Deligne and Serre appeared in Ann. Sc. Ec. Norm. Sup. 1974; and
the theory of complex multiplication is discussed in Lang’s book of the same
name and in many other places.

Part 2. As already mentioned, the clearest introduction to Hecke operators
for the full modular group is the one in Serre’s book, the L-series and their
functional equations are the main topic of Ogg’s Benjamin book. The theory
in the higher level case was first worked out by Atkin and Lehner (Math. Ann.
185, 1970) and is presented in detail in Chapters VII-VIII of Lang’s textbook.
Some tables of eigenforms for weight 2 are given in the Lecture Notes volume
476 cited above.

Part 3. The classical reference for the function G(7, s) and the Rankin-Selberg
method is Rankin’s original paper (Proc. Camb. Phil. Soc. 35, 1939). However,
the main emphasis there is on analytic number theory and the derivation of the
estimate a(n) = O(n ”5‘"%) for the Fourier coefficients a{n) of a cusp form f of
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weight k (specifically, A of weight 12). Expositions of the general method have
been given by several authors, including the present one on several occasions
{e.g. in two articles in Automorphic Forms, Representation Theory and Arith-
metic, Springer 1981, and in a paper in J. Fac. Sci. Tokyo 28, 1982; these also
contain the applications mentioned in Section B). The proof of the Eichler-
Selberg trace formula sketched in Section D has not been presented before.
Standard proofs can be found in the books of Lang and Miyake, as already
mentioned, as well, of course, as in the original papers of Eichler and Selberg.

Part 4. The theory of Jacobi forms was developed systematically in a book by
M. Eichler and myself (Progress in Math.55, Birkh&user 1985); special exam-
ples, of course, had been known for a long time. The results described in (iii),
(v) and (vi) of Section B are due to N.-P. Skoruppa (in particular, the construc-
tion mentioned in (vi) is to appear in Inv. math. 1990), while the trace formula
and lifting maps mentioned under (iv) are joint work of Skoruppa and myself
(J. reine angew. Math. 393, 1989, and Inv. math. 94, 1988). A survey of these
and some other recent developments is given in Skoruppa’s paper in the pro-
ceedings of the Conference on Automorphic Functions and their Applications,

Khabarovsk 1988.

Appendices. The material in Sections A and B is standard and can be found in
many books on analysis or analytic number theory. The method of holomorphic
projection was first given explicitly by J. Sturm (Bull. AMS 2, 1980); his proof
is somewhat different from the one we give.
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