EISENSTEIN SERIES AND THE SELBERG
TRACE FORMULA I

By DON ZAGIER*

§ 0. Introduction. The integral [K,(g,g)E(g,5)dg. Let G=SL,(R)
and T be an arithmetic subgroup of G for which I'\G has finite volume
but is not compact. The space L* (I'\G) has the spectral decomposition
(with respect to the Casimir operator)

UM\ =L T\G)®L: (\G)®L., (T\G),

cont

where L (I'\G) is the space of cusp forms and is discrete, L2, (T'\G) is
the discrete part of (L2)*, given by residues of Eisenstein series, and
L2, is the continuous part of the spectrum, given by integrals of
Eisenstein series. If ¢ is a function of compact support or of sufficiently
rapid decay on G, then convolution with @ defines an endomorphism T,
of L*(T'\G), and the kernel function

0.1) Kegeg)= 2 o67vg) (@€¢<G)

of T, has a corresponding decomposition as K, + K, + K, , where
K,, and K., can be described explicitly using the theory of Eisenstein
series. The restriction of T, to L2(T'\G) is of trace class; its trace is given
by

0.2) Tr(T,,L)= [ K,(gg)dg.
MG

The Selberg trace formula is the formula obtained by substituting
K(g,8)—K,, (8,8) — K (2,8) for K, (g,2) and computing the integral.
However, although K, (g,g) is of rapid decay in T'\G, the individual
terms K(g,g), K, (g,8) and K, (g,8) are not, so that to carry out the
integration one has to either delete small neighbourhoods of the cusps
from a fundamental domain or else “truncate” the kernel functions by
subtracting off their constant terms in such neighbourhoods, and then to
compute the limit as these neighbourhoods shrink to points. This pro-
cedure is perhaps somewhat unsatisfactory, both from an aesthetic
point of view and because of the analytical difficulties it involves.
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D. ZAGIER

To get around these difficulties we introduce the integral

0.3) I)= | K.(g8E(@s)dg,
ric

where E(g,s) (g € G,s € C) denotes an Eisenstein series. The idea of
integrating a I'-invariant function F(g) against an Eisenstein series was
introduced by Rankin [5] and Selberg [6], who observed that in the region
of absolute convergence of the Eisenstein series this integral equals the
Mellin transform of the constant term in the Fourier expansion of F
(see §2 for a more precise formulation). Applying this principle to F(g) =
K, (g,g) we can calculate I(s) for Re(s) > 1 as a Mellin transform, obtain-
ing a representation of I(s) as an infinite series of terms. Each of these
terms can be continued meromorphically to Re(s) < 1; in particular, the
contribution of a hyperbolic or elliptic conjugacy class of ¥’s in (0.1) is
the product of a certain integral transform of @ with the Dedekind zeta-
function of the corresponding real or imaginary quadratic field. Since
the residue of E(g,s) at s = 1 (resp. the value of E(g,s) at s = 0) is a constant
function, we recover the Selberg trace formula by computing res _, (I(s))
(resp. 1(0)). This proof of the trace formula is more invariant and in
some respects computationally simpler than the proofs involving
truncation. It also gives more insight into the origin of the various terms
in the trace formula; for instance, the class numbers occurring there now
appear as residues of zeta-functions.

However, the formula for I(s) has other consequences than the trace
formula. The most striking is that I(s) (and in fact each of the infinitely
many terms in the final formula for I(s)) is divisible by the Riemann
zeta-function, i.e. the quotient I(s)/¢ (s) is an entire function of s. Inter-
preting this as the statement that the Eisenstein series E(g, p) is orthogonal
to K, (g,g) (in fact, to each of infinitely many functions whose sum equals
K, (g,g)) whenever {( p)=0, one is led to the construction of a repre-
sentation of G whose spectrum is related to the set of zeros of the Rie-
mann zeta-function (cf. [11] in this volume).

On the other hand, the formula for I(s) can be used to get information
about cusp forms. The function K, (g,g) is a linear combination of terms
f;(®)f;(g"), where {f;} is an orthogonal basis for L2(I"\G) and where
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SELBERG TRACE FORMULA

the coefficients depend on the function ¢ and on the eigenvalues of f;
(“Selberg transform”). Moreover, applying the Rankin-Selberg method
to the function F(g) = |t] (g)|2 one finds that the integral of this function
against E(g,s) equals the “Rankin zeta-function” Ry;(s) (roughly speak-

ing, the Dirichlet series Zl |a,,|2n—s, where the a, are the Fourier
n=

coefficients of f) ; indeed, this is the situation for which the Rankin-Selberg
method was introduced. Thus I(s) is a linear combination of the functions
Ry;(s), and so one can get information about the latter from a knowledge
of I(s). In particular, using a ‘“‘multiplicity one” argument one can deduce
from the divisibility of I(s) by {(s) that in fact each Ry (s) is so divisible
(this result had been proved by another method by Shimura [8] for
holomorphic cusp forms and by Gelbart and Jacquet [2] in the general
case). Other applications of the results proved here might arise by com-
paring them with the work of Goldfeld [1]. It does not seem impossible
that the formula for I(s) can be used to obtain information about the
Fourier coefficients of cusp forms.

The idea we have described can be applied in several different situations:

1. By working with an appropriate kernel function, we can isolate
the contribution coming from holomorphic cusp forms of a given weight
k (discrete series representations in L>*(T'\G)). This case was treated in
[10]. The computation of I(s) here is considerably easier than in the general
case because there is no continuous spectrum and only finitely many
cusp forms f; are involved. We can therefore represent each Rankin
zeta-function Ry;(s) as an infinite linear combination of zeta-functions
of real and imaginary quadratic fields. Moreover, for certain odd positive
values of s the contributions of the hyperbolic conjugacy classes in T' to
I(s) vanish and one is left with an identity expressing Ry;(s) as a finite
linear combination of special values of zeta-functions of imaginary
quadratic extensions of Q. As a corollary of this identity one obtains the
algebraicity (and behaviour under Gal(Q/Q)) of (f—lf) Ry, (s)/ w7 L(s)

1°7)
for the values of s in question ([10], Corollary to Theorem 2, p. 115), a
result proved independently by Sturm [9] by a different method.
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2. The first case involving the continuous spectrum is that of Maass
wave forms of weight zero, i.e. cusp forms in L*(T'\G/K) = L*(T'\ H),
where K denotes SO(2) and H = G/K the upper half-plane. This is the
case treated in the present paper (with I' =SL,(Z)).

3. Next, one can replace SL,(R) and SL,(Z) by GL,(2,A) and
GL(2,F), respectively, where F is a global field and A the ring of adeles
of F. This case, which is the most general one as far as GL(2) is concerned,
will be treated in a joint paper with Jacquet [3]. It includes as special cases
1 and 2, as well as their generalizations to holomorphic and non-holo-
morphic modular forms of arbitrary weight and level, Hilbert modular
forms, and automorphic forms over function fields.

4. Finally, the definition of I(s) makes sense in any context where
Eisenstein series can be defined, so it may be possible to apply the method
sketched in this introduction to discrete subgroups of algebraic groups
other than GL(2).

1. Statement of the main theorem. In this section we describe the main
result of this paper, namely a formula for I(s) in the critical strip 0 < Re(s)
< 1. In order to reduce the amount of notation and preliminaries needed,
we will state the formula in terms of a certain holomorphic function h(r);
the relationship of h(r) to the function @(g) of the introduction (Selberg
transform) is well-known and will be reviewed in §2. Except at the end
of §5, we will always consider only forms of weight 0 on the full modular
group T'=SL,(Z)/ {£1}. The results for congruence subgroups are
similar but messier to state and in any case will be subsumed by the results
of [3].

Any continuous I'-invariant function f: H -— C has a Fourier expansion
of the form

(L.1) f@)= 2 AGY™  @eH)

=-®

(here and in future we use x and y to denote the real and imaginary parts
of z € H). We denote by L*(T'\H) the Hilbert space of T'-invariant

dxd
functions f:H—>C such that (,f) = [ |f(z)|*dz is finite(dz = xz y)
T\H y
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and by L2(T'\H) the subspace of functions with A, (f;y) = 0. The space
L2(T'\H) is stable under the Laplace operator

2 2
3
A= y ( 3 )
and has a basis {f;};», consisting of eigenforms of A(see [4], §5.2).
We write
1 .
(1.2) Af,.=—(‘—‘+r,?)fj G=12,...)

where 1; € C. Since A is negative definite, we have 1} + 41 >0,ie. 1 is

either real or else pure imaginary of absolute value < ;. In fact it is known
that the r; are real for SL,(Z), but the corresponding statement for

congruence subgroups is not known and we will use only rjz = — % From

(1.2) we find that the n™ Fourier coefficient A, (f;, y) satisfies the second
order differential equation

2 1
¥ ad;iAn(f,-,y)—cthn’yzAn(f;y) — G+DIAE:Y.

The only solution of this equation which is bounded as y —> wis
ﬁ Ki,j (2-n-}n|y), where K, (z) is the K-Bessel function, defined (for
example) by

(1.3) K,)= [e ™ coshvtdt (v,z €C,Re()>0).
0
Hence the f; have Fourier expansions of the form
(1.4) f@= =2_m a;(@)//y Ky, 2|n]y)e*™
n+0

with a;(n) € C. We can choose the f; to be normalized eigenfunctions of
the Hecke operators

-

T(n):f(z) ——> f(———) (>0,

0 b(modd) d

Bl

z z az+b

(1.5) 2

(T(=D:f@— f(-2), T(-n)=T(-)T(),
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i.e.

a (n)

(1.6) f| T(n) =
|n]

(ne Z,n=+0)

m—

(then a;(1) =1, a;(— 1) = X 1, and a;(n) is multiplicative). The functions
f; chosen in this way are called the Maass eigenforms; they form an ortho-
gonal (but not orthonormal) basis of L2(I'\H), uniquely determined
up to order. For each j we define the Rankin zeta-function R (s) by

réy © |a (n)?
(1.7) Ry () = —2— e P+ i) T~ ir) > M (Re(s) > 1).
j n*I'(s) =™ In|
We also set
(1.8) R";j (8)=m"T(s)L () R (s)=L*Q2s) R (9),
where { (s) denotes the Riemann zeta-function and
1.9) P@=m""TOIH=1"1-9).

The Rankin-Selberg method implies that R"f'j (s) has a meromorphic
continuation to all s, is regular except for simple poles ats=1ands=0
with

(1.10) res, 1 RT (9 =3(5.5),

and satisfies the functional equation

(1.11) R‘}‘j ()= R"f'j(l —5)

(the proofs will be recalled in §2).

We will also need the zeta-functions { (s,D), where D is an integer
congruent to 0 or 1 modulo 4. They are defined for Re(s) > 1 by

1
(1.12) {(s,D)= g E,, T (Re(s) > 1),
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where the first summation runs over all SL, (Z)-equivalence classes of
binary quadratic forms Q of discriminant D and the second over all pairs
of integers (m,n) e Z>/Aut (Q) with Q(m,n) > 0, where Aut (Q) is the
stabilizer of Q in SL,(Z). These functions, which were introduced in [10},
are related to standard zeta-functions by

{6 L@2s—1) ifD =0,
(1.13) {(s,D)={ {(s)* (finite Dirichlet series) if D = square +0
¢ QWD) (s)- (finite Dirichlet series) if D # square,

where {5 (s) denotes the Dedekind zeta-function of Q(/D) (for
precise formulas see [10], Proposition 3, p. 130). In particular, { (s,D) has
a meromorphic continuation in s and { (s, D)/ (s) is holomorphic except
for a simple pole at s = 1 when D is a square.

Now let h : R — C be a function satisfying

h(r) =h(-r);

h(r) has a holomorphic continuation to the strip |Im(r)| <1 A
for some A > 1;

h(r) is of rapid decay in this strip

(1.14)

(“rapid decay” means O(|r| ") for all N). The object of this paper is to
compute 2 h()
=G5
equals the function I(s) of §0 and compute it in the strip 1 < Re(s) < A
by the Rankin-Selberg method; §§4 and S give the analytic continuation
in s, computation of the residue at s=1 (Selberg trace formula), and
generalization to Z a (m)h(rj)
= L)
coefficients defined by (1.4). We state here the final result for 0 <Re(s) <1
and m > 0 in a form which makes the functional equation apparent.

R (s). In §§2 and 3 we will show that this function
3

R (s), where the a;(m) are the Fourier
J

THEOREM I. Let h: R—> C be a function satisfying the conditions
(1.14) and m > 1 an integer. Then for s € C with 0 < Re(s) < 1 we have
the identity

(1.15) S a(m h(r)

R’,'-‘j (s)=R(s)+ R(1—5)
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with R(s) = R(s;m,h) given by

©

R(s) = —8ic*(s)’ j
T

l*(s+2ir)§*(s—2ir)( g")
C¥(1+ 2ir) L (1= 2ir) :z;’gi', @ |

L) (5 @) s
2 T s+ D) (ddz FAL

s—1

m? T(s)T(s—1) i L(s.C —dm) x

(1.16)  +
4'rrs I1+s 2—5 t=-
T/t
® l—s . I-s_ .
) J,I‘( 5 +ir) T 3 ir)
2 Tir)T(—ir)
l—s . 1—s .3 . ¢
x F( 3 +ir, 5 i s;1 4m)h(r)dr,

where {* (s) and [ (s,t* —4m) are defined by equations (1.9) and (1.12)
and F(a,b;c;z) denotes the hypergeometric function (defined by analytic
continuation if z < 0) and can be expressed in terms of Legendre functions
for the special values of the parameters a,b,c occurring in (1.16).

For m < 0 there is a similar formula with m replaced by ]m[ in the first

s—1 2

7 pld=s pl=s_ .3 g4 U
F¢ 3 + ir, > tr,2 s 1 4m)

in the third term replaced by a different hypergeometric function.

two terms and the function m

COROLLARY:  The Rankin zeta-function R?j (s) is divisible by L* (s) for
allj.

Proof of the Corollary: Every term on the right-hand side of equation
(1.16) (and of the corresponding formula for m < 0) is divisible by { *(s);
since the series converges absolutely, we deduce that #(s) (and hence,
by the functional equation (1.9), also #(1 —s)) is divisible by *(s).
Therefore the expression on the left-hand side of equation (1.15) vanishes
(with the appropriate multiplicity) at every zero of the Riemann zeta-
function, and the linear independence of the eigenvalues a;(m)h(r;)
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(m e Z — {0}, h satisfying (1.14)) for different j implies that the same
holds for each R} (s). A more formal argument is as follows: Forz € H
define !
i 1
®(s,2)= —
©2= 5 69
then (1.4) and (1.15) imply the identity

(D(S,Z):ﬁ __-Z_Q [Q(S;m,hm,y ) + a(l _..s;m,hm'y )]CZUimx ,
m+#0

§@RT ();

where h_ (1)=K, (27 |mly). Therefore ®(s,2) is divisible by I*@s)
and the corollary follows because Rf‘j (s) equals the scalar product
(@ (s,°).f).

As mentioned in the introduction, the above Corollary, which is the
analogue of the result for holomorphic forms proved in [8] and [10], is
included in the results of Jacquet-Gelbart [2). We also observe that, up to
gamma factors, the quotient R:j (s)/L*(s) equals

wsglmm’
(e ' ot

Using the usual relations among the eigenvalues a;(n) of a Hecke
cigenform, we see that this Dirichlet series has the Euler product

I 1
P —aip )1 —a,Bp )1-Bp ")

where a,, B, are defined by

© g 1
52 - , :
*=! n P (1—a,p )A—=8,p )

(i.e. @, + B, = a;(p),, B, = 1). Thus the corollary is the case n=2 of

the conjecture that the “‘symmetric power L-functions™

1
(U=ay B0
are entire functions of s for alln = 1.
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2. Eisenstein series and the spectral decomposition of L>(I'\H). In this
section we review the definitions and main properties of Eisenstein series,
the Rankin-Selberg method, the spectral decomposition formula for
L?(I"\H), the Selberg transform, and the Selberg kernel function. All
of this material is standard and may be skipped by the expert reader. We
will try to give at least a rough proof of all of the statements; for a more
detailed exposition the reader is referred to Kubota’s book [4].

EISENSTEIN SERIES. Forz € H ands € C with Re(s) > 1 we set

2.1) E(z,5) = “éﬂ Im(y2)* (Re(s) > 1),
a b .
where T', = { (0 d) e SL,(Z)}/{ £1} 2 Z is the group of transla-

tions in I'. The series converges absolutely and uniformly and therefore
defines a function which is holomorphic in s and real-analytic and I'-
invariant with respect to z. Using the 1:1 correspondence between
T',\I' and pairs of relatively prime integers (up to sign) given by

a b
I‘w( d) <«—>+(c,d), we can rewrite (2.1) as
c

1 y
E(zs)= - —2 _—  (Res>1
®) 2 o4 lez + d|* (Re )
and hence
s ’ 1
22 2)E@zs)= - 2 ———  (Re(s) > 1),
22) (eE@)=5 2 (Re()> 1)

where 2 denotes a summation over all pairs of integers (m,n) # (0,0).
This latter function has better analytic properties than E(z,s), namely :

PROPOSITION . The function (2.2) can be continued meromorphically to

the whole complex s-plane, is holomorphic except for a simple pole at s = 1,
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and satisfies the functional equation

(23) E*(z,s) = E*(z,1-5),
where
(24) E*(z,s)=m"T(s)L(2s)E(z,s)=0*(2s)E(z,s).

The residue at s = 1 is independent of z:

(2.5) res._, E(z,s) =—g— res,_, E*(z,s) =—% (ze H).

We will deduce these properties from the Fourier development of

E(z,s), which itself will be needed in the sequel. Separating the terms
m =0 and m +# 0 in (2.2) gives

0

{29 E@9)=y' {29+ 2 ¢, (m2)] (Re(s) > 1),

where

©

1

_ ze H,Re(s) >1).
Lo prap  CORO>D

?,(2) =

The function @, (x + iy) is periodic in x for fixed y and hence has a Fourier
0

development =Z_Q a(n,s,y)e’™™ with
a(n,s,y) = jiﬁdx
J X+Y)

F(%)P(S - %) 1-2s

T'(s) @=0
= 1
win| 2 T(3)
257 g Kot @rinh) @ £0)
[GR 3.251.2 and 8.432.5]. Hence
{Q9E@s) =29y + T@TE=3) o5 pyyr-

T'(s)

s. 1 © o L |
+ 2 _;75_ mz=] “=z_w (I;I:l_') 2 Ks~%(2"|n‘my)e2 winmx
n#0
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or, multiplying both sides by = I'(s),

(2.6) E*(z,s) =w§ *Q28)y* + L*2s— 1y~
+ Zﬁ n.—.z—m ‘rs—%(n)Ks_%(27|n]y)e2'inx’
#0

where { ¥(s) is defined by (1.9) and =, (n) by

@7  r,@=|nf dZ d? =
d

|
>0

a y
oZ ((—1) (ne Z —{0},veC).
a,d>0

The infinite sum in (2.6) converges absolutely and uniformly for all s
and z, so (2.6) implies that E*(z,s) can be continued meromorphically
to all s, the only poles being simple poles at s = 0 and s = 1 with residue
+ 1 (the poles of {*(2s) and L *(2s— 1) at s =1 cancel). Also, it is clear
from (1.3) and the second formula of (2.7) that K, (z) and =, (n) are even
functions of v, so the functional equation of E*(z,s) follows from (2.6)
and (1.9). Another consequence of (2.6) is the estimate

238) E@s)=0(™"""") @ — =),

where o = Re(s); this follows because the sum of Bessel functions is
exponentially small as y —> .

THE RANKIN-SELBERG METHOD. We use this term to designate the general
principle that the scalar product of a function f:I'\H —> C with an
Eisenstein series equals the Mellin transform of the constant term in the
Fourier development of f. More precisely, we have :

PROPOSITION 2. Let f(z) be a T'-invariant function in the upper half-plane
which is of sufficiently rapid decay that the scalar product

(29) (fE(.,s))= | f(z)E(zs)dz

T\H

converges absolutely for some s with Re(s)>1. Then for such s
(2.10) (FE(.5)) = | »7 A (fiy)dy
0

where A, (f,y) is defined by equation (1.1).
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PrOOF. Substituting (2.1) into (2.9) we find
CEC.s) = [ f@ 2 Im(yz)* dz

T\H y «Peo\T’
= [ f@)Iim@) dz

Too\H

© 1

' . .. dxdy
= j j. f(x+1y)y 7
0

0

which is equivalent to (2.10).

Note that the growth condition on f in the proposition is satisfied if
fz)=O0(y ") as y —> « for some € >0, for then (2.8) implies that
the scalar product (2.9) converges absolutely in the strip — € < Re(s) <
1+ €.

One of the main applications of Proposition 2 is the one obtained by
choosing f(z) =|f;(2)|>, where f; is a Maass eigenform. (This was the
original application made by Rankin [5] and Selberg [6], except that they
were looking at holomorphic cusp forms.) From (1.4) we find that the
constant term of f'is given by

A€ =y 2, @[ Ki @lnly)’

(notice that Ki,j (21r|n|y) is real by (1.3), since r; is either real or pure
imaginary). Hence (2.10) gives

| f@PE@9dz= [ y=' 2 |a@] Ky @ulnly)’dy

T\H
_ TG - 2
2.11) = 3;0 T i v Ky, @wy)’dy
= Ry(s) (Re(s) > 1)

(the integral is evaluated in [ET 6.8 (45)] and equals the gamma
factorin (1.7)). The analytic properties of Ry; () givenin §1 (meromorphic
continuation, position of poles, residue formula(1.10), functional equation
(1.11)) follow from (2.11) and the corresponding properties of E(z,s).

SPECTRAL DECOMPOSITION. We now give a rough indication, ignoring
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analytic problems, of how the Rankin-Selberg method implies the spectral
decomposition formula for L*(I'\H). This formula states that any f
€ L*(I'\ H) has an expansion

s (Ef)

(2.12) f(z) = go D
J

)

1 -]
§@)+4— j (E(.,+i)E@ 3 +in)dr,
™

where {f},,, is an orthogonal basis for L2(T'\H) and {f,} for the
space of constant functions (we will choose f;(j>1) to be the normalized
Maass eigenforms and f; (z) = 1). We prove it under the assumption that f
is of sufficiently rapid decay, say f(z) =O(y ) with € > 0. Let ¥(s)
be the scalar product (2.9). Proposition 1 shows that W¥(s) is a mero-
morphic function of s, is regular in 0<Re(s)<1 + € except for a simple
pole at s = 1 with

_3 _ (&f)
(2.13) res,_, ¥(s)= = P{H f(z)dz= ©5 f,,

and satisfies the functional equation

{*@s-1)

(2.14) W(s) = )

¥(l —s).

On the other hand, (2.10) says that W(s) is the Mellin transform of

—}17 A, (f;y), so by the Mellin inversion formula

C+ioo

Ao(f;y)=%r—. [ ¥EY™ds (<C<l+e).

1 C-iw

Moving the path of integration from Re(s) = C to Re(s) =% and using

(2.13) and (2.14) we find
Ay < B ! f‘*’(l By d
5 = ) ~ —1r
Y=y T ) T
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&f,) 1 f JLra—ain 1
215) =—2f 4+ | wYa—ir 7+ S d
@) =t P G=iN0* + i)
On the other hand, equation (2.6) implies that i £ —2in 1y
n € otner handa, equation . mmpiics a —_—————
q P A A T
is the constant term of E(z,3 + ir), so (2.15) tells us that the I'-invariant
function

(£.£;)

@ =re-¢ 5

1 ]
f,(z) ——— j Y4 —ir)E(z,4 +ir)dr
4 _d

has zero constant term. It is also square integrable, because f(z) is and the
non-constant terms in the Fourier expansion of E(z,1+ir) are

3 En,

exponentially small. Hence e LZ(T\H), so ’t?(z) =2 )
i=

f; (2),

and this proves (2.12) since (f,f )=(f,f)forallj=1.

SELBERG TRANSFORM. As in the introduction, let ¢ be a function on G of
sufficiently rapid decay and T, the operator given by convolution with ¢.
Since we are interested only in functions on the upper half-plane H = G/K
ai+b
ci+ d)

b
(where K = SO(2) and the identification is given by (: d)K >

we can assume that @ is left and right K-invariant. But the map

t:K(i Z)K F—> a’+b*+c?+d* -2
gives an isomorphism between K\G/K and [0, o) (Cartan decom-
position), so we can think of ¢ as a map
?:[0,0) — C
An easy calculation shows that

22

tg'g) = (&g «G),

where 2,2’ € H are the images of g and g . Therefore T, acts on functions
f:H— Cby
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(2.16) T,f@@) = | k(z2)f(z)dz (z € H),
H

where

.17 k@zz)= qa(’z Z|’ @7 € H).

The growth condition we want to impose on ¢ is that

1+A

(2.18) px)=0(x 2) x ~>w)

for some A > 1; then (2.16) converges for any f in the vector space

1+A

V = {f:H—>C|fiscontinuous,f(z)=O(y 2 )}.

Because k(z,z') =k(gz,gz) for any g € G, the operator T, commutes
with the action of G. A general argument (cf. [7], p. 55 or [4], Theorem
1.3.2) then shows that any eigenfunction of the Laplace operator is also
an eigenfunction of T,. More precisely,

.19 feV,Af=—(%+r2)f = T, f=hf,

where h(r), the Selberg transform of @, is an even functlon of r, depending
on @ but not on f. To compute it, we choose f(z) = y2+lr , which satisfies

the cuaditions in (2.19) if r € C with|Im(r)| <—2. Then

F s 7 Y 2
T,f(z)=§y"f*“ f p& ")y"y”,(y Y))dx dy'.
0

—©

Making the change of variables x’ = x + + J/yy’ v in the inner integral gives

-y ))

T, fz) = I Yy Iy Q(
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where the function Q is defined by

-+ [

2200 Qw)= j P(w+ v)dv= j

—00 W

p(H)dt
Jt—w

The further change of variables y’ = ye" then gives

1 .
T f2)=y?"" j e Q' —2+¢ ")du.

Hence, setting
(2.21) gw)=QE"—2+¢") (u € R),

we have

(2.22) h(r) = 5 gwe™ du (r € C,|Im(r)| <-";‘-).

Formulas (2.20) — (2.22) describe the Selberg transform (the notations
Q, g,h,due to Selberg, are by now standard and we have retained them).
The inverse transform is easily seen to be

~

g(u)=—1— j h(r)e™ du,
27 J

(2.23) Q(w) = g(2sinh ! TW),

n

P(x) = -1 j Q' (x + v¥)dv.

\

We can also combine these three integrals, obtaining

p(x) = 12 j rh(r) j ———S—in—ﬂl—-—dudr

2m Jeidev—2 —x

—o cosh—1(1 +§)

224 {
(2.24) -1 j P 1, (1+) rtanhar h(rdr,
4qr J 2 2
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where P, (z) (v € C,z € C — (— o, 1]) denotes a Legendre function of the
first kind. (For properties of Legendre functions we refer the reader to
[EH], Chapter 3; in particular, the integral representation of P_ 1 +ir Just
used follows from formulas 3.7 (4) and 3.3.1 (3) there.) The mversion

formula of Mehler and Fock ([EH], p. 175) then gives

(2.25) h(r)=2x _[ i a+ x)qv(x)dx (|Im(r)| < —)
0
From (2.20) — (2.23) we see easily that the conditions

P =0&"3"),

QW) =0(w™2),

g(u) = O(e~2M),

h(r) holomorphicin|Im(r)| < é

are eqmvalent this also follows from (2.24) and (2. 25) since P_1 Liir x)
grows like x -3+ m00| as X —> o [EH 3.9.2 (19), (20)]. Thus the growth
condition (2.18) is equivalent to a holomorphy condition on h, while the
condition that @ be smooth is equivalent to the requirement that h be of
rapid decay.

SELBERG KERNEL FUNCTION. Now suppose that the function fin (2.16) is
I-invariant. Then T f is also I'-invariant and clearly

(2.26) Tf@) = | K@2)E)dZ
T\H

with

2.27) Kez)= 2 k@y?),

i.e. the action of T, on I'-invariant functions is given by the kernel
function (2.27). We claim that

1-A
(2.28) K(zz) = O(y 2 (zfixed,y —> «)

if @ satisfies (2.18). To see this, write
K(z,7) = 2 kz+nz)+ 2 _ 2 k(z+ny2).

7elo\I' neZ
Yﬂ'ao
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,1-A
The first term is easily seen to be O(y "2 ). In the second term,

Im (yz') is uniformly smallasy —> w and fx;om this one easily sees
that the inner sum is uniformly O(Im(yz') 2 ). Therefore the second
term is

, A+l _ , A+1 ,A+1
0(7%“ Im(y'2)"3 )—O(E(z, ALl 4 )
122 ¥

which by (2.6)is O(y "2 ).

From (2.28) it follows that K(z,z) is in L*(T*\ H) with respect to each
variable separately and that the scalar product (K(-,z’), E(-,s)) converges

f__or1

~A CRe(s) < l—zﬁ. Using (2.26) and (2.19) we find
(2.29) K. =h@) 5@  (20),
where r; is given by (1.2) for j > 1 and r, = Ei’ and similarly
(K(.,2), E(.,3+in) =h@E@,} ~ir)

. . 1 .
since AE(z,1+ir)= — (:l +1?)E(z,1 + ir). Therefore the spectral de-

composition formula (2.12) applied to K(-,z") gives

K@zz2)= 2} (h( ))f(z) f,(2) +—1— JE(z,12~+ir)E(z',%—ir)h(r)dr.
B J’ J T %

We restate this formula as

PROPOSITION 3. Let h(r) be a function satisfying (1.14) and set

. < h(r)
2.30 K, (2,7 )= 2 —3
(230 S =¥

fi(z)fi(2) (2,2 € H),

where{f;} is an orthogonal basis of L2(T'\H) satisfying (1.2). Letk(z,z’)
(z,Z € H) be the function defined by (2.17), where @ is given by (2.23)
or (2.24). Then
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(231) K (nf)= 3 kzyd)—h(y)

«©

_ ;1; j E(z2,3+ir) E(Z,%— ir)h(r)dr.
—®

We remark that (2.31) can be proved directly, without recourse to the
spectral decomposition formula (2.12): Using the formulas for the Selberg
transform and Mellin inversion, one can check directly that the expression
on the right-hand side of (2.31) has constant term zero with respect to
both variables and hence (using the estimate (2.28)) is a cusp form;
equation (2.29) then implies the desired identity. We leave the details as

an exercise for the reader.

§ 3. Computation of I(s) for Re(s) > 1. Let h(r) be a function satisfying
(1.14) and define

3.1 Is)= | K,(z2)E(zs)dz,
T\H

where K (z,2') is defined by (2.30). Since K, (z,z) is of rapid decay, the
integral converges for all s(# 1), and from (2.11) we have
< h(r)

(3.2 I(s) = El ﬁkfj(s).

The object of this section is to compute I(s) for 1 < Re(s) < A.

By the Rankin-Selberg method (eq. (2.10)) we have
(3.3) )= [ @)y dy  Re©®>1),
0
where X'(y) is the constant term of K, (z,z), which we will compute
using Proposition 3 above. From (2.6) we find that the constant term of
E(z,3 +ir)E(z,1 — ir)equals
L L*a=2in) 1 e L*a+2in 1,
[y2+ +£¥y2 ] [yz +£—,..—(~—f)y2+ ]
{71+ 2in) {71 -2in)
8 [
b 2
" +20L7(1 —2ir) ==t
322
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Of the four terms obtained by multiplying the expressions in square
brackets, two are obtained from the other two by replacing r by —r and
hence will give the same contribution when integrated against the even
function h(r). As to the first term in (2.31), we separate the terms with
yel'y, and y ¢ T'_ ; the former are their own constant terms since

2
k(z,z+n)= p(n~2) is independent of x. We thus obtain the decomposition
y

1 4
H(y) = [ K x+ipx+ipdx= 2 K#;()
0 i=1
with
= [ 2 kx+inyE+in)d,

74T

A,00= 2 Pl —nn jh(r)dr,
n=—e y 2w

oy [ o tra2in 3 i
-7(3(}’)——‘2—"‘ J‘ mh(f)dr—;h(i),

©

2
A,y =— : j‘

X
n=1
4

This gives a corresponding decomposition of I(s) as 21 I (s) with

L*(1 + 2ir) g a+ 21r)

Ms

. ’K, (2'n-ny)2) h(r)dr.

@

Lo = | oy dy (=1,...9

0

THEOREM 2. The integrals I, (s) converge for I < Re(s) < A and are given
in that region by the formulas

3 {(st—4)j' |22+ 1714\ |
I,(s)= 2 £ G5 ( . )y dz,
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irE)ri=s) ® T(5—ir)

2 2
I(8) = = Sz ——1(5) jr———s————rh(r)dr,
- I'(1—=—1ir)
2
""ZP()
20 L(s)

I (S)=-‘ h( )9
3 ZP(S-;] T(s¥1)

TS
I,(s)=— 2 L(s)” X
4 4T (s) L(2s)

o £ 7] 5_
jr(z’”')r(z ") (s 2ir) L (s 2ir)
x_w T X+i)T(1—ir) {(1+2ir)L(1-2r)

h(r)dr.

Proof. We begin with I,(s) since it is, despite appearances, the easiest
of the four integrals. The very rapid decay of the Bessel functions allows
us to interchange the order of the integrations and summation, obtaining

LO=—— f (27) fy K, Gmy dy ) »

h(r)
“Tdranita—an

2
The first expression in parentheses equals—— {© {(s+2ir) L (s - 2ir) for

£(2s)
Re(s) > 1, as one checks by expanding the Dirichlet series as an Euler
ré)
product. The second expression in parentheses equals ﬁ?(s)—

I‘(%+ ir) I‘(—;——— ir) (this is the same integral as was used in (2.11)).Putting

this together we obtain the formula for I, (s) given in the theorem; it is valid
for Re(s) > 1. (The integral converges for all s with Re(s) 0,1, as one
sees by using Stirling’s formula and standard estimates of {(s) and
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L (1 + it) 7" as well as the fact that h(r) is of rapid decay.) Since the gamma
factors in the formula are exactly those corresponding to the zeta-
functions occurring, we can write the result in the nicer form

1 L* )’
4 L*(2s)

I,(s)= x

(3.4)

0

J‘ L*(s + 2ir) L *(s — 2ir)

¥ +2i0) L* (1 —2ir) h(r)dr (Re(s) > 1).

The integral I, is also quite easy to compute. Since { *(1 — 2ir) is non-
zero for Im(r) > 0 and since the poles of £ *(1 + 2ir) and £ *(1 — 2ir) at
r=0 cancel, the integrand in X,(y) is holomorphic in 0 < Im(r)<%

except for a simple pole of residue

1 -1y * X 3i, i
h(Z)res 1+ 2ir)) = =—h(z
‘ l—*a)‘y (2) =t (€7( ) wy (2)
—;—. Hence we can move the path of integration to Im(r) = %(1 <C<A),
obtaining

at

___iz C+ico e ;_*(S)__ E
H) =4 C_Im Y e MQ% (<C<A).

The Mellin inversion formula then gives

* .
35 Lg)=—1 86 pds 1 <Re(s)< A),
(3.5 3(®) P s+ 0) (2) ( e(s)< A)
in agreement with the formula in Theorem 2.

We now turn to I, (s), which is somewhat harder. From (2.23) and (2.20)

we have
-]

2—‘ jh(r)dr=g(0)=Q(0)= fqr»(vz)dv=l f e du,
v 2 2 y y

— — —c©

SO
> nz r u2
X,0= 2 oC)- jzp(—z)du.
A A I
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By the Poisson summation formula this equals

©

2 ©
2 jp(—u—z)ez'i““ du=2y 2 y(ny),
n+0 _J y n=1
where ©
(3.6) Y@= j p(u’)e’™ du.

—00

Since @ is smooth, ¢ is of rapid decay, so we may interchange summation
and integration to get

67 LE=2 2 [ 4@y ay=2L) | $()y"™" dy(Re(s) > 1).

To calculate the integral we begin by substituting the third equation of
(2.23) into (3.6). This gives

¢(y)=——,1, fcz'i“’ j Q' (u* + v*)dvdu.

Changing to polar coordinates u+iv= re'’ and using the standard
integral representation

2w
_ 1 ixcos @
Jo (X) = '2; (!' [ d0
of the Bessel function of order 0 [GR 3.915.2] we find
$)=—2 [ J,(2mynQ'*)rdr
0

or, making the substitution r = 25inh%1 and using (2.21),

0

b= [ J,@mysinhz) g @ du.
Using the formula
? L) 3
j J,(ay)y" ' dy=——-"—— (0 <Re(s)< 78 >0)
; 22'T(1-2)
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[ET 6.8 (1)] we find
® @M~ TG = .
(38) f¢mw*w=———~?- j@mg)gmMu
-5 '-35 &

(0 < Re(s) < %)

A
(the integral converges at o because g'(u) = O(e ~2"l ) and at 0 because
g (u) is an odd function and hence O(u)). Substituting
K
gu= =L j. th(r)sinrudr
27

—c0
and using the Fourier sine transform formula

Q .
sinru

ré-in r¢+in
_du= —2*"'il(1 —s) { 2 - 2

C s .
I'(1 —5——1r) T —§+1r)

o (sinh ; )

([ET 2.9(30)]; the conditions for validity are misstated there) gives

o TOTESS = TE-in
j. .ﬁ(Y)ys_l dy: - 25+2 s+3/2 j. s rh(f)df,
5 T -2 T(1-5-in

where we have used the fact that h(r)is an even function, and substituting
this into (3.7) we obtain the formula stated in the theorem. Since the
integral converges for all s with positive real part, the formula is valid for

all s with Re(s) >1 (not just 1 < Re(s) < %); we can use the elementary

identity
) /r(g- ir) ) I‘(%+ ir) ) _ I‘(§+ ir)I‘(%—ir)
27ri\I‘(l —%— iy Td —§+ ir) I‘(lg—s)r‘(l—;f—s)r(ir)r(— ir)
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to write it in the more elegant form
@ I‘(% + ir) I‘(% —ir)

L(s) = s+§1*(s) 1 J-I" (=] h(r)dr
(39) @m = reth g TOOTCD

(Re(s) > 1).

The proof of (3.9) was rather complicated and required introducing the
extraneous function J,(x). We indicate a more natural and somewhat
simpler derivation which, however, would require more work to justify
since it involves non-absolutely convergent integrals. Interchange the
order of integration in

[ ¢y 'dy= [ | e@*)cos2muyduy*! dy.
0 0 —oo

©

Then the inner integral j y*™! cos 2mwuydy converges (conditionally)
0

for 0 <Re(s) <1 (thus in a region of validity disjoint from that of (3.7)!)

and equals (2m|u)) " I'(s) cos™® there [ET 6.5 (21)]. Using (2.24) we

2
then find

_[ Yy dy=
0

I‘(s)cos‘%S @ _stl @

SRl )
= 2Qn)T j X J P_1,, 1+ D)h(rtanhwr drdx
0 —00
for 0 < Re(s) < 1. Interchanging the order of integration again and using
the formula
© s+1

: P 1+%dx =
1, . =
X _7”( 2) X

o

rd=5ré+inré-in
BN R ) 2
=2 TTs (0O<Re(s) <))
PTG+ G —in)
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[GR 7.134] we find

j Y@y dy=
0 2—S -2 11(_;_) ©
j I‘(-;— - ir)I‘(; + ir)h(r)rsinh arr dr,

‘”s+% 11( ) 3

2
and this now holds whenever Re(s) > 0 (not just 0 < Re(s) < 1) since both
sides are holomorphic in that range. Substituting into (3.7) again gives
3.9).

To complete the proof of Theorem 2 we must still compute I, (s), i.e.
the contribution from the main term g k(z,yz) of K,(z,z). For

Y%l
each y € T denote by [y] the conjugacy class of y in T'. Its elements are

of the form ¢ ' y ¢ where o € I is well-defined up to left multiplication
with an element of the stabilizer I', of ¥ in I'. Hence

21‘ k(z,yz)= % "I‘Zy\r k(z,e " yo2z),
y#leo e~ lyo¢Tp

!
where [Z] denotes a summation over all non-trivial conjugacy classes
' 4
(each such class contains at least one element ¢ I' ;) and we have chosen
a representative y for each class. Multiplying ¢ on the right by an element
+ ((1) 111) e T'_ does not affect the condition ¢ 'y o ¢ I',, and replaces

k(z,c 'y az) by k(z+n,¢ 'y o(z+n)). Hence

S kayn= S 33 “lyo@+n
2 k@y)= 2 v By o2 K@+ DO YO+ D)
v4To o~ lyoyTe

(for this one has to check that o 'T', e NT', ={1}, but this follows

easily from ¢ 'y o ¢ I', and the fact that the centralizer of any non-

trivial element of I', is I', ). Since the constant term in the Fourier
«© ©

expansion of a sum _2_: f(x +n) is the integral I f(x) dx, we
find -
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!
= 2 2. j'k(x+iy,a“w(x+iy))dx
c—lyc'vy¢I‘¢, —©
and hence
- ! —1 s
L= & u«r,\r/rmjk(z’a vyoz)y dz.

o lyeyTe
Now for any element r = (2 3): T'withr ¢ ' (i.e. c + 0) we have

[ k@ r2)y'dz = V(s,0) (t=tr(r))

H |c]

where

(3.10) Vs, t) = j ?(’Z—Jrl;—t/“—l) y'dz.

y
H

(To prove this, substitute (2.17) for k(z,z') and make the change of variable

z_,£+a—d_)Henoe
le|
w ' 1
L= 2 (3 2 2 _——)V ot
1= < (2 i .,;r,g‘/rm lc(e "t yo)|* 9

try=t o~ 'yo

where : [Z” denotes a sum over conjugacy classes in SL,(Z)—
Y

{* ((1) (1))} and c(e "'y o) the element in the lower left-hand corner of

o 'y o (we must work in SL,( Z) rather than I in order to have a well-

defined trace; notice that ', C T and o 'y o €SL,(Z) make sense for

y €SL,(Z), € T"). Since V(s,t)=V(s, —t), we have

© B 1

L= 2 ( > 2 S— ) Vs, b).
1 {ixll el \ITw c(o0~ yO0)

try =t e~ lya)>0

There is a (1:1) correspondence between conjugacy classes [[y]] of trace
t and SL,(Z)-equivalence classes of binary quadratic forms of dis-
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criminant t* — 4 given by
a b 2 2
Yy = q <> Q(m,n) =cm” + (d —a)mn — bn".
c

There is also a bijection between I'/T', and the set of relatively prime
pass of integers * (m,n) € Z*/{+1} given by mapping an element
o € I'/T' toits first column, and under this bijection we have c(e "'y o)
=Q(m,n) and ', = Aut(Q)/{ £1}. Hence

1 st -9)

7l eef\IMTw  c(o Tya) {(29)
try =t c(c_lyo)>0

where { (s,t* —4) is defined by (1.12). To complete the proof of the formula

(3.11) 1,(s) = 2 L6C-9VE,H (1<Re(s)<A)

1
£ (2s)
given in the theorem, it remains only to verify the convergence and justify
the various interchanges of summation and integration made. Since the
integrals I,, I, and I, have already been shown to be convergent for
1 < Re(s) < A (egs. (3.4), (3.5), (3.7)) and the function X (y) is of rapid
decay at infinity, the integral I,(s) is certainly convergent in the same
range. By choosing s real and ¢ positive, we see that this convergence is
absolute, and this gives an a posteriori proof of the convergence of (3.11)
in the range stated and of the validity of the steps leading up to its proof.

4. Analytic continuation of I(s). In this section we will give the analytic
continuation of I(s) to the critical strip 0 < Re(s) < 1 and compute the
residue at s = 1 (Selberg trace formula). We will also want to study the
functional equations of the various terms in the formula for I(s). From
the definition (3.1) of I(s) it is clear that I(s) is holomorphic for all s # 1
and satisfies the functional equation I*(s)= I*(1 —s), where

*e)=n"TELQ)IeE) = | K,z2)E*@zs)dz.
T\H

On the other hand, Theorem 2 says that I*(s) is the sum of the functions

4.1 w O T6) L (s,t2 —4) V(s, 1) (te Z, t+ 12),
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4.2) a* T'($)L(,0)[V(s,2)+ Vs, — 2)]+ I’;(s),
(4.3) I3(s) + I}(s)

for 1< o =Re(s) < A, where I*(s) = {*(2s)I;(s). We will show that
each of the functions (4.1) — (4.3) has a meromorphic continuation to the
strip 1 — A < @ < A with poles at most at 0 and 1 and is invariant under
s=>1-s.

We begin by performing one of the integrations in the double integral
(3.10) to write V(s,t) as a simple integral, thus obtaining the analytic
continuation and functional equation of Vs, t).

PROPOSITION 4. Let @ be a function satisfying (2.18), s €C, t € R, A=
t* —4. If A+0, then the integral (3.10) converges for —A< o<1+ A
and is given by

52

i[ @(|A|(W*—1))P_, (u)du

(—A<o<l+A4)

(44) V(s,t) = 271%

if A<0andby

1‘(5)2 .
(45) V(S,t) = ‘%—P(T)‘A X

2
S

X jp(A(u +1)) (1+u*)” # F(2

)du (—A<a<l+A4)

Nlu
NIN

+

if A >0, where F(a,b;c;z) and P,(z) denote hypergeometric and
Legendre functions, respectively. In particular, V(s,t) satisfies the
Sfunctional equation

m T'(s) _-rr—l+s I'l1-s)

(46) y(s,A) e y(1—-s4)

V(l—s1) (A+0),

where

(2n) " |A|** T(s) if A<o0,
( )= 2
- AS”I‘(%) if A>0.
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ForA=0, V(s,t) converges for 1 <o < 1+ A and has a meromorphic
continuation to 0 < Re(s) < 1 + A given by
@
)T (s-3)

(4.7) V(s, £2) =“‘I"7s)~__j e(u’)u*" ds (O<e<l+A).
0

We observe that the functions {(s,A) defined by (1.12) satisfy the
functional equations

‘)’(S,A)C(S, A) = Y(l -5, A)C(l —S’A)

for A # 0 ([10], Prop. 3, ii), p. 130), so (4.6) tells us that each of the func-
tions (4.1) is invariant unders - 1 —s.

Proof. We consider first the case A < 0. Mapping the upper half-plane

z—iv|A| /4
z+iv|A|/4

oo [[(<544)rs

'A ¥ j'j' (4|A|r )( 1-r )‘ rdrd@
1—2rcos@+r’/ (1-rH*

o<r<
0<9<21r

to the unit disc by z —» = re'’ | we find

=4

and this is equivalent to (4.4) because

2w

1 1—-1r )s : 141
2n —————) d0 =P, (—) O<r<lseC
2m J. (1—2rcos0+r2 —s (l—rz) O<r<l,5¢C)

[EH 3.7(6)]. The functional equation follows since P_, (z)=P,_; (z). If

z—-~ A4

A > 0, then we transform the upper half-plane to itself by z +» ———=
pperiet® 2+/ A/

= ¢ + im, obtaining

AR fz + 1)2) ")s dédn
V(S’t) - A jj.¢ (A "12 Il _ f '_i",'u nz

H
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= A J. e(A(1+u?)) j v ldv du
- 252
e L A TR
Nul+1
(u= ¢/n,v=+E>+ n* ). Substituting v=e¢" we find
{ v ldv o dx
2u 2\8 o u s
o (1 ——v+v) —® (coshx—- )
Nu'+1 u’+1

_Terg

225—1 I‘(S+Jz‘)

_om T'(s) F(E,E;l; u? )
222

- 225—1 P(s+ 1)2 u2 +1
2

2

F(s,s;s+§;%(l +
u +1

——)) (Re(s) > 0)

2

u m T(s) F(s+1s+l_§. u )
[? 41 2% 1_,(s)z 272 2u*+1
2

+

[EH 2.12(10),2.1.5(28)]. Since the second term is an odd function of u, we

find the formula
2

V) =AY T Te j (A(1+uz))F(2§,2§;%; = v,

225—1 S+1 T 12 (1 +u2)s/2 u2+
I -

which is equivalent to (4.5); the functional equation follows because

2
(1+u)™" FG.3s ;,Ez—)— FG, 155,1 —u?)  [EH2.1.422)].

Finally, if A = 0 then the substitution z & —1/z gives

Vs, £2) = -U ,P(I;I )y dz = '[j qp(%)l—zylz—sdz;
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making the substitution u=y ', t = x/y and using

f o T®Te-Y
f 1+t "dt - e =

[GR 3.251.2] we obtain (4.7). Notice that, since @ is assumed to be smooth,
the integral in (4.7) has a meromorphic continuation to o < A + 1 with
(at most) simple poles at s=0, —2, —4,...; hence V(s,t) can also be
meromorphically continued to this range and has (at most) simple poles

ats=1 -1 _3 . This completes the proof of Proposition 4 except

T T
for the various assertions about convergence, which can be checked
easily using the asymptotic properties of the Legendre and hypergeometric

functions.

(Re(s) > 3)

From (4.5) and (2.18) it follows that V(s,t) grows like t°™'™* ast -
with s fixed, —A < o < 1 + A. An easy calculation shows that { (s,t* —4)
=0(t°) for any C > max(l —2¢,1—0,0) as t = w, and this implies
that the sum (3.11) is absolutely convergent for 1 —A < ¢ < A. Thus I, (s)
has a meromorphic continuation to 1 — A < ¢ < A with (at most) a double
pole at s = 1 (coming from the double pole of { (s,0) = { (s){ (2s — 1)) and

simple poles at s =% and s =0. From (3.5) and our assumptions on h(r)

we see that I,(s) is meromorphic in —A < o < A, the only pole in the
half-plane o > 0 being a simple one at s = 1. Thus to obtain a formula for
I(s) in the critical strip we must still give the analytic continuations of
I,(s) and I,(s).

Let J(s) denote the integral in (3.4). As already stated, this integral
converges absolutely for all s with ¢ + 0,1, because the integrand is of
rapid decay as |r| - . However, J(s) is not defined on the lines ¢ =0
and ¢ = 1, because the path of integration passes through a pole of the
integrand, so the functions defined by the integral in the three regions
0<0,0<0 <1 and ¢ > 1 need not be (and are not) analytic continua-
tions of one another. To obtain the analytic continuation of J(s) (and
hence of I,(s)) to 0 <o < 1, we set

1 _f L*(s + 2ir) L * (s — 2ir)
c® = L TrA+ 20l (-2
335
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where Cis a deformation of the real axis into the strip 0 < Im(r) < $(A—1)
which is sufficiently close to the real axis that all zeroes of the Riemann
zeta-function lie to the left of 1+ 2iC and {(1 + 2ir) ' =0(|r|) for

=0
complex \_.
r-plane
LA-1)
/X
0 R
]

re C (see figure). The integral J.(s) converges for all se C such that
L *(s+ 2ir) and £ *(s — 2ir) remain finite for all re C, i.e. for s ¢ 1 & 2iC,
+ 2iC. In particular, J. (s) is holomorphic in the region U bounded by
1+ 2iC and 1 —2iC. Clearly J. (s) = J(s) for s to the right of 1 — 2iC,
but for s in the right half of U we have

C (28 - 1) h({s -1 ) (S € U,RC(S) > 1)

10=IcO=m e g0 "¢ 2

because the integrand has a simple pole (at r= %(s — 1)) with residue

1 L*@es-1 i
5 %% h(-;~(s — 1)) in the region enclosed by R and C. Similarly

{"(2s—1 h(is_ 1

Tl O= =" e e 2

) (s €e U,Re(s) < 1).

{*@es-1 pi !
re-ore 2
less than the analytic continuation of the function defined by J(s) for
o > 1. Together with (3.4) this shows that I’;(s) = { *(2s)I,(s) has an

analytic continuation to o > 0 given by
336
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SELBERG TRACE FORMULA

(4.8)

-

1
— 4—c *(5)* J(s) (@ >1),
o

17*eL" (28—1)
4 ; ( (‘ 2 ) (SGU),

| 1§ (S)C (23_1)
L)) — =
| 4"C "I 3 G-
where we have used the functional equation { *(s) ={*(1 —s). Of course,
we could use a similar argument to extend past the critical line ¢ =0,
but since it is obvious that J(s) =J(1 —s), we deduce from (4.8) that
I:(s) satisfies the functional equation

1 {*e)L” (2s—1)
26— 2

;)= < — :()J()

( )(0<a<1)

1301 —s5)=T56) —

LSLrere
2 l*G+1)
and this gives the meromorphic continuation immediately. From (4.8)
and (3.5) we find

h(—)

1
49 ILE+ILE= —Z;C MORIO)

(1 L)L)
E—C—(TIT (2) (l<o<A)
1L*6)L*@s) i, 1 L*®)8*@es—1) s—1
_ﬁi {*6s+1) hQ+3 {*6s—1 bi—) O<o<h
1 {*e)¢*es—-1)
2 TeoD ( 2) (1-A<o<0),

which proves the invariance of (4.3) under s - 1 —s. Notice that the

functionz_z(z_cg_) h( )( { (;Z fs £2:)—- 1)
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many poles in the half-plane o < 0 (resp. ¢ > 1), but drops out of (4.9)
before that half-plane is reached. In fact, it is clear from (4.8) and (4.9)
that the function I:(s) + I:(s) is holomorphic in 1 — A < ¢ < A except

for double poles at s =0 and s = 1 (the simple poles at s = % must cancel

since I:(s) + I:(s) is an even function of s — %).

It remains to treat the function (4.2). Using the formulas (2.23) for the

Selberg transform we find

j pHu ' du= —

0

j Q u*+vH)u! dvdu

|~
!__——,8 O!._—-,a

= _% j Q' (*)(rsin8)* ™' rdrdd (re” =v+iu)
0 0
S
P(E)

- j Q(tH)r' dr
I‘(%)P(#) i

re) =
Y S CR T
= — j (2sinh 2) g (u)du

21‘(%)1‘(“—2—) 0

and hence, by (4.7),
7 T L6,0)[V(E,2) + Vs, —2)] =
l(s"l) ? s—1
__8m  eeortes— S Ginh%) g (u)du;
s+1 2
T ’

the integral converges for —1< & < 1+ A and hence gives the analytic
continuation of the left-hand side to this strip. On the other hand,
formulas (3.7) and (3.8) give
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1%(6s) = i—L—: ()L *(29) j (sinh 3) "¢ (w)du,
I‘(l——)

where now the integral converges for — A < o < 2. This shows that the
function (4.2) can be continued to the strip —A <o <1+ A and is
invariant under s & 1 — s; equation (3.9) then gives the formula

m " T()L(,0[V(6,2) + Vs, —2)] = I3(1—5)
4.10)

1—-s 1-s
;*(s) ¢ *(2s ) j‘" T+ il——in

T TeD h()dr O <o <1)

(47r) ré=s )

in the critical strip. A similar discussion to that given for the integral I:(s)

{ Ola (2s—l)h(l—-——)

now shows that for > 1 we must add =
I'(——)
to the right-hand side of (4.10) and that near the line ¢ = 1 we have
7 TELE0[VE,2) + Vs, - 2)]

1—
rrertes—y [ TOT ReEt-in
@10 I T(nT(—in h(r) dr
@@m) 2 T( 5 )c
E;l_
1 2
5 —*eLt (28—1)h(l ) (se V).

1‘(—)

Again the analytic continuation to 1 - A < ¢ < 0 follows using the func-
tional equation.

We have thus proved the analytic continuability and functional
equation of each of the functions (4.1) — (4.3) in the strip ] —A <o < A
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and given explicit formulas for these functions in each of the five regions
1-A<e<0,1-U,0<o<1, Uand 1< o <A covering this strip.
We end this section by using these formulas to compute the residue at
s =1 of the functions in question.

From the development
L*6s) = —+ ('y—-log41r)+0(s—1) s—=1)

and (4.8) we find
1 1 y —log4m ]
Ii(s)= —— o
+(9) 41r[(s—1)2 tor to0

X “ h(r)dr + (s — 1) j z(r)h(r)dr +O (s — 1)2]
C

C

1 1
+ GhO—+o)

YA +2i Ya-a2i
ass ~ 1, where z(r) = (C *El n 2:3 + i *El — 23 Since z(r) is holo-

morphic for r near the real line (the poles of the two terms at r = 0 cancel),
we can replace C by R in the two integrals, obtaining

+ (—x (y —logdm)+ —£80_)

™ _ K
I,(s)= G- 1)2

_L J 4nmnm)@—lY4+Oﬂ)
4

ass - 1, where k = 4—1 '[ h(r) dr. From (3.5) we get
g

h(h)
O s S0 o).

LO=-Frs1n G 1

This takes care of the function (4.3). For (4.2) we use equations (4.11) and
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(3.9), obtaining (by an argument similar to the one just used for I:)

7w T'()L(s,0)[V(s,2) + V(s,— 2)]

_ -_1_+§(y —logdm)+0(s — 1)]

| s—1
X 262D +1(y —logdm) +O(s - 1)]

[ 1 1 o 2
x h;+:‘—;(log41r +F(%)) —-D+0¢s- 1)]

x [ j h(r)clr——E;—1 j(%(ir)+%(—ir))h(r)dr
¢

+0(-— 1)2] +%O)(s— D' +0oQ)

K
= W‘*‘ (K('y—logS'tr)

1 (. . 1 .
. j_f(1+1r)h(r)dr+§h(0)) =1~ +0()

—a

I’;(s) = (%4— j h(r)rtanh wrdr)(s -7+ 0qQ).

and

Finally, to compute the residue of (4.1) at s=1 we need the values of
V(1,t) and res,_, {(s,t? —4)fort € Z, t + +2. From (4.4) and (4.5) we

find

©
r

[ dx
= 2®) ———= (t| <2)
2 0 Wx+4a-t
va,n= 4
m dx
= @) —— (t|>2)
. 2 t2:4 x+4-_t2
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(since Py(u)=1, F(0,b;c;x)=1). Using the formulas (2.23) for the
Selberg transform, we can express this in terms of h(r), obtaining

)

ST |

2 —2mr

—00

( F —2ar
1 j.l—e——h(r)dr (t|=2cosa <2, 0< <

4.12) V(1,t) = <

©
% jeﬁ‘" h(r)dr (|t|=2cosha >2)

Y —

(we omit the calculation, which is not difficult, since in §5 we will give a
general formula for V(s,t) in terms of h(r)). As to { (s,D), we have

[ 2m 1
2 (D<0)
JID| © |Aut(Q)|
4.13)  res_, C(S,D)=1
1
75 % log &, (D >0),

.

where % and Aut(Q) have the same meaning as in (1.12) and, in the

second formula, &, is the fundamental unit for Q (i.e. the larger eigen-
value of M, where M € SL,(Z) is a matrix with positive trace such that
Aut(Q = {+M', ne Z}).

We have thus given the principal part of each of the functions (4.1) —
(4.3) at the pole s = 1. Adding up the expressions obtained, we find that
the terms in (s — 1) 2 cancel and that

3 h(r) = | [Ko(z,z) +—3h(i)]dz=2ress=,1*(s)+ hd)
j=0 T™\H T 2 2

4.19) =% j h(r)rtanh 7 rdr
1 j‘o( r...
- z()+ —(1 +in) + log2)h(r)dr
2w T
1 2 2 2
+5hO)+ 2 2 V(1 9res,, {609,

1244
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where
z(r)=;*(l+?fir)+£*(1_2.ir)
t*a+2r) QA -—2ir)
ISR SPUIIES APTONE SN dp
——2'?(2‘*'11')—5?-(11')‘*";—( + ll')—z—(ll')

and V(1,t), res_, {(s,t*> —4) are given by equations (4.12) and (4.13),
respectively. Formula (4.14) is the Selberg trace formula.

§ 5. Complements. In thelast section we gave the analytic continuation
of I(s) to the strip 1 —A < o < A. To complete the proof of Theorem 1
we must still

1) express V(s,t) in terms of the Selberg transform h(r);

2) generalize the formula obtained for I(s) to the function

m,o & h(r;)
(5.1) e = z % (m) (.5)

Ry  (meZ)

with m # 1 (notations as in §1). In this section we will carry out these two
calculations and also indicate the generalization to congruence subgroups
of SL,(Z).

The results of §4 show that I*(s) equals

L*(s + 2ir) L * (s — 2ir)

|
At © _J: (1 + 20, " (1 — 2ir) h(ndr

L' OLe) n(2)-1 c*(s)c*(zs—l)h(;l—s)

T2 s+ \2) 2 r*s-)) 2

s . s .
RACINCD f FG+ntG—

s+1

@m T TELY =

TaoTCn O
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I—s _1—s |
+ L' L Rs—1) j,o I‘(—~2——+1r)I‘(T_lr)

2-s . .
@m) 7 I‘(?) w T'in)I'(—ir)

h(r)dr

0
+w T 2 VEDI6t—4)
e
in the critical strip 0 < ¢ < 1 (cf. equations (4.9) and (4.10)). Using the

functional equations of V(s,t) and { (s, D) we can write this expression as
R (s) + R(1 —s), where

* ek )
R(s) = ——81; L*s)? {7 (s +2in){ " (s —2ir)

P20l 0 —2m "OF
L*(s)L*(2s)  is
T2+ 1) )
FTE—1
(;_(ss ’(ZH LOLEs—1) x
jo I‘(%+ir)1‘(1—;s—-ir)h d
* TaT(—in @®dr
+ At 2 vENIEE-4),
212
v(s,t) being any function such that
s—1
(5.2) Ve =vey + T T4=9 68 o

TG y(l-s,4)
(here A = t>—4 as before). Comparing this with (1.16) and observing that
F(a,b;c;0) = 1, we sec that Theorem 1 (for m = 1) will follow from

PROPOSITION 5. Fort + +2and0 < Re(s) < 1 the function V (s,t) defined
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by (3.10) is given by equation (5.2) with

1—s

I‘(z

+ ir)I‘(I—;s— ir)
v(s,t) =

T(s—1) f
s+ 1 2—5
41‘(7)1‘( 3 )

I—s 3 s
———ir; — —s; 1——)h(r)dr.
> 7S 4) (r)

Tir)T(—ir)

1—s
X F(——+ir,
2

Proof. As in Proposition 4 we must distinguish the cases A >0 and

A < 0. Tt will also be useful to introduce symmetrization operators
&, F, with

2 @] =fe)+fa-s, &[] =@+
for any function f. Thus the formula we want to prove can be written
n " I'(s)
7@, A)
If A > 0, then (4.5) and (2.24) give

2
N

! 7 T'(s)
(5.3) V(s,t) =&, [_—Y(S,A) v(s,t)].

ro)
V(s,t) = 8 TG) Af—cj rtanh mrrh(r)
1
A2 =3 s 1 d¢
P, A+——)1-§)* FG,5i5:6)—zdr,
Xj —%+1r (+1——f)( f) (222E)Jgr
0
2
where we have made the change of variables ¢ = 2u+ T To prove (5.3),
u

we must show that the inner integral equals

I's— §)I‘(l—2_-s+ ir)r(l—'zlf— in

‘9’: [%s/TCOShWI'

1 S s
P(E)F(E)P(l —5)
5.4

1_S+ir1—_s ir'3 s;1 t2)]
b 2 ’2 b 4
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(here and from now on we use standard identities for the gamma function
without special mention). Using the identity

. |
__ (1+) = | @D pd il 12 -x| «>0)
+1r 1 .2 2 2
I‘(§+1r)

[EH 3.2(19)] and expanding the hypergeometric series, we find that the
integral in question equals

l_' 2 | .
% cothnr E (- 1" r(n+2 ir) (A)_n_r“
| 2 &= nl T(a+1-2in 4

_pyiien ps sl de
xI(l &) F(2,2,2,e>ﬁ].

From [EH 2.4(2), 2.8(46)] we have

J!(l_ E)%.H,_l—ir 5‘5 (EE f)df
] 2 2
TOTE +n—in)
215 s 1+s

= F,=; —ir;1
I+s . (22 . to-inh)
I‘(—2—+n—1r)

s . 1—s5s . 1
I‘(5+ n— 1r)I‘(—2—+ n— 1r)I‘(—2-)

b

1
'+ - —ir)’
@+5—1)
so our integral equals

& | cothar § (=1
'[21,/; n=0  p!

3 . 1—s .
P(5+ n-— IT)P(T"" n-— lr) A —n—%+ir ]

'+ 1 —2ir) @
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(——1 )I‘(———lr)

coth r A 3
5-3) = [ 2ifm T'(1 - 2ir) @
xF(%—ir,l— 1r,1—2ir;——z—)]

| N
I's—)I'C—-—i s
_g P [coth'rrr (s ) ( 2 ) A

s ] 1
2ifm (———_;_ —ir)

x F(—=—=—ir,——=+ir;= —s; ——)

i—s . 1—s,..3 A
2 > 2 ’2 4

(the last formula is [EH 2.10(2)]), and since

—ir) coshor I‘(};—S + ir) I‘(l—;§ —1ir)

[ cothwr

S

diJm o1 . 1 s s
I'( —ir) I'(5)1‘(5)1'(1 —5)

this agrees with (5.4), completing the proof for As>o.

If A <0,then (s I‘A(;) =§ " whereS-——lAl—l—— 7 so (5.3) is

equivalent to

1
§7 V(s,t) =% [8 Y va- s,t)] )

On the other hand, from (4.4) and (2.24) we have

0

j rtanhwrh(r) j‘ M(l +28(u®—1))P_ (u)dudr.

—00 1

1
2 V(s t) =<
™ (CR9) 5
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Denote the inner integral by I. Then (5.3) will be proved if we show that

1 s . s .
P(E - S)I‘('z‘ + lr)P(E - ll')

1=, [18%‘5“’

2 1+s

3

| 1 2—s
I‘(§+ lr)I‘(E— 1r)l"(T)I‘ )

S S 1
F+ir,-—ir;-+5;8) |
X (2+1r2 ir 2+s )]

By [EH 2.10(1)], this is equivalent to

S, s . l—s, . 1—s .
I‘('2'+ lf)r(i _ 1r)I‘(T+ lr)I‘('-—Z-— —_ lf)

1
I=
2/ o1 1 . T+s . 2-s
I‘(§+1r)l‘(§—-1r)l‘(——2—)I‘( 3 )
B N T
x & 2F(§——1r,§+1r,5,1 d).

To prove this formula, we begin by making the substitution v=u’ — 1 in
I and substituting for P_ % +ir DY

ir

T e ™ K, (x)% =A/—T211"(%+ir)f[‘(li—-ir)P_%+ir (a)
0

[GR 6.628. 7]; after an interchange of integration this gives
V2a @ +inT@ —inl

—co ® —28xv dV —-x _iil
_J((,!e P—s (~1+v)ﬁ)e Kir(X)J—X.

where W,  ~is Whittaker’s function, and using the Mellin-Barnes
integral representation of the latter [GR 9.223] we find that this in turn
equals
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C+ioo

rdiy ra-9 L [ reehre-

2mi e

x (28x)v—% dv

where C is chosen such that —3 < C< 1 min(e, 1 — o). If we choose C
to satisfy also C >0 then we may interchange the order of integration
again, obtaining

2/7TG+inlE - ir)l‘(l_;“f)r(l —%)I

1 v oavelt
~gmi J, 73

K, (x)dxdv

X
Swyg
»e

C+ioo — 1
_Ie [ I‘(;—v)I‘(l—z—s—-v)I‘(v+ir)I‘(v—ir)SV"i dv

2"1 C—-ic0

[ET 6.8(28)]. The integral is very rapidly convergent (the integrand is
o(lv|” ¥ ¢72"1"!)), so we may substitute for 8" : the binomial expansion

PR r%—v+m
8 8~(s D] ZO ;'_ . (1 _ S)n
) . 11(5—")

and integrate term by term. Using “Barnes’ Lemma”

C+ico
1

= j T(x+s)T(B +s)T(y —s)T(8 —s) ds

21

_T(+y)T(+d)TE +y)I'E +9)
- T(a+B+7+39)

[GR 6.412] we obtain finally

2 +inT'@g - 1r)I‘(_1_i§)I‘(1 __) = ‘(s—l) y
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- I‘(§+ ir+n)I‘(2§— ir + n)l‘(1 2’ ¥ ir)I‘(l 2_ S_in
x 2 a-38y

I‘(%+ n)n!

_l"ls.s.l—s,l—s.s‘Tl
= P(E) I‘(§+ 1r)I‘(5— 1r)I‘(T+ 1r)P(T— ir) &

s s 1
F(=+ir,——ir;—;1 — §).
X (2+1 5 1r2 )

This completes the proof of Proposition 5 and hence of Theorem 1 for
m=1.

To calculate the function (5.1) for m > 1 we set

©

Ki@z)= 2 ,(m)(TT)f(z)f(z)

Then I" (s) = I Ko (z z)E(z,s)dz. On the other hand, from (1.6) we
see that Kg (z z) mzKo(z z )| T(m), where K (z,z') is the kemel

function (2.27) and T(m) the Hecke operator (1.5), acting (say) on z .
Since the constant function and the Eisenstein series E(z,s) are eigen-

1
functions of m2T(m) with eigenvalues = ;zL(m) and v _ % (m), respectively
(v, (m)as in (2.7)), equation (2.31) gives

Ky (z,2)=K"(z,2) - %T%(m)h(%) -

- 21; j E(z,1+inE(@,3 —inh()r, (m)dr,

where
"+b
K"(@7)=J/mK@Z)|Tm) = 2[ abLZd‘Z k@, 2212y,

abedel cz +d

4

Hence the constant term X ™ (y) of K (z,z) equals —21 2" (y), where
Xy and X are defined exactly like X, and X, but with h(r) replaced
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by h(r)r, (m) and

fl@)=7—r;' . ad

H(y) = ./_“ 2 k(z, &
3
2mr

j h(r)s, (m)dr.
As in §3 we then find I™ (s) = Z} I"(s)for 1< o < A, where IJ and I}

are given by the same formulas as I, and I, (equations (3.4) and (3.5))
but with h(r) replaced by r;; (m)h(r) and

m D t
L@29)IT(s)=m? I=Z_m C(s,t2—4m)V(s,ﬁ).
As to 17, from (2.20) and (2.23) we find
i 1 ® (x(d—-a)—b)* +(@—d)y’
X, (y) =7—‘Iﬁ“ (! :ddz;o b_z_w ?( p— ) dx

_y s 5 h(r) (g)ir dr
©
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SO

m™*? L,(s) if yme Z
0 if ym¢ Z.

The analytic continuation to 1 — A < o < 1 now proceeds as in §4, the
only essential difference being that the terms (4.2) are absent when m is
not a square, since 17 then has no summands with t* —4m =0 and I}
vanishes identically. The final formula is that given in Theorem 1.

L6 =

If m < 0 the proof is similar and in fact somewhat easier (since t* —4m
now always has the same sign and the term I, is absent), but the cal-
culations with the hypergeometric functions are a little different. Since
constant functions and Eisenstein series are invariant under T(—1),
the terms I} (s) and I} (s) are equal to 1,™'(s) and 1,™'(s), so the first two
terms in (1.16) are unchanged except for replacing m by |m|. The term I}
is always zero since m cannot be a square. Finally, for IT we find

=13 L(s,t
e

5.6) Il'(s)=|m|? tE _—Cvs)im—)v (s,tjm|” 2) (m < 0)

with

V_(s,t) = j ke = )y dz = fqp(M%&-HZ)ys dz,

H

where now A =t + 4. This function is easier to compute than V(s,t)
since A always has the same sign. Making the same substitutions as in
the case A > 0 of Proposition 4 we find that V_ (s, t) is given by the same
integral (4.5) but with ( Au® + t%) instead of (Au’ + A ). This integral
can then be calculated as in the case A > 0 of Proposition 5, the only

A/2

difference being that the function P_1 , (1+ ) is replaced by
2

P-5+u (-1+ A[2_) and we must use

P—§+1r ( 1+ ) =
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o 1 .
—&. [Mﬂ_ x2 " F(% - ir,% —ir;1— 2ir;x)] (x> 0)
P('i + ir)2
[EH 3.2(18)] instead of the corresponding formula for P_1 . (1+ )—2().
2
This has the effect of introducing an extra factor (— 1)” in the infinite sum

4 4
and hence of replacing the argument — A in (5.5) by + A Using the

identity
s 1—s
I‘ S I‘ S ir—l
y[coth wr (2 S 2 i (A) " x
l2iym  T(-—2in) 4
x F(%-—ir,l—gs—ir;l—Zir;—Z—)]
___C_%h;;ir(%+ir)l‘(g—ir)I‘(l—g—erif)P(l‘%_s_ir) (%)' 8
x F(l—;s—ir,l—;—fﬂr;%;l —%)

[EH 2.10(3)] and substituting the expression thus obtained for V_ (s,t)
into (5.6), we find that the last term in (1.16) must be replaced by

s—1
25-4 |m|T s 2 0
e TQ 2

L(s,t> — 4m) x

® TC+inTE— inTd 5+ ir)I‘(l;—s —in)

Xj- 1 1 .
_& I‘(§+1r)I‘(§—1r)I‘(1r)I‘(—1r)

1-s _ 1-—s 1t
F(——+ir,———ir;z;—)h(r)d
x F( 7 +ir 3 1r24m) (r)dr

if m < 0. This completes the proof of Theorem 1.
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Finally, we indicate what happens when I is replaced by a congruence
subgroup T, in the simplest case ', = T (q)/{ + 1}, q prime. There are
now two cusps and correspondingly two Eisenstein series E, and E,,
given explicitly by
E,(2) = g Im(yz)*, E,@) = 2 Im(wyz)*

ye

o\' yew—IT w\T'|

(where w = (2 ;1)), and formula (2.31) becomes

, , 1 i
K, (z, = k s _— h() -
0(z.2) y-zrl @z, 7vz) Vol (T, \F) &)
1 &
-7 2 | Eei+inEEi-inn@adr,

where K (z,z) is defined as before but with f; now running over all Maass
cusp forms of weight 0 on T', (cf. [4]). It is easily checked that

E,(z,s)= E(qz s) — & ! 1 E(z,s),

E,(z,s) = q E(z s) — 1 E(qz,s),
q* -1

so the Fourier developments of E, and E, can be deduced from (2.6).
The calculation of 1(s) = f K,(z,z) E,(z,s) dz (which again can be

expressed as f X(y)y* 3 dy, X (y) = constant term of K (z,2z)) now
0

proceeds asin §3; the final formula is the same except that I, (s) is replaced
by

5 (1+ED) ter-aves,

: . - -1
(where (—A—) is the Legendre symbol), I,(s) is multiplied by q—?ﬂ—I and
the mtegrand of I,(s) is multiplied by
1 Q@+1Ha—-qHUd- ™) —s)
: 2 .
1 s ((q1+21r _ 1)(q1 2ir _ 1) + q
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