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INTRODUC TION

The first example of a non-standard differentiable structure
‘on the topological n-éphere was given in 1956 by Milnor [25]' for
the case n=7. In the next few years further examples were éonstructed ’
by Milnor [29] and the structure of the set GB of differentiable
structures on the topological n—sphére was investigated, culminating
~in the classical paper4of Kervaire and Milnor [22] proving that
Gbn is a finite abélian group whose structure can be described
quite explicitly. I will describe this work in more detail inm’.
the first chapter.of this paper.

However, Milnor's example for n=7 was constructed by
special means--using the multiplicafive properties of quaterhions

- and constructing certain 3-sphere bundles over Sh;-and his s

| ‘higher dimensional examples——twisfedvmanifolds;obtéihed byl‘{
identifying the boundaries of two‘simplé manifolds under a
diffeomorphism~-are artificial and hard to visualize. Since
thén, more natural ways have been found of constructing the
exotic spheres. It is the purpose of this paper to describe
these., Chapter II contains a description of Jinich's work‘ |
 classifying certain G-manifolds (differentiable manifolds

on which a Lie group G acts differentiably) in terms of more

* Numbers in brackets refer to the bibliography
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algebraic data. Chapter III describes the technique of obtaining.
manifolds as the boundaries of the manifold with boundary consisting
of a number of tangent disc bundles to the sphere "plumbed" together.
The generators of the cyclic groups an+1 (homotopy spheres that
bound parallelizable (n+1)—manifolds) are obtainable in this

way. Chapter IV gives,perhaps the most pleasing and explicit
description of exotic spheres as the setsof zeroes of very simple
polynomials in the neighbourhood of isolated singularities; all
spheres of an%1 aro.obtainable in this way. The classification
theorem of Chapter II has two uses: to show that two manifolds
obtained in different ways (e.g. by plumbing and from algebraic
singularities) are in fact diffeomorphic, and to construct

manifolds directly (by choosing the algebraic data and using

the theorem.to construct the corresponding G—manifold). The

latter has the drawback that, though we can calculate the

homology and find if the manifold is a homotopy sphere, there

is no direct way of identifying its differentiable structure.
All of the examples produced lie in the subgroups an+1

and it would be of considerable interest fo give constructions

of the other, "very exotic," spheres. None of the three methods

described can be easily extended to do s0: +the classification

 theorem approach gives no information about differentiable

structure, as mentioned; the plumbing technique constructs its
examples as boundaries; the manifolds.obtainable as the set of

zeroes of a complex function cannot be very exotic, for it is a
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a theorem of Kervaire.[ZO] thaf the n~spheres that can imbed in
codimension two are precisely.the elements of an+1. Of course,
the only sphere that can imbed in codimension 1 is'Sn; this seems
to indicate that the elements of an+1 not only differ essentially
from very exotic spheres but thaet this difference is in some way
similar to their difference from the standard sphere. This is also
suggésted by Wu~-yi Hsiang's work on the degree of symmetry of the |
exotic spheres. The degree of symmetry N{X) of a manifold X is the
largest dimensibn of Lie groups that can act effectively on X; by

2

2
Then N(x) < BFL for XevP_  ~{s"}, nx64 (see [15]. The bound is

sharp), while N(X)< (%1)2+3,fqr,'xe §-bP_,, 12300.[14]. Our lack

a well-known theorem N(Xn)_{_M with equality for x=s" [19].

of knowledge about very exotic spheres is typified by the best known

lower ‘ooqus-—N(X).3-(11—"'1%—]&:3-l for XebP N(X) >3 for Xe @1

1? 3
([12] or [15]). One might hope to classify homotopy spheres by

defining C)i as the set of n-spheres that can imbed in codimension

. N
k (plainly a subgroup) and expect that the quétients @iﬂ/ ®,

- have simple structures or even are cyclie. No approach to these

questions is in éight now-~the only result I know on the very
exotic spheres.is that they don't all imbed in codimension 3 (the -
non-zero eiement of 6%6'=Z2 doesn't}{hZ])e I mention thém only to
show how much is left to be done.

None of the work in this paper makes any claim to be original

except the computations of signatures in the iast chapter. My

principal reference was the excellent expositiop by Hirzebruch and '




Mayer [13].
Finally, I would like to thank my supervisor, Professor

M. F. Atiyah of New College, for his help throughout the year.

My thanks are also due to Professor E. Brieskorn for a very o

stimilating series of lectures on the topology of complex
singularities which he gave at Oxford in Spring 1966, and to

the National Science Foundation for its financial support.




CHAPTER I
General Theory of Exotic Spheres

Iﬁ the first section of this chapter we will describe the
first example of an exotic sphere, given by Hilnor in 1956. The .
remaining.two sections describe the structure of the set r; of
differentiable structures on the topological n-sphere. By the
h-cobordism theorem and its corollary the géneralized Poincaré
conjecture (in dimensions > 5), proved by Smale in 1962, we can
idenfiﬁyr;lwith the set@%rof h-cobordism classes of homot0p§
n-spheres (or even homology spheres). The latter has a natural
abelian group structure given by the connected sum (defined by
Seifert in [A1]). In section 2 we discuss this structure and
prove that the quotient of(%lby WP, (boundaries of'ﬂhmahifoldsy ,‘
is a finite group, in fact isomorphic to é subgroup of the
quotient of the stable group nhigﬁik) by the image J(ﬂh(sok))
of the Whitehead homomorphism. In section 3 we»show that an+1
is 0 if n is even and cyclic in any case, and determine its -

order (within a factor of 2 in some cases).

1. Milnor's original exzample

“ho «Ehe manifold will be the total space of a 3-sphere bundle

over Sh. Such bundles are classified by their characteristic
maps which are elements of ﬂé(SO(h)) [37]. The latter group

is Z+Z (an explicit construction assigns to (m,n) ¢2Z+Z the




it is not diffeomorphic to S

3 3

map f :S —> S0(4) given by fmn(u)°v = w"vu" for veR% where ue S

is thought of as a quaternion). TFor k an odd integer, let M; be
the bundle with characteristic map f1+k 1% * It is obtained

by identifying two copies of Dl"'xS3 alo%g tﬁeir boundaries (this

sort of construction, and several similar ones used in this paper,
such as'taking products of manifolds with boundary or "straightening
angles,";produce manifolds which:have to be smoothed ihvéome o
way; however, this can always be done, as shown in [8], and I

will ignore these questions injthe future). Becéuse‘oftthis

g‘explicit construction, it is:verY‘eaSy tO‘givggexplicitly a Morse [ i ..

function for Mk with only two (nonAdegenerate) éritical‘pointé,
proving that Mk is topologically the 7-sphere. To prove that
7 for all k, one defines an

invariant of 7—manifolds mod 7 and show that this is O for S7

~and non-zero for MZ if K21 (mod 7).

Any closed oriented T-manifold M7 is the boundary of an
8-manifold B8 [38], under the assumption HS(M)=HA(M)=O. Choose
generatorsy andu of H8(B,M) and H7(M) with dvzp , Define 7 (B)
as the index of the férm o 54»<v,a2> over the group HA(B,M)/torsion.
Let p, in HA(B) be the.firstAPontrjagin class of the tangent
bundle of ﬁ; Bécause H3 and Hh of M vanish, the inclusion
homomorphism i: HA(B,M) -_ HA(B) is an isomorphism and we can
define q(B)‘= <v,(i-1p1)2>. Finally our invariant:X(M) is
defined as 2q(B)-¥(B) (mod 7). To show that this ia inde-

pendent of the choice of B, let B' be another manifold bounded
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by M and form 08 =-BuB' joined along the common boundary; we must
show that 2q(C)-%(C)z0 (mod 7) for the unbounded manifold C (it
is easy to show that q and © of C are given by the difference of
their values for B' and B). But by [10] or [38], we have
w(C) = <v, fg(?pz(c)-pf(c)b , 80 that 45<(C)+q(c) = 7<u,p2(C_)>

' equals O mod 7, whence 2q{(C)-%(C) also is O mod 7.

Finally, to evaluate )\(Mk) we represent Mk (the total space
of a sphere b@dle) as the boundary of the total space of the
associated 4-cell bundle. The latter again has an explicit
description and one calculated that its index © is 1 and its
Pontrjagin number q is L..kg, so that \(M) = 2q(B)-x(B)=8k2—1
= ko1 (mod 7). Since 7\(87) is I;J.ainly zero, this proves that

M, is not diffeomorphic to s7 for k%21 (mod 7).

2. The structure of @n/an_'_1
We quickly sketch the group operation in @n; details can

be found in [28] or [21]. The connected sum of two n-manifolds* .
(without boundary) is obtained by removing a smoothly imbedded |
bdisc from each and gluihg together along the boundaries formed:;
the result can be gi\}én a differentiable structure and is

unique up to diffeomorphy; it is denoted M#NM', Pléinly this

is a commutative and associative operation with s® as an
identitys The inverse of M.is ~M (M with orientation reversed);
this only works ifiM is a homotopy sphere and if we are

~* All manifolds in th'is'_‘paper aggfgiﬂ;érentiable é.nd orient-
‘. .able and have boundaries, unless the contrary is stated




identifying h-cobordant manifolds (we don't need the h-cobordism
theorem for this-—or; indeed, at all, now that we're looking at
<gn rather than rn--since it is quite easy to show directly that
h-cobordism is preserved under comnected sums),

A manifold is stably parallelizable (S-parallelizable, a
7-manifold) if.the Whitney sum of its tangent bundle with a
trivial line bundle is trivial. It follows from results of
Adams that any homotopy sphere is S-parallelizablé. If Mis
connected and 9M#f then M is parallelizable iff it is stably
parallelizable., A submanifold M© of Sn+k (k>n) is S-paralleliz-
able iff its normal bundle is trivial. Using these results, S
we can study the structure of CDn/an+1. |

The basic idea'is to imbgd Mn‘(arhomotOPy sphere and hence
S-parallelizable) in Sn+k (k>n), so that its normal bundle is
trivial and we can choose a field (¢ of normal k-frames. We now
" use the Pontrjagih—Thqm construétion(see [38] or the excellent
discussion in chépter 6 of [33]):g?ves an element of ﬂh+k(Sk)
(recall that the idea is as follows; to a map f:M-e»Sk and
a regular point y in Sk one gets a framing on the manifold
f-1(y) as (df)-1(TS$); the resultiﬂé framed manifold is, up to
framed cobbrdism, independent of y and of the choice of £ in
its homotopy classland the resulting map of [M,Sk] to h-cobordism
classes of framed manifolds is a 1:1 correqundence)° Allowing |
¢ to vary we obtain a sc.a.t p(M) of elements of TL:vrn+k(Sk),

depending only'on the h-cobordism class of M. Now if p(M)




» X6€S <

contains O, then some framing ¢ corresponds to the null map in
the Pontrjagin construction, so ¢ extends over the manifold

W which ¥ bounds (M is a #-manifold and so bounds some manifold:
see [40]), so W is parallelizable by the remarks in the last
paragraph; conversely if Me.an+1 then M=% with W parallelizable,
so the imbedding MsS”*k extends to Wstn+k+1 and the map
associated to the framing on M obtained by restricting that

on ¥ is null-homotopic. Finally we note that p(M)+p(M') <
p(M#1'); combining this with the identities Sks"=s", s%m =s¥
and M#(-M)=5" yields that p(s™) is a subgroupvofTTn and p(M) is
a coset of p(Sn), the zero coset iff Mngn+1- This proves that
an+1 is a subgroup of‘zi and yields a 1:1 map of the quotient
@n/an+1‘ - TYn/'p(sn), proving in particular that this quotient
group is finite. Finally, we can identify p(S") with J(ﬁh(SO))
using Kervaire's interpretation of the Whitehead homomorphism J
(see [39]): nemely, that for M:S"—> 50(k) representing pem_(s0(x)),
$hen J(K) is, within a sign, the homotopy class asgigned by the
Pontrjagin construction to the fieléd q of k—frames given at

n Sn+k (standard imbeddlng) as M(x)s (standard k—frame*

of standard imbedding of s in Sn+k)

" 3. The order of. bP 1

‘Sinoe the emphasls of this paper is on the construction of:'”'\

exotic spheres, and since--ag dlscussed in the 1ntroduct10n—-

none of the "very exotic" spheres (elements of'@n - ) has

n+1
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been constructed, this section is of greater importance to us than
the last. For the same reason, it would be out of place to give |
the details of the proof that an+1 is the zero group if n is
even: we will only comment that the proof is a rather lengthy
and intricate application of the technique of killing homotopy
groups by a series of spherical modifications. ' The reader interested
in details can find them in the original paper t22]. Even in |
‘the case of n odd I will only give the results and a very brief
2aindication of fhe proof, since what is of importance here is an
understanding of the invariants which determine whether two elements
of an+1 are diffeomorphic or not, rather than the number of
elements of the grouf. | ’

| The results are as follows: bPhk+2 is either O or 22. It
is O for k=0,1,3, and 7 -and (I believe) for no other known values.
Indeed For k>0 it must be Z, if k is even [7] and indeed unless
. k+1 is a power of 2 [6]. The order of the cyclic group vP,,,
on'the other hand (for k>1) grows more than exponentially with k{
'its order (after the work of Adams, Kervaire, and Milnor) is
‘Z%k_2(22k_1-1)Ek'numerator (ABk/k)» (Bk is the‘kth Bernoﬁilli ‘
iinumber) where Ekiis.i or 2 end may well always be 1; thé‘best*
result knﬁwn is that it is 1 if k is odd or if k has no odd
| vfaétor greater than 27 (if k=0 or 2 (mod 8)) or than 212 (if
k=4 or 6 (mod 8)), in particular if k is a power of 2 [24].

The invariant that distiﬁguishes the elements of bPZki is

of quite a different kind for k even and k odd. Ih the first
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case, we use the analogue of the invariant )(M) of 7-manifolds
described iﬁ section 1. Again for an unbounded Chk the results
of Hirzebruch [10] give the indext(C) as a polynomial L, in the
Pontrjagin classes PyseeesPy of C; the coefficient of P in this

is sk=22k(22k—1_1)3k/(2k)! and we can use this to show that

the invariant mod 1 of an unbounded M+ given by

) = (t(B)- Lk(j_1p1,...,j-1pk_1,0)[B])/sk where M =3B is
indepenéent of the choice of B. But in the case where MebPAk
ﬁe can choose B to be parallelizable, so the invariant reduces
to *(B) (mod Sk) (compare [29]). Moreover, it is a standard
result that B can be chosen to be (2k—1)-connected; using this

we can show that < (B) (plainly an integer since it is the signa-

'ture of the intefsection form of sz(Byz) ) is a'multiple of 8.

For (see [13], p. 92) any even quadratie form (i. e. f(x,x) an
even integer for all x) over a group has a signature divisible
by 8, and by Poincaré-Lefschetz duality the evenness of the
intersection form can be translated to the vanishing of the
operation Sq2k: HZk(B,M;ZZ)-e.H“k(w,M;zz); if this were not
null then by the Wu formulas some Stiefel-Whitney class of
dimension < 2k would‘be non-zero, a contradiction. Moreover, -

there is a (hk)-manifold of index 8 that is parallelizable and

.~ has a homotopy sphere as its boundary (one will be constructed

in chapter III), so the set of values of M) = 1(B) is 82Z.

The set of indices of parallelizable (L4k)-manifolds bounded by

S%kbﬂ is"plginl& a sgbgroup._Tit?is-non—trivial;—i.eﬁvthére.is
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a parallelizable Lk-manifold bounded by Shk—1 with non-zero
index [21]--and if we let % dénote its positive gehéfator,??héﬂ,i:a;l
the structure of bPhk as a cyclic group of order t/8 willv o
follow if we show that two elements M =3B and M'=9B' of bPAk -
are h-cobordant iff T(B)at(ﬁ') (mod t). To do so we first
extend the connected sum to mahifolds with boundary as
(B,9B)#(B',9B') = (W,2W) where W is formed by imbedding
half-dises in B and B' and gluing them along their boundaries
(so W has the homotopy type of BVB' and the boundary 9H#3¥ ).
Thus if «(B):T(B')+f(Bo) wvhere B is parallelizable and bounded
by ghk=1 (so its index is a multiple of t), then the sum
(—B,vBB?##(B‘,aB'):#(Bo,QBO) has boundary GM)#(M')&#ShkF1
or (-M)#(11') and index O; since its index is O its homotopy
groups can be killed by surgery [31] to give finally an
 "h~cobordism of (~M)#(M') with the trivial h-cobordism class.
Conversely if W is such a cobordism, then gluing it onto
(~B,3B)4#(B,2B') along the common boundary (-M¥E(M') gives a -
parallelizable manifold with boundary Sl'kk-1 and index
'-*t(B)+'t(B'), which is therefore a multiple of t.

If k is odd, elements of bP,, are distinguished by a
nod 2 inva;r.i.ant called the Arf invariant. After showing
that bP

2k
cases a map ¥ : Hk(M) —> Z, with the properties that

is zero for k=1,3,7, one constructs in the remaining

¥, (Mp) = ¥ (N)+y_(u)+ hp(mod 2) and ¥ (N)=0 iff an imbedded

' sphere representing A\ has trivial normal bundle. Then one
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uses the general ‘theory of quadratic forms and Arf invariants
([13], ch. 9) to define c(M): explicitly, c(M) = :Z.%P"W'(/‘t) ¢ Z;
where {xu-";xr,/m,u.“ﬂr? is a symplectic basis for Hk(M) |
(i.e. A105=7E73=0, Aiﬁj=6ij; such a basis can be chosen because
since the boundary of M is a (2k-1)-sphere and has no homology '

in dimensions k, k=1, the intersection pairing in Hk(M) has

- determinant +1). One then proves that if ¢(M)=0, then E M can

be killed by surgery; it follows that if c(M)=c(M'), the
boundaries of M and M' are cobordant. Since c(IM) can only

teke on two values, this proves that bP2k is O or Zé.
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CHAPTER II
Classification of G-manifoldg—-
the manifold WoR~(4) and knot manifolds

Iﬁ the first section of this chapter we describe the
basic facts about manifolds on which a Lie group G acts
differentiably, or G-manifolds (good references are [19] or
[13]). Thesmain result is the classification theorem for
certain ("special") G-manifolds in ferms of fairly algebraic
data. More precisely, special G-manifolds with.a given
orbit structure, or information about:what subgroups of G |
occur as isotropy group of some point, are classified by
a manifold with boundary M (M=X/G) and a principal bundle
over M with a certain structure group that reducés to a
smaller one over each component of ¥M (the structure groups
in quéstion beiﬁg defined in terms of the original orbit

structure). Later in this paper this will be used to

~ identify manifolds obtained by other means; in this chapter .

we use it to produce two manifolds. In section 2 we look
at 0(n)-manifolds with orbit structure O(n-1), 0(n-2) and

2n-1 (d)

M= D2 and obtain a collection of (@n-1)-manifolds W
corresponding to the S1-bund1es over DZ; we compute their

homology to find out for which n and d they are spheres. In

~section 3 we look at a more complicated example, requiring

a more delicate classification theorem, and which produces
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a series of examples classified, not simply by an integer, but

by the set of knots (isomorphism clagses of imbed&ings S1-» 53).

f111f The classification theorem
| We begin with a qﬁick review of terminology and basic
theorems for G-manifolds. For xeX, the isotropy‘group G is
'  'the subgroup of G leaving x fixed: the orblt Gx is(gx geG} ' %1}£Cf JE
| the orbit space is X/6¢ with’ the quotient tOpology, the type o
of an orbit Gx ;s {Gy:yer] = conjugacy class of GX in G
(since‘ng=ngg-1). Each orbit Gx is a G-manifold and is
(i.e. is equivariantly diffeomorphic to) G/Gx’ so that Gx
and Gy are isomorphic manifolds iff they have the same type.
A G-vector bundle is a vector bundle with an action of G on
the total space such that g maps a fibre Ex-isomofphically
to E .- A G-vector bundle over a homogeneous space G/H is
determined by its fiﬁre ¥V at 1HeG/H and is in fact Gx V.

In particular when H=GX, VEV%=TXX/TXGX = normal space to Gx

at x, we can identify the "slice bundle" Gxvax. with the
normalbundle of Gx in X by [g,v]~>gv. Applying an equivariant
version of the tubular neighbourhood theoren (obtained via Haarf'
measure on G) we obtain the.slice theorem-—that there is an :
equivariant diffeomorphism between a neighbourhood of Gx in X
and of the zero section in the slice bundle. This is the

basic technique in all of G-manifold theory. With it we can

prove that if X is compact it has only finitely many orbit types




and that for one of these, say (E), the cofresponding orbits

x(H)=ﬁux: (6 )=(H)] is & submanifold of X. Finally for H a

subgroup of G, P = {kex G =H} is 1n a natural way a dlfferentlable

1'r1ght principal flbre bundle Wlth structure grOup r-NH/H
(NF=normallzer of H in G) and X(H) is in a canonical way

- (equivariantly diffeomorphic to) the associated fibre bundle

- G/H xP, where the action of on"G/H is givenvbyfmultipliéation ,?k? P

(indeed Vs just the set of equivariant automorphisms of G/H).

Thus X is the union of finitely many submanifolds, each of
which is the total space of a fibre bundle with the orbit as
its fibre. Moreover (at least if X/G is connected) there is
a (unique) prinéipal orbit type (H) for which X () is open
and dense in X, and X(H)/G is connected.

To make the idea of orbit structﬁre precise, we use
J8nich's ﬁotation of slice diagrams [19]. For a compact Lie
group G, and representations o, ¢' of closed subgroups H,H'
we say that (H,c) and (H',#) represent the same slice type
if for some geG, H'=gHg"'1 and the representation ¢'s% of

H (th=ghg-1) is equivalent %o the representation 9. The

slice typesof a G-manifold X are [G o] (xeX) where o is '

the "slice representatlod" oz G —-aGL(V ) obtained by

considering the differential dg of ger as an automorphism
of the normal_space VX; We can partially order slice types
vy [U,<] < [E,0] if fn,a] is a slice type of the G-manifold

Gqu (where we use ¢ to indicate both the representation and
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the corresponding U-module). Then the slice diagram of X, z_\(X),
is the pari';:ially ordered set of slice types of X. A partially
ordered set anf slice types of G is the slice diagram of a
G-manifold iff for each slice type in A, a1l larger slice types
are also in B, A comected slice diagram of a manifold has an
‘absolute maximum [H,trivial representation] (denoted [H,-]),-
eorresponding ‘t_:o the principal orbit bundle. The word
"diagrem" refers to the obvious representation of A as & graph.
A G-manifoid is special if its slice diagram is of the

form (7,-] where each 7, is the direct sum of a

trivial representation and a transitive

[U;,‘\;} ] [U,,«-,] representation ! (i.e. v':U—> o(k)

has an imege in O(k) which acts
transitively on sk"1).‘ If X is a special G-manifold, X/G is
a manifold with boundary (having r connected components
corresponding to the Ui)’ for using the slicevtheorem to
represent a nelghbourhood of an orbit Gx as G)b Vy we see
that a neighbourhood of the point Gx in X/G is ((‘}i(G Vx)/G
or vx/Gx’ and for xéx(Ui), vx/Gx = 'ri/Ui is a half-space
(it is the sum of a Euclidean space and offr'i/U:.L and the
latter is a half-line because v! (Ui) acts transitively on Rki)a
. We are now ready to formulate the class:Lficat:Lon theorem for ,
special G-mamfolds' for notational convenience we assume r
is 1 and omit the index i. X determines now an n-manifold

',H w:.th a connected boundary (where U operates v1a < on RI{"'n .1
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transitively on Sk-'1

< ka {o} and trivially on {O}an_1) and
splits into a fibre bundle (fibre G/U, group NU/U) over M
(total space Y = X(U)) and a fibre bundle (fibre G/H, group.
NH/H) over M-aM (totgi space X-Y). But this does not determine
X unless we know how the total spaces are joined._ To do this
we define the "difference"” Xo Y (a general construction for

a manifold Y imbedded in a manifold X: 1let N be the normal
bundle of Y, SN the sphere bundle of N-~defined as N minus the
null section factored by :R+; .then we can use a tubular
neighbourhood theorem to consider N as a neighbourhood of Y in
X and can give' an o‘bvious differentiable structure to the |
disjoint union of X-Y and SN). Then XOY is a bounded
G-manifold with only a single orbit type, and hence an orbvit
bundle. The base space is M, the fibre G/H, the structure
group is r=NH/H, the associated right-f~principal fibre bundle
is P ={xeXOY: Gx=H} , and XOY is canonically diffeomorphic
to G/HXP with its bowndary SN given by G/Hx3P. As a last

element of structure, the group of the bunde:P-reduces to a

subgroup S\ of [ ower the:boundary aM. For P ={xeSN: GX=H};
let p:SN—Y be the bundle projection and define 1 as NHANU/H
(the automorphism group o G/H —> G/U). Then there is a unique
reduction ¢ (i.e. a section ¢:M—>3P/5L ) with ‘gMU‘(b) = {"e??:Gm’U} A
by the slice theorém. Now from the principal bundle P and the

reduction ¢ we can construct XoY, ¥, and SN. To get X, we

must use our representation « of U. Thr_bugh it, U/H can be
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identified with S*', and hence G/H = Gx,U/E with Gx, S’

s, 80 the.
action of S\ on G/H.can be extended to an actioh on vaRk mapping
 fibres linearly onto fibres, msking (Gquk%fv*'into a8 G-vector
bundle over G/Uxe™ =Y (7/* is the total space U o (b e 2P of
.the bundle over QN\ which comes from the principal bundle 9?‘95&17) A
And this bundle is 1somorphic to the normal bundle of Y in X, :
80 we can use it to glue Y back to XE)Y. Thus given M, P andg,
we define X = G/HxP, Y =C/Uxc™, and N = (exR°) x ¢}
-choose a metric in N end define X as the gluing of X and DN
along their boundary.- Then X has a natﬁral G-manifold structure,
Y is imbedded in X with normal bundle ispmorphig to N and with
X®eY isomorphic to i, and M, P, and ¢ are the orbit space and
principal bundle with reduction coming from X.
In summary, we have established a 1:1 correspondence
| between the set S[U,¥] of equivariant diffeomorphy classes of -
compact G-manifolds with slice diagram I[H -] and the set
P(ro (where F-NH/H KI_NHnNU/H) of 1som£gp;ism classes of -
vairs (P,9) of rightfprincipal bundles over an n~dimensional
manifold M with boundary and reductions o:2M—>3P/f) (where N

‘(P,O) and (P',d') are isomorphic if there is an equivariant :

diffeomorphy from P to P' that takes ¢ to ¢').

2. The homology of WX '(a)

We now. .consider O(n)-manifolds with orbit space M = G
[0(n-2),2]

and slice diagram ] Here we have U = o(n-1),

[0(n-1), g @1]
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B = 0(n-2), T'= W/H = 0(2)x0(n-2)/0(n-2) = 0(2), £ = 0(1)x0(1),
TA = o(2)/o(i) o(1) =?' =5, The bundle P mist be the trivial
bundle VxDz and so the reduction ¢ is simply a map from oM = S1
to TA = Sz and the isomorphy class of [P,¢] inP(r,Q) is
determined by the degree of o, an integer 'd 2 0; ‘the corresponding
0(n)-manifold is denoted W2nf1(d). For example, W3(d) is diffeo-
mnorphic to the lens spacé L(d,1), as one can show by looking
at the details of the bonstruétion in the classification theorem.

We would like to look at the homology of Wo'"'(a) to find

out for what values 6f n and d it is a homology sphere. For
this let m: W(d) — p° be the projection and define Ai=4r-1(Di),
where D:.*: ére the closed upper and lower half dises. A and R
are equivariantly diffeomorphic to Sn-1an with the action
A(x,y) = (Ax,Ay) of O(n); their intersection is the common

n-1 _n-i

. n-1__n-1
boundary S xS . Thus W(d) = A+UQAA_Where (szs b

S Sn—1x n-1

S
~ is an equivariaﬁt diffeomorphism, "A, B, and ANA have trivial
fundamental group and therefore so does W(d) by Van-Kampen's
‘theorem (naB). To determine the homology of W(d) we look'at
the Mayer-Vietoris sequence. H,(&)=H,(A)=g, (s" 'x0™)=,(s");
H*.(&nﬁ)=H*(Sn-1xsn-1). Hence the sequence yields Hk(W(d)) =0
for k #+ O,'. n-1, n, 2n-~1, Naturaliy HO az;d‘Hzn_‘[
duality H _, end H  are isomorphic (W is vnbounded). The
¢ritical part of the MayeréViéft:oris sequence is (n33)

S By (57 N, (s771)

n-1__n-1 )

0 — H (V) — B (87 s

- Hn~1(w) —>» 0, and the middle two groups are both

are Z,' and.--"by'ﬁ'; ‘.
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Z+Zz, so that the two homology groups of interest are the kernel

and cokernel of a map f:2+Z —>Z+Z. Now jA+is the inclusion of

s" 2™ in s™ 10 wnile jg is the composition of ¢ with this

inclusion, so (if p1:Sn-1xSn’1-—>Sn-1 is projection on the first

. . 1o
factor) in = Dyx and ;jmf = p1*ch*, and f is the matrix La b]
with a = p1*qd*(1,0) end b = p1*Qd*(0,1). These can be calculated
directly by determining explicitly the action of 24 (this is

done in [3], where the manifolds Wzn—1(d) were first introduced).

A neater way, due to J#nich [19] is to note that 5% 'x8™ has

'E.anlO(n)-manifold structure preserved by(gd, as follows: it
splits into the prinecipal orbit bundle and a singular orbit

~ bundle X(O(n—1)) containing oniy two orbits--the'diagona; Y and

n-1_.n-1

{chunterdiagonal D" of §° xS ., so thaf‘qd must be a diffeo-

morphism of D'wD" onto itself. We cen Teplace §, by ¥y, without

changing its diffeomorphy type, where ¥ is the restriction of

1

a diffeomorphism of 8° 'xD" onto itself. Since (x,y)w(x,~-y)

is such a ¥ and interchanges D' and D", we can assume that Qh

takes each of D' and D" onto itself. On each it can oniy be the - -

identity or antipodal map since these are the only maps of Sn-1'

onto itéelf as an O(n)-manifold; since (x,y)kﬁ(-x,-y) is a ¥
of the type mentioned we can assume that qd-is the identity on

D' end is x the identity on D". Now the counterdiagonal D"

n—1xsn-1)’

represents (1,1) or (f,-1) in 247 = Hn_1(S depending

| . . n-1
whether xw -x preserves or reverses the oriemtation of S ',

i.e. whether n is even or odd. In the latter case (the only
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one accessible to this approach), we therefore can calculate

the form of f:2+Z—> Z+Z knowing only the action of {q OB D' and
D" (using the matrix representation above). Thus (1) ifegpy

is the identity on D' and D", then Qax = id so f is represented
{ o| and soH (W) and H_ (W), the kernel and
cokernel of f, are both Z; (2) if c(d is the identity on D' end

by the matrix

the antipodal map on D", then ¢, takes (1,1) to (1,1) and

1 0

(1,-1) to (~1,1) so in our matrix formula f = a

we have
.a=0, b=1, £ = id, and so Hn(W) and Hn_1(w) are 0. Now |
consider Q ={xeW(d): Gx=0(n-1)}, the principal bundle with‘
group NU/U = 0(1) over 9D2=S1 associated to the singular
orbitbundle of W(d). Then Y = 0(n)/0(n—1)0(1)x Q. As in
the proof of the classification theorem, Q is determined by
the reducing map a’(of degree d), and one easily finds that
Q is trivial iff ¢ haseven winding number, i.e. if d is even.
But Q is a subset of the singular set of sn’1anu%sn'1an
and so is determined by q*'D'uD"; thus Q is trivial iff @
is the identity on D'6D", i.-e. in case (1) above.
Summerising, if n>1 is odd, then W°°"'(d) is a homology
sphefe iff 4@ is odd; if d is even its n#h and (n—1)th homology :
'groups are'Z.
To identify the differentiable structure on W(d), in the

cases when it is a homology sphere, we will have to identify

- it with manifolds constructed by other methods. -




(1) the slice diagram A(X) is a subdiagram of
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%. Knot manifolds;

To define knot manifolds we need an extension of the classi-.

'_ fication theorem to manifolds with three orbittypes. An (M,MO)

0

of its boundary with codimension 2) is an O(n)-manifold such that

manifold (where M is a bounded manifold and M. a closed submanifold

an is the action of O(n) on Rn), {O(n),fn+/;+triv]

(2)(x/0(n),F) is diffeomorphic to (M,Mo) (P=fixpoint set)

(3) The principal orbitbundle is trivial (over M-JM)

(4) The normal bundle of F in X is a trivial G-vector bundle.
Then X-F is a special O(n)-manifold over M—Mo with Tﬁ? = S1

so the classifying reductions ¢ are maps QM-MO-——> S1 or elements '

of H1(3M—MO). Using this, we find the following classification

theorém: eéﬁivariant diffeomorphy classes of (H,HO) manifolds are

in 1:1 correspondence with S(M,MO)/szDiff(M,MO), where S(M,MO)

is a subset of H1(®M+M0)/2j*E1(M) (j:aM-M,—> M is inclusion)

with two elemeﬁts for each connected componentiof Mo.ﬁmihe case

(M,Mo) = (Da;k), therefore, ﬁhﬁgﬁ\k'iSQa{knotl(smoothly imbedded

1-sphere in s3), S(M,Md) has two elements and so all (D“,k) manifolds

are equivariantly diffeomorphic. The corresponding "knot manifold®

@%k) is (2n+1)—dimensional splits into a 1-dimensional manifold k

" (the fixpoints) with orbit type (O(n)); the remaining space is

a special 0(n)-manifold whose orbits are (2n-3)-dimensional Stiefel

menifolds 0(n)/0(n-2) and (n-1)-dimensional spheres 0(n)/0(n-1).
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To look at the st‘ruc;turey of @n(k) we must define certain knot
invariants. - We also define @L(k) as the 2-fold branched covering
of §° elong the knot k (plainly an 0(1)-manifold). TIts first
integral homology group is of finite, ogd order, equal up to
sign to the determinant of the knot, which equals A(-1) up %o sign
(a(t) is the Alexander polynomial of k). The Robertello invariant
of k,:e(k), is the residue of ﬁ-—isf——“ mod 2 and is a cobordism |
invariant mod 2 éf k. Another cobordism invariant of k is the
signature 1(k): if % is an infinite cyclic covering of SB-k,
then H* =H*(X,2%;R) satisfies Poincard duality so the pairing
U: H1®H1f-—> H32=R is non-degenerate and so the pairing

' %t a generator for the group

<a,b> = aut*b + but*a (a,bed
of covering transformations of {}E) is symmetric and non-degenerate
and therefore has a signature, denoted t(k). Then using an |
equivariant handlebody construction starting ‘out i}‘rom‘a :Se,ifér't‘:" .
surface spanned in the knot k, we get‘: .
For n>1, (ﬁn(k) bounds.a‘paralielizable manifold. For n’
even it is the elementl of bP2n+2'=Z2 with Arf invariant c(k);

for n odd it is a sphere iff the determinant of the knot k is

+1; in this case it is the element of bP2n+2 with signature st(k).

The discussion of (M,'Md)-manifoidé is due to J#nich [19]; the
results on the_homoiogy, Arf invariants, and signatures of the
knot-manifolds @n(k) can be found in Hirzebruch [12].

The result bsa'ys that every element of an +1 is a knot manifold

~and the more knotted the knot, the more exotic the comspmding sphere.
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' CHAPTER III
Equivariant plumbing--
the tree manifold M°%~' (1)

We now describe the construction which leads to the most“,'
direéf célculation of homology groups and signatures. We start
froﬁ very éimple bounded 2n-menifolds (the disc bundle over s”
and related buhdles), "plumb" them together by a standard
construction (making sureAthat‘this is done in an equivariant
manner if we have a Lie group acting on the original manifolds),
and consider the boun@ary of the resulting mgnifold.

If E1 and E2 are two n-dise bundles over st (in the‘applications
below they will be bundles kDsr,lvthe bundle of vectors of length <1
in thé vector bundle whose characteristic map is thé‘kth.power 6f‘f;:%
that of the tangent bundle of S?), we "plumb" them by choosing |
| imbeddings of D" in the base spaces Sn, identifying the locally
trivial subbundles of the Ei over the image of DF with anDn, and
identifying the twofcopies of anDn under (x,y) —_ (y,x). The 1
resulting space can be given a differentiable structure by the
usual process of straightening angles (see comment on p. 6). If
a Lie group G acts on E1 and Ez,vthe plumbing is equivariant if
the imbeddings fi:Dn;-b §11A(i=1,2) and the trivializations are
all équivariant° é will be O(n) or'O(n—1) and will act on anDn

vy A(x,y) = (Ax,Ay). The group O0(n) acts on ODSn==Snan end on
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1DSn. The bundle'kaSn is formed (using a characteristic map) by
identifying parts of two trivial bundles, and the condition that -
this identification is compatible with the operations of G turns |
out to imply that-G§:O(n—1) unless k=0,1 (see [13] for details
of the actions). |

Now given a valued tree (a tree together with.an even integer
at each vertex,:i.e. with & map A\: T—> 22) we define ﬁzn(T)

as the result of ?uttihg X(a)/ZDSn at the vertex a of T and

plumbing together any two manifolds corresponding to vertices

connected by an edge. The resulting manifold is unique up to
diffeomorphy (independent of the order of the plumbings); we
denote its boundary Mzn‘1(T). If G acts on each-knsn with 2ke)M'T),
and the plumbing is equiveriant, M2n;1(T) is a G-manifold, not
necessarily unique up to equivariant diffeomOrphy_(see fige, De 31).

If ¢ is 0(n) and M°°7'(T) is to be a G-manifold, then.not

- only must we have A(T)c{0,2] but also T must be a graph A (a

linear graph of k vertices; notation from Lie group theory).’ For
the imbeddings fi:Dn--—:>Sni (i=1,2) of the plumbing must be equi-v
variant and hence f(O) must be in the fixpoint set of st under’G.'
With G=0(n) this fixpoint set contains only two points so we

can plumb at most two manifolds to any given one.

1. The homology of M2™~'(r)
. =2n n . -.n s
First §°(T) has the homotopy type of S Yoo oS (h copies,
where h is the number of vertices of T) because it can be retracted

to the zero-section of the plumbed disc-bundles (details in [2]).




o7
From the exact sequence of (ﬁ,zﬁ) and Poincaré-Lefschetz
duality (whence H, (M aM)—Hzn 1(M)-Hom(H (M) 2)=0 for i#n 2n)
we obtaln that H. (QN) is O for i 4 1,n-1,n 2n—1, and that B,
ana H_, of o are the ernel and cokernel of £:H (M)-—>H (%)

(f is defined as P°1 where P is the P01ncare-Lefschetz 1somorphismk
‘ and 1 “is induced by i:f c(U,?M)) The‘lntersectlon,form:ﬁ‘ B
“SﬁHn(M)—4>Hn(M) 1S’def1ned bny(xay)}=§f(i)?y?éiit is‘symmeffécl“
for newen and skew-s&mmetricvfor n odd. Therefore M2n_1(T) or
aﬁ.ié a homotopy sprhere iff S is invertible, that is iff det S=+1.
Following [13] (as we are doing in this whole discussion)

we define forms corresponding to a tree with vertices 1,...,h

(and corresponding generators €prees®y of Hﬁ(ﬁzn(T))) by:

Ni) i= o 0 i=j
ST(ei;e.) =11 i=j, iand j 8, (e.,e.) = 41 i=j, i end j
J joined by an 1t . joined by an
edge SR . edge
O otherwise - O otherwise

If n is even, the intersection form for‘ﬁzn(T)-is jﬁst ST’

because the cycles involved have intersection number +1 if the

(8

corresponding vertices are joined by an edge (the orientations .
were chosen consistently) whiie the self-intersection of e is »
the Euler class: of the bundle k'I‘Sn (k;:)(i)/z) which is k times
that of TS", or k times the Buler number of Sn, or 2k (sinée n

is even). If n is odd the Euler number of S® is O so the self-

intersection numbers are O, while without orientation we can
 only assert that S is a skew-symmetric matrix whose entries are

+1 at (ij) if i andlj are joined by a vertex and O otherwise.
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Thus if n is even, Mzn-1(T) is a homotopy sphere iff the determinant

of the matrix ST is +1. In the case when n is odd, arguments about

the matrices which I do not reproduce (see [13]) yield -that Mzn’1(T)

is a sphere if any of the following equivalent conditions hold:
det S= +1 (which we had obtéined); det S 4 0; det Sg = +1;

det SgA# O; det S,, odd; the vertices of T can be numbered

T
e1,f1,...,ep,fp (2p vertices) so that e, and f, are}301ned

by an edge.
. . 2n-1
2. The differentiable structure of M (7)
First we comment that it is quite easy to show that Fo(T)

is stably paralielizable ([13] D. 58) go that in the cases when

Mzn—1(T) is a sphere, it is in bP If n is even, then this

2n°

happens iff the hxh matrix S, is invertible (has determinant 11),

Tv
and the signature which identifies the differentiable structure

on ¥on-1

(7) is Just the signature of.the form ST" In the case
when n is odd, a discussion of Arf invariants yields finally
that the Arf invariant of Mz?’1(T) is 0 or 1 (mod 2) according
to the parity of det Sy (mod 8) (det Sp must be odd by the
conditions at the end of the first section): it is O if det ST
is 1 (mod 8) &nd 1 if det S, is +3 (mod 8). For'a tree T
satisfying the conditions at the eng of section 1, if )(T)€=O,

' then M0~

(1) is the standard.sphére'in bP, {16].
To connect these with the results of the last chapter, we

‘must identify some of the tree manifolds with those constructed

¢ .
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using G-manifold theory. If G is Q(n), the tree must be Ak'
and the manifolds that are plumbed must all be S'xD" or DS”
(see introduction to this chapter). If they-are all 1DSn,
that is if Aa)=2 for every vertex a of Ak’ then SAk is the
‘matrix‘with 2's on the main diagonal, 1's on the diagonals
above and below this one, and O's elsewhere, and its determinant
is k+1 (easy induction). Since this is never +1, M2n—1(Ak)
is never a sphere if n ié even. If n is odd, it is a sphere

iff k+1 is odd and the Kervaire sphere iff k+1= +3 (mod 8).

(Indeed with k=1, n odd, the construction of H-" ' (h,)=-i.c. the

plumbing of two tangent disc manifolds to S'--was the first R
construction of the Kervaire sphere). The interest of this

lies in the fact that as an O(n)-manifold it is a special

0(n)-nanifold over D with orbit types (0(n-1)) and ' (0(n-2))

and so is a Wzn_1iﬁ). The fixpoint set of W2nF1(d) under
0(n-2) is W3(d) which is the lens space L{d) and has first
homology group Zd. Therefore the integer 4 classifying
M2H’1(Ak) is the order of the first homology group of the
three~dimensional manifold MB(Ak) which is its fixpoint-set'
under o(n-g). .But (see p. 27) Hd(M3(Ak))‘is the cokernel
of f:Hz(ﬁﬁ(Ak))—€>Hz(ﬁh(ﬁk)) and so its order is just the

determinant of SA since this is non-zero. Thus the invariant
k

d is the determinant of S, or k+! and so W'~ (d) =_H2n-1(ﬂm4)

Ak :

is a sphere iff n and d are odd, and is then the standard or -

Kervaire sphere according as d is 11 or +3 (mod 8).

Ty PR
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This simultaneously identifies the differentiable structure on.
Wzn_1(d) when it is & sphere and proﬁéé.that M2n~1(Ak) is well-
defined up to equivariant diffeomorphy as an O(n)—manifold;

When the group G is 0{n-1) we can have any tree with any
(even) values. The O(n-i)—manifold structure on.MQn*1(T)
consists of the fixpoint set F (orbit type (0(n-1))) and the
special 0(n—1)-manifold M-F (orbit types (0(n-2)) and (0(n-3))). ;
' The orbit space is a 4-dimensional manifold, with boundary. If
it is Dh} we‘ha&é a knof manifold. In the case T = E8 with
constant values X(a)=2, ST(x,x) = 2x$+...f2x§+2x1x2+...+2x6x7+2x5x8;

S., has determinant +1 (in general det SEk=9§k if the tree is

By

valued with 2) and signature 8, so that for n even, Mzn_1(E8)

is the generator of bP2n (if n is odd it is the standard sphere

| because det SE8 is +1 mod 8). This turns out to be a knot-manifold
- corresponding to the knot shown on the next page. A little
unravelling will convince the reader'that this is the torus

knot (3,5). Further information on the connection between

knot and tree manifolds can be found in the work of Hirzebruch

- and Jnich.
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The graph E8 I

- ‘,","g .

The manlfold M (E )

@f\mﬂa

The 1mot€p (M +1(E )) o

‘The torus knot t(3,5)




CHAPTER IV
Singularities of algebraic functions—-
- the manifold }E(a1,...,an)

The most explicit description of a manifold that is possible
is as the set of zeroes of a polynowmial in the neighbourhood of

a point. Let f(zT,...,z ) be a non-constant polynomial, V its

n+i
set of zeroes; X=VnS, where S¢ end D, are the sphere and disc

of radius € centred at 5.. The topologj of Vnnp-is closely related
to that of K; indeed, for small ¢, (Dc,VnDé) is homeomorphic to
(cone over S, cone over K). For small ¢, §: S —K—> s1

defined by &(z) =m}(§)/1f(ﬁ)l is the map of a smooth fibre bundle
whose fibre Fy = ¢ (¢'°) is a parallelizable 2n-manifold. If D is

. a regular point of f, then K is an unknotted sphere in Sz and the

fibre bundle is the trivial one S'xC™. If O is an isolated
singularity, the topology of the fibre can be given very precisely;‘
Py has the homotopy type of s™...vs? (n copies, where mvistthe" =
degree of the mapping S,—>S, given by Z — (%f}.o.,gi;m)/lsamel )s
and indeed its closure is diffeomorphic to a handlebody obtained

from D2n on the addition of handles of index n. FO is the interior

of a smooth manifold-~with-boundary FOUKo Moreover, X is (n-2)-con-::. -
~ nected and (2n—1)—dimensional, so it:is a topological sphere iff

the intersectitn pairing s:HnFO--->HnFO has determinant +1. This

 .condition can also be stated.zﬁ1)=i1, where A(t), the generalized
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1Alexander polynomial“(; fopoiogiéal.invariané.of S;—K) is thé |
characteristic polynomial det(tI*-h*).of the cha;acteristic
» ' If # iSfeveﬁ, >'; 5~

 homonorphism h: HF, —> HF, of the fibre F,.

thé_ differentiable structure on K (if it is a sphere) 1s éivep‘ e

by the signature of the pairing s; if n is 0odd then its Arf
 invarient (if it is a sphere) is O or 1 according as A(~1)

is ii or +3 (mod 8) [23]. (A general reference for the above i’
is [34).

Za1

In the special case when f£(Z) = z, teootzont

0l ? the inter~-

section X of the set of zeroes with the unit sphere is denoted
.2(a1,...,an+1). In this case its homo‘loéy and (if it is a sphere) -
differentiable sfructure have been calcula’cc;,d, by Pham, Brieskorn,
and Hirzebruch;'a sketch of these calcuiations is given in thg
first two sections of this chapter.
1..The homology of Z_(a1 ,...,aﬁ) )
Let a=(a1 ""’aﬁ) be a fixed n-tuple of integers >1. gk': e—%g.
S2n—1={z_‘cn: Iz1 |2+.'.. .+|an2=1} . X is the set of zeroes of
£(2)= z?1+...+z§n. 3= 18?1, Z(w) = £ (); 3=3'(1). @, is the
automorphism of = consisting of multiplying the kth coordinatve by Q-k;
the W generaté a group Q:Ezak. J is the integér group 'ring of
fland I the ideal of J generated by elements 1+uk+.‘..+w;k-1o G is
the graph with n vertices, labelled by the ays which has two vertices

. connected by an edge iff the corresponding a have a common factor

other than 1; it will be used for a neat formulation of results.
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Now the set ¢ = {3 eI 33 real, >0} is plainly homeomorphic
to the standard simplex (icRn:xkzo, x1+...+xn=1} . E is the
simplicial complex whose simplices are e and its sides and their
images under the transformations of {l. The homology Hn—1 (.—':)
(all homoldgy with integer coefficients) is generated by the
cycle e = (1—u1)...(1-un)_§_ as a J-module and hence is J/I
(since e is ammulled exactly by I);- this follows from é calculation
of the simpliéial homology of E and the easily constructed |
deformation retraction of = onto E. Moreover it is easy to
show that for n»3, E is simply cémected, so the same holds
for =, To compute the homology of ¥, we use Alexander duality
to consider instead its ;:omplement 5271 Z.; the latter is é
deformation retract of Y=C"-X. The map f:T—> C*=C-{0} is
the projection map oif a fibre bundle with fibre =. The homotopy
of Y follows immediately from the exact homotopy sequence of the

fibration: T, (Y) =7, 1(Y) = J/I. The hOmology of ¥ is calculated

T
n- -
from the spectral sequence of the fibre bundle with E2—term'

B = H (0% (3(+)). m(c*) acts on H__,(5) (as t=e® goes

P,q

~around a cycle in C*, we get an isotory T—> = gt): when

t becomes 1 again the resulting automorphism of = is w= ka),
' 2

so we get that B> =E° and is 2 if (p,q) is (0,0) or (1,0),

b;qd D,Q
ker(1-e) if (p,q) is (0,n=1), coker(1-w). if (p,q) is (1,n-1),

and O otherwise. Therefore Hi(Y) is O for i#0,1,n-1,n and is

O for i=n-1,n iff 1-0:J/I—> JI is an isomorphism, ‘that is if

-~ &(1)=i+1 where A(t):ﬁde‘t(ﬂ—m)_.» This tra.nslatesfback into
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the informatiqn that L is (n—3)—connected (nzbr) and has the
homology of a sphere iff a(1) = ﬂ (we have proved this completely
rather than quote the general result for singularities mentioned |
in the introduction to the chapter). To compute a(t), we consider .
J'/I as the tensor product of the Z-modules Vk spanned by the
powers of &, S0 @:J/I—J/I is W@, .G (where oV —> T, is

multiplication by mk) so tensoring everything with C, we find
. - :
that for each a.;h root of unity:%:i;k the vector ‘I+kak+. . ~4(kak5\k .

is an eigenvector of w0y with eigenvalue X, s 80 the eigenvalues

of « are all numbers x'1'1 ...x;‘ . Therefore .

(1), a®) = 7 (t-¢"..¢™).

°‘i\r.‘q|<

In partim\llar A1) has positive .real part, so:
THEOREM: Z(a1;...,an) is a homology sphere (n>4) of dimension
2n-3 if and only if a(1) =1, where a(t) is given by (1).

" This can be reformulated in terns Iof a condition on the
graph G> which permits one to say instantly of aﬁ n-tuple of
~ numbers whether the corresponding Brieskorn manifold 2 is a |
sphere (homology sphere = sphere since 2n-3325):
| + THEOREM: E_(a1 ,...,an) is a sphere’ ('nzlp) iff the graph G-eitﬁer
has more than one isolated point or has a single isolated point
and: also a component = with an odd number of points any two of

: vwh;ch‘have largest common factor exéqtly 2.

oo

2. The differentiable structﬁre c;f 2(&1,..‘.,an)
That £ bounds a parallelizable manifold follows from the

~
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description of X for general singularities, given in the introduction .
to this chapter, as the boundary of the éarallelizable FQUK. We can
get explicitly a manifold which Z bounds by noting that Z(’c):?_(t)(\SM.1
bounds M(t)==(t)aD", and that for |t| small enough, T{)is diffeo~
morphic to L. (by Ehresmann's theorem), while M(t) has aitrivial'
normal bundle in Cn and therefore is stably parallelizablé ana éo'
parallelizable (see P. 8). Chdose‘ltl smallvénough that this
all holds; then M=M(t) is a bounded parallelizable manifold whose
boundary is diffeomorphic to 2. Moreover, M—éM is diffeomorphic
to =) because Iz1 |2+...+[zn|2 on =(t) has no critical
points outside M(t). AThis permits us to‘calcﬁlate the invariants ‘
of M. In particular when n is even, so fhat (if Z is a sphere)
the differentiable structure of‘ZsbPZn_2 is détermined by an
Arf invarian;, this invafiant'is Oort (mod 2) according as
Al=1) is +1 or 13 (mod.8) by Levine's theorem. Again Brieskorn .
in [5] has reformulated this condition on the polynomial (%)
in a form concerning the graph G which permits us to immediately .
identify the structure on for given a1,;ﬂ.,an:
THEOREM: Zxaﬁ,...,an) is the Kervaire sphere (in the case nzh and

even, Z—a sphere) if and only if G consists of exactly two

components, one of which is an isolated point & & +3 (mod 8).

In particular if (a1 ,...,QM)=(2, vee,2,d) with n and &
odd, the corresponding Brieskorn manifold is a sphere, and is
_the Kervaire sphere iff d is +3 (mod 8). This is exactly the

manifold W2n_1(d) constructed in section t of Chapter II using
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2n 1(A

G—manlfold theory, end which was identified with M 41) om ";
vage 29. To see this dlrectly (rather than using the fact that:
M2n-1(43Lwhen n and d are odd is the element of bP, with Arf
invariant equal to (d2-1)/8 mod 2, and that we have just proved
thai:Z?ﬁ,Z,.,.,Z) also is) we equip Z(d,Z,...,2)-With an
0(n)-manifold structure by A(zo,z1,...,zn) = (ZO’A(Z1”"’Zn))
(Ac0(n) operates on 3=%+iC" by A3=A%+iA¥). The details of
the proof that the orbit space is D2, that the structure is that
of a special O(n)-manifold, and that the orbit types are
(0(n=1)) and (0(n-2)) can be found on pp. 31-34 of [13].

If n is odd, the differentiable structure on 21&1,...,an)
when it is a sphere) is determined by a signature. The calculation
of the fefvms of the intersection matrix of T was carried out
by Pham [35]. As a basis of B =) =J’/I®C » WS®E the eigen-

vectors introduced on p. 35, namely

= T oslp) ) (g 270 %),

LY

where 3=(J1,..,,Jk) is an n-tuple of integers with O<jk§ak);

The result is that the'intersection numbers are

@ cvyvp = (D EE2V20 T o g b g -

et
This is O unless i+j=a (ikfjk=ak all k). Therefore,the.vectors»
v.+va_j and i(vj-va_j) give a basis of J/IQR with respeét_td’whiCh x
“the intersection matrix is diagonal; its entries are given by '
KV AV ,V 4V > = <1(v -V ) i(v,-v .)> = 24V, ,V_ >,
J a-j’j "a-j _ J a-j Jj a-j J7 ey
These entries are real and, using (2), we see that they are

positive exactly when O < :£| j;('/ak < 1 (mod .2). For we have:
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_y(n=1)/2 Y (!
C DA (M) (T (1) TEU X))

<V, , V. >
TN Tamj

i

re (-0 2(Ma (7 (1-5)
= re ()02 1T (s %K inlms, /a,)
= Re (- exp(wi/2 + M%Jk/ak)]zzak Sin(ﬁjk/ak))

Since tI(2ak sin wjk/ak) is real and positive, we find as
stated that ViV s is positive exactly when Re(eﬂi(%ﬁ”%jk/ak))
is negative, i.e. when O < }[jk/ak < 1 (mod 2). Hence the
signature of M, which is the same as that of the-diffeomorphic

| ,manifohiii, isv, - 1 wﬁere T, ‘is the number of n-tuples j h
of integers (wit? O<jk<ak) for which %;pk/ak reduced mod 2

lies between O and 1. Reformulating this somewhat, “
THEOREM: 2(31 ,...,an), where n35 is odd and Z‘is a sphere, is

the element of bP identified by the signature

2n=2

(3) > (-nlir/arte rig/eg]

94 kay

4

where'[x] denotes the greatest.integer < x.

~ In the case when (a1,...,an) = (p,9,2,...,2), n25 odd, )
the Brieskorn manifold is a sphere exactly when p and Q are
relatively prime odd integers. This is just the knot manifold

(of dimension 2n-3) corresponding to the torus knot t(p,q) [12].

-3, Computing the signature of Z(é1,...,an)
The theorems of this chapter allow ué to immediately

recognize whether a given Z(a1,...,an)'is & sphere and, if n
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is even, which element of _bP2n-2 it is. However, formula (3)
for the signature of the sphere X(a) when n is wdd is very‘
awkward for calculation. In this section we give certain |
means to calculate it when n is small. We write i,j,a for
the various n-tuples and j/a for i1/j1+"'+in/jn’ and define R -
for any even n the function of n-tuples of integers |
'c'(a,‘,...,an) - O<J<a (- 1)[3/&] Note also that
7(a1,...,an,2,2)= —'t(a1,...,an), s0 we never need more then
one 2. In the important case a = (p,q,2) (p,q odd and prime
to one another) Hirzebruch slightly recast-formuiz.i (3) to
~obtain’ 7(p,q,2) = H(p-1)(a-1) + n(p,a) + n(q,p), where n(p,q)
denotes the numBer of elements of {q,2q,...,%(p~1)q} whose
sméllest (in absolute value) residue mod p is negati%re, but -
even this is cumbersome if p and q are at all large.
To calculate 't'(a) eagily, we wbrk 'out the effect of‘
. \(some simple changes of variables. In the case a_; (.p,q,2),
(1) &(p,q,2) =~(q,p,2) [immediate]

(2) v(p,1,2) = 0 [from the formula. Of course there is no

corresponding Brieskorn. man:n.fold]

. (3) ’r( p,q,2)—-1(p,q,2) [indeed changing the sign of one ak

- always changes the sign of Ha), for if a—(p,b),,

. ~f=i e 3 . : »l‘» ) ;‘3
tl-ph= Z;"“ -, ~l){ "]_e = |- 2: (,,[-r’-i] ) SR
: : . . Ociedy .s'L- . 5 . -
- k) 1] f : :
* - 5,( W o i‘ - s&*”) - -Tlr,b)]

(&) (p,q+2mp,2) = t‘(p,q,2) + m(p ~1) [proved below),
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But these suffice to define T(p,q,2) for (and only for) p and
q odd and rélatively prime. For we can use (1) to ensure g>p,
then use (4) (with negatife m) to reduce q to a value between
-p and +p, use (3) if necessary to make p and q positive, and @ 5
use (1) to get qyp, thus reducing the norm max(p,q). Since
'q and p are odd and relatively prime, and since none of the
operations on the variables in (1) to (4) change thls
circumstance, wne eventually gets down to q=1 and can use (2)
Thus the pair (p,q)=(115,73)_becomes in succession (73,115),
(73,-31),(31,73),(31,11), (9,11),(11,9),(9,7),(7,5),(5,3),(3,1)
and so (115,73,2) = (73°-1)=(51%=1)=(11%21)=(9°-1)+(7%-1)
~(5%-1)+(3%-1) = 1200, s6 3(115,73,2,...,2) is the (- 1)“1&-2-9-— th

element of DbP Note that p -1 is also a multiple of 8 for

L+l *

p odd, so that from the properties (1) to (4) and the algorithm

just demonstrated we have a proof directly that ¥(p,a,2) = 0 (8).
For more than two of the ak greater than two, we can set

up the enalogues of (1) %o (4). Indeed T is plainly symmetric

in its variables and vanishes if any ak'is 1, while its properties

under changes of sign in the a, were proved in (3) atove. Aér

to (4), we can only say that if one 2, changes by a multip}e of

all the others, the effect on « is independent of a . For we

. a=-4
Chavwe Z ot P =+ =) .
‘ REREIYE o b estear T °<-<a R R
' ' o och+ ¥l 4 deiex-plc2 BT

e @™ e [eetgal - Lo m)a])
. M§ﬂ(a-x+1a&11£aﬂ )
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for any integer a ' and real X, and therefore if x is rational

with denomlnator d, so that xd is an 1nteger, we have
[q-w ""‘]

>

PLi<aemd

U(cl {+2a(x]~ Ztax] +wwl(1+2fx] ) )

(& +x] : | ;
S 7+“.(~,§“]((+z[x]~zx).

o<Li<a

i

If we put x = i1/,a1+...+in/an and suﬁ over n-tuples (11”"’in)’
we obtain -

1'(a+N,a1,;,.san) = 'r(a,a1,...,an) + Nf(a1,...,é£)’n:»_}

where N is any multiple of a1,s..,an and

£(a) = T (- 1)f1/a](1+2f1/a1 21/a).

6<i¢a

-When n is 2, we find

== u-2u42P- = l'ﬂ'“"e"-’?%)

. ‘?(?As = -
ocicp ¥oajeqts) UG <i<q
" (D IFd - [l F ]

- Ge2) (hal + 1t - RIFIGEe])
Although it is not possible to sum this directly, we can deduce -
from it that the function h(j;q) = paf(p,q) satisfies
n(q+mp,p) = h(q,p) + 2mpa(p>=1)/3 + m2p2(p2-1)/3:

the calculation is vefy tedious and I omit it. Moreover f(p,q)'
is Symmetric,'vanisheSVWhen p or q is 1, and changes sign if
-vp or q does (from the corresponding properies of ), so h(p,q)
is syrmetric, vanishes if p or g is 1, and is unéhéﬁged if p
vor q changes sign. But all of these properties are shared by

the functlon h(p,q) = (p -1)(q -1)/3, and as before a function




h(p,q) is determined for all relatively prime p,q if its

behaviour is known under (p,q) > (q,p), (-p,q), (p,1), and

Therefore h(p,q)=h(p,q) and so

v(p,a,7) + m(p°=1)(q°1)/3.

(p,q+mp).

- v(p,q,r4mpa) =

It is to be noted that since p and q are relatively prime,
they cannot both be multiples of 3 and at least one is odd,
50 (p2-1)(q2-1)/3 is an integer and a multiple of 8. If
q is 2, we have proved f(p,2) = (p2-1)/2p, assertion (4) above.
| ‘Using this, we have made a table of «v(p,q,r) for certain
small values of p.and q (énd all r) on the following page. If
21p,q,r,2,...,2) is to be a sphere then p,q, and r must all
be relatively prime by'the theorems of section one. |

As far as the interpretation of these formulas, we note

that symmetry under interchange of the ak 8 is trivial. - The

relation v(1, 38yseeesay )=0 probably has only a formal s1gn1flcance.';

The relation w(—a,a1,,..,an)=-r(a,a1,...,an) seems to indicate
: : ’

that‘ZK—a,a1,...,an) is a manifold, diffeomorphic'h)ZKa,a1,...,a#)

with its orientation preserved. This is false, however. The

[zl2+...+|zn|2=1 define a set which

1

 equations z-?+...+znan=0,
avoids z=0 and might be expected to be a manifold, but if we
look at the corresponding Jacobian; namely
—az 1 4 8, 22, , . a g0 0 0 e e O
“ n n o1 o gert, —a_~1
. . - N -— <« @ [ ] a
‘8 _ 9 e e e 9 az 8,z 1 nZnl
Z z SR z .- z, . . ?n
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TABLE OF SIGNATURES OF BRIESKORN MANIFOLDS

r f

W

2-11

213

215

217

© 14kt5
18kx7

- 22k+5
C22k+7T

. 26kih
. 26ktT
o 26k+9

641 k

10k+1 3k
10k+3  3kti

14%k4-1 6k
14k+3 6kl
Bkt2

18kx1 10k
18k+5 10kz3
10k

22k+1 15k

22k43  15kt2
15k+3
“15k+5
22k+9

26k+1 21k
26k+3
21 kxly

30kt1 28k

30k+7 28k+6
30k+11 28k+10
30k+1% 28ks12

k41 36k

34k+3  36kt3
3hk+5 36ki5
3LkxT  B36ktT
3Lk9
Bhkil1 36k+12
3hk+13 36ktll

34k£15 36kt16 -

f= ‘T(p’q:r)/s

T f

4.

I

f

15%26 - .

21k42
21kt6 .

2Ukg? ¢
26kt11 21kt9 .

36k+10

> 21

23

46kt T
 46lex9 -
o L6k#11 66kt15
 L6kx13 66kt19 il ]
L6ks15 66k+22

38k+1 . 4bk
38kt3  L5kt3
38kt5  L45ki6
38k7  L5kiS
38k+9 45k+10

38k+11 LBki13

38k+13 45k+15
38k+15 L45k+18
38k+17 45k+20

L2k+1 55k
42k+5 55k+6
42k+11 55k+15

42k+13 55k#17

L2k£17 55k+22

42k£19 5525

L6kl 66k
L6k+3 66kt
LBk+5 66ki7

66k+13

L6k+17 66kt2h
L6k+19 66k+27

- 46k+21 66k+30

12%k+1 5k
12k+h 5k+2
15k+1- 8k
15k+2 = 8kl
15kl = 8k42
15k+7 - 8kih

66k+10 -~

| 3 10

21%k+1
21kt2
21k+l
21k+5
21k48
21k+10

2LXk+1
2LXk+5
2ukxT
24%+11

30k+1
30kx7
30k+11

30k£13

© 20k41
- 20k=+3

20k+7

" 20k+9

T 28kx1
Jo 1 28k3

- 28kt5

28Kk+9
28k 11
2814173

36k+1

- 36kt5

26%k+T7

36k+11
36k+13
36kx17

30k+1
30k+7
30k+11

30k+13

16k

16k+1

16k+3
16%k+d
16k+6
16k+8

21k
21k+4
21k16
21k+10

33k
33k+8
33k12
33kl

—_—
15k+2

15k+5
15k+T7

30k

30k+5

30k+10
%0k+12
30kx14

50k
50k+7
50k+10
50k+15
50k+18
50k+24

35k
55k&8
35k£13
35kx15

0ks3




The condition that = fail to be a manifold is that at some
. . - —a~1 - ax-1

point on 1t? we have z = =agz s By = aakzkk- (a1l k)

for some non-zero complex a, so that the above matrix has

~ rank only two. Combining this with the equations defining

-a a a
2 o4z 4 .., 4z D
1 n

2 2 2
1 Izl |z]| Z
= (L< 2. a1 +eos et an )0

When all the exponents were positive, the corresponding

- L yields 0

]

condition contradicted the fact that O¢ 2 , but now there

-is‘a subset of 2. of codimension 1 on which the condition |

obtains, so that on this subset > fails to -be a manifold.
The other remarkable properties of the signature,

’ _namely.that T{a1,...,an,2,2) =uét(a1,...,an) and that i

(0,0,7478,2,.,2) = 7 (p,0,7,2,...,2) £ (p2-1)(a%1)/3,

are no easier to explain, The first probably indicates that

the addition of two more complex variables with exponent two. -~

n is some sort of algebraic suspension operation. The second
suggests that Z:(p,q;r,Z,...,2) may add(cpnnected sum) to
 a manifold that is a product of two manifolds Mp and Mq
(depending only on p and q) to form T(P,Q,T+Dq52, 00 052) 6
In géneral the algebraic opefafion of adding to one exponent
a multiple of the o@hers may correspondlto adding handles of

some sort that only depend on the other exponents. But there

- seems to be no algebraic interpretatibq of the very non-algebraic

i

connected sum operation. -
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