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THE DILOGARITHM FUNCTION IN
GEOMETRY AND NUMBER THEORY*

By D. ZAGIER

THE DILOGARITHM FUNCTION is the function defined by the power
series

Li(z)= Y =5 for |z| < 1.

The definition and the name, of course, come from the analogy with the
Taylor series of the ordinary logarithm around 1,

~log(1-2)= % = for|z| <1,

n=1

which leads similarly to the definition of the polylogarithm

Li,(z) = Zl’:—m forjzl<l,m=1,2, ..

The relation
! I,
- Lin(2) = Liyi(5)  (m>2)
«az pot
is obvious and leads by induction to the extension of the domain of
definition of Li, to the cut plane C — (1, o0); in particular, the analytic
continuation of the dilogarithm is given by

Liy(z) = —flog(l —u)‘-ﬁ-' forze C — (1, o).

0

0 I cut

* This paper is a revised version of a lecture given in Bonn on the occasion of
F. Hirzebruch’s 60th birthday, (October 1987) and has also appeared under the title ** The
remarkable dilogarithm™ in the Journal of Mathemetical and Physical Sciences, 22(1988).
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Thus the dilogarithm is one of the simplest non-elementary functions
one can imagine. It is also one of the strangest. It occurs not quite often
enough, and in not quite an important enough way, to be included in the
Valhalla of the great transcendental functions — the gamma function,
Bessel and Legendre functions, hypergeometric series, or Riemann’s zeta
function. And yet it occurs too often, and in far too varied contexts, to be
dismissed as a mere curiosity. First defined by Euler, it has been studied by
some of the great mathematicians of the past—Abel, Lobachevsky,
Kummer, and Ramanujan, to name just a few — and there is a whole oo0k
devoted to it [4]. Almost all of its appearances in mathematics, and almost
all the formulas relating to it, have something of the fantastical in them, as
if' this function alone among all others possessed a sense of humor. In this
paper we wish to discuss some of these appearances and some of these
formulas, to give at least an idea of this remarkable and too little-known
function.

1. Special values. Let us start with the question of special values. Most
functions have either on exactly computable special values (Bessel
functions, for instance) or else a countable, easily describable set of them;
thus, for the gamma function

1\ _ ()
F(n)y= n—1), r<,;+2>— S J7

and for the Riemann zeta function

n’ * viad
‘() = . H4) = —— (6) = ——, ...,
<(2) < {4 90’ {(6) 945"

] L
A=~  A=2)=0. {—4)=0,..

1
0 bh=- C(—3)=‘

20 {(=5=-

Not so the dilogarithm. As far as anyone knows, there are exactly eight
values of = for which - and Li,(z) can both be given in closed form :
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Li»(0) =0
2
. T
Liy(1) = e
2
Liy(—1)= -

12°

Let me describe a recent experience where these special values figured,
and which admirably illustrates what I said about the bizarreness of the
occurrences of the dilogarithm in mathematics. From Bruce Berndt via
Henri Cohen I learned of a still unproved assertion in the Notebooks of
Srinivasa Ramanujan (Vol. 2, p. 289, formula (4)) : Ramanujan says that,
for ¢ and x between 0 and 1,

q _ qx
x+ 6148 1+ q23
x+ 9 | — 9x
x + a” 1+ q45
¢+ —
k I+

“very nearly.” He does not explain what this means, but a little
experimentation shows that what is meant is that the two expressions are
numerically very close when g is near 1; thus for ¢ = 0.9 and x = 0.5 one

has
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LHS = 0.7767340194 ..., RHS = 0.7767340180 ... .
A graphical illustration of this is also shown.

The quantitative interpretation turned out as follows [9]: The

difference between the left and right sides of Ramanujan’s equation is
n2/5

O(etex 9) for x = 1, g — 1 (the proof of this used the identities

r2 r
[ r oo _q,,)(g) _E(= Lygsr+ns
e (- l)’q(5r2+r)/2

1+
which are consequences of the Rogers-Ramanujan identities and are
surely among the most beautiful formulas in mathematics). For x - 0 and
g o | the difference is question is O(et** 189y and for0 < x < landg— 1
it is 0”8 ¢) where ¢’(x) = — (1/x) arcsinh (x/2) =

—dlog (J1+ x?/4 + x/2). For these three formulas to be compatible,
one needs

1
1 2 w2
< log(\/1+ /4 + x[2)dx = Q) = 1) = =5 =1

0
Using integration by parts and formula A.3.1 (6) of [1] one finds

J} log(y/1+ x%/4 + x/2)dx = —% Li,((x/1 + x%/4 — x/2)*) -
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—% log?(\/1+ x?/4 + x/2) + (logx)log (/1 + x*/4 + x/2) + C,

SO
1

J '; log(\/1+ x?/4 + x/2)dx

0
1 L( . (3-5 (1445
n? 2
=——_=~'
12 30 20°

2. Functional equations. In contrast to the paucity of special values, the
dilogarithm function satisfies a plethora of functional equations. To begin
with, there are the two reflection properties

Li,(1/z) = —Liy(z) — (n%/6) — (1/2)log*(—2)
Liy(1 —z) = —Liy(z)t (n?/6) — log(z)log(1 — ).
Together they say that the six functions

. A fz—1 1 . Az
Liy(2), le(:>, le( 2 >, - L12<;>a —Li(1-2), — le(z— l)

are equal modulo elementary functions. Then there is the duplication
formula

Liy(z2) = 2(Liy(z) + Li,(— )
and more generally the “distribution property™

Li,(x)=n Z Li,(c) (n=1,2,3,..).

Next, there i1s the two-variable, five-term relation

] i ,
>+ Li,(1 —xv) + Li2<l \“)

7[2 l — X l ] _y
=5 log()log(1 — x) — log(y)log(1 — ) + log T=xr AN Xy

which (in this or one of the many equivalent forms obtained by applying
the symmetry properties given above) was discovered and rediscovered

by Spence (1809). Abel (1827), Hill (1828), Kummer (1840), Schaeffer

Li,(x) + Li,(r) + Li2< — \\1
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(1846), and doubtless others. (Despite appearances, this relation is
symmetric in the five arguments : if these are numbered cyclically as z,

2 e Z .
with n € Z/5Z, then l—:,,=l "_l l ":1 =Z,_2Z,+2.) There is
T en—1 LR

also the six-term relation

ot

! =1 = Li,y(x)+ Li,(y) + Liy(2)
X y

as(2) () ()]

discovered by Kummer (1840) and Newman (1892). Finally, there is the
strange many-variable equation

1 1

. . [x
(1) Liz)= Y Li (—>+C(f),
flx)=z a
Say=1
where f{x) is any polynomial without constant term and C(f) a (compli-
cated) constant depending on f. For f quadratic, this reduces to the five-
term relation, while for f of degree n it involves n* + 1 values of the
dilogarithm.
All of the functional equations of Li, are easily proved by differen-
tiation, while the special values given in the previous section are obtained
by combining suitable functional equations. See {4].

3. The Bloch-Wigner function DXz) and its generalization. The function
Li,(z), extended as above to C — (1, o0), jumps by 2mi log | z| as z crosses
the cut. Thus the function Li,(z) + i arg (1 — z) log | z|, where arg denotes
the branch of the argument lying between — = and =, is continuous.
Surprisingly, its imaginary part

D(z) = 3 (Liy(z))+arg(l —z) log | z|
is not only continuous, but satisfies
(I) D(z)is real analytic on € except at the two points 0 and I, where it
is continuous but not differentiable (it has singularities of type
r log r there.)
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Level Curves
of D(z)

The above graph shows the behaviour of D(z). (We have plotted the
level curves D(z) =0, .2, .4, .6, .8, .9, 1.0 in the upper half-plane. The values
in the lower half-plane are obtained from D(Z) = — D(z). The maximum

of D is 1.0149 ..., attained at the point (1 + i\/g)/2.)

The function D(z), which was discovered by D. Wigner and S. Bloch
(cf. [1]), has many other beautiful properties. In particular :

(II) D(z), which is a real-valued function on C, can be expressed in
terms of a function of a single real variable, namely

N : 1—1/z /(1 —2)
Q) D(z) = [D< '>+D(1 - ]/z—>+D<l/(l —E))]

which expresses D(z) for arbitrary complex z in terms of the

function

AT

sin n@
n?

D(e) = S {Lige")] = 3
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Note that the real part of Li, on the unit circle is elementary:
= cosnf =n* 6Q2n—0
il % for 0 < 0 < 2n.) Formula (2) is due
n=1

to Kummer.

(ITT) All of the functional equations satisfied by Li,(z) lose the
elementary correction terms (constants and products of
logarithms) when expressed in terms of D(z). In particular, one
has the 6-fold symmetry

1 1 1 _ z

and the five-term relation

1 —x =y \_
(4) D(x) + D(y) + D(l xy)+D(1 —xy)+D(T?x—y)_0’

while replacing Li, by D in the many-term relation (1) makes the
constant C(f) disappear.
The functional equations become even cleaner if we think of D as being a
function not of a single complex number but of the cross-ratio of four such
numbers, i.e. if we define

Zg— 23 21— 23
(5) D(zg,zy,22.23)=D 20222022 ) (20, 215 22, 23 € C)-
20‘_‘23 Zl —22

Then the symmetry properties (3) say that D is invariant under even, anti-
invariant under odd permutations of its four variables, the five-term

relation (4) takes on the attractive form

(6) io (= 1) D (Zg0 s Zir r 24) =0 (20, - 24 € P'(C)).

(we wii] see the geometric interpretation of this later), and the multi-
variable formula (1) generalizes to the following beautiful formula :
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Z D (2o, 2y, 23, 23) = nD(ay, a;, ay, as) (29, a4, a,, a; e P)

zyef” Lay)
zpef " Lay)

z3ef_ 1(¢13)

where f: P! — P is a function of degree n and a, = f(z,). (Equation (1)
is the special case when f is a polynomial, so f~' (o) is co with
multiplicity n.)

Finally, we mention that a real-analytic function onP!(C)—{0, 1, o0}
built up out of the polylogarithms in the same way as D(z) was
constructed from the dilogarithm, has been defined by Ramakrishnan [6].
His function (slightly modified) is given by

m (-1 mok (log |z)"

(so Dy(z) = log | z'/* — z7 12|, D,(z) = D(z)) and satisfies

DMG) = (= 1" D,(2),

3 i i(—iloglz)™ ' 14z
ED"'(Z)_Z<DM_I(Z)+E (m—1)! ]_z>'

However, it does not seem to have analogues of the properties (II)
and (III) : for example, it is apparently impossible to express D;(z)
for arbitrary complex z in terms of only the function D;(e*) =
Y..2 { (cos nf )/n?, and passing from Li, to D, removes many but not all of
the numerious lower-order terms in the various functional equations of
the trilogarithm, e.g. :

Dy(x)+ Dy(1 —x) + m(ﬁ)

log

1 X
= 1)+ —log | —
Dy(1) 1 log x(1 —x)|log —x)?
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x(1—y)? x x1—y
D XTI 4 by + Dy ) —2p, [ 2
3<y(1 —x)7 3(xy) 3 y 3 y1—x

x(1—-y) y(1—=x) -y
-(42P) - (550) o)
X

‘ log
y

Nevertheless, these higher Bloch-Wigner functions do occur. In studying
the so-called “Heegner points” on modular curves, B. Gross and I had to
study for n = 2, 3, ... “higher weight Green’s functions” for /T ($ =
complex upper half-plane, I' = SL,(Z ) or a congruence subgroup). These
are functions G,(z,, z3)=GP(zy, z,) defined on 9 T x $/T,
realanalytic in both variables except for a logarithmic singularity along
the diagonal z, = z,, and satisfying A, G, = A, G, = n(n— 1)G,, where
A, = y*(8*/dx* + 82/dy?) is the hyperbolic Laplace operator with respect
to z = x + iy € © . They are obtained as

x (1—y)

y (1—x)

1
— 2D5(x) —2D3(y) =2D5(1) —4 log | xy| log

H,r 5
G, (z1,2,)= 2;_ G, (21, y23)
ve

where G2is c!eﬁned analogously to G,:".\’Tbut with $ /T replaced by £ . The
functions G?(n = 2, 3, ...) are elementary, e.g.,

Do .y = lz) —z,1? |2y — 2,/
Gy (z )= 1+ log 2+ 2
251y, |2y — 2,2
In between G,”and G:'?';r are the functions G2Z = Z,.; G2 (zy, 22+7).Tt
turns out [10] that these are expressible in terms ofthe D,(m=1,3, ...,
2n—1),eg.,

1

47t2y 5 (D3(€2"i(zl—zz)) + Ds(ezﬂ(zl—:z)))
172

GZE”Z(ZD 22) =

2 + 2 . . -
+ N Y2 (Dl(ean(zl—zz)) + Dl(eZM(:l—zz)))
2y\y2

1 do not know the reasons for this connection.
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4. Volumes of Hyperbolic 3-manifolds...The dilogarithm occurs in
connection with measurement of volumes in Euclidean, spherical, and
hyperbolic geometry. We will be concerned with the last of these. Let $,
be the Lobachevsky space (space of non- Euclidean solid geometry). We
will use the half-space model, in which 9, is represented by C x R , with
the standard hyperbolic metric in which the geodesics are either vertical
lines or semicircles in vertical planes with endpoints in C x {0} and the
geodesic planes are either vertical planes or else hemispheres with
boundary in C x {0}. An ideal tetrahedron is a tetrahedron whose vertices
areallin¢9, =C uiol= PYC). Let A be such a tetrahedron. Although
the vertices are at infinity, the (hyperbolic) volume is finite. It is given by

0 Vol (A) = D (2, 21, 23, 73),

where z,, ..., z; € C are the vertices of A and D is the function defined in

(5). In the special case that three of the vertices of A are oc, 0, and I,
equation (7) reduces to the formula (due essentially to Lobachevsky)

(®) Vol (A) = D(z).

o

Volume
= D(z)

In fact, equations (7) and (8) are equivalent since any 4-tuple of points
Zo, ..., Z3 can be brought into the form { 0, 0, 1, z} by the action of some
element of SL, (C) on P(¢), and the group SL,(C) acts on H; by
isometries.
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The (anti-) symmetry properties of D under permutations of the z; are
obvious from the geometric interpretation (7), since renumbering the
vertices leaves A unchanged but may reverse its orientation. Formula (6) is
also an immediate consequence of (7), since the five tetrahedra spanned by
four at a time of zy, ..., z € P*( C), counted positively or negatively as in
(6), add up algebraically to the zero 3-cycle.

The reason that we are interested in hyperbolic tetrahedra is that these
are the building blocks of hyperbolic 3-manifolds, which in turn (according
to Thurston) are the key objects for understanding three-dimensional
geometry and topology. A hyperbolic 3-manifold is a 3-dimensional
riemannian manifold M which is locally modelled on (i.e., isometric to
portions of ) hyperbolic 3-space $5; equivalently, it has constant negative
curvature- —1. We are interested in complete oriented hyperbolic 3-mani-
folds which have finite volume (they are then either compact or have
finitely many “cusps” diffeomorphic to S* x S* x R, ). Such a manifold
can obviously be triangulated into small geodesic simplices which will be
hyperbolic tetrahedra. Less obvious is that (possibly after removing from
M a finite number of closed geodesics) there is always a triangulation into
ideal tetrahedra (the part of such a tetrahedron going out towards a vertex
at infinity will then either tend to a cusp of M or else spiral in around one
of the deleted curves). Let these tetrahedra be numbered A, ..., A, and
assume (after an isometry of $ 5 if necessary) that the vertices of A, are at
o0, 0, 1 and z,. Then
9 Vol (M)= Y Vol(A)= Y D(z,).

v=1 v=1
Of course, the numbers z, are not uniquely determined by A, since they
depend on the order in which the vertices were sent to { 00, 0, 1, z, }, but the
non-uniqueness consists (since everything is oriented) only in replacing z,
by 1 —1/z, or 1/(1 —z,) and hence does not affect the value of D(z,).

One of the objects of interest in the study of hyperbolic 3-manifolds is

the “volume spectrum”

Vol = { Vol(M)| M a hyperbolic 3-manifold} = R,.
From the work of Jgrgensen and Thurston one knows the Vol is a
countable and well-ordered subset of R, (i.e. every subset has a smallest
element), and its exact nature is of considerable interest both in topology
and number theory. Equation (9) as it stands says nothing about this set
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since any real number can be written as a finite sum of values D(z), zeC.
However, the parameters z, of the tetrahedra triangulating a complete
hyperbolic 3-manifold satisfy an extra relation, namely

(10) 3 5 Al=2)=0

where the sum is taken in the abelian group A?C * (the set of all formal
linear combinations x A y, x, y e C*, subject to the relations x A x=0and
(x;x,)Ny = x Ay + x, Ay). (This follows from assertions in{3]} or from
Corollary 2.4 of [5] applied to suitable x and y.) Now (9) does give
information about Vol because the set of numbers X}_, D(z,) with z,
satisfying (10) is countable. This fact was proved by Bloch [1]. To make a
more precise statement, we introduce the Bloch group. Consider the
abelian group of formal sums [z,] + ... + [z,] with z,, ..., z, € C* — {1}
satisfying (10). As one easily checks, it contains the elements

(ll)[..\']+[l] [x]+[1—x]. [vc]+[y]+|:l :|+[l—vcy]+[l y]
X Xy 1 —xy

for all x and yin C* —{1} with xy # 1, corresponding to the symmetry
properties and 5-term relation satisfied by D(-). The Bloch group is defined
as
(12) B, ={[z,]+ ... +[z,] satisfying (10)}/(subgroup generated by the
elements (11))
(this is slightly different from the usual definitions). The definition of the
Bloch group in terms of the relations satisfied by D(-) makes it obvious
that D extends to a linear map D: B¢ - R by [z;]+...+[z,] = D(z,) +
..+ D(z,), and Bloch’s result (related to Mostow rigidity) says that the
set D(_A ) coincides with D(QQ)(whereQ is defined by (12) but with the z,
lying in Q —{1}). Thus D(%&c) is countable and (9) and (10) imply that
Vol is contained in this countable set. The structure of .@.O which is very
subtle, will be discussed.below.

We give an example of a non-trivial element of the Bloch group. For

—2“ ~7,ﬂ=_1—“ ~7.Then

2

convenience,set o =
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() () () ()

4

=2(—B)A a+<%> /\<%2> =B Aa—fAa2 =2B Aa—2B Aa=0,
SO

(13) 2[1+\2/:—7]+[_1+4\/17]€%.

This example should make it clear why non-trivial elements of 8¢ can only
arise from algebraic numbers — the key relations |+ f=a and
1 — B~ = o?/p above forced « and f to be algebraic.

5. ... and values of Dedekind zeta functions. Let F be an algebraic number
field, say of degree N over . Among its most important invariants are
the discriminant d, the numbers r; and r, of real and imaginary
archimedean valuations, and the Dedekind zeta-function {g(s). For the
non-number-theorist we recall the (approximate) definitions. The field F
can be represented as @ (a) where « is a root of an irreducible monic
polynomial feZ[x] of degree N. The discriminant of fis an integer d, and
dis given by ¢~ 2d, for some natural number ¢ with ¢?|d,. The polynomial
/, which is irreducible over Q, in general becomes reducible over R, where
it splits into r, linear and r, quadratic factors (thus r; 2 0, r, 2 0,
r, +2r, = N). It also in general becomes reducible when it is reduced
modulo a prime p, but if pt+d, then its irreducible factors modulo p are all
distinct, say r;, linear factors, r, , quadratic ones, etc. (so
ry.p+2ry, ,+ ... = N). Then {¢(s) is the Dirichlet series given by an Euler
product T1,Z (p~*)~! where Z (1) for ptd, is the monic polynomial
(1—=0)"?(1—r2) 27 . of degree N and Z,(¢) for p|d, is a certain monic
polynomial of degree < N. Thus (r,, r,) and {(s) encode the information
about the behaviour of f(and hence F)over the real and p-adic numbers,
respectively.

As an example, let F be an imaginary quadratic field @ (/ —a) with
a = | squarefree. Here N=2, d= —a or —4a, ry=0 r,=1. The

Dedekind zeta function has the form X r(n)n~° where r(n) counts
nzl1

representations of n by certain quadratic forms of discriminant ; it can
also be represented as the product of the Riemann zeta function
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{(s) =% with an L-series L(s) = Z (#)n~° where (;) is a symbol taking

nz1

the values % 1 or 0 and which is periodic of period |d| in #. Thus fora="7

1 - 1

Co )75 20 0 (RER T DY)

where (51)is +1forn=1, 2. 4(mod 7), — 1 forn=3,5, 6 (mod 7),

and 0 for n=0 (mod 7).

One of the questions of interest is the evaluation of the Dedekind zeta
function at suitable integer arguments. For the Riemann zeta function we
have the special values cited at the beginning of this paper. More
generally, if Fis totally real (i.e., r;, = N, r, =0), then a theorem of Siegel

and Klingen implies that {z(m) for m = 2, 4, ... equals n"'"/\/:I times a
rational number. If r, > 0, then no such simple result holds. However, in
the case F=Q (\/:_a), then using the representation {p(s) = {(s)L(s)
and the formula {(2) = n?/6 and writing the periodic function (d/n) as a

finite linear combination of terms ¢>™ ¢ , we obtain
n? ot /g .
{p(2) = Y | = ) D(exin @) (F imaginary quadratic),
6./]d]l n=1 \n
e.g.

7[2
CQi\—D (2) 23\/7
Thus the values of {(2) for imaginary quadratic fields can be expressed in
closed form in terms of values of the Bloch-Wigner function D(z) at
algebraic arguments z.

(D(eZniﬂ) + D(e4ni/7) . D(e6ui/7))

By using the ideas of the last section we can prove a much stronger
statement. Let @ denote the ring of integers of F(this is the Z-lattice in C
spanned by 1 and \/—_; or {1+ ﬁ)ﬁ, depending whether d = — 4a
or d= — a). Then the group I' = SL,(0O) is a discrete subgroup of SL,(L)
and therefore acts on hyperbolic space $; by isometries. A classical result
of Humbert gives the volume of the quotient space $,/I" as |d|3/? x
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{¢(2)/4n2. On the other hand, $./T" (or, more precisely, a certain covering
of it of low degree) can be triangulated into ideal tetrahedra with vertices
belonging to P!(F) = P (), and this leads to a representation

7'[2

3 l d|3/2
with n, in Z and z, in F itself rather than in the much larger field

@ (e ¢ ) ([8], Theorem 3). For instance, in our example F = Q(/—7)
we find

4n? 1+./— —1+/-

p2) = — (2D<-————7>+D<——-—l 7))
21./7 2 4

This equation together with the fact that -{ (2) = 1.89484144897 ... # 0

implies that the element (13) has infinite order in %,

In [8], it was pointed out that the same kind of argument works for all
number fields, not just imaginary quadratic ones. If r, = 1 but N > 2 then
one can again associate to F (in many different ways) a discrete subgroup
I' © SL,(C) such that Vol( $,/T") isa rational multiple of d|'/?{¢(2) x
72! =M. This manifold 9,/T" is now compact, so the decomposition into
ideal tetrahedra is a little less obvious than in the case of imaginary
quadratic F, but by decomposing into non-ideal tetrahedra (tetrahedra
with vertices in the interior of $) and writing these as differences of ideal
ones, it was shown that the volume is an integral linear combination of
values of D(z) with z of degree at most 4 over F. For F completely
arbitrary there is still a similar statement, except that now one gets discrete
groups I acting on Sj;"’-; the final result ([8], I,Theorem\,l) is that |d|'/% %
{F(2)/n2r1 *r2) is a rational linear combination of r,-fold products D(z'")
... D(z2"®) with each z” of degree < 4 over F (more precisely, over the it"
complex embedding F? of F, i.e. over the subfield O (a”) of C where ol is
one of the two roots of the #* quadratic factor of f{x) over R).

{o(2) = 2. nD(z,)

But in fact much more is true : the z can be chosen in F itself (rather
than of degree 4 over this field), and the phrase “rational linear
combination of r,-fold products” can be replaced by *rational multiple of
an r, X r, determinant.” We will not attempt to give more than a very
sketchy account of why this is true, lumping together work of Wigner,
Bloch, Dupont, Sah, Levine, Merkuriev, Suslin, ... for the purpose
(references are [1], [3], and the survey paper [7]). This work connects the
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Bloch group defined in the last section with the algebraic K-theory of the
underlying field; specifically, the group* %, is equal, at least after
tensoring it with @, to a certain quotient K, (F) of K3(F). The exact
definition of K, (F) is not relevant here. What is relevant is that this
group has been studied by Borel {2}, who showed that it is isomorphic
(modulo torsion) to Z'2 and that there is a canonical homomorphism, the
“regulator mapping,” from it into R"? such that the co-volume of the
image in a non-zero rational multiple of | d|%/? {¢(2)/n?"1 * #"2; moreover, it
is known that under the identification of K, (F) with.#, this mapping
corresponds to the composition B — (B¢)> - R'2, where the first
arrow comes from using the r, embeddings F ¢ € (« — «). Putting all
this together gives the following beautiful picture : The group 4,/{ torsion},
is isomorphic to Z"2. Let ¢,, s&y, Dy any r, linearly independent elements
of it, and form the matrix with entires D), (i, j=1, .., r2).
Then the determinant of this matrix is a non-zero rational multiple of
|d| 12 ¢ (2)/n?¥ 1+ 22, If instead of taking any r, linearly independent
elements we choose the ¢, to be a basis of #g/{ torsion}, then this rational
multiple (chosen positively) is an invariant of F, independent of the choice
of¢ ;. This rational multiple is then conjecturally related to the quotient of
the order of K3 (F)rsion DY the order of the finite group K, (Or) where Op
denotes the ring of integers of F (Lichtenbaum conjectures).

This all sounds very abstract, but it is fact not. There is a reasonably
efficient algorithm to produce many elements of 4 for any number field F.
If we do this, for instance, for F an imaginary quadratic field, and compute
D(¢) for each element é'e A which we find, then after a while we are at
least morally certain of having identified the lattice D(#;) = R exactly
(after finding k elements at random, we have only about one chance in 2
of having landed in the same non-trivial sublattice each time). By the
results just quoted, this lattice is generated by a number of the form
k| d |32 {x(2)/n? with k rational, and the conjecture referred to above says
that x should have the form % where T is the order of the finite group
K,(€p), at least for d < —4 (in this case the order of K3 (F)yrsion 1S
always 24). Calculations done by H. Gangl in Bonn for several hundred
imaginary quadratic fields support this; the x he found all have the form

* It should be mentioned that the definition of 2, which we gave for F= € or { must be
modified slightly when Fis a number field because F* is no longer divisible; however, thisisa
minor point, affecting only the torsion in the Bloch group, and will be ignored here.
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55 for some integer T and this integer agrees with the order of K,(®r) in
the few cases where the latter is known. Here is a small excerpt from his
tables :

ld| | 7811151920 2324 31 353940 ... 303 472 479 491 555 583
T|(211 21 1212261..22 5 14 13 28 34

(the omitted values contain only the primes 2 and 3; 3 occurs whenever
d=3 (mod 9) and there is also some regularity in the powers of 2
occurring). Thus one of the many virtues of the mysterious dilogarithm is
that it gives, at least conjecturally, an effective way of calculating the
orders of certain groups in algebraic K-theory!

To conclude, we mention that Borel’s work connects not only K; (F)
and {r(2) but more generally Kitd_ | (F) and {(m) for any integer m > 1.
No elementary description of the higher K-groups analogous to the
description of K, in terms of B is known, but one can at least speculate
that these groups and their regulator mappings may be related to the higher
polylogarithms and that, more specifically, the value of {z(m) is always a
simple multiple of a determinant (r, X r, or (r; +r,) X (r; +r,) depending
whether m is even or odd) whose entries are linear combinations of values
of the Bloch-Wigner-Ramakrishnan function D,(z) with arguments z € F.
As the simplest case, one can guess that for a real quadratic field F the
value of {£(3)/{(3) = L(3), where L(s) is a Dirichlet L-Function of a real
quadratic character of period d) is equal to d~ %/ times a simple rational
linear combination of differences D;(x) — D5 (x') with x € F, where X’
denotes the conjugate of x over @. Here is one (numerical) example of
this:

| 5 1 —./5
273552 Lo5)(3)L3) = D3< * f) — Dy < \/_> -

2 "2
3 [0+ /5) - Dy2= /5]

(both sides are equal approximately to 1.493317411778544726). 1 have
found many other examples, but the general picture is not yet clear.
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