Classification of Hilbert Modular Surfaces

F. Hirzebruch and D. Zagier

I. Introduction and Statement of Results

1.1 In the paper [6] non-singular models for the Hilbert modular surfaces
were constructed. In [9] it was investigated how these algebraic surfaces fit into
the Enriques-Kodaira rough classification of surfaces ([11], [12]). But this was only
done for the surfaces ¥ (p) belonging to a real quadratic field of prime discriminant.
We shall solve the corresponding problem for real quadratic fields of arbitrary
discriminant. We shall use the notation of [6] and [9] and refer to these papers
very often.

1.2 Let X be the real quadratic field of discriminant D and o its ring of inte-
gers. The Hilbert modular group G=SL,(0)/{1, —1} acts on § X § where § is the
upper half plane. The complex space $*/G can be compactified by finitely many
cusps. This gives a compact normal complex space of dimension 2 denoted by
£?/G which has finitely many singularities (resulting from the cusps and the elliptic
fixed points of G). If one resolves these singularities in the canonical minimal
way, one gets a non-singular algebraic surface Y (D). Thus for any discriminant
D of a real quadratic field (i. e. D=1 mod 4 or D=0 mod 4, where D>5 and D
or D/4 respectively is square free) an algebraic surface ¥ (D) is defined. (Here we
have changed the notation of [6] § 4. 5. There Y (D) was called Y (d) where d is
the square free part of D.)

1.3 The rough classification of algebraic surfaces without exceptional curves
was recalled in [9] (Chap. I, Theorem ROC). Since the surface Y (D) is regular
(see [1] Part I, [2] or [9] Prop. II. 4), it is either rational or admits a unique mini-
mal model which is a K3-surface, an honestly elliptic surface (fibred over the projective
line) or a surface of general type. Thus there are four distinct possibilities, and we
wish to decide for every D which of these four cases happens. It was proved re-
cently that Y (D) is simply-connected ([17] and A. Kas, unpublished). Therefore,
the Enriques surface (which is an honestly elliptic surface) cannot occur as mini-
mal model of any Y(D) and the class (rational, blown-up K3 surface, blown-up
honestly elliptic surface, general type) of ¥ (D) can be characterized by the Kodai-
ra dimension x(¥ (D)) (defined as the maximal dimension of the images of Y (D)
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under the pluricanonical mappings). Thus Y (D) is

rational ifand only if «(Y(D)) = —1,
a blown-up K3 surface ifandonlyif x(Y(D)) = O,
a blown-up homestly elliptic surface if and only if x(Y (D)) = 1,
of general type ifand only if (Y (D)) = 2.

In Chap. II we shall recall the formulas for the arithmetic genus of Y (D). Since
Y (D) is regular, we have y(Y (D)) =1+4p,=1. It is easy to see that y(Y (D)) tends
to oo for D—oo and certain estimates (Chap. IV) and explicit calculations will
show that

1) H¥(D) =1 D =5,8,12, 13, 17, 21, 24, 28, 33, 60.

It was proved in [6] § 4. 5 that Y (D) is rational for these values of D. Since the
arithmetic genus of any rational surface equals 1, the ten values of D given in (1)
are exactly the values for which Y (D) is rational.
The following result was proved in [9]. For convenience we express it in terms of
the Kodaira dimension.
If p is a prime congruent to 1 mod 4, then
(Y(p) = —lex(Y(p) =1ep=>5,1517,
@) s(Y(p)= OoxY(p) =2op=29,37, 41,
(Y(p) = 1oxY(p) =3ep=>53061,73
HY(5) = 2 1(¥(p) = 4ep> T3,
To generalize such results to any discriminant we have to calculate (¥ (D)) which
equals K-K where K is a canonical divisor of Y (D). Namely, if Y (D) is not rational
and (Y (D)) >0, then Y(D) is of general type. This follows from the rough classifi-
cation theorem : For the unique minimal model Y, (D) of ¥ (D) we have

§(¥Yma(D)) = (Y (D)) > 0.
Therefore, Y,,,(D) cannot be a K3-surface or an honestly elliptic surface, because
for such a surface ¢¢=K?=0. Since ¢}(¥ (D)) tends to oo for D—o0, we can reduce
the classification to a finite list. This requires certain estimates. In Chap. IV we
will prove :

Theorem 1. If D>285, then &(Y(D))>0.

(The proof depends on computer calculations.) There are exactly 50 discrimi-
nants with ¢(Y (D)) <0 ; they are listed in Chap. IV. We consider these cases by
hand and can settle all of them using the methods of [9] (in particular, Prop-
osition I.8 and I.9). Many cases are already covered by (1) and (2) above. The
result is the following theorem (Chap. V).

Theorem 2. The Hilbert modular surface Y (D) is
rational Jor D =15,8,12,13,17,21, 24, 28, 33, 60,
blown-up K3 Jor D =29, 37, 40, 41, 44, 56, 57, 69, 105,
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blown-up honestly elliptic for D = 53, 61, 65, 73, 76, 77, 85, 88, 92, 93, 120,
\ 140, 165,
of general type otherwise (i.e. D = 89 or D = 97, but D+105, 120, 140, 165).

1.4 The Hilbert modular group G belonging to Q(y/ D) acts also on § X §-
where - is the lower half plane. Compactifying ($ X $~)/G and resolving all sin-
gularities of the compactification (9 X §~)/G in the minimal way lead to an alge-
braic surface Y_(D). Here we get

Theorem 3. The Hilbert modular surface Y_(D) is
rational Jor D =15,8,12,13, 17,
blown-up K3 Jor D = 21, 24, 28, 29, 33, 37, 40, 41,
blown-up honestly elliptic for D = 44, 53, 57, 61, 65, 73, 85,
of general type otherwise (i.e. D = 56, 60, 69, 76, 77 or D = 88).

1.5 Let b be an ideal in the ring o of integers of K. We introduce the group
SL, (s, b) consisting of all matrices [j g] € SL,(K) such thata, deo and Beb™!, yeb.

The actions of SL,(s, b) and SL,(0) on §* are equivalent (i.e. the groups are
conjugate in GL; (K)) if b=2a? where 1 is a totally positive element of K and g an
ideal in o (see [6], 3. 7 (40)). The action of SL,(0) on $x - and the action of
SL,(0, b) on §* are equivalent if b=(4) where 4 is an element of o of negative
norm. The following four conditions on the field K are equivalent:

‘1) There exists an element 4 of negative norm and an ideal g in o with

(4) =a2

i1) The number —1 is the norm of an element of K.

iii) The discriminant D is a sum of two natural square numbers.

iv) The discriminant D has no prime factor =3 mod 4.
If one of these conditions is satisfied, then the actions of SL,(0) on ©* and $X O~ are
equivalent under an isomorphism of §* and § X §~ given by an element of GL,(K)
whose determinant is positive but has negative norm. The converse is also true
(compare 2. 2). For this whole section 1.5 we refer the reader to Hammond [3].

For the group SL,(o, b) we consider §*/SL,(0,b), its compactification $* SL,(0,b)

and the algebraic surface Y (D, b) obtained by resolving all singularities (cusps
and quotient singularities) of $?/SL,(o, b) in the minimal way. The surface ¥ (D,5)
is also simply-connected [17]. The surfaces Y_(D) and Y(D, b) are isomorphic if
b= (4), where 4 is an element of o of negative norm. The surfaces Y (D) and Y_(D)
are isomorphic if one of the above conditions i)-iv) is satisfied.

1.6 We consider the involution T on £*/G induced by (z,, z,) > (2, 2,) and
study the minimal resolution of ($*/G)/T. Here we cannot calculate the invariants
¢t and yx, because we do not have complete information on the fixed points of

GUG-T in general. However, if D=p is a prime, the fixed points are known [16].
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The question, for which primes the surface (§?/G)/T is rational, was completely
answered in [6] ; there are 24 such primes, the largest being 317. For p>17 we
define in Chap. II a certain non-singular model Y;(p) of this surface and give its
numerical invariants ; this is needed to determine how the surface fits into the
rough classification scheme. In particular, we need to estimate ¢3(Y,(p)). In Chap.
1V, we prove

Theorem 4. (Y, (p))>0 for p>821.

This reduces the classification question to a finite list. In fact, all cases can be set-
tled here, too, but for this we must refer to [8]. The result was announced in [7].

1.7 For the surfaces Y(p) (and also for the Y,(p)) the arithmetic genus y sur-
prisingly determines the Kodaira dimension :
£ = min [2, y—2].

For arbitrary D this is no longer true :
for D=85, 140 and 165 we have y{¥ (D)) =4, but the surface is nevertheless a
blown-up honestly elliptic surface (¢=1). In all cases studied up to now, however,

1=1lor=—1 (rational)

r=2ccx= 0 (blown-up K3)

r=3=>k= 1 (blown-up honestly elliptic)

1=95=>k= 2 (general type).
It would be interesting to know whether this is an accident or whether there is some
general property of simply-connected algebraic surfaces, valid for all Hilbert mod-
ular surfaces, which ensures, for example, that the surface is rational if y=1 and
that it is K3 if it is minimal and y=2. It is known that there exist simply-con-
nected algebraic surfaces with arithmetic genus one which are not rational (I. V.
Dolgacev, Dokl. 7(1966)).

. Numerical Invariants of Hilbert Modular Surfaces

2.1 The basic term for the calculation of invariants of Hilbert modular sur-
faces is the volume of £°/G with respect to the normalized Euler volume form ([6]

§1(5))

(1) o = (20) Hh;* da Ady NdxoNdy,.
If K=Q(y D) is the underlying field and G the Hilbert modular group, then
@) [, 0= 2%x(=1),
where {x(s) is the {-function of K. We have
1 D—pg
G) (-0 =55 2, o(~7)

#*m D mod4
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_{compare [6], § 1 (11), (12)). Here ¢,(n) is the sum of the divisors of n.

Let a,(G) be the number of points in §?*/G for which the corresponding points
in §* have isotropy groups of order 7. Then the Euler number of $*/G is given by
the formula ([6] § 1 (21))

) _ r—1
@ “Ag6) = [, 0+ Zal6)
We restrict ourselves to discriminants >13. Thus we exclude D=5, 8, 12. Then
the a.(G) vanish for r>3.
We write

(5) a4y(G) = af (G)+a5 (G).

Here af (G) is the number of quotient singularities of §*/G of type (3 ; 1, 1) whereas
a; (G) is the number of quotient singularities of type (3 ; 1,—1). Compare [6] § 3
(13). We have complete information [15] on a,(G), af (G), a5 (G). We will state the
result in terms of the discriminant D. It is convenient to introduce also the square
free part d of D :

D=d if d=1 mod4

D=4d if d=2 mod4ord=3 mod4.
By (— N) we denote the class number of the imaginary quadratic number field of
discriminant —N.

We have
( h(—4d) if d=1 mod4
| 3h(—4d) if d=2 mod4
(6) () =1 10kh(—d) if d=3 mod8
L 4h(—d) if d=7 mod8
[ 2H—3D) if D0 mod3
7) 4 (G) =
( s 4h(—D/3) if D=3 mod9
[ 3(—Dj3) if D=6 mod9
—;—}z(—SD) if D0 mod3
8) 2 (G) = i
( h(—D/3) if D=3 mod9
{ 0 if D=6 mod9.

The Euler number of §*/G is now calculable. Itis not difficult to write a computer

program for {x(—1) as given by formula (3), for the class numbers A(—N) and
finally for the Euler number of §*/G.

@)  FrD213, «6) = An(— 1)+ 5 a(G)+oa(G).

The second important invariant of the 4-dimensional rational homology manifold
£*/G is the signature. It has no volume contribution. In the formula for sign */G
only contributions from the quotient singularities of order 3 and from the cusps
enter (compare [6] § 3 (43), (44)).
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(10) ForD213,wehave  sign §/C = 4w— 20 (C)+2a5 ().

Here w is the total parabolic contribution in the sense of Shimizu. According to
[4] Theorem 2. 1, it can be expressed in the following form :

(11) w= —4 X h(D)(Dy)u(D,) 'u(Dy)™
with the summation taken over all decompositions D=D,. D, with D,<D, in which D, D,
are discriminants of imaginary quadratic fields. u(D,) and u(D,) respectively are the orders
of the groups of unils in the corresponding fields. The parabolic contribution vanishes if
and only if D is the sum of two squares, i.e. D contains no prime=3 mod 4. Other-
wise it is negative ([4] Corollary 2. 2). In particular, it vanishes if the fundamental
unit of K=@Q(yD) has negative norm. (Compare 1. 5.)

As was shown in [6]§ 3.6, the arithmetic genus (Y (D)) of the non-singular
model ¥ (D) of the compactification $*/G of £?/G can be calculated in terms of the
topological invariants of the non-compact rational homology manifold §?*/G. We
have

(12) 2T (D)) = (e(§%/G)+sign(&/G)).

2.2 We now consider the action of G on § X $~. The rational homology mani-
fold ($ x ) /G admits an orientation reversing homeomorphism onto §?/G. There-
fore

(13) e(§G) = e((Hx $7)/6),
sign(§°/G) = —sign((9 X §7)/G).
For the non-singular model Y. (D) mentioned in the introduction we have

(14) A(Y-(D)) =+ (e($/G) —sign(§¥/G)).
The formulas (7), (8), (10) imply that sign(§?/G) is always non-positive. Therefore,
(15) (YD) =z 2(¥(D)).

If we exclude D==12, then sign ($*/G)=0 if and only if D is not divisible by a
prime=3 mod 4. For D=12 the signature vanishes ([6] § 3. 9). As Hammond
showed (see 1. 5), the signature of $?*/G vanishes (D=12 again excluded) if and
only if the actions of G on §* and on § X §~ are equivalent, one direction of this
equivalence being clear by the second formula of (13).

2.3 A “cusp” is described by a pair (M, V) where M is a complete Z-module
in the real quadratic field X and ¥V a subgroup of finite index in the (infinite cyclic)
group of all totally positive units ¢ with eM=M. To such a pair (M, V) we asso-
ciate in a topological way ([6] § 3) a rational number 3(M, V). Then

(16) 4w(M, V) =6(M,V),
where w(M, V) is the Shimizu number of a cusp given by evaluating the L-function
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L(M, V,s) for s=1 (see [6] 3. 5). The sum of the w(M, V) for all cusps of the
Hilbert modular group of the real quadratic field with discriminant D is the num-
ber w given in (11). We wish to recall here the expression ([6] 3. 2 Theorem) for
6(M, V) using the continued fraction describing the resolution of the “cusp sin-
gularity” of type (M, V) :
There exists a totally positive number a in K such that
aM = Zwo+Z' 1,
where wy, is reduced, i.e.

O<w, <1 <w,

Here x > %" denotes the non-trivial automorphism of K. The number w, has a purely
periodic continued fraction development

1

Wy = bo""b_l.__

1 1 (b¢EZ, b;g?)
b, — —b: —.

where ((bo,..., b,_,)) is the primitive period which (up to cyclic permutations) de-
pends only on the strict equivalence class of the module and conversely determines
this strict equivalence class. (We recall that by definition the modules M and M
are strictly equivalent if and only if there exists an element 8 of X of positive norm
such that M=gM. They are called equivalent if there exists an element 8 of K
such that M=gM.) We define

(17) 3(M) = —%g(b‘—?»)
and
(18) (M) =r.

Thus /(M) is the length of the period which we shall also call the length of the
module.

If y is an element of K with negative norm, then

S M) = —5(M),

36(M) = I(M)—I(rM).

In particular, 3(M)=0 if there exists a unit e of K with negative norm such that
eM=M.

To prove (19) we observe that w, (sce above) admits an ordinary continued
fraction

(19)

LI
(20) Wo=tot 74— (€ Z, ez 1 for i>0)
2 T -,

which is not necessarily purely periodic.
We denote the shortest period of even length by
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(21) (ala ] aza)
Thus it is either the primitive period or twice the primitive period, the latter if and
only if the primitive period has odd length. The period (a,,---,a,) (up to cyclic
permutations) depends only on the equivalence class of M and also determines this
equivalence class.

A period (21) determines two periods in the sense of continued fractions with
minus signs, namely

(22) ((2 2, ;+2, 2, 2 a,+2, - 2...’ 2, 4, +2))
a—1 a1 i1
and
(23) (22, a54+2, 2,5, 2, 8542, 25+, 2, 4,42))
az—l a1 ._1

(compare [6] 2.5 (19) and 3. 10). These two periods coincide (up to cyclic permu-
tation) if and only if the period (21) is twice the primitive period of (20), i.e. if
the primitive period has odd length. The periods (22), (23) determine the strict
equivalence classes contained in the equivalence class of M. There is only one
such equivalence class if and only if the primitive period of (20) is odd because
this happens if and only if (22) and (23) coincide. Therefore the primitive period
of (20) is odd if and only if there exists a unit ¢ of negative norm with eM=M.
The formulas (19) are an easy consequence of (22), (23). We also observe that
3(M) is up to sign the alternating sum of the a,. '
If we have a cusp of type (M, V), then V is a subgroup of finite index in the in-
finite cyclic group Uy of all totally positive units ¢ with eM =M, and we have

(M, V) = [Ui: V1-3(M),
UM, V) = [Ug : V]-I(M).

For the cusps of the Hilbert modular group the modules M are always strictly equi-
valent to ideals in the ring o of all integers of K. The strict equivalence classes
mentioned above correspond to narrow ideal classes, the equivalence classes to
ordinary ideal classes. Let C* be the group of narrow and C the group of ordinary
ideal classes of 0. Then a > a2 (where g is an ideal in 0) induces homomorphisms
Sq: C—C+ and Sg: C*—C* (see [6] 3. 7 (42)). There are h cusps for the Hilbert
modular group SL,(0)/ {1, —1} where £ equals |[C| and is the class number of K.
These cusps are of type (a~2, U?) where U denotes the group of units of 0. Let U*
be the group of all totally positive units ; then U*=U? if and only if there exists
a unit of negative norm, otherwise [U"* : U?] =2. In the first case |C|=|C*|=h,
in the latter |C*]=2.]C|=2hk. Let &€ U be the fundamental unit (¢>1). Then

(24)

5, U?) = 26(a™?) i Moy = L

95 8a U = 8(a?) =0 if N =—1,

(25) a2, U?) = 2(a?) if N = 1,
las U = It if Nie) =
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The numbers § and { depend only on the strict module class. Therefore, § and [
can be regarded as functions on C*. For the total parabolic contribution we have
in view of (16) and (25)

w =

HMI““

To(Se(@), (Sq: C—C*)

=7 Z0(8¢(a)), (Sg: C*—C*)

a€C*

(26)

which because of (11) is a relation between continued fractions and class numbers
of imaginary quadratic fields. (Compare [6] 3. 10 (55)).

The pair (M, V) determines a singularity whose minimal resolution is cyclic.
The number of curves in this resolution equals I{{M, V) (see [6] 2. 5 Theorem).
The Hilbert modular surface $/G for the field K of discriminant D is compactified
by k points. They are singularities in the compactification $/G which when re-
solved minimally give rise to 4 cycles of curves. The number of all these curves
will be denoted by [,(D). We have

TUSg(@) i Ne= -1

(27) "=\ 2xuse@) i Ne=1

or equivalently
(28) L(D) =n§+l(Sq(a)) (Sq : C+—CH).

The Hilbert modular surface (§ x -)/G is also compactified by % points. These
cusps are of type (ra~?, U?) where 7 is an element of X of negative norm. We denote
by I (D) the number of curves needed to resolve all these cusp singularities mini-
mally. Then

lo (D) = X UrSq(a))
and by (19) and (26)
(29) L(D)—I5 (D) = 12w.

2.4 Let Y(D) be the surface obtained from §?*/G by minimal resolutions of all
the singular points (see Chap. I). If we assume D=13, we have only quotient
singularities of order 2 or 3. Those of order 2 are resolved by one curve ; those
of order 3 by one or two curves depending on whether the typeis (3; 1, 1) or
(3;1, —1). As in [9] (Proposition II. 2 and (7)) we conclude

o) “¥(D)) = (IC)+a(0)+45(6)+245(6)+4(D)

3 5 8
= (1) + 3a(6) + 50 () +5.a5(G)+(D)
for D = 13.

Noether’s formula states that (Y (D)) +e(Y (D))=12x(¥(D)). Using (9), (10),
(12), (29), (30) we obtain
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31 (Y (D)) = He(—1)— L5 (D) —ELE).

If we consider the action of G on § X §~ instead of X §, then af (G), a5 (G) inter-
change their role. The same is true for (D), {; (D). This implies

(32) (Y_(D)) = 4ee(—1)—k(D) — 5L,
We have
(33) (Y_(D)) Zz &(¥Y(D)), e(¥Y.(D)) = e(Y(D))
and in fact
(Y- (D)) —e(Y (D)) = L (D)—L(D) if D=#0(3)
— 15 (D) (D) +h(— %) if D =0(3)
((Y-(D))—e(Y(D)) = 5 (D)—L(D) if Dx0(3)

_ zg(D)—zo(D)+3h(_ig-) if D=0(3).

The corresponding inequality for the arithmetic genus was mentioned before (15).

2.5 As mentioned in Chapter I, the surfaces ¥ (D)/T will be investigated for
prime discriminants in a later paper [8]. However the necessary estimates for o
will be done in this paper.

Let ¢ be a prime=1 mod 4. The surface Y(p) has some exceptional curves
which can be blown down to give a surface Y°(p). We always assume p>17 to
ensure that Y (p) is not rational and exceptional curves do not meet. (For details
see [6] § 5 and [9]). The involution (z,, 2,) > (2, 2,) induces an involution 7 on
Y°(p) which has no isolated fixed points. The fixed point set is a non-singular
curve F%. We have

(34) e(X()/ T) =5 (e(X°(p))+e(F3)).

The Euler number ¢(F4) is given by a classical formula. Namely, the curve FY is
the compact non-singular model of /"3 (p) where I'§ (p) is the normal extension of

I'y(p) by the element [«/Qf "'1(/;/_1’— ]

O/ (p) which has h(—4p) fixed points according to Fricke (loc. citin [6]). Pute=1
if p=1 mod 3 and ¢=0 if p==2 mod 3. Then I'\(p) has 2¢ fixed points of order 3
and 2 fixed points of order 2 and two cusps. Therefore

(@ITa) = — 2+

. This element induces an Involution on

+aet3

and

(35) oFy) = 5(— Lt Fet3Hh(—4p).
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Put 6=1 if p=1 mod 8 and 6=0 if p=5 mod 8. Then Y°(p) was obtained from
Y(p) by blowing down 4+25+e curves. By (30) we get

(36) e(T°(p)) = 2x(=1)+5 h( 1)+ 6 h(—3p) +h(p) —4—20—¢
and by (34) and (35)

o(FHP)IT) = Eal—1)+h(~4p)+ o h(—3p) + 5 ()

For the arithmetic genera of Y°(p) and Y°(p)/T we have the following formulas
(cf. [6] 5. 6 (20), (21))

(37) 2(7(p)) = oL~ 1)+ 22y Lp(—3p)

1
5¢
1
@) PO =g (PO -+ 5 y)-
By Noether’s formula

d(Y(D)T) = 12x(Y°(p)| T)—e(Y°($)| T)
which yields
h(—4 1
(39)  &X(HIT) = 2cx<~1>— Sl ——h(—sm—%zo(p)
5

— g g B g

Since K=Q(v §) has a unit of negative norm, ,(p) and /;(p) coincide. The class
number £(p) is odd. Thus Sg: C—C is bijective and () equals the number of all

reduced quadratic irrationalities of discriminant ¢ which was denoted in [9] by
[(p). In [6] it was shown that many curves on Y°(p)/T can be blown down. The

“tail” of the resolution of the principal cusp (see [6] 5. 8) admits [“/p ; 1] blow-

downs (for p>17). If we use the basic configuration of curves on Y°(p) (see [6] 5. 4
(8)) we get on Y°(p)/ T exceptional curves which come from the A(— 3p)/2 “crosses”
and the h(—4p)/2 curves of self-intersection number —2 on Y°(p). (The “crosses”
were denoted in [9] p. 18 by C,, C}, the (—2)-curves by D,.) We have T(C,)=C;
and 7(D,)=D,. The images of C; and D, are the exceptional curves in Y°(p)/T
we are looking for.

The surface obtained from Y°(p)/T by these blow-downs will be denoted by
Y,(p). We have (for p>17)

(40)  a(¥a(p) = 2n(— )+ AGHL L D b 3p)— Li(p)—2h

Vh—17, 13 13
+[~7—] e +49+8+ 57
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. The Hurwitz-MaaB Extension of the Hilbert Modular Group,
Skew-Hermitian Curves on Y(D)

3.1 Let K=Q(+' D) be as before a real quadratic field and o its ring of inte-
gers. We consider the matrices [j (ﬂ with entries in o such that ad—bc is a totally
positive unit of 9. These matrices constitute a group which we divide by its center

a0
{[0 a]
the extended Hilbert modular group G,. We have G,/G=U*/U? It is a group of
order 1 or 2.

aeU } where U is again the group of all units of o (cf. introduction). We get

Now we take the matrices [‘; Z] with entries in o such that w=ad—bc 1s totally
positive and a/v'w, b/vw, c[vw, d/¥w are algebraic integers not necessarily in o.

The group of all these matrices has to be divided by its center{ [?) gj{

aeo}. We get

a group G, which is a normal extension of G. It was introduced and studied by
Hurwitz [10] § 3 and MaaB [13]. Obviously, the square of every element of G,,/G

is the identity element. If we associate to B d} the ideal (vw) of o (consisting of all

elements xeo such that x/y/w is an algebraic integer) we get a homomorphism x :
G,/G—C which maps G,,/G onto the kernel of S¢ : C—C*. The group G./G is the
kernel of . Thus [G,, : G} equals the order of the kernel of S¢: C+—C* which is
2:-1 where ¢ is the number of primes dividing the discriminant D.

We remark that every line and column of [(Z Z] generates the ideal (vw) in o.

3.2 The group G,/G operates on §/G and also on the compactification £*/G.
The cusps (considered as singular points of £%/G) are in one-to-one correspondence
with C if one associates to a point m/ne P,(K) with m, neo the ideal (m, n), see [6]
3. 7. Then geG,, /G operates on C by multiplication with #(g). This is easy to check.
Two cusps represented by ideals q, b are in the same orbit of the G,/G-action if
and only if a2, b2 represent the same element of C*. This is true if and only if
they have the same cycle of curves in their resolution. The group G,/G operates
also on Y (D). The subgroup G./G keeps the cusps invariant, but is on each cycle
the identity or the “covering translation” of order 2 depending on whether |G, /G|
=|U*|U? equals 1 or 2. The latter case is true if and only if there is no unit of
negative norm. In this case the resolution cycle is twice the primitive cycle belong-
ing to the module a~%. Thus the group G, /G of order 2:-! operates freely on the
union of the & cuspidal cycles of curves of Y (D) (where h==|C|). Each primitive cycle
belonging to an element in the image of Sq: C—C* occurs in Y (D) exactly 2*-' times (a
twofold cycle counts as twice the primitive cycle). The union of these 2°-! primitive
cycles is an orbit of the G,/G action on Y (D).
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3.3 We shall discuss the curves on the Hilbert modular surfaces defined by
skew-hermitian matrices. By a skew-hermitian matrix we mean a matrix of the form

(1) I:an/'{? ajﬁ] where 1€9 and 4, a, € Z.
ha 2

Its determinant is

(2) N = aa, DA%
The matrix (1) is called primitive if there is no natural number>>1 dividing a,, a,,
A. For a given natural number ¥ the curve Fy in §*/G is defined to be the set of all

points of $?/G which have representatives (z,, z,)€$* for which there exists a
primitive skew-hermitian matrix of determinant N stuch that

(3) al'\/_D_leZ_l,zl_‘_lzz—i'azm = 0.
It can be shown that Fy, defines a curve in §*/G and in Y (D), also to be denoted by
F,. The curve Fy is not necessarily irreducible. By (2) the curve Fy, is non-empty if and
only if the residue class of N modulo D can be represented by a norm in 0. If N is prime to
D, this condition can be expressed in terms of values of “‘genus characters” of N ;
see [5] Satz 141. The group G, /G operates on Fy and on the set of its irreducible
components. The component of Fy, defined by (3) passes through a cusp if and only
if there exists an element xe K Joo=P,(K) such that

4) a/'Dax’ —Vx+x'+an/D = 0.
Since the matrix (1) can be diagonalized over the field K, this holds if and only if
N is a norm in K. This is a condition only on ¥, so either all components of Fy,
pass through a cusp or none of them do.

The reduced quadratic irrationalities of discriminant D are of the form
M++vD

2N
where M and N are patural numbers, 0<w’' <1<w, and M?*—D=0 (mod 4N).
There are only finitely many. Their continued fractions are purely periodic. Thus the
reduced quadratic irrationalities of discriminant D are arranged in cycles which

correspond bijectively to the elements of C+* (see [6] 2. 6 and 4. 1 (5)). For a given

cycle we index the reduced quadratic irrationalities as w,= —A%‘LQ where k runs

w =

k
through Z/IZ with [ being the length of the cycle. We illustrate such a cycle as
follows :

(5)
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1

Wiy

(w,, Y S S - (M,+M,+.)/'2Nk).

The k-th line of (5) represents the rational curve S, of self-intersection number
—b, in the resolution of the corresponding cyclic singularity. To the £ corner of
(5) we associate the quadratic form p2N,_,+pgM,+¢>N, of discriminant D. In the
resolution of the cusps of ©?/G we have exactly the cycles associated to the squares
in C*, i.e. to the image of Sq: C*—C*. In Y (D) there are 2! cycles of curves
(see 3. 2) belonging to a given element of S¢(C*) ; in each cycle we have a local
coordinate system (u,, v,) centered at the £*® corner of the cycle. (The curve §; is
given by v,=0 and S;_, by #,=0.) To relate this coordinate system as in [6] 2. 3
(11) to the coordinates (z,, 2,) of §* by equations

2riz, = A,_; log u,-+ A4, log v,

2niz, = A,_, log u,+ A4, log v,
we must transform the cusp to co. This is done by an isomorphism between Y (D)
and Y (D, ;). (see 1. 5) where B, is an ideal in o such that b represents the element
of S¢(C~) corresponding to the cycle (compare [6] 3. 7). Two such isomorphisms
differ by an element of G,,/G. For integers p, ¢=0 (not both 0) we consider the
local curve u§=uv{. It has (p, ¢) branches

(6) u‘,{""’q’ — Cvf/(P.q) with o = 1

of which ¢((p, ¢)) are primitive, i.e. { is a (p, ¢)-th primitive root of unity.
As can be checked, the ¢((p, ¢)) primitive branches (6) belong to Fy, where
(7) N = psz—l"l_qub_*'quk‘
We identify the triples (£]0, 1) and (k-}1{1, 0). For any triple (£|p, ¢) belonging to
an element of S¢(C*) we have 2! local curves uf=u} in Y (D). They are trans-
formed to each other under G,,/G. It is not difficult to prove the following lemma.

Lemma. For given N the union of all the primitive branches (6) satisfying (7) (re-
stricted to a sufficiently small neighborhood of all the resolved cusps of Y (D)) equals the inter-
section of Fy with this neighborhood.

The equation (3) defines a curve in §* which is the graph of the fractional linear
transformation
2’51_%‘/1)—
© L
from § to §. Thus the curve (3) can be identified in a specific way with §. Then the
irreducible component of Fy (given by (3)) has $/I” as its non-singular model where
I' is the subgroup of the Hilbert modular group G consisting of all elements of G
which map the curve (3) to itself. The non-singular compact curve $/I" is obtained
from $/I" by “adding” finitely many cusps. Their number will be denoted by
a(I"). The non-singular model of Fy is a disjoint union of finitely many curves $/I’;.
The sum of the ¢(I",) is by definition the number o(Fy) of cusps of Fy. For given
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BeC+ (B! representing a cycle (5)) the triples (k|p, ¢), where (£|0,1) is to be
identified with (k+1|1, 0), are in one-to-one correspondence with the (integral)
ideals beB (see [6] 4. 1). We have b6'=(N) with ¥ as in (7) and (p, ¢)=n(b)
where n(b) is the greatest natural number such that b/n(b) is an integral ideal.
The set of all ideals b o which belong to an ideal class BeSg(C*) is the principal
genus P. By the lemma we have

© o(Fy) =2 3 ¢(a(B))-

bb'b:(*N)
The curve Fy has a cusp (¢(Fy)=1) if and only if ¥ is a norm in K (see (4)).
Thus (9) is in agreement with the well-known fact that a natural number is a
norm in K if and only if it is the norm of an ideal in the principal genus. If ¥ is
a norm in K, then the sum in (9) can be taken over all integral ideals b with
bb'=(N). They are automatically in the principal genus. In some cases (9) gives
information on the number of components of Fy.

First we need a definition. N is called admissible if it is the norm of an ideal b in
the principal genus which is primitive, i.e. n(b)=1. This happens if and only if N
is a norm in K and every prime factor of N decomposes or ramifies in o, the rami-
fying prime factors having exponent 1 in N,

Proposition. If N is admissible and not divisible by the square free part d of D, then
Fy has 271" components where r is the number of primes dividing (D, N). If N is admissible
and divisible by d, then Fy has 27 (thus 1 or 2) components. The group G,|G operates
transitively on the set of components.

We indicate the proof. If (p, ¢)=1 then (6) can be represented by the “diag-
onal” in §*/SL,(0, b) where b is the primitive ideal with norm N corresponding
to (k|p, ¢). Compare [6] 4. 1. Therefore, in this case, the non-singular model of
the component of F, represented by (6) is $/I" where I'=I"y(N)/{1,—1} or where
I' is a certain extension of index 2 of I'y(N)/{l,—1}. The latter case happens if
and only if N is divisible by d. As is well-known, the cusps of §/I" can be represented
by rational numbers af¢ with (g, ¢)=1, ¢>0 and ¢|N. For any divisor ¢ of N we
have ¢((¢c, Njc)) cusps. If d|N and I" is an extension of index 2 of I'y(N)/{1,—1},
then a cusp with denominator ¢ is identified with a cusp of denominator ¢d/(c, )
The given equation (6) from which we started is a description of the embedding
of §/T in Y (D) near the cusp of $/I" given by c=N. For a given divisor ¢ of N it
can be shown that $/I" near a cusp with denominator ¢ is imbedded in Y (D) by
an equation (6) where (k|p, ¢) corresponds to the ideal b= (b-c)/(b, c)? which has
norm N and for which (g, ¢) =n(b) =(c, N/c). All ideals with norm N are obtained
in this way. As can be checked, we get for given ¢ for the various cusps with de-
nominator ¢ all the ¢((p, ¢)) primitive roots of unity in (6). We conclude that all

components of F, are equivalent under G,/G. The number of cusps of §/I(N)
equals

o(To(N) = Ze((c, Nfe).
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Formula (9) now implies the proposition if N is not divisible by d. If N is divisible
by d, then all components have %U(FO(N )) cusps. Again (9) implies the result.

3.4 Suppose we have two different skew-hermitian curves in £? one given by
(3) with determinant N and the second one by

bn/ﬁZ152—ll’31+ll52+bz\/ﬁ =0
with determinant M. They intersect in £ if and only if the matrix

R Il |

has a fixed point in & (compare (8)) which happens if and only if
4NM—tr(B)* > 0.

It is easy to check that tr(B)*—4NM is divisible by D and its quotient by D is a
discriminant (i.e. =0 or 1 mod 4). Therefore, if the two curves intersect in &7, then the
Jollowing condition holds.

(10) There exists x € Z such that |x] <+v4NM and 4NM—x*= 0 mod D
with (x»—4NM)/D = 0 or 1 mod 4.

If (10) is not satisfied for N=+M, then Fy and Fy do not intersect in $°/G.

Lemma. If (10) is not satisfied for M= N, then two different components of F, do not
intersect in |G and moreover Fy is non-singular in Y (D) ouiside the resolved cusps.

Proof. Assume that (10) is not satisfied for M= N. If a component of Fy is given
by (8) with /I as its non-singular model, then the isotropy group of the Hilbert
modular group G at a point x of §? satisfying (8) is contained in I". It also follows
that there is only one skew-hermitian curve of determinant N in §? passing through
x. If the isotropy group of G at x is trivial, then Fj is non-singular in the point of
Y (D) represented by x. If the isotropy group is of order 7, then it is of type (r; 1, 1).
This follows from (8). (For D>12 we have r=2 or 3 ; see [15].) The curve Fy
passes in Y (D) transversally through the curve of self-intersection number —r
which gives the resolution of the quotient singularity. (Condition (10) and the
lemma were suggested to us by P. Hahnel and H.-P. Kraft.)

The necessary and sufficient condition that F, be non-singular in the neigh-
borhood of a resolved cusp given by a cycle (5) is that for all p, ¢ satisfying (7) one
of the exponents p/(p, ¢) or g/(p, ¢) in (6) be equal to 1. Thus:

If (10) is not satisfied for M= N and if in the lemma in 3. 3 all pairs p, g are such that
blg or q|p, then Fy is non-singular in Y (D).

In particular F) is non-singular in Y (D) and has 2! components.

3.5 If Nis a prime, then the curve Fy is non-empty if and only if N is a norm
in K, and N is a norm in KX if and only if the ¢ characters x; (i=1,.-,) do not take
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a value —1 at ¥. Here we define the y; as follows. We write D as product of prime
discriminants
D=11D,
for example 60=(—3).(—4)+5. Then
w(N) = (%-) for N odd

and

0 for D, =0 (4)
1 for D,=1 (8)
—1 for D,=5 (8).

Using the proposition in 3. 3, we get

Proposition. If N is a prime and D+ N, 4N, then the number of components of Fy
equals

(11) %H(lﬂi(N))-

i=1

3.6 Let Nbe aprime. We wish to study the curve Fy: in Y (D). If N decomposes
in 9, i.e. (D/N)=1, then N?is admissible and we have the proposition in 3. 3 ;
the curve Fy: has 2~ components. By (9), Fy. has 2-'(N—1) cusps if (D/N)=1
and 2°-'(N+41) cusps if (D/N)==1.

If 0=Zw,+ Z where w, is reduced, then one of the local coordinate systems for
the cusp at co is given by

(12) 2riz, = w, log u,+log v,

2niz, = w} log uy+-log v,
There are N—1 cusps of Fy: corresponding to
(13) Uy=¢ where {¥=1, {+1

(compare (6), (7) ; we have Ny=1, p=0, ¢= N, and the N in (7) has to be replaced
here by N?) or to skew-hermitian forms

(14) Nz,— Nz, = r(w,—w;) where (r, N) = 1, (wy—w, = /D).

The curve S, (given by 1,=0) intersects the N—1 branches (13) of Fy. transver-
sally.

The component of Fy. given by (14) has $/I" as model where the subgroup I’
of G carrying (14) to itself has to be determined. The result is independent of r.
We list it and give also the number of cusps ¢(I") which is well-known for the
groups in question :

D

(15) If(w) — —1, then I' = I"(N)/{l, —1}and o(I") = N—1.

Here I’ (N)) is defined as follows. Consider the multiplicative group of the field Fy
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as subgroup of GL,(Fy), take the intersection with SL,(F'y). Its inverse image in
SL,Z)is I''(N).
If N\D, N# 2 and D = N, 4N, thenI' = I' (N)/{1, —1}
ande(l') = N-—1.
IfDeven, N=2,D +# 8, then I = I'/(2)/]{1, —1} = I',(2)/{1, —1}

(16) o ando(l") = 2.
IfD=Nor D=4N (N=+2),thenl"=TI¥N)/{l, —1}
and ¢(I") =—1Y-2—~_~1~.
D=8 N=2then ' =TI¥2)/{1,—1} and (") = 1.

The group I',(N) consists of those matrices in SL,(Z) which are of the form

== I modulo N and I'}(N) is an extension of index 2 of I',(N). The proof of

{15) and (16) is carried out by applying the method of [6] p. 270 to equation (14).
To bring I' into the above form one must conjugate in GL,(K). Using (9), (15),
(16) (and the Proposition in 3. 3 for the case (D/N)=1) we get

Proposition. If N is an odd prime, then the curve Fy has 2~ components, except in
the case D=N or D=4N where it has 2 or 4 components respectively. If N = 2, then F,
has 21 components if D is odd or if D=8. If D s even (D+8) then F, has 2= compo-
nents. i

Remark. For NyD the skew-hermitian curves (14) all belong to the same
component of Fy: and G, /G operates transitively on the set of components. If N|D
(N=2), then two skew-hermitian curves (14) belong to the same component if
and only if the two values of (r/N) are both equal to +1 or both equal to —1.
In [7] § 3 it was stated that the curve Fy((N/p)#=—1) on Y(p) (p prime) is irre-
ducible. This has to be corrected as pointed out by Hammond. It will be shown
in a forthcoming dissertation by Hans-Georg Franke (Bonn) that Fy is irreducible
if N0 (#). If N=0 ($*) then Fy has exactly two components.

3.7 An exceptional curve on an algebraic surface is a non-singular rational
curve of self-intersection number — 1. If the surface is regular and not rational,
then any two exceptional curves are disjoint and can be blown down simul-
taneously. In this section we assume that Y (D) is not rational. Thus we exclude 10
discriminants (Chap. I (1)). How many exceptional curves can be found on Y (D)
using skew-hermitian curves ?

For a discrete subgroup I" of PL}(R) with /I of finite volume the number

(17) a(l) = 2¢(9/T)— Za(I)—o(I)

was introduced in [6] 4. 3. We recall that ¢ denotes the Euler number, a,(I") the
number of I"-equivalence classes of fixed points of order r of I' and ¢(I") the
number of cusps. If a component E of a skew-hermitian curve in Y (D) has the
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non-singular model /I, then
e E = ¢(I)

where ¢;- E denotes the value of the first Chern class of Y (D) on E. Since Y (D) is
not rational, ¢+ E=1 implies that ¢,«E=1 and E is an exceptional curve (see [6]
4. 4 Corollary I). The curve F, has 2'-! components (see the Proposition in 3. 3).
Each component passes through a quotient singularity of order 2 and one of
order 3 on $*/G and is on Y (D) an exceptional curve which gives rise to a con-
figuration

(18)

of non singular rational curves. These configurations are disjoint to each other.
Using F, we have found on Y (D) in this way 3+2°=' curves which can be blown down.

The groups I which occur for the components of F,, F; are I'y(2) and I'4(3)
respectively (to be divided by {1, —1}). For the components of F, we have I'=
I'y4) or '=I""(2) if D is odd (to be divided by {1, —1}). (These groups were
treated in [6] 5. 5 if D is a prime.) If D is even, the group for F, is I'y(2)/{1, —1}.
If 3{D (D+12), then the components of F, have the group I';(3)=1"(3) (to be
divided by {1, —1}). For these groups I' (namely I'4(2), I',(3)}, I"'(2), I',(4), al-
ways divided by {1, —1}) the value of ¢,(I") equals 1. Since Y (D) is supposed to
be not rational, all components of F,, F,, F, and (if 3|D) F, give exceptional curves. Each
component of F, passes through a quotient singularity of order 2 on $*/G and
gives on Y (D) a configuration.

(19)

Every component of F, gives two curves which can be blown down. The curve F,
has 2! or 22 components. In the latter case we have a configuration (19) for each
component because the group is I'((2) (see (16)). Therefore F, gives always 2!
curves to blow down, F, and F, together give 2*' curves to blow down. For F; and F,
the corresponding group has no fixed point of order 2. There is no configuration
(19). No additional blow-downs occur in this way. For D=105 a special situation
occurs. We have
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4.9.9-3?
105
Thus condition (10) is satisfied. In fact, it can be checked that the 4 components
of F, meet in quotient singularities of order 3 on §*/G and this leads on ¥ (105) to
a configuration like this

= 3.

Fy Fy Fy Fy

(20) =3 =3 D=105

-1 —1 -1 -1

which gives two extra curves to blow down. In fact, for D=105 there are six
quotient singularities of order 3 on £?/G, all of type (3 ; 1, 1). Four of them lie on
the 4 components of F;. The two others give rise to the two curves of self-inter-
section number —3 in (20). Two intersecting components of F, never occur for
other D (with 3|D) as can be checked by condition (10).

By the propositions in 3. 5 and 3. 6 we know the number of components of F,,
F, F,, F,, hence we can collect the information on exceptional curves in the fol-
lowing theorem.

Theorem. Suppose Y (D) is not rational. Then B(D) curves on Y (D) can be blown
down where

(21) B(D) = 244 T (1422) + 5 T (14+2(3))
-1 D 2 Jor D =105
+2 (1_<?)2)+{ 0 fZi D =+ 105.

We call Y°(D) the surface obtained from ¥ (D) by blowing down these 5(D)
curves. We define Y°(D) only if Y(D) is not rational. Clearly

(22) d(Y°(D)) = (Y (D))+B(D).
We conjecture that Y°(D) is the minimal model. For D equal to a prime, this was
conjectured in [9]. In fact, van der Geer and van de Ven have checked the con-
jecture for several prime values of D where Y°(D) is of general type. When Y°(D)

is not of general type, then the conjecture holds because ¢3(Y*(D))=0 as we shall
see.

3.8 For the surface Y_(D) introduced in Chapter I similar considerations
hold. We have a curve Fy given by all primitive equations (3) with qa,D -} 44" =
— N. This curve passes through a cusp if and only if — N is a norm in K. If —1 is
a norm in K| then Y (D) and Y_(D) are isomorphic. In this case (provided Y (D)
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is not rational) we can blow down 8(D) curves on ¥Y_(D) ; the resulting surface
Y (D) is then isomorphic to Y°(D). If condition (10) is not satisfied for N, M
(N+#M), then Fy and Fy do not meet on (H X $)/G. If condition (10) is not satis-
fied for M= N, then Fy is non-singular on Y_(D) outside the resolved cusps. The
lemma in 3. 3 holds in the same way except that one has to take the triples (£|g,q)
belonging to an element of (v D)Sq¢(C+) where (v D) denotes here the element of
C* represented by the ideal (v D). The natural number N is called admissible for
Y_(D)if —Nis a norm in K and all primes dividing N decompose or ramify in
0, but where a prime which ramifies occurs in ¥ only with exponent 1. The num-
ber of components of Fy(N admissible for ¥_(D)) is as in the proposition in 3. 3.
If —1 is not a norm in K, then F,, F,, F; are empty on Y_(D), so we can only
blow down F, and F;, and this gives (if Y_(D) is not rational)

(23) B.(D) = [ (1+2(~2)+ 5 T (1-+2(~3))

blow-downs. (Note that y,(— N)=(sign D) x:(N).) Again we conjecture that the
surface Y% (D) obtained by these blow-downs is minimal.

IV. Estimates of the Numerical Invariants
4,1 The purpose of this chapter is to prove the facts

YD) =1 oD =05,8,12,13, 17, 21, 24, 28, 33, 60,
2Y_(D))=1eD=5,8,12,13, 17,

&Y (D)) <0 =D < 285,

A(Y_(D)) <0=>D < 136,

A(Yy(p)) <0 = p< 821  (p= 1(mod 4) prime)

(compare Chapter I), thus reducing the problem of classifying all Hilbert mod-
ular surfaces to the consideration of a finite list. Since all of the invariants have
been calculated (by computer) up to at least D==1500, it will suffice to prove

(1) D> 1500= x(Y(D)) > 1, x(Y_(D)) > 1, &(¥Y (D)) > 0, &(Y_(D)) > 0,
(2) p>1500= 6(¥z(p)) > 0.

There are precisely 50 discriminants for which the four inequalities of (1) are

not all satisfied ; complete numerical data on these discriminants is given in section
4.5,

4.2 As explained in 2. 1, the dominant term in the formula for all of these
numerical invariants is

(3) W) =55 & o(2F)

A= D(mod )

From ¢,(n)>n+1 we deduce easily that
(4) Cx(—1) > D¥360 ;
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this result can also be obtained by writing

Ce(2) = C(2)H(1—<~§)p- ) > L@+ =) =55

and applying the functional equation of {.(s).
From 2. 4 (31) and 2. 1 (9), (10), (12) we have

(Y (D)) = 4Lx(—1)— (D)——” (G)
and
(YD) =5 CK(—1)+ 3 az(G) as*(G)+

moreover, by 2. 3 (29),

345 (6)+w;

w = 1 (4(D)—k (D)) > —5 (D),

and hence

2(¥ (D)) > L —1) 20 > ¢ e~ 1)+ (K —1) =15 (D))

4TD) |

> _2__1160_D3/2+ “117“2(” (D)) > (D > 200).

Hence the inequality y(¥(D))>1 in (1) will follow once we have proved that
(Y (D)) is positive ; since (by 2.2 (15) and 2. 4 (33)) the values of y and ¢ for
Y_(D) are at least as large as for Y (D), the remaining two inequalities in (1)
will also follow. Thus to prove (1) we have to show

(5) Ho(—1)—l5 (D)—a (G)/3>0 (D> 1500),
while for (2) the inequality
(6) Wn(—1) =g hip)— B+ YL >0 (5> 1500)

will certainly suffice {(equation 2. 5 (40)).
We intraduce a new invariant

) (D) = X l(a)
(notation as in 2. 3). If D=p is a prime, then S¢ : C*—C* is an isomorphism and
(8) Lip) =L(p) =Up);
if, however, D has ¢ distinct prime factors, then Sq has a kernel of order 2! and so
(9) E(D) = X 1GSela) =2 X LB)<2-UD)
roelm(S)

The advantage of working with /(D) rather than /; (D) is that it can be evaluated
by a formula analogous to formula (3) for {4(—1). Indeed, {(D) is the sum of the
lengths of all cycles occurring as the primitive period of the continued fraction of
some quadratic irrationality w of discriminant D (the discriminant of w is de-



Classification of Hilbert Modular Surfaces 65

fined as b*—4ac, where aw?+bw-+c=0, (a, b, ¢)=1). This is simply the number
of reduced quadratic irrationalities w of discriminant D (i.e. w satisfying w>1>w’
>0}, since, as discussed in 2. 3, such w have purely periodic continued fractions,
and a cycle ((b,,---,b,_,)) of length r gives rise to precisely r reduced numbers

1

bt‘+l _..

bi——

(i=0,1,.,7r—1).

If aw?+bw—+c=0, b*—4ac=D, -then the condition (g, b, ¢)=1 is automatically
satisfied since D is the discriminant of a quadratic field. Therefore

UD) = §{(a, 5, ¢) € 2* | B*—4ac=D, ”+~/_>1> ”Q—am>o}.

The inequalities are equivalent to
a>0, |—b—2a/<vD, —b>+D;
therefore replacing b by k=—b-2a gives
I(D) =#{(a, k) e 22 | a>0, k<D, =D (mod 4a), k+2a>+D}.
We claim that this is precisely half of
${(a, k) € Z2* | a>0, <D, F=D (mod 4a)}.
Indeed, (g, k) > (a, k'Y= ((D—k?)/4a, —F) is an involution on this latter set with
28 +k'—+vD _ k44D

2a+k—vD = 2a <9
so precisely half of the elements (a, k) satisfy 2a4-k>+/D. Therefore
1 1 D—#
10 D)= 1= ( )
(10) D=5 E Zl=9 EF 3

B=D(mod s a.l D‘;"' F=D(mod 4y

This formula will be the basis for our estimates of ¢2.

4.3 In this section we prove the estimate (6) ; this case is easier than estimate
(5) for composite D because of (8). We will prove (for all D, prime or composite)
that

(1) 2(—1)—5l(D) > PEP D200 3.6 (D> 730);

since the right-hand side is > 522 ‘/2—-fo D> 1500, this implies (6).

By (3) and (10), the left-hand side of (11) equals
D—Fk
(12) = =)

H-D(modf)

with
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We have
¢(n) > —0.6 for n <50,
(13) ¢(n) > 014 for n > 50.

Indeed, for <56 we can check this by hand, while, for n>>56 L (7L>2,

4
oln) =55 5(4~75)

1 1 1
=w0l(r—72)+(1-72)+ 5 g (¢+5-19)]
n—14
=730

(each term d+n/d—15 is >0). For D>729 there are at most 4 values of k (two
positive and two negative) for which k=D(mod 2) and 0<{D—£%)/4< 50 (because
the interval (v D—200, + D) has length<4), so the first line of (13) 1s used at
most four times in (12) ; the second estimate in (13) now gives

£ A7) g

B<D A <D-200
k=D(mod4) k2=D(mod 4

D-201 200 14

where we have used the easy estimates (valid for any positive 4 and integer D)

Elxvi-1, £ (@-# =24 u-
l!D(mod2) hll};(inf)dz)

with 4=D—200. This proves the inequality (11).

4.4 We now want to prove the estimate (5). The number [;7 (D) in that equa-
tion will be estimated using (9) and (10) ; for the number 4; (G), given exactly by
2.1 {7), we use the estimate

H—N) <¥Nati0gm) (N>
(cf. [14]) to obtain
' +6(G) < 0.13 D*(log D+1).

The formula to be proved then becomes

D"‘”) (D > 1500).

(14) 4x(~1)-0.18VD(log D+1) > 2 % a.,( ”
M=D(mod+)

Because of the factor 2¢-2, the method of 4. 3 does not work here and we must
have recourse to far cruder estimates. We would like to thank Henri Cohen, who
suggested the method for estimating the right-hand side of (14) and carried out



Classification of Hilbert Modular Surfaces 67

the necessary computer calculations.

Lemma. Set e=log 2/log 11=0.289064826--.. Then for all n
(15) ao(n) < 5.1039782 n°.

Proof. 'The function g,(n)/n® is multiplicative and (a+1)/p**<1 for p>11, a>1
by the choice of e. Hence

9y(n) a+1>_i.i._2_.l_
< T:)x( A) =g g e g = 5108078196
If we now estimate {x(—1) by (4), and the right-hand side of (14) by the prod-
uct of the number of terms in the sum with the estimate of the individual terms
given by equation (15), we find as a sufficient condition for (14) the inequality

(16) % —0.13 D'?(log D+1) > 2-*(/D14-1)-5.1039782. (D/4)¢

with £¢==0.289064826..- as before. A desk calculator computation now shows that
(16) holds if

t<3 and D> 9,000

or t=4 and D> 23,000

(17) or t=105 and D> 60,000
or t=6 and D > 157,000

or t=17 and D > 420,000.

But the smallest discriminant with t=71is4. 3.5.7.11.13.17=1,021,020>420,000,
so (17) implies that (16) holds for all D with t=7. A similar-argument holds for
any {>7, since a D with £>7 distinct prime factors is greater than

60060
65536

s0 2:-2< #/1.1 D, more than sufficient to prove (16) for D>420,000. Therefore (17)
implies that (16) (and hence (14)) holds for all D>157,000,-and a computer cal-
culation showed that (14) holds for all D up to this point.

4.3.5.7.11. 13. 16¢¢ =

@,

4.5 As already stated, the calculation of the various invariants for D <1500
showed that ¢2(Y (D)) <0 for just 50 discriminants, the largest being D=285. We
have tabulated all numerical invariants of Y (D) and Y_(D) for these discrimi-
nants. The following notation is used :

Topological Invariants :

Z = 60g(—1) (this is an integer for D > 8)

bly = b(D), (D) (§§2.3,2.4)

ay af, a5 = a(G), a; (G), a5 (G) (§2.1;for D =5, 8 and 12 there are also
fixed points of order 5, 4 and 6 respectively)

¢ = ((§G) = e(§xH[C)  (2.1(9), 2.2 (13))

t = —sign ($*G) = sign (H X 9 /G) (2.1(10), 2.2 (13))
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Invarz'ants of Y(D) :
4 ——( —7) = 1(¥(D)) (2.1(12))
¢ = (¥ (D) (2. 4 (31))

)
¢ = &(Y°(D)) = ¢+ B(D) (3.7 (22) ; ¢ is not listed if Y (D) is rational,
since Y°(D) was not defined in this case)
Invarianis of Y_(D) (not given if D is a sum of two squares since then Y_(D)
is isomorphic to Y (D)) :

1

1- = (e+7) = 1(Y_(D)) (2.2 (14))

¢ = (Y_(D)) (2. 4 (32))

& =&Y (D) = c.+6.(D)  (§3.8).
D I Z Iy Iy a, af ay ¢ <t ¥ ¢ fad x- €. &

5 5 11 2 11 4 0 1 -2 .
8 /2 2 2 2 11 4 0 1 -3 .

12 1 2 4 3 2 0 4 0 1 -4 . 1 —4 -
13 1 3 3 2 2 2 4 0 1 —3 .
17 2 5 5 4 11 4 0 1 —4 .
21 2 2 6 4 4 1 6 2 1 —6 -« 2 -1 0
24 3 4 8 6 3 0 6 2 1 -7 & 2 -2 0
28 4 4 10 4 2 2 6 2 1 -8 . 2 -2 0
29 3 5 5-6 3 3 8 ¢ 2 —4 0
33 6 8 12 4 3 0 6 2 1 -9 . 2 —4 0
37 5 7 7 2 4 4 8 0 2 -5 0
40 7 12 12 6 2 2 8 0 2 —8 0
41 8§ 11 11 8 1 1 8 O 2 —6 0
44 7 6 12 10 2 2 10 2 2 —8 0 3 -2 0
53 7 77 6 5 5 12 0 3 —4 0
56 10 4 16 12 2 2 12 4 2 —-10 0O 4 2 2
57 14 14 18 4 4 1 10 2 2 —-10 0O 3 -5 0
60 12 4 24 8 6 0 12 8 1 —-18 . 5 4 4
61 11 11 11 6 4 4 12 O 3 -5 0
65 16 18 18 8 2 2 12 O 3 —8 0
69 12 4 16 8 9 0 14 6 2 —-11 © 5 4 4
73 22 21 21 4 2 2 12 0 3 -7 0
76 19 14 20 10 2 2 14 2 3 —~—8 0 4 -2 2
77 12 2 14 8 6 6 16 4 3 -8 0 5 4 4
85 18 18 18 4 6 6 16 0 4 —8 0
88 23 12 24 6 4 4 16 4 3 —-10 O 5 2 4
89 26 21 21 12 1 1 16 O 4 — 4 2
92 20 4 22 12 4 4 18 6 3 —-10 O 6 8 8
93 18 6 18 4 12 3 18 6 3 —-10 O 6 5 6
97 34 27 27 4 2 2 16 O 4 —5 2
101 19 11 11 14 5 5 20 O 5 0 4
104 25 20 20 18 2 2 20 O 5 —4 4
105 36 12 44 8 6 0 20 12 2 =22 0 8§ 12 12
109 27 17 17 6 6 6 20 O 5 —1 4
113 36 23 23 8 3 3 20 O 5 0 6
120 34 8 40 12 8 2 24 12 3 —-20 O 9 14 14
124 40 16 34 12 2 2 22 6 4 —8 2 7 10 12
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D Z Iy Iy a af af e t X ¢ c® - ¢ &
129 50 30 34 12 4 1 26 2 6 —2 8 7 3 8
133 34 12 24 4 8 8 24 4 5 —4 4 7 8 10
136 46 32 32 12 2 2 24 0 6 —2 8

140 38 4 40 20 4 4 28 12 4 —16 0 10 20 20
141 36 8 28 8 15 0 26 10 4 —9 2 9 16 16
156 52 16 48 16 8 2 32 12 5 —16 4 11 18 20
161 64 14 50 16 2 2 32 12 5 —8 4 11 28 28
165 4 4 44 8 16 4 32 16 4 —-20 O 12 24 24
168 54 8 48 12 12 0 32 16 4 —16 4 12 28 28
184 74 16 52 12 4 4 36 12 6 —4 8 12 32 32
204 78 28 56 20 12 0 44 12 8 — 8 12 14 24 28
220 92 16 64 16 4 4 44 16 7 — 4 12 15 44 44
285 9% 4 60 16 24 0 56 24 8§ —4 16 20 60 60

V. The Rough Classification of Hilbert Modular Surfaces

5.1 In this chapter we prove Theorems 2 and 3 of the introduction (Chap. I).
Our basic reference for the classification is the joint paper [9] with Van de Ven.
In the proposition below we state the main classification principle. A (—2)-curve
is a non-singular rational curve with self-intersection number —2. An elliptic con-
figuration on an algebraic surface X is a finite set of irreducible curves on X
having the same genera and intersection numbers as the configurations occurring
as fibres (without exceptional curves) in an elliptic fibration of some surface ([11]
Part II). We give a complete list of the elliptic configurations :

A non-singular curve E of genus 1 with EE=0; a rational curve E having
exactly one singular point (a cusp or a double point) with EE=0; a configu-
ration of (—2)-curves with one of the following intersection diagrams

XA

A,_ (cycle of any length k=3)

A intersection number 2

or of the diagrams, better indicated by their dual graphs (a dot indicates a
(—2)-curve and a line a transversal intersection):
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Di—1 (kcurves, k~1 = 5) E
Eg
E, 8

Proposition. Let X be a simply-connected non-rational algebraic surface. If X contains
an elliptic configuration, then X is a blown-up K3-surface or a blown-up honestly elliptic sur-
Jace. If X contains an elliptic configuration which intersects a (—2)-curve on X not belonging
to the configuration, then X is a blown-up K3-surface. If X is simply-connecied, not rational,
and not a blown-up K3-surface and E is an irreducible curve on X such that ¢« E=0 (where
e H*(X, Z) is the first Chern class), then either ¢,- E=1 and E is an exceptional curve or
¢,»E=0 and E is either a (—2)-curve or a curve of genus 1 or O with EE=0.

The proof is obtained as in [9] (compare Proposition I. 9). For the second part
of the proposition we use [9] (Propositions I. 1 and I. 5) and in particular the fact
that ¢,» £ =2 implies the rationality of X. When passing to the minimal model X’
of X, a certain configuration L of rational curves on X is blown down. If ¢,- E>0,
then either E belongs to L and is an exceptional curve or a (—2)-curve on X, or
E and L are disjoint, ¢,+ E=0, and E is a component of the unique elliptic fibration
of X’ or a (—2)-curve on the surface X’ of general type.

5.2 The results and the tables of the preceding chapter have shown that
(Y (D))>0 except for 50 discriminants. The arithmetic genus equals 1 for 10
discriminants (5, 8, 12, 13, 17, 21, 24, 28, 33, 60) ; they are among those 50. The
corresponding 10 surfaces Y (D) are known to be rational ([6] 4. 5 Theorem). For
the remaining 40 discriminants we calculated ¢2(Y°(D)) (table in Chap. IV) using
3.7 (21), (22) and obtained ¢}(Y°(D)) >0 (which implies general type !) except for
the 22 discriminants

(1) 29, 37, 40, 41, 44, 53, 56, 57, 61, 65, 69
73, 76, 77, 85, 88, 92, 93, 105, 120, 140, 165,

Jor which we get 2(Y°(D))=0. These 22 have to be investigated by hand.

The surface Y_(D) has arithmetic genus 1 for 5 discriminants (5, 8, 12, 13, 17).
These surfaces are rational. Namely, except for D=12 they are isomorphic to
Y(D), and for D=12 it was shown in [6] 4. 5 that Y_(D) is rational. For D5, 8,
12,13, 17 (i.e. D>17) there are 23 discriminants for which ¢(Y_(D))<0. For
these we consider Y° (D) (see 3. 8) and obtain ¢4(¥Y°(D))>0 except for 15 dis-
criminants (see table in Chap. IV)



Classification of Hilbert Modular Surfaces 71

(2) 21, 24, 28, 29, 33, 37, 40, 41
44, 53, 57, 61, 65, 73, 85
Jor which we get ¢(Y° (D))=0. These 15 surfaces have to be investigated by hand.
All other Y_(D) are rational (5 cases) or of general type.

5.3 The components of the curves Fy in Y (D) or Y_{D) all have the same
non-singular model if N is admissible (3. 3 and 3. 8). This model is §/I'o(N) if N
is not divisible by the square free part d of D.

The values of ¢,(I',(N)/{1, —1}) (see 3. 7 (17)) are denoted by ¢,(N) and were

listed in [6] 4. 3 for the case that the genus of §/I(N)is 0 or L.

Let ¢, be the first Chern class of Y(D) or Y_(D) respectively. Then

pt+q

®) oEz (M) +E(5EE-1)
for any component E of Fy (N admissible, N==0 mod d) where the sum is over
all the branches of Fy belonging to E near the cusps (see 3. 3 (6)). For (3) com-
pare [6] 4. 5 (34). The sum in (3) equals the intersection number of E with the
Chern divisors of the cusps minus ¢(I,(¥)).

For N=5, 6, 7, 8, 9 the curve §/I'(N) is rational and ¢,(N)=0. In these cases
¢, E =0 for all components E of Fy. If ¢« E=0 and E is non-singular, then E isa
(—2)-curve.

5.4 In this section we settle the rough classification of the surfaces ¥Y_(D)
using the proposition in 5. 1.

The principal cusp of Y_(D) has the resolution cycle belonging to the strict
ideal class of (v D). We consider the reduced quadratic irrationalities

(4) w(b)zb—z—%l—), beZ b=D mod 2, —vD <b<vD-2.

The module Zw,,+-Z is strictly equivalent to the ideal (v D). We have w,,=
2——1 for {b<yD —2. Furthermore w,, s of the form o - (M+yD) with N

-2

= T(D—b*). Hence we have on Y_(D) a configuration

. .
Fy - Fy
L(p-18) ~N Lip-9)
-2 —2 —2 (-2
(5) or
Lio-g it (b-1)
4 4

2 —2 —2\/~2
=2

(£b=2,4,;|bl1</D—2) (+xb=1,3,;1b1</D~2)
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depending on whether D is even or odd. The (—2)-curves belong to the resolution
of the cusp. The symmetry in the configutation comes from the canonical invo-
lution on Y_(D) induced by (z, 2,) b (—2z5, —21). Two s differing only up to
sign give the same component of F_,,. It is carried to itself by the involution
({6] § 4. 5).

For the rest of this section 5. 4 we suppose that D>17 so that Y_(D) is not
rational. Then we can use (5) for the rough classification as follows.

If in (5) any of the Fp_y,, (with |b|<+/D—2) is F, Fy, F,, F, or F,, then Y_(D) s
a blown-up K3 or an honestly elliptic surface.

Namely, let E be the component drawn in (5) of such an F;,_,,. Then ¢« E>0,
but E is not an exceptional curve, because blowing it down would give by (5)
two intersecting exceptional curves which is not possible on a non-rational regu-
lar surface.. The proposition in 5.1 and diagram (5) now show : If Y_(D) is not
a blown-up K3-surface, then E is a (—2)-curve (in fact it has to belong to the
largest [b] in (5)) and E and the (—2)-curves of the resolved cusp indicated in (5)
give a cyclic elliptic configuration proving that the surface is blown-up honestly
elliptic.

Let us first consider the values D in (2) for which x(¥Y_(D))=3. These are
certainly not blown-up K3-surfaces. For D=44, 53, 57, 61, 85 we get on Y_(D)
a cycle of non-singular rational curves of self-intersection number —2 using F;,
F,, F,, F,, F, respectively. For D=65 we have a configuration

where the F, belongs to w,_,,=(—5++/65)/(—74+65) and [w_;+1]=3. Blowing
down the component of F, drawn in (6) we get again a cyclic elliptic configuration.
For D=73 see [9] (for prime discriminants D the surfaces ¥ (D) and Y_(D) are
isomorphic). In all cases we have a cyclic elliptic configuration. The surfaces are
blown-up honestly elliptic.

Now we study the eight values in (2) for which (¥_(D))=2. These are 21, 24,
28, 29, 33, 37, 40, 41.

We wish to prove that the corresponding surfaces are blown-up K3-surfaces. We
may assume that the components of F,, F;, F;, Fy, F, occurring in (5) are (—2)-
curves, since if they are not, the surfaces are certainly blown-up K3-surfaces (Pro-
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position 5. 1). For D=21, 24, 29 the curve F, occurs in configuration (5). Every
component of F; passes through a curve 4 of self-intersection number —2 coming
from the resolution of a quotient singularity of order 2, because I'y(5) has fixed
points of order 2 in §. Thus (5) leads to an elliptic configuration which intersects
4, so the surface is a blown-up K3-surface. For D=33, 37, 40 we have in (5) two
different values of 4 for which (D—$%)/4=6, 7, 8, 9. Hence the surfaces are blown-
up K3-surfaces.
For D=28 we have a configuration

which proves by blowing down F, that Y_(28) is blown-up K3. For D=41 the
same argument works : The curve F; occurs and one has to blow down F,.
Theorem 3 in Chapter I is now completely proved.

5.5 In this section and in the following one we shall do the rough classification
of the surfaces Y (D) and prove Theorem 2 of Chap. I. Since Y (D) is equivalent
to Y_(D) if D is not divisible by a prime=3 mod 4, it remains to study the follow-
ing 13 discriminants from the list (1)

7) D = 44,56, 57, 69, 105 (x(¥Y(D)) = 2)
D = 176,717, 88,92, 93, 120, 140, 165 x(¥Y(D)) = 3).
For these 13 discriminants we indicate the resolution of the cusps with the nota-

tion of 3. 3 (5). The reader should consult these diagrams, which are printed at
the end of the paper, during the course of the proofs.

Fg: F)

— =3 1—1 I_l
—=2 ] |
—3| —3!
1 T
. —2 ! 1

R F, F Fy
-1 -1 -1 -1
/ \
So
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For D=44, 56, 57, 69, 105 we consider the curve S, in the resolution of the
principal cusp (see 3. 6).

The exceptional curves F,, F, and F, (for 3|D) give on Y (D) the configuration
in the previous page. The curve of self-intersection —2 intersecting F, exists if and
only if D is even. The exceptional curves F, exist if and only if 3|D. The dotted
components of F,intersect the (—3)-curves if and only if D=105 (see 3. 7). (It has
to be checked for D=105 that the two components of F, intersecting §, do not
meet in §*/G.) We have S;.8,=—b=—[w,]—1 and ¢,+S,=—b,+2. On passing
to ¥°(D) the exceptional curves in the above diagram are blown down successively
and we get on Y°(D) (whose first Chern class we denote by z,) an image curve S}
which has exactly one singular point (a cusp) and for which

&8y = —by+7-1(if D is even) 4 2(if 3|D) +2(if D=105).
For D=44, 56, 57, 69, 105 the values of 4, are 8,8,9,9, 11 and we get .5=0
and hence §,-§,=0. Thus the single curve §, is an elliptic configuration.

The curve 8, has for D=44, 57 the self-intersection number —2, For D=69, 105
the curve S, has self-intersection number —3 and intersects F;, F, respectively ;
therefore in ¥°(D) the image curve $, has self-intersection number —2. For D=
56 we have §,.§,= —4, but the curve S, meets the exceptional curve ¥, which by
3. 7 (19) leads to two blow-downs, so the image curve §, on Y°(56) has the self-
intersection number —2. Thus by the proposition in 5. 1 (and because ¢(Y°(D))
=0), the surfaces Y°(D) are K3-surfaces for D=44, 56, 57, 69, 105.

5.6 We now study the discriminants in the second line of (7). In all cases we
shall find an elliptic configuration on Y (D) which proves that ¥ (D) is blown-up
honestly elliptic and finishes the proof of Theorem 2 in Chapter I.

For D=176 consider the curve F;. It has one component which meets four curves
of the resolution of the cusp. This gives rise to an elliptic configuration:

-2 -2

T

(The proposition in 5. 1 implies that Fg is a (—2)-curve.)

For D=77 the irreducible curve F), passes through the two corners of the reso-
lution of the cusp. The genus of F;, is 1. We have ¢,(11)=—2 and ¢+F,,=0 by
(3). By the proposition in 5. 1 the curve F,, is an elliptic configuration (¢,«F,=
Fu'F u=0)'

For D=88 the two components of F, together with 6 curves of the resolved
cusp give a cyclic elliptic configuration of length 8.

For D=92 the two components of F, pass through the four corners of the reso-
lution of the cusp. We have ¢;,(13) = —2, but (3) implies that ¢,- E>0 for each com-
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ponent £ of F;. Since E is a rational curve and meets two (—2)-curves (coming
from two quotient singularities of order 2), it follows from the proposition in 5. 1
that £ is a (—2)-curve. The curve F; was considered in 3. 6. Here 9 is not ad-
missible ; the group I" in 3. 6 (15) is I"'(3)/{1, —1} for which a,(I")=2, a,(I")=0,
o(I) =2, e(9/T")=2 and ¢,(I')=0. The curve F, has two components. It follows
as before that each component of F, is a (—2)-curve. As can be checked, F, and F,
intersect in $%G in quotient singularities of order 2. (Condition 3.3 (10) is
satisfied : (4.9.13—10%/92=4.) We have on Y (D) the following elliptic configu-

rations :

F13 ‘F13
—2 —2
—2 -2 -2 -2
Fy Fy
—2 —2

where the “vertical” curves come from the resolution of quotient singularities
of order 2.

For D=93 the two components of F, together with 4 curves of the resolved cusp
give a cyclic elliptic configuration of length 6.

For D=120 the curve F; has one component. It passes through both cusps and
gives rise to the elliptic configuration:

For D=140 the curve F, passes through the four corners of the 2 resolved cusps.
It has one component. The genus of F,, is 1. We have ¢,(14)=—4, and ¢+ F,,=0
by (3). By proposition 5. 1 the curve F, is an elliptic configuration.

For D=165 the same argument works with F;.

8 1 8
-8

D=44 D=56 214 —412
—8

8 1 8
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12 1 12
—12
D=105 13 D=120 _ _
(two cusps) 13 (two cusps) z 26
—12
12 1 12

1
D=140 D=165
(two cusps) 12><?><12 (two cusps) 15><_—13 <3

1
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