The Rankin-Selberg method for automorphic functions
which are not of rapid decay

By Don ZAGIER

To the memory of Takuro Shintani

One of the most fruitful ideas in the theory of automorphic forms is the
observation, made independently by Rankin [4] and Selberg [5] around 1939,
that the Mellin transform of the constant term in the Fourier development of
an automorphic function can be represented as the scalar product of the auto-
morphic function with an Eisenstein series and hence inherits the analytic
properties of the Eisenstein series. More precisely, let F{(z) be a continuous
function on the complex upper half-plane $ which is invariant under the action
of the modular group I=PSLy(Z), let

@® F<Z):n§_"man(y>e2““ (z=x+iyed)

be the Fourier expansion of F, and let E(z, s) (z&9, seC) be the standard non-
holomorphic Eisenstein series, defined for Re(s)>1 by

(2 E(z, s)zrerE\PIm (72)52-%—3)3 . dZéZ lez+d|% Re(s)>1)

(¢, dy=1
(F m:——{i((l) ?)}), then denoting by dp the invariant volume element y~2dxdy

on § we find by a standard “unfolding” trick

gr\®F<z)E<z, S)dp= Sm B, Paam (r2ydp= Srw\@ F(z)Im (2)d g

©) ="y[, FOtindzytdy

={Teny =ty Ret9)>D),

the steps being justified by the absolute convergence for Re(s)>1 if F(z) is
sufficiently small as z—oo. On the other hand, E(z, s) is known to have a mero-
morphic continuation (in s) with the following properties :

i) E(z, s) is holomorphic in Re(s)>1/2 except for a simple pole of residue
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3/z (independent of z!) at s=1;
ii} the function

@ E*(z, $)=(¥25)BG, ),
where
® gHsy=m T (5 o) =EH1—9)

is the Riemann zeta-function together with its gamma factor, is holomorphic for
s#0, 1;
ili) E(z, s) satisfies the functional equation

6 E*(z, s)=FE*(z, 1—s).

Equation (3) then gives the corresponding properties for the Mellin transform of
the constant term of F: if we define transforms R(F; s) and R*(F';s) by

@ R 9= a0y dy, RXF; 9=CQIRE s)  Rels)>D),

then R(F:s) can be meromorphically continued to all s, the only possible poles
being at s=1 and s=p/2 (p a non-trivial zero of the Riemann zeta-function),
the function s(s—1DR*(F; s) is entire and invariant under s—1—s, and we have
the formula

®) Res,_.R(F; s)= %SF\@F(z)d p

(note that gﬂ@d/x:n/?;, so this formula says that the residue of R(F; s) at s=1

equals the average value of F in 9).
These facts have a threefold importance in the theory of automorphic forms:

I. For many functions F, the Mellin transform R(F'; s) can be computed as
a Dirichlet series with Euler product, and we obtain the analytic properties of
this L-series. As an example (the one originally studied by Rankin and Selberg),
take

9 F(a)=y" 4=,
where
A(Z):euiznfjl (1—g2rine)2s— §IT<n)ezninz
is the discriminant function from the theory of elliptic functions; then we find

(10) a ()= T elnyreri=r,
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ot _g
_F.(S—)R<F, s—11)= n=1~ W (Re (s)>12),

from which the meromorphic continuation and functional equation of the Dirichlet
series on the right follow.

II. In some cases it may be easier to compute R(F; s) than Sr @F (z)dp
\§

(since its definition involves only the constant term of F and a one-dimensional
integration rather than the whole function F and an integration over a com-
plicated fundamental domain), and in such a situation it can be advantageous to
view (8) as a means of evaluating the average value of F rather than as a
formula for the residue. An example is the calculation in [6] (or, in the non-
holomorphic and adelic cases, in [7] or [2], respectively), where the Selberg
trace formula was derived by computing R(F; s) for F(z)=K(z, z) (K{z1, z:)=
Selberg kernel function) and applying formula (8).

II. If a function a(y) (y>0) is of rapid decay at oo and has an asymptotic
expansion Xjc;y*i (resp. Xci;y*i(log y)*i) as y—0, then its Mellin transform

S:oa(y)ys‘zd y has a meromorphic continuation with simple poles of residue ¢; at

s=1—2; (resp. poles with principal parts (—1)*in;lc,(s—1+2;)"™ ) and no other
poles. Therefore the fact that the Mellin transform of a.y) is holomorphic
except for poles at s=1 and s=p/2 suggests (though it unfortunately does not
seem to imply) that the constant term a.(y) has the asymptotic behavior

(11 ao(y)~Ct 25 Apytel?
Ce(pr=0

as y—0, where C is the average value of F and the A, are certain complex
numbers (if p is an n-fold zero, A, must be replaced by a polynomial of degree
n—1 in log 9). This behavior, which if valid is certainly very intriguing, seems
to be substantiated by the graph of the constant term (10) of the function (9),
where the oscillatory behavior -is' clearly evident (Fig. 1). Assuming the

Riemann hypothesis (that all p have the form 1/2-ir, with 7, real), we can
rewrite (11) as

12) ao(y)~c+ya/4m21am cos (-é—rm log y+¢m),

the a,, and ¢, now being real constants. The graph of (a,(y)—C)/y** against
log y for the function (10) (with C=37z"(4, 4)=9.88698x10"") is shown in Fig. 2.
Doing a rough numerical Fourier analysis on the data plotted there we obtained
the values 14.138 and 20.8 for 4x times the first two frequencies; this is to be
compared to 7,=14.135, 7,~21.0. Thus the formula (12) is not only vindicated
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numerically but can actually be used to evaluate the zeros of the Riemann zeta-
function using only the values of the Ramanujan z-function!

After this very long preamble extolling the merits of the Rankin-Selberg
method in its classical form, we come to the object of this paper, namely to
extend its range of applicability to functions F(z) which do not fall off rapidly
enough in a fundamental domain to permit the calculation (3) for any s. This
extension is useful because many of the automorphic functions encountered in
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real life are of slow growth (i.e. O(y") for some N as y—oo) rather than rapid
decay (i.e. O(y~¥) for all N). Also, it may happen that a function F (z) is itself
of rapid decay but has a natural decomposition as a sum of SLy(Z)-invariant
functions which are only of slow growth (this is the case, for instance, for the
function Ky(z, z) mentioned in II. above, and is the primary reason for the dif-
ficulty of the Selberg trace formula), and we would like to have a version of
the Rankin-Selberg method which can be applied to each summand separately.
Such a version is provided by the following theorem, which is the main result
of this paper.

THEOREM. Let F(2) be a continuous SL.(Z)-invariant function on D with the
Fourier development (1) and suppose that

(13) F(2)=p(y)+ O(y~%) (VN) as y=Im (z)—c0,

where ¢(y) is a function of the form

i .
(14) =2 %‘—y‘“‘ log™y  (cs, a:€C, niENzo).

Define the Rankin-Selberg transform of F by

(15) R(F; )= (ap) =gy *dy  Re(s)>0)

(the integral converges for Re(s) sufficiently large). Then R(F; s) can be mero-
morphically continued to all s, the only possible poles being at s=0, 1, a;, 1—a;
and p/2 (p=non-trivial zero of the Riemann zeta-function) and satisfies a func-
tional equation under s—1—s. More precisely, the function

(16) R¥(F; s)=C*2s)R(F; s)
satisfies
AR {*(2s) {*2s—1) entire function of s
an RHE; $)= iz)lCl( (1—a;—s)met? (s—ay)™it? s(s—1)
and
(18) R*¥F; s)=R*(F; 1—s).

In particular, if no a; equals 0 or 1 then R(F;s) has a simple pole at s=1; its
residue is given by (8) if SF\QF(z)d‘u converges (i.e. if Re(a)<1 for all ).
Finally, if ©:=maxRe(a;) is less than 1/2 then we have the Rankin-Selberg
identity

(19) R(F; S):Sp\@F(Z)E(Z’ s)dz  (O<Re(s)<1-0).
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REMARKS 1. The class of functions F allowed in the theorem may seem
artificial at first, but is in fact quite natural and, as we shall see, contains many
of the functions of slow growth encountered in practice. The seemingly odd
definition (15) of the Rankin zeta-function, in which we simply throw out the
part of a.(y) which is not of rapid decay, is natural because the Mellin trans-
form of any function of the form (14) vanishes identically (in the sense that

the integrals S:gp(y)ys‘zdy and S:gp(y)ys‘zdy, each of which converges in a half-

plane, both have meromorphic continuations to all s and the sum of these con-
tinuations is identically zero). Note that we have not really lost ¢(y) as the
information about the numbers ¢y, n;, @; is encoded in the poles of R(F;s)
(equation (17)). The class of functions (14), as was pointed out to me by Deligne,
also has an intrinsic characterization as the space of G-finite functions on the
group G=R7 acting by translation on the space of continuous functions of G,
i.e. as the set of functions ¢(y) such that the functions y—¢ay) (a>0) lie in
a finite-dimensional vector space.

2. As will be clear from the proof, the statement of the theorem can be
generalized to the case where I' is a congruence subgroup of SL.(Z), the only
complication being that there is now a separate Eisenstein series and a separate
growth condition on F at each cusp. In fact, it is not hard to give an adelic
formulation of the theorem and its proof (cf. [2]).

PrOOE. First let F be an arbitrary continuous function on I” \H. We denote
by 9 the standard fundamental domain

1
= <
9={228]12121, |x|=}
for the action of I”on $ and by 9, (T'=1) the truncated domain
@T={ZE®I lz]=1, leéé, yéT}.
Then @Dy is a fundamental domain for the action of I" on

Hr= UF r‘@T:{ZE'g)‘IPEa[X Im (rz)éT}.

re

It is easily checked that

@0) r={(z=5| Im (ST}~ U U Sy,

(?z,c%=1
where S,/ (a, c€Z, (a, ¢)=1) is the disc of radius 1/2¢*T tangent to the real
axis at a/c (see Fig. 3). We denote by yr the characteristic function of 9.
Applying the Rankin-Selberg identity (3) to the ['-invariant function F Y1, We
obtain
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Q_@T

@1 SQTF@)E(z, s)dﬂzgrmwmz)ysdy

for Re(s)>1. This is valid without restrictions on F since F-y, has compact
support modulo I

Now assume that F has slow growth (i.e. F(x+iy)=0(»°%) as y—oo, for
some C; under the assumption of the theorem this holds for any C>8). For
zed we have

- 1
ma Im (72)= g, smax(y, )

(since ¢#0 > |cz+d|?*=c?y?=y?%), so F then satisfies

FlxFin)=0(y @ ®)  (3=0)

and therefore the integral g SF (x-+iy)y*-*dxdy converges absolutely and uni-
formly for Re(s)>1+max (0, C). On the other hand, from (20) we have
LA\Dr={x+iylx(mod 1), 0=y=T}— \ Sase,

czl a((mod c)

so (21) gives

©2) g FREG, s)dp= SF(r+zy)ySdp— .= C)SKS F@ydp
(@, cy=1 aje
T
for Re(s)>1+max (0, C). The first integral is simply Xoao(y)ys‘zdy with a, as
in (1). The integral over S,,. can be transformed by choosing an element 7,
:(Z 5)6[' with first column (i); then 705q;.=1{z€9|y=T} and hence (since

F(z) and dy are [-invariant)
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=)

| SSG,CF @y'dp=\ " FE)Im o2y dp

T

fl

W:F <Z>n§_3w1m (Folztn))dp

T

fl

| FPo = me2de,
o-ar b

where the sum is over all reI with first column (i) (all such 7 have the form
70<(1) 7;) for some neZ). When we substitute this identity into (22), we find

that the sum over a and ¢ produces (all but one term of) the Eisenstein series
E(z, s), so

SSQTF(Z)E(Z, s)dy:g:ao(y)ys‘zd y—ggm_gTF(z) rz(“z) L Im2ydp
c cioe o)

:g:ao(y)ys'2dy—Sg@_g)TF(z)(E(z, s)—y%)dp.

Note that all steps are justified for Re (s)>1-+max (0, C) because of the absolute
convergence.

We now use some well-known facts about the Eisenstein series. The con-
stant terms in the Fourier expansions of E(z, s) and E*(z, s) are given by

) . L=, 1
@3) By, odzmyr 2y (520,45 1)

and

ey, S)IZS:E*(x-l—z'y, s)dx

ey L es—Dy (520, 5, 1)
24) = 1
y'%log y+(r—log 4x)y® <s=§, y=Euler’s constant)
=e(y, 1—=s);

the difference E*(z, s)—e(y, s) is an entire function of s and is of rapid decay
with respect to y. Hence, multiplying both sides of the above equation by
{*(2s) we find
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[ P, dp=cres | ey -2dy
[l d 9

_ S S@_QTF(Z)(E*(Z, s)—e(y, s))d#—C*(zs_DgSQ_QTF(Z)yI‘Sd/x
or, rearranging,

(25) e an)yrdy—Cres—D| aimytdy

:SSQTF(Z)E*(Z’ s)dy—l—SSQ_QTF(Z)(E*(Z’ sS)—e(y, sHdp.

This has been proved only for Re(s) sufficiently large, but the right-hand side
makes sense for all s (0, 1), since the first integral is over a compact set and
the integrand in the second is of rapid decay.

To derive (25) we used only that F is of slow growth. Assume now that
F is as in the theorem, i.e. F satisfles (13) for some ¢ as in (14). Then for
Re (s) sufficiently large we have

T T Lo, (T ) )
S ao(y)ys‘zdyzg (ao(y) =@y Ny dy~+ 2 ﬁg yretlogtiy dy
[ 0 i=1 N;1Jo

=R(F; )= (@)~ gDy *dy-+ha(s),

where R(F'; s) is defined by (15) and

i Z ‘ ni (_1)n1;—m Ts+ai-1 lOng
= sz:0 m! (sta;—1)ri—m+t .

Loy O™ <87:;:;;11>

@6)  ha(o)= 3

=1 ng! os™

Similarly,
[Caumy-tay={ (atn—gony-1=hai=s).

Substituting these two formulas into (25) we obtain (still for Re(s) sufficiently
large)

R¥F; $)+LH28)hp(s)+L¥2s—1Dhr(1—5)

={{, FoBG 9dut (] PENEG 9~ey, N ap

+0529)| (e~ ey dy +2x2s— D (@) — gy ds

But the function e(y, s) is independent of x and hence has the same integral
against F(z) as against a(y) in the rectangle 9—9r, so we obtain (after some
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rearrangement)

oy REI=N FOBG adpl] | IF@EG 9 g, 91du

—C*(28)hr($)—CH2s—Dhr(1—s).

Equation (27) is the basic identity from which all of the statements of the
theorem will follow. Indeed, the integrals on the right of equation (27) converge
for all s and clearly define a meromorphic function of s, invariant under s—1—s,
whose only singularities are simple poles at s=0 and s=1. Since the function
hp(s) defined by (26) is also meromorphic, equation (27) immediately gives the
meromorphic continuation and functional equation of R*(F;s). Observing that

Cq
S s
and that
l
hp(s)—hy(s)= 3]

i1 ng! os™i

c; O™ (7::;;1_—11>

is an entire function of s, we also obtain the statement in the theorem about
the position of the poles of R*(F;s). Finally, taking residues at s=1 on both
sides of (27) we obtain

%) Res;_i R*(F; $)=—Res;1:({*2s)hr(s) —Res;:({*2s—1Dhr(1—s)

+5 (01, r@aur(]  F@—eonan).

The first term on the right is independent of T (since hz(s)—h,(s) is holomor-
phic) and vanishes if all a; are different from zero. The second term is a linear
combination of terms T%i~*log"T and hence is O(1) as T—co if Re(a;)<1 for
all 7, as letting T—oco we deduce also the statement about the residue of R(F'; s)
made in the theorem. Finally, equation (19) follows from (27) on letting 7 —co,
since ;122 ho(s)=0 for Re (s)<1—6.

Reinterpretation. Before proceeding to applications, we digress to give a
reformulation of the results obtained so far which the reader may find enlighten-
ing. We call a continuous function F on '\ renormalizable if its behavior at
infinity is of the type described by equations (13) and (14) and define the re-
normalized integral of such a function by

@) R N.(SF\@F(ZM ) ‘:SSETF@‘Z y-l-ggg)_@T(F(Z)—SD(y))d/«t— o(T),
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where 7>1 is arbitrary and ¢(y) is the antiderivative of ¢ which is a linear
combination of non-constant functions of the form yf log™y (B€C, me Z, m=0).
Explicitly, if ¢ is given by (i4) then
R . ni ___1 ni-m a;-1 10 m 10 ni+1
(30) 6= 3 e (=D y gmy L log "y
a"il.t'l

Cq .
=) m!t (a;—1)ra-m+t iy Y (n D!
2

Note that the right-hand side of (29) is independent of T, so the definition makes
sense ; letting T—oo we can write it in the equivalent form

o (], o], rem-ar),

where ¢ can now be simplified by omitting the terms with Re («;)<1 from (30),
since their contribution tends to zero as T—co. If no «; equals 0 or 1, then
the function Ar(s) defined in (26) is holomorphic at s=0 and s=1 and A,(0)=
&(T), so (28) can be stated

(32) Res,, R*(F; 5) = %R. N.(SF\®F(z)d #);

in general, we see by taking T'=1 in (28) that this equation still holds if we
replace R*(F; s) by
‘ (—DPied2s) o el2s—1)

oD e

RA(F; 9+ 3,

which by virtue of (17) has a simple pole at s=1. Thus formula (8) for the
integral of a function of rapid decay over a fundamental domain generalizes to
arbitrary functions of the type considered in the theorem if we interpret the
integral in the renormalized sense. But we can do more: Since the class of
renormalized functions is closed under multiplication and Eisenstein series are
renormalizable, the product F(z)E*(z, s) for F as in the theorem is itself renor-
malizable : it is the sum of p(y)=¢(y)e(y, s) and a function of rapid decay. A
short calculation gives

Gs(N=L @)y ($)+ T 2s—Dhy(1—s),

so the right-hand side of our basic identity (27) is simply K. N(SF (2)E*(z, s)d ,u).

To push things to their logical limit, we introduce a similar terminology in
dimension one: we call a continuous function f on [0, o) renormalizable if it is
integrable near 0 and of the form ¢(y)+0(y~¥) (YN) as y—oco for some ¢ as
in (13), and define the renormalized integral of such an f by

RN 1) = v+ [ (F )~ p)dy—4(T) (independent of T)
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=tim (" ()dy—o(7))
Tco 0 '
Then the results we have obtained can be restated as follows:

THEOREM (second version). Let F be a renormalizable function on I'\§
and a(y) the constant term of F. Then the function a(y)y** is renormalizable
for Re (s) sufficiently large and the function

R(F; s):=R. N.(S:ao(y)ys‘zd y)  Re(>0)

equals R. N.(SFWF(Z)E(Z, s)dy). In particular, R(F; s) inherits the analytic prop-

erties (meromorphic continuation, position of poles, functional equation) of the
Eisenstein sevies. If no a; equals 0 or 1, then the residue of R(F;s) at s=1

equals —73:7 R. N'(Sr\@F(ZM‘u) .

The rest of the paper will be devoted to various examples and applications
of the theorem.

1. Constant function. The simplest function satisfying the conditions of
the theorem is F(z)=1. Here a(y)=1 and ¢(y)=1, so the function R(F; s)
defined by (15) vanishes identically. Thus the meromorphic continuability and
functional equation are trivial. Nevertheless, the formulas we have obtained
are not completely trivial: Using hz(s)=T%"1/(s—1) we find that equation (27)
specializes to

{*@s)
s—1

pei_ c*<zz—1> -

@) {f, B 9dpt (B 9—ey, Ndp=

(i.e. the renormalized integral of an Eisenstein series over I'\§ vanishes), equa-
tion (28) becomes

1 1
0=—L*2)+ ST -+ 5 vol (Dr)
or

(34) vol (@7)="2-— 1

'Y—ﬂy

and equation (19) states

(35) Sgr\gE*(z, 9du=0  (0<Re(s)<1).
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Equation (34), of course, can be checked easily by hand, and equation (35) can
be proved directly by noting that E*(z, s) is an eigenfunction of the Laplace
operator with eigenvalue #0; hence, since the Laplace operator is self-adjoint,
its integral over I'\ (in the range of s for which this integral exists) must
vanish. (One can also argue the same way using any Hecke operator T(n),
n>1, instead of the Laplace operator.) Equation (33) is also known and can be
given a direct proof: one first checks that the difference between the left- and
right-hand sides of (33) is independent of T (this is just a question of computing
Sgoéxgl e(y, s)ydp) and then shows that this difference is zero for 0<Re (s)<1

Tsy=sT"
by lé,tting T go to oo in (35); the result for general s then follows by analytic

continuation.
As an application of (33) we can give a new definition of the functional

R. N. <Sr\@'dﬁ) defined above. Indeed, since the renormalized integral of an
Eisenstein series is zero, we can add to F an arbitrary Eisenstein series or linear
combination of derivatives of Eisenstein series without changing R. N(SF d/,z),

and by suitably choosing the linear combination we can make F grow sufficiently
slowly at infinity that its integral converges. Explicitly, for F as in (13), (14)
we define

o
‘Lm
then F and F, have the same renormalized integral over I'\§ but Fy(z) is O(y'/®
and hence actually integrable, so we have

36) R. N.(gr\bF(z)d y)=gr\@Fl<z)d “,

and this equation could be taken as an alternative definition of the renormaliza-
tion procedure.

h@=F&)— % C Ez ad;

2. Eisenstein series. Our next example is F(2)=E*(z, s1), s;,=C\{0, 1}.
Here a.(y)=e(y, s,), and since this is a finite linear combination of powers of
y (respectively powers of y times powers of log y if s;=1/2) we again have
C@p(y)=a,y) and R(F; s)=0. The data [, ¢;, @;, n; of equation (14) are given
according to (24) by /=2 and

i ci o g 7 - Cq o ny

1 *(2s4) 51 0 or 1 1 % 1
1

2 {*2s,—1) 1—s, 0 2 r—log 4rx 5 0
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for s,#1/2 and s;=1/2, respectively. Hence (ignoring from now on the special
case s;—=1/2) we find that equation (17) reduces to the assertion that

£2s)072s) | C*2s)CM2s—1) | CH2s,—1)0*2s) | C@si—DI*2s—1)

Si+s—1 $1—S —S1+s 1—s,—s
is holomorphic for s, s;#0, 1 (this is easily checked using the functional equa-
tion of {*(s)); the statement about Res,_,R(F, s) in the theorem gives S Fdp=0
9

for 0<Re (s;)<1 (i.e. another proof of equation (35)), equation (28) specializes to
(33) (with s, instead of s), and equation (19) is empty (since ®=max (Re (s,),
1—Re(sy)) is always =1/2). Finally, equation (27) becomes

([ B 9B sadpt(] (B 9B, so—ey, 90y, siddp
D 27

9-

_ C¥@2s)C*(2sy) LH@2s)T*(2s,—1)

§481-1 §—-8
(37) s+51_1 T ' + 8—31 T '
+C*(23—1)C*(251) TSI_S+C*(23—1)C*(231——1) Tiesesy
51—S 1—s—s; !

a formula known as the “Maass-Selberg relation” (see e.g. [3], Theorem 2.3.1).
The reader may amuse himself by comparing the functional equations, residues,
etc. on both sides of the identity (37), and also by working out the statement
of the identity when s=s; or 1—s; or when s or s; equals 1/2.

The Eisenstein series E*(z,’s) and E*(z, s;) are eigenfunctions of the Laplace
operator with distinct eigenvalues (for s;#s, 1—s) and hence the integral

Sr\@E*(Z’ s)E*(z, sy)dp should vanish identically. However, this integral is

divergent for all values of s and s,, so we have to find a suitable interpretation
of this statement. Formula (37), which with the terminology introduced earlier
can be written simply

R. N.(&F\&)E*@, Bz, s)dp)=0,

describes one possibility ; another, in view of the remarks at the end of Example
1, is to subtract from the product E*(z, s)E*(z, s,) a suitable combination of
Eisenstein series to make the integral converge, e.g. for Re(s)>max (Re(s,),
Re (1—s4)),

T*(@2s:—1)
L*(2sy)

Finally, we can use the result of this example to give a new definition of

SM(E@, EG, s)—E(z, s+s)— Bz, s+1—5))du=0.
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the Rankin-Selberg transform as a convergent integral in many cases. Indeed,
since the Rankin-Selberg transform of an Eisenstein series vanishes, we can
modify F by a linear combination of Eisenstein series and their derivatives
without changing R(F';s). In particular, replacing F by the function F; of (36)
will not change R(F;s) but will replace the number @:m?x (max (Re (ay),

Re (1—a;))) by @lzm?x (min (Re («;), Re (1—a;))) which is always <1/2; if all

a,; have real part distinct from 1/2 then ©,<1/2 and the last statement of the
theorem gives

R(F; s>=§mFl<z>E<z, e (6:<Re(s5)<1—0.),

where now the integral is convergent in the range stated.

3. Products of Eisenstein series. Our first example with R(F;s) not
identically zero is F(z)=FE*(z, s;)E*(z, s;), where s; and s, are complex numbers
different from 0, 1. To compute R(F;s) in this case we need the full Fourier
development of the Eisenstein series, not just the constant term; it is given by

(38) Ex(z, s)=e(y, S)+2\/7nng‘s,1/2(71)[{87”2(27-[]nly>227rin:n )

n#+o

where z,(n) is the sum-of-divisors function

39 om=In* 2 d*®* (neZ, n+0,vel)

in
a>e

and K,(t) the Bessel function
(40) Ky(t)zgje“”“h“ coshvudu (v, teC, Re (1)>0),

both of which are even functions of ». Taking s=s; and s=s, in (38) and
multiplying together the two expressions obtained, we find that the constant
term of F(z) is given by

41) ao(yy=e(y, sye(y, s:)+8y nzzlfsrilz(nﬁ'sr1/2(”)1(31—1/2(271'71y>K32—1/2<27fn_')’) .

The sum is of rapid decay, since the Bessel functions are, and the term e(y, s1)
-e(y, s,) is a linear combination of powers of y (respectively powers of ¥
times log y or log?y if s; and/or s, equals 1/2). Therefore F(z) satisfies the
conditions of the thecrem with

(42) o(y)=e(y, spe(y, S2),
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ie. {if s; and s, are #1/2) with /=4 and ¢;, a;, n; given by

i s o ng
1 C¥(2s)0*(2s2) sits: 0
(43) 2 C*(2s;—1)*(2sy) 1—=s14s, 0
3 C*2s)C*(2s,—1) 1+s:—s, 0
4 {*¥(25:—DL*(2s,—1)  2—s,—s, 0

Substituting (41) and (42) into (I5) we find

R(F; S):ggoys_l217-'31—1/2(71)732—1/2(71)K31—I/Z(Zﬂny>Ks2—1/2(2ﬂny)dy

=8<2n)-s( )

oo
n=1 0

Tsy-1/2(N)T 55— 172(0IM _s)(g Ksl_1/2(?)K32~1/2(2‘)2‘3‘1dt> .

‘The Dirichlet series in parentheses is equal to the product of zeta-functions

Cls+sits.—1E(s—s1+8)0(s 51— 5)0(s —s1—55-+1)/L(2s) ,

as one checks be expanding it in an Euler product and computing each Euler
factor as a geometric series (we leave the computation to the reader), and the
integral in parentheses is equal to

23‘3F< S+Sl—2}“32'—1 >F<s—szl+sz>r(s+szl—sz)r(s-—sl;sg—H >/F(s)

([1], 6.8 (48)), i.e. to the corresponding product of gamma factors. Hence
(44) R¥(F; $)=C*(s+51+8s—DL*(s — 51+ 5:)0* (s + 51— 8) K (s —s1—s.+1)..

From this explicit formula we can easily check the various statements of the
theorem, viz. that R*(F;s) is holomorphic except for simple poles at the ten
points 0, 1, a;, and 1—a; with

Res;_o, R¥(F; s)=¢:L*(2a;—1), ReSei.oa,R¥F; s)=—c{*(2a:)

(a; and ¢; as in (43)). Substituting (43) and (44) into equation (15), we find the
identity

gg@ E*(z, $)E*(z, s)E*Gz, spdp

45
@) +Sg (E*(z, sEXz, s:)E*(z, s)—e(y, sie(y, sely, s)dpy
D=Dp
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=*(s 481+ 5, — DLHF(s =815 (sHs1—52)0 ¥ (s —81—52+1)
TI+.7:1+J:2—1

F RO RO @)

where the sum is over the eight.combinations of values

x=s or 1—s, x,=8; or 1—sy, X3=S8, Or 1—s5,.

Equation (45) states that R.N. (SE*(Z, S)E*(z, 1) E*(z, s5)d y) equals the

product of zeta-functions in (44) for all values of s, s;, s;; as in the last two

examples, we can replace the renormalized integral by convergent integrals in

certain domains, e.g. for Re (s) sufficiently large by
CH@x)C*2xs)

SSF\@ E*(z, S)E*(z, Sl)E*(Z, s2>_C*(23)x§25‘22;k2x1+2x2)

E*(z, s+x1~l—x2)>d,u
(same conventions on x,, x, as before) or by

[ (B 927G 5000 Sy
I'\g

P sl *
e C*(251—|—2X1) E (Z> S+X1)>E (Z) SZ)dfl-

We can think of equation (45) as a generalization of the Maass-Selberg relation
(37), which can be recovered from it by computing residues at s,=1.

After the last three examples it is natural to ask for the renormalized
integral of a product of four or more Eisenstein series. The function F(z)

= _lnIlE*(z, s;) satisfies the conditions of our theorem (with ¢(y)=TIe(y, s;)) for
52
any n and any s;=C\{0, 1}, so R. N.(SF(Z) E(z, s)dp) can be written as a Mellin

transform. But already for n=3 this transform cannot be computed in closed
form since this would involve evaluating sums like

> Ersl,1,2(711)732_1/2(112)?53_1/2(711—!—n2)
n1=1 np=1

'Sstl_1/2(7111‘)Ks2_1/2(7121‘)[(33_1/2((711+ n )t "2dt

which cannot be reduced to Dirichlet series as was done for n=2.

4. Restrictions of Hecke-Eisenstein series (I am indebted to Carlos Moreno
for suggesting this application of the theorem). If K is a totally real number
field of degree n, then following Hecke one can define Eisenstein series
Ex(zy, », 243 8), E¥(zy, -+, 2a; 8) (z2;€9, s€C) which are invariant under the
action
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a(l)zl+b(1) a(n)zn_l_b(n)
z= (21, Sty Zn) '_)< [$5) @ T T )
cVzy+d c™z,+d™
(a, b, ¢, d integers of K, ad—bc=1, x¥P=7 " conjugate of x)
of the Hilbert modular group. Specializing to z,= - =z,=z gives functions on
SL(Z)\ to which our theorem applies. The Eisenstein series are defined by

Ex(z, s)= 2 Ex, 4(z, 5), %z, s)= X E% Az, 3);
i AeC : 4eC
here C is the ideal class group of K and, for an ideal class A=C,

Ex 4z, )=N@® = - Im ()’

(@, ) g arunivs 31 (aPz;4-BO)2s (Re (s)>1)

(a=any ideal in A~!, sum over non-associated pairs of numbers a, f=a with
greatest common divisor a), while E% 4 is defined by the same series but with-
out the restriction (¢, 8)=a and with a factor #-*I'(s)"D* (D=discriminant of
K) in front. The series £ and E* are related by

ki@ )= Tk asC)Ex sz 8),  Ei(z, 9=Ck@IEx(, 9),
where

kA= (5) DT N@©, CHO=3 G u(5)

a integral

denote the zeta-function of an ideal class A and the Dedekind zeta-function of
K together with their gamma factors. We have the functional equations
% 49)=Ck v-14-1(1—5), TE()=Ck(1—s), (% u(z, S)=FE% s-14-1(1—5),
Eﬂ;{(Z: S):Eﬂ;((Zy l'—s)

(b=different of K) and the Fourier expansion
E%(z, s)=C(@2s)yi -+ ya+LhCs— Dy y37°

T2 P T w60 T Kanaa@ 69|y et
S i=
£20
where z;=x;-+iy; and 7£,,,(a) (a an integral ideal) is defined as the sum over
all integral divisors b of a of N(a)*~Y2/N(b)**-*. A similar expansion holds for
E% , if we replace {% by % 4 and 784, by &4 (defined by summing only
over b= A). It follows that the function

Fr o@=E%(z, -, 2), s (s:€C, 2€9)

n
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satisfies the condition of the theorem with

P(9)=Ck2s2)y™ 1 +Lk2s — 1)y,

so the theorem implies:

PROPOSITION. Let K be a totally real number field of degree n, s;,=C. Then
the sum

W6 Rls, s0=2" 3 < sulén)|”
%0
Tré=0

1L Ko sQr |69 )yt eni-2dy

n
0 j=1

converges for s€C with Re(s)>n max (Re (s,), Re (1—s4)) and has a meromorphic
continuation in s; the function R%(s, s))=C*2s)Rx(s, si) has (at most) simple
poles at s=0, 1, nsy, n(l—sy), 1—ns, and 1—n(l—s,), and satisfies the functional
equation RE(s, s)=R%(1—s, s;) (as well as the obvious invariance under s;—1—s,).
The residue of R%(-, sy) at s=ns, is £E(2s,); the residue at s=11is 1/2 times the
renormalized integral over I'\D of the restriction to the diagonal of the Hecke-
Eisenstein series E%(zy, -+, 2z s1). Similar staiements hold for the function
Ry 4 obtained by replacing =% by 754 in (46).

The case n=1 corresponds to our example 2; the case n=2 contains (if we
take for K the algebra @XQ instead of a real quadratic field) the case s;=s,
of Example 3. For n=2 we can explicitly compute R(s, s,): writing E=m/~/D
(D the discriminant of the real quadratic field K) we find

Ras, s9= 35 o8 sss0m)m=*-82/ v/ D Koy a2y y

the Dirichlet series is easily computed to be
C(2s) (s +25:— 1)L k(s)C(s—2s,+1)

and the second factor to be

weeDal(e) (5 L s )T ()Tt -s)

(compare the case s;=s, of Example 3), so
R%(s, s)=C*(s+2s:—1C¥(s—2s,--1)C%(s)

and similarly for R¥% , with % replaced by (% 4. For n=3, we cannot com-
pute Ry explicitly for the same reasons as in the case when F was a product
of n Eisenstein series.
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5. Petersson scalar product for non-cusp forms. If f(z)= i}oane“"“ and

glz)= ibne“f"’ are holomorphic modular forms of weight £ on SLy(Z), with
n=0

at least one of them a cusp form (i.e. ao.by=0), then the Petersson scalar prod-

uct (f, g) is defined by

— ok .
(@) f, 9=\, S @a@y du;
according to Rankin [4], this can also be computed as

(48) (f, 9=+ (k=D)1-Um)* Resii Ly, 5(s),

where L  (s)= § azban~S. If neither f nor g is a cusp form, then the integral
n=1

in (47) diverges, but the /-invariant function F(z)= yEf(2) @ is renormalizable
and we could define (f, g) as its renormalized integral over I\. Then our
theorem shows that (48) still holds, so we have the various equivalent definitions

k-1

— — - - T
7, =\], r@EEy ] | (F@F@—adoytdp—adi—; (any T)
. 7 050
=lim (1), 7@ a2 T
=[], (@G —aibiBle, ENdp

_z (k=) 2, _@uba
=3 (dn)t ReSS=k(,§1 e )

(Note that in the last line the residue can only be defined after continuing the
series analytically.)
We compute this value for f and g both equal to the Eisenstein series

B

Gile)=——,

4+ 210;2_1(11)@2“’” (k=4, k even)

(this is sufficient since any modular form is a multiple of G, plus a cusp form).
With F(z)=y*%|G(2)|* we find

B}

B2 =)
ao(y)=4—kk;yk+ :élak_l(n)zy"e"“”” ,  oly)= 10t ¥k,

R(F; s)= glok_l(n)zn—s-kﬂ.S:’e-myykﬂ-zdy
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_ C0yClsA-k—1){(s—k+1)
C@s)
:LGk,Gk(s_!—k_l)

{@m) (s k1),

RHEF; sy=g k1 22001 () (s 4+ b — D) (s + b —1)(s— b +1)

=DMy I (5 ) (552 SO+ D+ 1)

The last formula puts the functional equation into evidence and shows that
R*(F'; s) has simple poles at s=0, 1, £ and 1—#, in accordance with our theo-
rem; computing the residue at s=% we find

Gy, G)=R. N.(§F(z>dy):2 Res,; R*(F; s)

_ (=D (kD)1

ﬂ'k 22k—1

= (-1 B ED L 1),
T

CHRICH2—k)

Thus there is a natural extension of the Petersson scalar product from the space
of cusp forms to the space of all modular forms, and this scalar product is
always non-degenerate, but it is positive-definite if and only if #=2 (mod 4).

6. Functions constructed from the Weil representation. In [8] it was
shown that, for @ any rapidly decaying function on R and D an integer which
is congruent to 0 or 1 (mod4) and not a perfect square, the function

2
LD@(Z):(a b2> 73 @<M) (e=x+iyed)
P iare

is a Itinvariant function of rapid decay whose Rankin-Selberg transform is
divisible by {(s); the fact was used to give a characterization of the zeros of
the Riemann zeta-function. If D is a square, then L,®(z) is the sum of Cy and
a function of rapid decay as y—oo, where

1 o

gs_w@(t)dt D=0,
C=

S:@(z‘)dt D>0, VD eZ,

and in order to make sense of the assertion we had to assume that the integral
of @ vanished. With the definition made in this paper, this assumption is not
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needed ; we can define the Rankin-Selberg transform in a uniform way and find
that R*(Lp®, s)/C*(s) is entire for any D.

7. Selberg trace formula. The Selberg trace formula is the formula for
the trace of a Hecke operator T on a space of cusp forms obtained by constructing

a kernel function K{zi, z.) for T and then computing SF\ %K(z, z)dp. In [6] and

[7] it was shown how to derive this formula in the holomorphic and non-holomor-
phic cases, respectively, by computing the Rankin-Selberg transform of K(z, z) and
then taking the residue at s=1. The function K(z, z) is of rapid decay, but has
a natural decomposition as %Kc(z)—t—Kw(z), where the sum runs over conjugacy

classes in I’ and K. describes the contribution from the cusp. The functions
K, (except for C elliptic) and K.. are not of rapid decay but are renormalizable
(their growth at oo is typically of the type Ay log y--B y+4O(log ¥)), s0 we can
compute tr (T) as the sum of the renormalized integrals of the K, and K., and
then choose for each case whether it is advantageous to calculate this integral
directly (e.g. for C elliptic) or by computing. the Rankin-Selberg transform and
its residue. Each of the functions K¢ is of the type discussed in Example 6
above (with D=t*—4, where =+t is the trace of the elements of C), so the
Rankin-Selberg transforms R*(K, s) can be computed explicitly and are divisible
by *(s). The function K. is zero in the holomorphic case; in the case treated
in [7], namely non-holomorphic modular forms of weight 0 (Maass wave forms),
it is given by

3. /1 1 (= 1. 1 .
K@= 1(5)= 5=\ Bl 5 ir)B(z 5 —ir)ht)dr,
where A(r) (Selberg transform) is a holomorphic function of rapid decay in a
strip around the real axis, so the results of Examples 1 and 3 give

o F(s+2r)H(s—2ir)
—oo (F(12i7)H(1—24r)

R¥(Key )= - 0 M7,

again divisible by {*(s). (Here the function K(zy, 22) equals 2 h(r;)f{z0f(z2),
7

where {f;} is an orthonormal basis for the space of Maass cusp forms of weight

0 and r3+1/4 the corresponding eigenvalues of the Laplacian, so we get the

identity 3 h(pR*([f;1% s)= ;R*(KC, s)+ R¥(K., s), from which the divisibility
7

of each function R*(|f;]% s) by {*(s) can be deduced.) The point is that, using
the method of this paper, we can calculate the various Rankin-Selberg transforms
R*(Kg, s), R*(K., s) directly, whereas in [6] and [77 it was necessary to first
calculate the constant terms of K, and K. and then split them up into pieces
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and recombine the pieces into functions of rapid decay. In this way some of
the analytic difficulties in the proof of the Selberg trace formula (or, more gen-

erally, in the calculation of SK(Z, z)E(z, s)dy) are avoided.

(1]
£2]
{31
(4]
5]
6]

£71]

[8]
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