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HIGHER SPHERICAL POLYNOMIALS

Tomoyoshi Ibukiyama and Don Zagier

Abstract. In this paper, we study a new class of special functions. Specifically, we study a vector
space P(n)(d) (n ∈ N, d ∈ C) of polynomials P (T ) in n × n symmetric matrices T = (tij). For

integral d ≥ n these are the polynomials on (Rd)n that are invariant with respect to the diagonal
action of O(d) and harmonic on each Rd, and for general d they are the polynomial solutions of a
certain system of differential equations. For n = 2 these are the classical Legendre and Gegenbauer
polynomials, but for n > 2 they are new and are interesting for several reasons, including an
application to the theory of Siegel modular forms and the fact that for n = 3 the associated system
of differential equations is holonomic. When n = 3, each homogeneous component of P(n)(d) is

one-dimensional, so there is a canonical basis. Even here the structure of the polynomials turns out
to be very subtle. For n > 3 there is no obvious basis. We construct two canonical bases, dual
to one another, and a generating function (generalizing the classical one for n = 2, and algebraic
if n = 3 but not in general) for one of them. We also provide tables that illustrate some of the
idiosyncracies of the theory.

Introduction

For two natural numbers n and d and a scalar product ( , ) on Rd, we have a map βn from
(Rd)n to the space Sn of real symmetric n× n matrices, given by

βn : (x1, . . . , xn) 7→ T = (tij)1≤i,j≤n , tij = (xi, xj) . (1)

Thus any polynomial P on Sn defines a polynomial P̃ = P ◦ βn on (Rd)n. If d ≥ n, then we

denote by P(n)(d) the space of polynomials P on Sn for which P̃ is harmonic with respect to
xi for each i = 1, . . . , n. For each multidegree a = (a1, . . . , an) ∈ (Z≥0)

n we denote by Pa(d)

the subspace of P ∈ P(n)(d) for which P̃ is a homogeneous of degree ai with respect to xi for
each i = 1, . . . , n. (Here the superscript “(n)” can be omitted since n is just the length of a.)
Later in the paper we will generalize the definitions of both P(n)(d) and Pa(d) to arbitrary
complex values of d. The elements of P(n)(d) will be called higher spherical polynomials. There
are several motivations for studying them:

(i) If n = 2, then P(a1,a2)(d) is one-dimensional if a1 = a2 (it is 0 otherwise) and is then
spanned by a polynomial in t11t22 and t12 which is the homogeneous version of one of the classi-
cal families of orthogonal polynomials (Legendre polynomials if d = 3, Chebyshev polynomials if
d = 2 or d = 4, and Gegenbauer polynomial for d arbitrary). These classical polynomials occur
in many places in mathematics and mathematical physics and have many nice properties: differ-
ential equations, orthogonality properties, recursions, generating functions, closed formulas, etc.
It is natural to try to generalize these.

(ii) The polynomials in P(n)(d) have an application in the theory of Siegel modular forms.
This is described in detail in [7] (similar differential operators are given in [2] and [4]) and will
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not be pursued in this paper, but was our original reason for studying this particular space of
polynomials. Briefly, the connection is as follows. If P ∈ Pa(d) (d ≥ n) and if

F (Z) =
∑

T

c(T ) e2πiTr(TZ) (Z ∈ Hn = Siegel upper half-space)

is a holomorphic Siegel modular form of weight d/2, then the function

P
(1 + δij

2

∂

∂zij

)
F (Z)

∣∣∣∣
Hn

1

=
∑

T

c(T )P (T ) e2πi(t11z1+...+tnnzn) (z1, . . . , zn ∈ H1) (2)

is an elliptic modular form of weight d/2+ai in zi for each i = 1, . . . , n. (By considering images
g(Hn) ⊂ Hn, where g is a suitable element of Sp2n(R), one also gets maps from Siegel modular
forms of degree n to Hilbert modular forms on totally real number fields of degree n, or to
products of Hilbert modular forms on several totally real fields with degrees adding up to n.)
We can understand why this should be true by taking F to be a Siegel theta series, say

F (Z) =
∑

(x1,... ,xn)∈Ln

e2πiTr( βn(x1,... ,xn)Z)

where L ⊂ Rd is a lattice on which the quadratic form (x, x) takes rational values. Then the
function defined by (2) is the series

∑

x1∈L

· · ·
∑

xn∈L

P̃ (x1, . . . , xn) q
(x1,x1)
1 . . . q(xn,xn)

n (qi = e2π
√−1 zi)

and for P ∈ Pa(d) this is a modular form of weight d/2 + ai in zi by the classical Hecke-
Schoeneberg theory of theta series with harmonic polynomial coefficients. A deeper direct
application of our theory to critical values of triple L function is found in [10] (see also [5])
and another direct application is given in [3]. There are various other theories of differential
operators and applications of a similar kind (for example, see [8], [9], [11]).

(iii) The spaces Pa(d) can be looked at from the point of view of representation theory.

Specifically, the map P 7→ P̃ gives an isomorphism between Pa(d) and the space of “invariant
harmonic polynomials,” i.e., polynomials in n variables xi ∈ Rd which are harmonic and ho-
mogeneous (of degree ai) in each xi and invariant under the simultaneous action of O(d), the
orthogonal group of the scalar product ( , ), on all xi; this space can be analyzed in terms
of the classical representation theory of O(d). However, apart from a brief mention of this in
connection with the dimension formula proved in §2, we will not use this interpretation, but
will work directly with the functions P on Sn, since this is more elementary, gives more explicit
results, and is applicable in greater generality.

(iv) If n = 3, then the dimension of Pa(d) is always 0 or 1, so that the higher spherical
polynomials are particularly canonical in this case. The higher spherical polynomials of varying
multidegree give an orthogonal basis of L2 functions in three variables with respect to a certain
scalar product, and the coefficients of these polynomials also turn out to be combinatorially very
interesting expressions, including as special cases the classical 3j-symbol (or Clebsch-Gordan
coefficients) of quantum mechanics.

(v) In a sequel to this paper [12], we will show that the system of differential equations defining
the higher spherical polynomials (generalized Legendre differential equations) in the case n = 3
is equivalent to an integrable Pfaffian system of rank 8, so that there are precisely eight linearly
independent solutions, generalizing the Legendre functions of the first and second kinds in the
classical case n = 2. In the general theory of differential equations, such systems are very
rare: systems of linear partial differential equations with polynomial coefficients generally have
a solution space which is either zero- or infinite-dimensional, and it is non-trivial to construct
Pfaffian systems satisfying the necessary integrability conditions. The system arising from the
study of higher spherical polynomials is therefore also interesting from this point of view.
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The contents of the paper are as follows. Chapter I describes the general theory, for arbitrary
n and d. In the first two sections, which are basic for everything that follows, we write down
the differential equations defining the space Pn(d) (now for any d ∈ C), prove a formula for
the dimensions of its homogeneous pieces Pa(d), and construct a specific basis PM

ννν (“monomial
basis”) characterized by the property that its restriction to the subspace t11 = · · · = tnn = 0
consists of monomials. We also give a brief description of the behavior of Pn(d) at certain special
values of d (in 2Z≤0) where its dimension changes. Sections 3 and 4 contain the definition of a
scalar product with respect to which the various spaces Pa(d) are mutually orthogonal, gener-
alizing one of the basic properties of the classical polynomials for n = 2, and of a Lie algebra g,
isomorphic to sp(n,R), of differential operators on polynomials on Sn. This is then applied in §5
to construct two further canonical bases of Pn(d), the “ascending” and the “descending” basis,
whose elements are inductively defined by the property that two adjacent basis elements are
related by the action of a specific element of the universal enveloping algebra of g. The first of
these two bases is proportional in each fixed multidegree to the monomial basis, and the two
bases are mutually dual with respect to the canonical scalar product. Finally, in §6 we study
the situation when d is a positive integer less than n and describe the relationship between the

spaces Pn(d) and {P | P̃ is harmonic in each xi}, which now no longer coincide, in this case.

Chapter II is devoted to explicit constructions of higher spherical polynomials. In §7 we use
the relationship between O(4) and GL(2) to construct specific elements of Pn(d) when d = 4 and
show that they can be obtained as the coefficients of an explicit algebraic generating function.
The next section, which is quite long, concerns the case n = 3. This case is especially interesting
both because it is the first one beyond the classical case and because the dimension of Pa(d) here
is always 0 or 1, so that the polynomials are especially canonical. Specifically, the dimension
is 1 if and only if a1+ a2+ a3− 2max{a1, a2, a3} is even and non-negative, i.e., if we can write

a1 = ν2 + ν3, a2 = ν1 + ν3, a3 = ν1 + ν2 (3)

for some triple ννν = (ν1, ν2, ν3) of integers νi ≥ 0, which we then call the index of the polynomial.
In Subsection A we generalize the generating function given for d = 4 in §7 (now specialized
to n = 3) to construct an explicit generating function for n = 3 and generic values of d ∈ C
whose coefficients give polynomials Pννν generating the 1-dimensional space Pa(d). The next
three subsections give explicit formulas for the scalar products of these special polynomials,
their relations to the three general bases (monomial, ascending and descending), the recursion
relations satisfied by their coefficients, and for the coefficients themselves, while Subsection E
discusses the geometry and symmetry of the 3-dimensional space on which these polynomials
naturally live. Section 9 contains the construction of generating functions for arbitrary n and d
whose coefficients span the spaces of higher spherical polynomials of any given multidegree (and
in fact turn out to be proportional to the elements of the descending basis). We also describe how
these coefficients can be obtained inductively by the repeated application of certain differential
operators and give a number of special cases and explicit formulas. Finally, in §10 we study the
bases of higher spherical polynomials coming from these generating functions in the case n = 4
and show that the generating functions themselves, which were given by algebraic expressions
for n ≤ 3, now usually are not algebraic, but that for even integral values of d ≥ 4 they become
algebraic after being differentiated a finite number of times. The paper ends with some tables of
higher spherical polynomials and their scalar products for 3 ≤ n ≤ 5, revealing many interesting
regularities and irregularities of these objects.

A list of the principal notations used (omitting standard ones like N = Z>0) is given at the
end of the paper. Theorems are numbered consecutively throughout the paper, but propositions,
proposition-definitions, lemmas and corollaries are numbered separately in each section, and not
numbered at all if there is only one of them in a given section. Readers who are primarily
interested in the n = 3 case can read just §8, in which we have repeated a few definitions and
notations so that it can be read independently of the preceding sections.
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Finally, we should perhaps also say a few words about the history of this paper, since it
has been in preparation for a very long time and earlier versions circulated for several years
and were quoted by several authors. The project originally started well over twenty years
ago with a letter sent by the second author to B. Gross and S. Kudla in connection with
a plan (later abandoned) to compute the arithmetic height pairings of modularly embedded
curves in the modular 3-fold (H/SL(2,Z))3. This letter concerned spherical polynomials on
GL(2)\GL(2)3/GL(2), corresponding to the case n = 3, d = 4 of the present paper, and gave
for that case the generating function for the polynomials and some explicit calculations of their
coefficients (now given in Sections 7 and 8). During the second author’s visits to Kyushu in the
early 1990’s the first author suggested the formulation in terms of orthogonal groups and the
generalization to arbitrary n and d, developed a more general theory (later published separately
in [7]), and obtained a number of the results given in this paper, including the generating function
for n = 3 and arbitrary d. The preliminary version mentioned above was primarily concerned
with the case n = 3 and corresponded to parts of Sections 1–3 and all of Sections 7 and 8, while
the remaining results in Sections 2 and 3 and all the material in Sections 4, 5, 6, 9 and 10 was
found and written up much later. We delayed publication for many years as new results for
higher n emerged, in order to be able to present a more complete and coherent picture.

The first author would like to thank the Max-Planck-Institut für Mathematik in Bonn and
the Collège de France in Paris, and the second author the mathematics departments of Kyushu
University and Osaka University, for their repeated hospitality during the period when this work
was being carried out.
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Chapter I. General Theory

§1. The generalized Legendre differential equation

The definition of Pa(d) which was given in the introduction makes sense only if d is a positive

integer and gives a finite-dimensional space only if d ≥ n, since for d < n the map P 7→ P̃
is not injective (because the (xi, xj) are then algebraically dependent, the relations being the
vanishing of all (d + 1) × (d + 1) minors of T ). In this section we generalize the definition of
Pa(d), first to d < n and then even to complex values of d, by thinking of the elements of Pa(d)
as polynomial solutions of a certain system of differential equations generalizing the classical
Legendre equation. This system of differential equations will be used in §2 to calculate the
dimension of Pa(d). As illustrations of the general situation we discuss the two examples n = 2,
a = (a, a), and n = 4, a = (2, 2, 2, 2) in some detail. At the end of the section we also give
a brief discussion of the inhomogeneous version of the higher spherical polynomials and their
differential equations.

First, we must say something about the coordinates on the space Sn. Of course we could
use the n(n + 1)/2 independent numbers tij with 1 ≤ i ≤ j ≤ n, but this does not respect the
symmetry. Instead, we will use all n2 components tij of T ∈ Sn as variables, with tij = tji, and
will write elements1 of C[Sn] symmetrically as polynomials in the variables

√
tijtji (= tij), i.e.

we take as a basis for C[Sn] the set of monomials Tννν :=
∏n

i,j=1 t
νij/2
ij with ννν ranging over the set

N = Nn =
{
ννν = (νij)1≤i,j≤n | νij = νji ∈ Z≥0 , νii ≡ 0 (mod 2)

}

of even symmetric n× n matrices with non-negative entries. There is a canonical isomorphism
C[Sn] ∼= CN given by mapping a polynomial

∑
Cννν T

ννν to its set of coefficients {Cννν}. For the
differentiation operator with respect to tij we take ∂ij = (1 + δij)∂/∂tij . (Note: We had to
do something similar in eq. (2) for the same reason, namely, that the coordinates zij are not
independent variables. There we also included a normalizing factor 1/2, because for Siegel
modular forms the diagonal elements are the most important ones and one wants a natural
generalization of n = 1, but in our situation the non-diagonal entries of the matrix are equally
important and we have chosen a normalization which preserves the lattice of polynomials with
integral coefficients.) The action of ∂ij on our chosen basis of C[Sn] is given by Tννν 7→ νij T

ννν−eij .
Here eij denotes the n × n matrix with (a, b)-component δiaδjb + δibδja(i.e., the matrix with
(i, j) and (j, i) entries equal to 1 and all other entries equal to 0 if i 6= j, and with (i, i)-entry 2
and all other entries 0 if i = j), so that N is the free abelian semigroup generated by the eij .

We define the multidegree of the monomial Tννν to be the vector ννν·1 ∈ Zn
≥0, where 1 is the

vector of length n with all components equal to 1, and denote by C[Sn]a the subspace of C[Sn]
spanned by all monomials of given multidegree a. Thus

C[Sn]a ∼= CN (a)
(
N (a) := {ννν ∈ N | ννν·1 = a}

)

with respect to the above isomorphism C[Sn] ∼= CN , while more intrinsically

C[Sn]a =
{
P ∈ C[Sn] | P (λTλ) = λaP (T ) for all λ ∈ diag(Cn)

}
, (4)

where λa =
∏

λai

i for λ = diag(λ1, . . . , λn). For P ∈ C[Sn]a and (Rd, ( , )) as in the introduc-

tion, the function P̃ : (Rd)n → C has multidegree a . Hence, if d ≥ n (so that the map P 7→ P̃ is

1Abusing notation slightly, we will use K[Rd] or K[Cd] (or more generally K[V ]) to denote the algebra of

polynomials in d variables (or more generally of polynomials on an arbitrary vector space V ) with coefficients in
a field K .
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injective), then the space Pa(d) as defined in the introduction is a subspace of the space C[Sn]a.
Specifically, it is the space of all polynomials P ∈ C[Sn]a for which the polynomial P̃ (which is
now automatically multihomogeneous of multidegree a in the x’s) is harmonic with respect to
each xi. We would like to define Pa(d) for all values of d as a subspace of P ∈ C[Sn]a. To do this,

we must express the condition that P̃ is multiharmonic directly in terms of the polynomial P .
The answer will be a system of differential equations with coefficients depending polynomially
on d; these will then make sense for any complex number d.

The calculation is straightforward. The harmonicity conditions are ∆iP̃ = 0 for 1 ≤ i ≤ n,
where ∆i denotes the Laplacian2 with respect to the variable xi ∈ Rd (and with respect to the
chosen scalar product in Rd). Let xiα (α = 1, . . . , d) be the coordinates of xi in a coordinate
system for which the scalar product (and hence also the Laplacian) is the standard one. Then
tij =

∑
α xiαxjα, so

∂P̃

∂xiα
=

n∑

j=1

xjα

(
∂ijP

)∼
,

with ∂ij defined as above. Applying this formula a second time, we get

∂2P̃

∂x2
iα

=
(
∂iiP

)∼
+

n∑

j,k=1

xjα xkα

(
∂ij∂ikP

)∼
,

and summing this over α gives ∆i(P̃ ) = (DiP )∼, where

Di = D
(d)
i = d ∂ii +

n∑

j,k=1

tjk ∂ij∂ik (1 ≤ i ≤ n) . (5)

(Recall that ∂ii = 2 ∂/∂tii.) We therefore have the following:

Proposition-Definition. For n ∈ N, a ∈ Zn
≥0, and arbitrary d ∈ C, set

Pa(d) =
{
P ∈ C[Sn]a | D1P = . . . = DnP = 0

}

with Di = D
(d)
i as in (5). For integral d ≥ n, this agrees with the definitions given in the

introduction.

Remark. The space C[Sn]a is itself the solution set of the system of linear differential
equations EiP = aiP (1 ≤ i ≤ n), where Ei is the Euler operator

∑n
j=1 tij∂ij . Thus one

could also define Pa(d) as the subspace of C[Sn] annihilated by the operators D
(d)
i and Ei − ai

for 1 ≤ i ≤ n. We also observe that the spaces C[Sn]a and Pa(d) are 0 unless the integer
a·1 = a1 + · · ·+ an (total degree) is even. From now on we will usually assume this.

Since the space Pa(d) is always a subset of C[Sn]a, its dimension for any d ∈ C is at most
N(a) := #N (a), the number of nonnegative even symmetric matrices with row sums a1, . . . , an.
We will show in §2 that (except possibly for d belonging to a finite set of nonpositive even
integers) the dimension of Pa(d) is independent of d and equals N0(a), the cardinality of the set
N0(a) =

{
ννν ∈ N (a) | νii = 0 (∀i)

}
. We illustrate this with two examples.

Example 1: n = 2 . In this case the operator t11D
(d)
1 − t22D

(d)
2 acts on polynomials of

bidegree (a1, a2) as multiplication by (a1 − a2)(a1 + a2 + d− 2), so if d is a positive integer, or

2Note that, since everything is purely algebraic, we could also work over C rather than R, but the condition

for an element of C[(Cd)n] to be harmonic in the ith variable zi = (zi1, . . . , zid) ∈ Cd would still be with respect
to the complexified real Laplacian

∑

α ∂2/∂z2iα, not the complex Laplacian
∑

α ∂2/∂zi,α∂z̄i,α .
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indeed any complex number except 2−a1−a2, then Pa(d) can be non-zero only if a = (a, a) for
some a ∈ Z≥0, as was already mentioned in §1. If a = (a, a), then N (a) is the set of matrices
( 2l a− 2l
a− 2l 2l

)
with 0 ≤ l ≤ a/2, so N(a) = [a/2] + 1, while N0(a) contains only the matrix

( 0 a
a 0

)
, so N0(a) = 1. If P (T ) =

∑[a/2]
l=0 cl(t11t22)

l(t12t21)
(a−2l)/2 is a polynomial in C[S2], then

we find after a short calculation that each of the two equations D
(d)
1 P = 0 and D

(d)
2 P = 0 is

equivalent to the recursion

4l(a− l +
d

2
− 1) cl + (a− 2l + 2)(a− 2l + 1) cl−1 = 0 (1 ≤ l ≤ [a/2] )

and that this recursion has a one-dimensional space of solutions for every complex number d,
even though the recursion itself behaves slightly differently for certain exceptional values of d
(namely, the even integers in the interval [4− 2a, 2− a]). Thus the dimension of Pa(d) is always
equal to N0(a) = 1, as claimed, with the generator of the space being the homogeneous form of a
Gegenbauer polynomial (respectively a Legendre polynomial if d = 3 or a Chebyshev polynomial
of the first or second kind if d = 2 or 4). We also see in this example that the dimension formula
dimPa(d) = N0(a) fails in the exceptional case d = 2 − a1 − a2, the simplest example being
a = (2, 0) and d = 0, when Pa(d) contains the polynomial t11 and hence has dimension N(a) = 1,
whereas N0(a) = 0. In fact, P(a1,a2)(2−a1−a2) has dimension 1 for any a1, a2 ≥ 0 with a1 ≡ a2
(mod 2), while N0(a1, a2) = 0 unless a1 = a2.

Example 2: n = 4, a = (2, 2, 2, 2) . In this case N(a) = 17, a basis for C[Sn]a being given
by the monomials t11t22t33t44, t11t22t

2
34, t11t23t34t42, t13t14t23t24, t

2
12t

2
34 and their permutations

(1 + 6 + 4 + 3 + 3 = 17). The system of differential equations D1P = D2P = D3P = D4P = 0
imposes 4 × 5 = 20 conditions. (For instance, D1 maps P to the 5-dimensional space spanned
by t22t33t44, t22t

2
34, t33t

2
24, t44t

2
23, and t23t34t42.) A priori one would not expect a system of 20

linear equations in 17 unknowns to have any solutions at all, but our claim dimPa(d) = N0(a)
implies that there should in fact be N0(a) = 6 linearly independent ones, i.e. the rank of the
20× 17 matrix of coefficients should be only 11. Writing down this matrix, we find that this is
indeed the case and that the solution space is spanned by the following:

i) (t11t22 − d t212)(t33t44 − d t234), (t11t33 − d t213)(t22t44 − d t224), (t11t44 − d t214)(t22t33 − d t223) ,

ii) t12t34(t13t24 − t14t23), t14t23(t12t34 − t13t24), t13t24(t14t23 − t12t34) ,

iii) t11t23t34t42 + t22t13t34t41 + t33t12t24t41 + t44t12t23t31 − (t212t
2
34 + t213t

2
24 + t214t

2
23)− d t12t13t24t34 .

(This list actually contains seven solutions, but the three in group (ii) have sum zero and we
have given all three only to preserve the symmetry, while the solution (iii), although written
asymmetrically, is symmetric in i = 1, . . . , 4 modulo linear combinations of the solutions (ii).)

We end this section by saying something about the inhomogeneous versions of our higher
spherical polynomials. In the classical n = 2, the polynomials in Pa(d) (here a = (a, a) for some
integer a ≥ 0) are interpreted as polynomials of one variable via the correspondence

P ∈ P(a,a)(d) ⇒ P

(
t11 t12
t12 t22

)
=

(
t11t22

)a/2
p

(
t12√
t11t22

)
, p(t) = P

(
1 t
t 1

)
,

in which case the two differential equations defining Pa(d) are equivalent to a single differential
equation (Legendre or Gegenbauer differential equation) for the polynomial p(t). In the same
way, for n > 2 we can pass back and forth via homogenization and dehomogenization between the

7



spaces of multihomogeneous polynomials of multidegree a on Sn and polynomials of multidegree
≤ a and multi-parity a on S1n =

{
T ∈ Sn | tii = 1 (∀ i)

}
, the correspondence being given by

P ∈ C[Sn]a ↔ p = P
∣∣
S1
n

∈ C[S1n] , P (T ) = δ(T )a/2 p
(
T (1)

)
,

where δ(T )a/2 =
n∏

i=1

t
ai/2
ii , T (1) =

(
τij

)
, τij =

tij√
tiitjj

.
(6)

(The conditions on the degree and parity of p ensure that the function of T defined by the
expression on the right is a polynomial.) Just as in the classical case, we have (eq. (10) below)
that every polynomial on S1n is the restriction of a unique higher spherical polynomial (element
of Pn(d)). More interestingly, the system of differential equations in n(n+1)/2 variables defining
the space Pa(d) will correspond to a system of n diffential equations in the n(n−1)/2 coordinates
of S1n. For instance, for n = 3, if we define coordinates ti on S13 by

S13 ∋ T =




1 t3 t2
t3 1 t1
t2 t1 1


 (7)

(so that t1 = τ23 etc.), then the condition on a polynomial Q(t1, t2, t3) to be the restriction to
S13 of an element of Pa(d) is that Q satisfy the system of differential equations given by

(1− t22)
∂2Q

∂t22
+ 2 (t1 − t2t3)

∂2Q

∂t2∂t3
+ (1− t23)

∂2Q

∂t23

− (d− 1)
(
t2
∂Q

∂t2
+ t3

∂Q

∂t3

)
+ a1(a1 + d− 2)Q = 0

(8)

and its two cyclic permutations. This system of differential equations will be studied in detail
in [12], while some special properties of the coordinates (t1, t2, t3) defined by (7) for the case n = 3
will be discussed in §8.E of the present paper.

§2. Dimension formula and decomposition theorem

Let N (a) and N0(a) ⊂ N (a) be as in the last section and Φ : Pa(d) → CN0(a) the natural
projection map (the composite of the inclusion Pa(d) ⊆ C[Sn]a ∼= CN (a) with the projection
map CN (a) → CN0(a)), which corresponds to the operation of restricting a polynomial P (T ) to
the subspace S0n ⊂ Sn of matrices T whose diagonal coefficients vanish. The main result of this
section is:

Theorem 1. Let a ∈ Zn
≥0 be a multidegree. Then for any complex number d not belonging to

the finite subset

Ξ(a) := 2Z ∩
⋃

ai≥2

[4− 2ai, 2− ai]

of 2Z≤0, the map Φ : Pa(d)→ CN0(a) is an isomorphism. In particular, the dimension of Pa(d)
for such d equals N0(a), the cardinality of N0(a).

Proof. Let P (T ) =
∑

ννν C(ννν)Tννν be an element of Pa(d), i.e. P is annihilated by each of the

operators Di = D
(d)
i defined in (5). The action of Di on monomials is given by

Di(T
ννν) = νii (2ai − νii + d− 2)Tννν−eii +

∑

j,k 6=i

νij(νik − δjk)T
ννν−eij−eik+ejk ,
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where the sum runs over j, k ∈ {1, . . . , î, . . . , n} and eab has the same meaning as in §2, and using
this we can rewrite the differential equation DiP = 0 as a recursion formula for the coefficients,
as we did for the example n = 2 in the last section. This recursion for i = 1, together with
the assumption that 2a1 − ν11 + d− 2 does not vanish for any even integer ν11 ∈ (0, a1], shows
that the coefficients C(ννν) with ν11 > 0 can be expressed as linear combinations of those with a
smaller value of ν11 and hence that P is determined by the C(ννν) with ν11 = 0. Similarly, the
equation D2P = 0 shows that the coefficients C(ννν) with ν11 = 0 and ν22 > 0 are combinations of
C(ννν′) with ν′11 = 0 and ν′22 < ν22, so that they are determined by the coefficients with ν22 = 0.
Continuing in this way, we see by induction that the coefficients C(ννν) with ννν ∈ N0(a) determine
P completely. Hence Φ on Pa(d) is injective and dimPa(d) ≤ N0(a).

To show directly that Φ is also surjective, we would have to show that the system of equations
DiP = 0 can be solved for any choice of the coefficients C(ννν) with ννν ∈ N0(a). But this is not
at all obvious, as the examples in §2 make clear. Instead, we will prove by induction on i the
stronger statement that the dimension of Ki = Ki(a) := Ker(D1) ∩ · · · ∩ Ker(Di) is exactly
N (i)(a) for each i between 0 and n, where N (i)(a) is the number of matrices in N (a) with
ν11 = . . . = νii = 0. The case i = n gives the assertion we want. The main observation
for the proof is that the various operators Di commute. This is obvious when d is a positive
integer because of the interpretation of the Di’s as the Laplacians with respect to disjoint sets
of variables xi ∈ Rd, and it then remains true for all d because the coefficients of the operators
are polynomials in d and no polynomial has infinitely many zeros. It follows that Di maps Ki−1

to Ki−1 or more precisely, since Di clearly decreases a = ννν ·1 by 2ei (where ei as before denotes
the vector with 1 in the ith place and 0’s elsewhere), Ki−1(a) to Ki−1(a− 2ei). If we therefore
assume inductively that dimKi−1(a) = N (i−1)(a) for all a, then it follows that

dimKi(a) = dim Ker
(
Di : Ki−1(a)→ Ki−1(a− 2ei)

)

≥ dimKi−1(a)− dimKi−1(a− 2ei)

= N (i−1)(a)−N (i−1)(a− 2ei) = N (i)(a) ,

and since the previous argument gives the reverse inequality, this completes the proof. �

Remark 1. The definitions of N(a) and N0(a) are equivalent to the generating functions

∑

a≥0

N(a) za1
1 · · · zan

n =
∏

1≤i≤j≤n

1

1− zizj
,

∑

a≥0

N0(a) z
a1
1 · · · zan

n =
∏

1≤i<j≤n

1

1− zizj
.

Remark 2. There are simple expressions for N0(a) if n ≤ 4. First note that, for any n, a
necessary condition for N0(a) 6= 0 is that the sum of the ai’s is even and that no ai is strictly
bigger than the sum of the others, i.e., that the number δ := 1

2

∑
i

ai −max
i

ai is a nonnegative

integer. Assuming that a satisfies this condition, we have the following formulas for n ≤ 4:

N0(a1, a2) = 1, N0(a1, a2, a3) = 1, N0(a1, a2, a3, a4) =
(s+ 1)(s+ 2)

2
,

where s in the last case is min{a1, a2, a3, a4, δ}. Note that for n = 2 and n = 3 the condition
δ ≥ 0 is equivalent to a1 = a2 and to the triangle inequality, respectively. For general values
of n, there is no simple formula for N0(a), but assuming that n ≥ 4 and that no ai vanishes, we
have N0(a) = 1 if and only if δ = 0. Under the same assumption, one has the following partial
results:

9



δ N0(a)

< 0 0

0 1

1
(
n−1
2

)

2
(
M+1

2

)
where M =

(
n−1
2

)
−#{i | ai = 1}

≥ 3 n2δ/2δδ! + O
(
n2δ−1

)

Notice that the dimension is a triangular number whenever n ≤ 4 or δ ≤ 2, but this is not true
in general, the smallest counterexample being N0(2, 2, 2, 2, 2) = 22.

Remark 3. As mentioned in the introduction, in the case where d is an integer ≥ n, one can
also see the dimension formula via the interpretation of Pa(d) as the O(d)-invariant subspace
of Ha1(R

d) ⊗ . . . ⊗Han
(Rd), where Ha(Rd) denotes the space of homogeneous harmonic poly-

nomials of degree a in Rd and O(d) acts diagonally on (Rd)n. Let ρai
be the symmetric tensor

representation of GL(d) of degree ai, that is, the representation on degree ai homogeneous poly-
nomials. We denote by χai

the character of ρai
. Now consider the tensor product representation

⊗n
i=1ρai

of GL(d). We take the restriction of this representation to O(d). For d ≥ n, the iso-
typic component of the trivial representation is spanned by the linearly independent polynomials∏n

i,j=1(xi, xj)
νij/2 with νij ∈ Z≥0, νii ∈ 2Z and ai =

∑n
j=1 νij , by classical invariant theory

(Weyl [16], pages 53 and 75). Their number is exactly N(a). On the other hand, the charac-
ter of the representation of O(d) on harmonic polynomials of degree ai is χai

− χai−2. What
we want to know is the multiplicity of the trivial representation of O(d) in

∏n
i=1(χai

− χai−2).
Hence, expanding the parenthesis and counting the multiplicities of the trivial character for each
product, we can see that the multiplicity in

∏n
i=1(χai

− χai−2) is the coefficient of
∏

zai

i in

n∏

i=1

(1− z2i )
∏

1≤i≤j≤n

(1− zizj)
−1 =

∏

1≤i<j≤n

(1− zizj)
−1 ,

as asserted.

Remark 4. From the proof of Theorem 1 we deduce the analogue for the operators Di of the
classical fact that any collection of functions fi(x1, . . . , xn) (i = 1, . . . , n) satisfying ∂fi/∂xj =
∂fj/∂xi for all i and j is the collection of partial derivatives ∂g/∂xi of a single function g. Here
the assertion is that, if d 6∈ Ξ(a), then any collection of functions Pi ∈ C[Sn]a−2ei

(i = 1, . . . , n)
satisfying Di(Pj) = Dj(Pi) for all i and j has the form Pi = Di(Q) for some Q ∈ C[Sn]a.
Indeed, the proof of Theorem 1 implies (in the notations there) that the map Di : Ki−1(a) →
Ki−1(a − 2ei) is surjective for all i. Applying this with i = 1 (where K0(a) = C[Sn]a and
K0(a − 2e1) = C[Sn]a−2e1), we can find Q1 ∈ C[S]a such that D1Q1 = P1. Then D1(P2 −
D2Q1) = D2P1−D2P1 = 0, so P2−D2Q1 ∈ K1(a−2e2). Now the surjectivity of D2 : K1(a)→
K1(a − 2e2) implies that there is a Q2 ∈ C[Sn]a with D1Q2 = 0 and D2Q2 = P2 − D2Q1, or
equivalently D1(Q1 +Q2) = P1 and D2(Q1 +Q2) = P2. Continuing in this way, we obtain the
statement claimed, which will be used again in the Remark following Proposition 2 below and
at several later points in the paper.

Theorem 1 has two interesting consequences. The first one, which is a refinement of the
dimension statement, is an analogue of the classical fact that every polynomial on Rd has a
unique decomposition into summands of the form (x, x)jPj(x) with each Pj(x) harmonic.

Corollary. For any d ∈ Cr 2Z≤0 we have

C[Sn] = P(n)(d) [t11, t22, . . . , tnn] .
10



More precisely, for a and d be as in Theorem 1, the space C[Sn]a of all polynomials on Sn of
multidegree a has a direct sum decomposition as

C[Sn]a =
⊕

0≤m≤a/2

δ(T )m Pa−2m(d) , (9)

where the sum ranges over all m ∈ Zn satisfying 0 ≤ mi ≤ ai/2 and δ(T )m =
∏n

i=1 t
mi

ii .

Proof. The proof of Theorem 1 shows that the map Φi : Ki(a) → CN (i)(a), where N (i)(a) is
the set of ννν ∈ N (a) with ν11 = · · · = νii = 0, is injective (i.e., any P ∈ Ki(a) is determined
by its coefficients C(ννν) with ννν ∈ N (i)(a)) and surjective (for dimension reasons), and that the

sequence 0 → Ki(a) → Ki−1(a)
Di→ Ki−1(a − 2ei) → 0 is exact. Now let P (T ) be an arbitrary

element of C[Sn]a = CN (a). Its canonical projection to CN (1)(a) equals Φ1(Q0) for a unique
element Q0 of K1(a). But this means that the restrictions of P and Q0 to t11 = 0 agree, so we
have P (T ) = Q0(T ) + t11P1(T ) for some P1 ∈ C[Sn]a−2e1 , and this decomposition is unique.
Applying the same argument to P1, we get P1 = Q1 + t11P2 with Q1 ∈ K1(a − 2e1) and P2 ∈
C[Sn]a−4e1

, and continuing in this way we find that P has a unique decomposition of the form
P (T ) =

∑
0≤m1≤a1/2

tm1
11 Qm1(T ) with Qm1 ∈ K1(a−2m1e1) for each m1. Now we use the same

argument to show that each Qm1 can be decomposed uniquely as
∑

0≤m2≤a2/2
tm2
22 Qm1,m2(T )

with Qm1,m2 ∈ K2(a − 2m1e1 − 2m2e2), etc., obtaining in the end precisely the direct sum
decomposition asserted by the corollary. �

The decomposition (9), which will be shown in the next section to be orthogonal with respect
to a natural scalar product on C[Sn], is one of the key properties of higher spherical polynomials.
Note that it can also be formulated in terms of the inhomogeneous coordinates discussed in the
final paragraph of §1 as the assertion that the restriction of the projection map C[Sn]→ C[S1n]
to the space of higher spherical polynomials is an isomorphism:

C[S1n] = Pn(d)
∣∣
S1
n

=
⊕

a

Pa(d)
∣∣
S1
n

. (10)

For n = 2 this is just the classical decomposition of polynomials in one variable into linear
combinations of Legendre or Gegenbauer polynomials

The second consequence of Theorem 1 which we want to mention is that it gives us canonical
bases of the spaces Pa(d) and P(n)(d). Let N0 =

⋃N0(a) be the set of all matrices ννν ∈ N with
all νii = 0 . Then by pulling back the basis of monomials Tννν under the isomorphism Φ of the
theorem, we obtain:

Proposition 1. Let a ∈ Zn
≥0 and d ∈ C r Ξ(a). Then for every ν ∈ N0(a) there is a unique

element PM
ννν,d ∈ P(n)(d) whose restriction to S0n is the monomial Tννν , and these polynomials form

a basis of Pa(d).

The polynomials PM
ννν (T ) (the index d will usually be dropped when no confusion can result)

will be called the monomial basis of Pn(d). In Section 5 we will study this basis (and its dual
basis with respect to a canonical scalar product) in more detail. We will also give explicit
constructions of these polynomials there. This also gives another proof of Theorem 1 and its
corollary.

Finally, let us make a few remarks concerning the degenerate case d ∈ Ξ(a). In this case
the dimension of Pa(d) can be larger than N0(a), as we saw in Example 1. However, there is a
natural way to define a subspace P∗

a
(d) of Pa(d) of the correct dimension, because it is not hard

to see that the subspaces Pa(d
′) ⊂ C[Sn] have a limiting value as d′ → d. For example, the six
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polynomials in P(2,2,2,2)(d) given in Example 2 become linearly dependent if d = 0 (the three
polynomials in i) become equal), but we can make a change of basis over Q(d) to give six other
polynomials, still with coefficients depending polynomially on d, which are linearly independent
for all d. (Replace the second and third solutions in i) by their differences with the first solution
divided by d.) This means that if we replace the space Pa(d) by the limiting space

P∗
a
(d) := lim

d′→d
d′ 6=d

Pa(d
′) (11)

whenever d belongs to Ξ(a), then the dimension formula dimPa(d) = N0(a) holds for all d ∈ C
and the map P∗

a
from C to the Grassmannian of N0(a)-dimensional subspaces of C[Sn]a is

continuous, and in fact analytic, everywhere. For this reason, we could equally reasonably have
taken P∗

a
(d) rather than ∩KerDi as the definition of Pa(d) for values of d belonging to Ξ(a).

On the other hand, P∗
a
(d) is not as nicely behaved as Pa(d) for generic d: the “constant term”

map from P∗
a
(d) to CN0(a) is no longer an isomorphism, even though the dimensions are equal,

and the decomposition (9) also breaks down, as the following examples show.

Example 1: If n = 2 and a = (2, 0), then we have Pa(d) = 0 for d 6= 0 and Pa(0) = C t11, but
we have P∗

a
(0) = 0.

Example 2: If n = 2 and a = (4, 4), then for d 6∈ Ξ(a) = {−2, −4}, the space Pa(d) is spanned
by (d+4)(d+2)t412−6(d+2)t11t22t

2
12+3t211t

2
22, while Pa(−2) and Pa(−4) are spanned by t211t

2
22

and 4t11t22t
2
12 + t211t

2
22, respectively. So in this case Pa(−2) = P∗

a
(−2) and Pa(−4) = P∗

a
(−4).

In particular, for d = −2 and −4, there exists no monomial basis.

We end this section by giving an alternative, purely algebraic, definition of P∗
a
(d).

Proposition 2. For a ∈ Zn
≥0 and arbitrary d ∈ C the space P∗

a
(d) defined by (11) coincides with

the space of polynomials P belonging to a sequence (. . . , P2, P1, P0= P, P−1= 0) of polynomials
Pr ∈ C[Sn]a satisfying the system of differential equations

Di(Pr) = ∂ii(Pr−1) (r = 0, 1, 2, . . . , 1 ≤ i ≤ n) . (12)

Moreover, the polynomials Pr can be chosen such that only finitely many of them are non-zero.

Proof. By the discussion preceding the statement of the proposition, any P ∈ P∗
a
(d) can be

deformed to a (convergent or formal) power series P (T ; ε) ∈ C[Sn][[ε]] belonging to P∗
a
(d−ε) for

any (complex or infinitesimal) value of ε. (Choose a basis {P (i)(T, d′)}1≤i≤N0(a) of P∗
a
(d′) for all

d′ near to d, or even for all d′ ∈ C, where each P (i)(T, d′) is a polynomial in T and d′, write P (T )
as

∑
i αiP

(i)(T, d), choose any convergent or formal power series ai(ε) with ai(0) = αi, and set

P (T ; ε) =
∑

i ai(ε)P
(i)(T, d − ε).) Write P (T ; ε) as

∑
r≥0 Pr(T ) ε

r. From the definition (5) we
get

D
(d−ε)
i

(
P (T ; ε)

)
=

(
D

(d)
i − ε∂ii

)( ∞∑

r=0

Pr(T ) ε
r
)

=
∞∑

r=0

(
D

(d)
i (Pr) − ∂ii(Pr−1)

)
εr

for each 1 ≤ i ≤ n, so the condition P (T ; ε) ∈ P∗
a
(d−ε) is equivalent to the system of differential

equations (12). If we choose the power series ai(ε) in the above argument to be polynomials
(e.g., constant polynomials) in ε, then P (T ; ε) ∈ C[Sn][ε] and the polynomials Pr(T ) vanish for
all but finitely many r. �

Remark. In the generic case d 6∈ Ξ(a), we can also deduce the existence of polynomials
Pr(T ) as above for any P ∈ Pa(d) by using the fact given in Remark 4 above. Indeed, if we set
P−1 = 0 and P0 = P , then (12) is satisfied for r = 0 by the definition of Pa(d). Now suppose by
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induction that for some R ≥ 0 we have found polynomials (PR, . . . , P0 = P, P−1 = 0) satisfying
equation (12) for 0 ≤ r ≤ R. Then from the commutation relation

[Di, ∂jj ] =
∑

k,ℓ

[tkℓ, ∂jj ] ∂ik∂iℓ = −2 ∂2
ij

we find that Di(∂jj(PR)) = ∂jj∂ii(PR−1) − 2∂2
ij(PR), which is symmetric in i and j, so the

result of Remark 4 implies there exists some PR+1 ∈ C[Sn]a with Dj(PR+1) = ∂jj(PR) for all j,
completing the induction. We also observe that the freedom in choosing each new polynomial
Pr (r ≥ 1) in the inductive system (12) is precisely Pa(d), corresponding to the freedom of the
choice of ai(ε) ∈ αi + εC[[ε]] in the proof above.

§3. Scalar product and orthogonality

One of the most important properties of the classical Legendre and Gegenbauer polynomials
is that they are orthogonal with respect to a suitable scalar product. In this section we prove an
analogous property for the higher spherical polynomials by constructing natural scalar products
on the spaces C[Sn] and C[S1n], proportional to each other in each fixed multidegree, such that
the direct sum decompositions (9) and (10) given in the last section are orthogonal. For n = 2
this is equivalent to the classical orthogonality property just mentioned, and for n = 3 it is
exactly analogous, because each summand in (9) and (10) has dimension ≤ 1, so that we again
obtain a canonical orthogonal basis of the space of all polynomials on S1n . For n ≥ 4 the spaces
Pa(d) in general have dimension greater than 1, and we could not find any natural orthogonal
basis. However, it will turn out that there are two natural bases of Pa(d), one of them being
the “monomial basis” constructed in the last section, that are dual to each other (at least up to
scalar factors; the normalizations of both bases are not entirely canonical) with respect to the
scalar product. This will be discussed in §5.

The definitions of both scalar products will be motivated by the case when d is an integer ≥ n,
so that Pa(d) can be identified with (⊗Hai

(Rd))O(d). In the classical theory of harmonic poly-
nomials, one defines a scalar product ( , )Sd−1 on C[Rd] by

(f, g)Sd−1 =
1

Vol(Sd−1)

∫

Sd−1

f(x) g(x) dx (f, g ∈ C[Rd]) ,

where dx denotes the standard volume form on the sphere, and shows that the spaces Ha(Rd)
and Ha(Rd) are orthogonal with respect to this inner product if a 6= b. Furthermore, the
restriction map to Sd−1 is injective on Ha(Rd) and the space of all polynomial functions on
Sd−1 is the direct sum of these spaces. (In fact the space Ha(Rd)Sd−1 is just the eigenspace of
the Laplacian operator ∆Sd−1 of the Riemannian manifold Sd−1 with eigenvalue a(a + d − 2),
and this orthogonal decomposition simply corresponds to the spectral decomposition of L2(Sd−1)
with respect to the Laplacian.)

For purposes of calculation it is convenient to relate the scalar product ( , )Sd−1 to a second
scalar product ( , )Rd on C[Rd], defined by

(f, g)Rd = (2π)−d/2

∫

Rd

f(x) g(x) e−‖x‖2/2 dx ,

where the normalizing factor (2π)−d/2 has been chosen so that (1, 1)Rd = 1. We can write the
definitions of (f, g)Sd−1 and (f, g)Rd as ESd−1

[
fg

]
and ERd

[
fg

]
, where ESd−1

[
f
]
= (f, 1)Sd−1 and

ERd

[
f
]
= (f, 1)Rd denote the expectation values of f with respect to the probability measure
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Vol(Sd−1)−1dx and (2π)−d/2e−‖x‖2/2dx on Sd−1 and Rd, respectively. For (the restrictions to
Sd−1 of) homogeneous polynomials these two measures are proportional: if f ∈ C[Rd]a, then

ERd

[
f
]
= (2π)−d/2

∫ ∞

0

e−r2/2

(∫

Sd−1

f(rx) d(rx)

)
dr

=
Vol(Sd−1)

(2π)d/2

∫ ∞

0

ra+d−1 e−r2/2 dr · ESd−1

[
f
]

= εa(d)ESd−1

[
f
]

(13)

with

εa(d) = 2a/2 Γ
(a+ d

2

)/
Γ
(d
2

)
= d(d+ 2) · · · (d+ a− 2) (a even). (14)

(The definition of εa(d) for a odd does not matter because in that case f(x) is odd and both
measures under consideration vanish trivially.)

The scalar products ( , )Rd and ( , )Sd−1 on C[Rd] extend in the obvious way to scalar
products ( , )(Rd)n and ( , )(Sd−1)n on C[(Rd)n] and induce scalar products ( , )d and ( , )1d
on C[Sn] by the formulas (in which elements of (Rd)n are thought of as n× d matrices)

(P,Q)d = (P̃ , Q̃)(Rd)n = (2π)−nd/2

∫

Rdn

P (XXt)Q(XXt) e−tr(XXt)/2 dX , (15)

(P, Q)
(1)
d = (P̃ , Q̃)(Sd−1)n =

1

Vol(Sd−1)n

∫

(Sd−1)n
P (XXt)Q(XXt) dX (16)

for P, Q ∈ C[Sn], where P̃ = P ◦ βn, Q̃ = Q ◦ βn as usual. The properties reviewed above then
immediately imply the corresponding properties for these new scalar products, namely, that the

spaces Pa(d) =
(
⊗Hai

(Rd)
)O(d)

and Pb(d) =
(
⊗Hbi(R

d)
)O(d)

are orthogonal to each other if
the multi-indices a and b are distinct, and that the two scalar products are proportional in each
multidegree:

(P,Q)d = εa+b(d) (P,Q)
(1)
d for P ∈ C[Sn]a, Q ∈ C[Sn]b . (17)

with εa(d) ∈ Z[d] defined by

εa(d) =
n∏

i=1

εai
(d) (a ∈ Zn

≥0) . (18)

(Again this definition is relevant only if a is divisible by 2, since, as one can see easily, polynomials
whose multidegrees are not congruent modulo 2 are orthogonal with respect to both scalar
products.) We now show that these definitions can be extended to arbitrary complex values
of d, with the same properties.

Denote by S+n ⊂ Sn the space of positive definite symmetric n× n matrices and by S1,+n its
intersection with the space S1n of n × n matrices with all diagonal coefficients equal to 1. The
spaces Sn and S1n are isomorphic to the Euclidean spaces Rn(n+1)/2 and Rn(n−1)/2, respectively,
and have natural Lebesgue measures dT =

∏
1≤i≤j≤n dtij and d1T =

∏
1≤i<j≤n dtij which we

can restrict to their open subsets S+n and S1,+n . For ℜ(d) sufficiently large we define

(P,Q)d = cn(d)

∫

S+
n

e−tr(T )/2 P (T )Q(T ) det(T )(d−n−1)/2 dT (19)

and

(P,Q)1d = c1n(d)

∫

S1,+
n

P (T )Q(T ) det(T )(d−n−1)/2 d1T , (20)

where cn(d) and c1n(d) are normalizing constants defined by

2nd/2 cn(d) = Γ
(d
2

)−n

c1n(d) = π−n(n−1)/4
n−1∏

i=0

Γ
(d− i

2

)−1

. (21)
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Theorem 2. (a) The integrals in (19) and (20) converge absolutely for d ∈ C with ℜ(d) > n−1
and their right-hand sides agree with (15) and (16) if d is an integer ≥ n.
(b) The values of (P,Q)d or (P,Q)1d for P and Q multihomogeneous are related as in (17) for
all complex values of d, with εa(d) defined by equations (14) and (18).
(c) For fixed P, Q ∈ C[Sn] and variable d, the scalar product (P,Q)d is a polynomial in d,
belonging to Z[d] if P and Q have integral coefficients, and (1, 1)d = 1.
(d) The spaces Pa(d) and Pb(d) with distinct multi-indices a and b are orthogonal.

Remark 1. Parts (b) and (c) give the holomorphic continuation of ( , )d and the mero-
morphic continuation of ( , )1d to all complex values of d, with the poles of the latter occurring
only for d ∈ {0,−2,−4, . . . }. These are the same exceptional values as in Theorem 1.

Remark 2. Part (d) (in which we do not have to specify which scalar product is meant, by
part (b)) implies that both the direct sum decomposition C[Sn] =

⊕
a
Pa(d) ⊗ C[t11, . . . , tnn]

given by the corollary to Theorem 1 and the direct sum decomposition of C[Sn]a given in (9)
are orthogonal with respect to either scalar product, and that the direct sum decomposition of
C[S1

n] given in (10) is orthogonal with respect to the scalar product ( , )1d on C[S1
n].

Remark 3. If d is real and > n− 1, then the convergent integral representation (19) shows
that the scalar product ( , )d on C[Sn] is positive definite and hence non-degenerate. For other
values of d, ( , )d may be degenerate. We will show in Theorem 11 that this can happen only
if d is an integer. Numerical examples can be found at the end of §5 and in Tables 2 and 3 at
the end of the paper.

Remark 4. Under the correspondence P ↔ p between functions in P ∈ C[Sn]a and
p ∈ C[S1,+n ] given in (6), we have Di(P )↔ (Di+ai(ai+d−2)

)
p for some second order differential

operators Di (depending on d but not on a) on S1,+n . (Compare (8) for the case n = 3, i = 1.)
The spaces Pa(d) therefore correspond to spaces of simultaneous eigenfunctions of the opera-
tors Di, with eigenvalues ai(ai + d − 2). If d is real and > n − 1, then we can define a Hilbert
space L2(S1,+n ) using the positive definite scalar product (20). Since S1,+n is compact and the
restrictions to S1n of polynomials on Sn separate points, these restrictions are dense in L2(S1,+n )
by the Stone-Weierstrass theorem. It follows that L2(S1,+n ) has an orthogonal Hilbert space di-
rect sum decomposition as

⊕
a
Pa(d)

∣∣
S1,+
n

and that this is simply the eigenspace decomposition

of the collection of commuting self-adjoint operators Di.

Proof of Theorem 2. We begin by proving (b), the relationship between the two scalar products
(P,Q)d and (P,Q)1d when P and Q are multihomogeneous, after which we can work only with
(P,Q)d, which is easier. We can also simplify by observing that (P,Q)d and (P,Q)1d can be
written as Ed[PQ̄] and E

1
d[PQ̄], respectively, where Ed and E

1
d are the maps from C[Sn] to C

defined by Ed[P ] = (P, 1)d and E
1
d[P ] = (P, 1)1d. This is more convenient since these functions

depend on only one rather than on two arguments. The statement of (b) then becomes that
Ed[P ] = εa(d)E

1
d[P ] for P ∈ C[Sn]a. To prove it, we observe that every T ∈ S+n can be written

uniquely as λT1λ where λ is a diagonal matrix with positive entries and T1 ∈ S1n, the values of λ
and T being given by tii = λ2

i and tij = λiλjτij for i 6= j, where τij are the entries of T1. We
then have

dT =
n∏

i=1

(2λi dλi) ·
∏

i<j

(λiλjdτij) = (2λ1 · · ·λn)
n dT1 dλ ,
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and of course det(T ) = (λ1 · · ·λn)
2 det(T1), so (4) and the definitions of Ed and E

1
d give

Ed[P ] = 2n cn(d)

∫

Rn
+

∫

S1,+
n

e−‖λ‖2/2 λa P (T1) (λ1 · · ·λn)
d−1 det(T1)

(d−n−1)/2 dT1 dλ

= E
1
d[P ] · cn(d)

c1n(d)

n∏

i=1

(
2

∫ ∞

0

e−λ2/2 λd+ai−1 dλ

)
= εa(d)E

1
d[P ]

for P ∈ C[Sn]a, where the last equality follows from by (18), (14) and the first of equations (21)
because the expression in parentheses equals 2d/2Γ(d/2) εai

(d) for ai even and because both
Ed[P ] and E

1
d[P ] vanish if ai is odd (as one sees by replacing T by λTλ, where λ is the diagonal

matrix with λi = −1 and λj = 1 for j 6= i).

We next show the equality of the right-hand sides of (19) and (15) when d is an integer ≥ n.
(The equality of the right-hand sides of (20) and (16) then also follows since we have proved the
proportionality result (17) for both definitions of the scalar products.) We must show that

cn(d)

∫

S+
n

F (T ) det(T )(d−n−1)/2 dT = (2π)−nd/2

∫

(Rd)n
F (XXt) dX . (22)

for rapidly decreasing functions F : S+n → C. (Apply this to F (T ) = P (T )Q(T ) e−tr(T )/2.) To
do this, we will decompose the Lebesgue measure on Rdn into a T -part and another part. We
first decompose X as SV where S is a lower triangular n × n matrix with positive diagonal
entries and V an n × d matrix with orthonormal rows, i.e., we write each xi (1 ≤ i ≤ n)
as

∑
1≤j≤i sij vj with sii > 0 and v1, . . . , vn orthogonal unit vectors in Rd (Gram-Schmidt

orthonormalization process). The numbers sij and the components of the vectors vj can be
taken as local coordinates, so we can decompose dX into an S-part and a V -part. The vector
v1 belongs to the unit sphere in Rd, so for the vector x1 = s11v1 we get dx1 = sd−1

11 ds11 dµd−1,
where dµd−1 denotes the appropriately normalized standard measure on the sphere Sd−1. Once
we have fixed v1, then the vector v2 belongs to a (d− 2)-dimensional sphere and for the vector

x2 = s21v1 + s22v2 we get dx2 = sd−2
22 ds21ds22 dµd−2. Continuing the process, we get

dX =
∏

1≤i≤n

sd−i
ii

∏

1≤j≤i≤n

dsij dV ,

where dV := dµd−1 dµd−2 · · · dµd−n is the measure on the V -coordinates. By definition, we have
T = XXt = SV V tSt = SSt. This gives

dT =
∏

i≤j

dtij = 2n
n∏

i=1

sn−i+1
ii

∏

i≥j

dsij . (23)

(We have tii = s2ii + · · · and tij = siisji + · · · for j > i, where · · · denotes terms of higher index
if we order the pairs (i, j) lexicographically.) Comparing the last two formulas and noting that∏n

i=1 sii = det(T )1/2, we get

dX = 2−n det(T )
d−n−1

2

∏

i≤j

dT dV ,

and since V runs over
∏n−1

i=0 Sd−i−1 this implies (22), with cn(d) given by

cn(d) = 2−n (2π)−nd/2
n−1∏

i=0

Vol(Sd−i−1) = 2−nd/2 π−n(n−1)/4
n−1∏

i=0

Γ
(d− i

2

)−1
,
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in agreement with the formula in (21).

We now see that essentially the same calculation works also for non-integral values of d,
because the decomposition T = SSt did not involve the V -part of the variable X ∈ Rnd but
only the n× n matrix S. The maps S 7→ SSt defines a bijection between the space L+

n of lower
triangular n× n matrices S with positive diagonal entries and the space Sn of positive definite
symmetric n×n matrices. The space L+

n is an open subset of a Euclidean space with coordinates
sij (1 ≤ j ≤ i ≤ n) and natural Lebesgue measure dS =

∏
j≥i dsij , so by (23) we find

Ed[P ] = 2n cn(d)

∫

L
+
n

e−tr(SSt)/2 P̂ (S)
n∏

i=1

sd−i
ii dS =: E

L
d [P̂ ] (24)

for any P ∈ C[Sn], where P̂ ∈ C[Ln]
ev (the space of polynomials on lower triangular n × n

matrices that are invariant under S 7→ Sλ for any diagonal matrix λ with all entries ±1) is

defined by P̂ (S) = P (SSt). (The formula for P̂ (S) is the same as the formula for P̃ (S) in the
special case n = d if we consider Ln as a subspace of the space (Rn)n of all n × n matrices,
but the roles of X and S are quite different and we prefer to use a different notation.) This
formula makes it clear that the integral converges for all polynomials if (and only if) d is a
complex number with real part > n− 1, since for convergence in (24) we need d− i > −1 for all
1 ≤ i ≤ n. This completes the proof of part (a) of the theorem, but part (c) now also follows
immediately, since we have the explicit formula

E
L
d

[∏

j≤i

s
mij

ij

]
= 2ncn(d)

∏

1≤j<i≤n

(∫ ∞

−∞
smije−s2/2 ds

)
·

∏

1≤i≤n

(∫ ∞

0

smii+d−ie−s2/2 ds

)

=





∏

1≤j<i≤n

(mij − 1)!! ·
∏

1≤i≤n

εmii
(d− i+ 1) if all mij are even

0 otherwise,

(25)

where (m− 1)!! is defined as usual as 1 for m = 0 and as 1× 3× · · · × (m− 1) for m > 0 odd.
(Here one has to note that the integral over dsij for j < i vanishes if mij is odd because we are
integrating an odd function over all of R, and that if all of the mij with j 6= i are even then
the diagonal entries are always even because for a monomial

∏
s
mij

ij in C[Ln]
ev the sum of the

exponents mij for any fixed value of j is even. We are therefore in the case where the second

formula in equation (14) can be applied.) It thus follows that Ed[P ] = E
L
d [P̂ ] ∈ Z[d] for any

polynomial P ∈ Z[Sn], and that Ed[1] = 1, proving (c).

Finally, we observe that the orthogonality statement (d), the most important part of the
theorem, now follows formally from the other parts, since we already know that it is true when
d is an integer ≥ n and a polynomial which vanishes for infinitely many values of its argument
must be identically zero. A more direct proof for arbitrary d will follow from results given in
the next section, where we will show that

(
ai − bi

)
(P,Q)d =

(
DiP, Q

)
d
−

(
P, DiQ

)
d

(26)

for every P ∈ C[Sn]a, Q ∈ C[Sn]b and every 1 ≤ i ≤ n, and hence (ai − bi)(P,Q)d = 0 if
P, Q ∈ Ker(Di). �

We now discuss the actual calculation of the scalar products. In the case when d ≥ n is an
integer, this is easy because the expression ERd

[
f
]
can be calculated trivially for monomials. (For

d = 1 one has ER

[
xm

]
= (m− 1)!! for m even and ER

[
xm

]
= 0 for m odd, and the values for Rd

or (Rd)n are obtained from this by multiplicativity.) For d complex the integral (19), although
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it is convergent if d is large enough, is useless for computations since it involves a complex power
of a polynomial with many terms. We mention three3 quite different effective methods—each
of which could be used as an alternative definition instead of the integral (19)—for calculating
the scalar products (P,Q)d explicitly as polynomials in d.

(i) The first way is to use the formula (24) together with the explicit evaluation (25). This can
be programmed very easily.

(ii) The second method is to use rules that will be given in the next section (Proposition 1)
to write the value of Ed on any polynomial of the form tijP in terms of its values on P and
derivatives of P . This gives Ed for all monomials inductively starting from the value Ed[1] = 1.

(iii) The third, and in some sense most explicit, method comes from the following theorem,
which gives a generating function for all monomials P (T ) = Tννν . To state it, we introduce the
notation

ννν!!! =
∏

1≤i≤n

νii!! ·
∏

1≤i<j≤n

νij ! (27)

for ννν =
(
νij

)
1≤i, j≤n

∈ Nn, where ν!! is defined as 2ν/2(ν/2)! for ν even. Then we have:

Theorem 3. Let Y be a symmetric matrix with complex entries with 1− Y Y t > 0. Then

∑

ννν∈Nn

Ed

[
Tννν

] Y ννν

ννν!!!
= det

(
1 − Y

)−d/2
= exp

(
d

2

∞∑

r=1

tr(Y r)

r

)
. (28)

Proof. Both series in (28) converge exponentially under the condition stated, since then all
eigenvalues of Y are less than 1 in absolute value. (This is actually not very important for us,
since in applications of the theorem Y will always be a formal variable.) By analytic continuation,
we can assume that Y is real. The second equality in (28) is standard, so we need only prove
the first. The basic calculation is

∑

ννν∈N

Aννν

ννν!!!
=

∏

1≤i≤n

( ∞∑

ν=0

aνii
2νν!

)
·

∏

1≤i<j≤n

( ∞∑

ν=0

aνij
ν!

)
= exp

(
1

2

∑

1≤i,j≤n

aij

)
,

valid for any symmetric n×n matrix A. Applying it to the matrix with entries aij = tijyij gives

∑

ννν∈N

TνννY ννν

ννν!!!
= etr(TY )/2 (29)

for any T, Y ∈ Sn and hence

∑

ννν∈Nn

Ed

[
Tννν

] Y ννν

ννν!!!
= cn(d)

∫

S+
n

e−tr(T (1−Y ))/2 det(T )(d−n−1)/2 dT

for sufficiently small Y ∈ Sn. We can write 1−Y = U2 for some invertible n×n matrix U ∈ Sn.
Then tr(T (1 − Y )) = tr(UTU). The change of variables from T to UTU is a bijection from
S+n to itself and sends det(T ) to det(U)2 det(T ) and dT to det(U)n+1dT , so the value of the
expression on the right is det(U)−d times its value for U = 1, which equals 1 by the definition
of the normalizing constant cn(d). �

3Another effective method uses the Corollary to Proposition 2 in §4 below. All values given in the tables at
the end of the paper were computed independently from at least two of these four formulas.
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We remark that a related, but somewhat simpler proof of Theorem 3 can be given in the case
when d ≥ n is an integer (which suffices to prove the general case since (28) is equivalent to a
collection of polynomial identities in d). Again using the identity (29), we find in this case

∑

ννν∈Nn

Ed

[
Tννν

] Y ννν

ννν!!!
= (2π)−nd/2

∫

(Rd)n
e−tr(XXt(1−Y ))/2 dX

= (2π)−nd/2

∫

(Rn)d
e−tr(X(1−Y )Xt)/2 dX (X → Xt)

=

(
(2π)−n/2

∫

Rn

e−x(1−Y )xt/2 dx

)d

= det(1− Y )−d/2 ,

where we have used the standard identity π−n/2
∫
Rn e−xAxt

dx = (detA)−1/2 for A ∈ S+n .

As a simple example of the application of the theorem, we have

∞∑

m=0

Ed

[
tmii

] ym

2mm!
= (1− y)−d/2 =

∞∑

m=0

ε2m(d)

2mm!
ym .

Of course here we knew the answer already since Ed

[
tmii

]
= ε2m(d)E1

d

[
tmii

]
= ε2m(d)E1

d[1] =
ε2m(d). As a less trivial example, we take Y = y eij (eij as in §1) for i 6= j to get

∞∑

m=0

Ed

[
tmij

] ym
m!

= det
(
1 − y eij

)−d/2
=

(
1− y2

)−d/2

and hence

Ed

[
tmij

]
=

{
(m− 1)!! · 2m/2 (d/2)m/2 if m is even,

0 if m is odd.
(30)

§4. The Lie algebra of mixed Laplacians

Let us return for the moment to the case that d is an integer ≥ n and that our polynomials

on Sn correspond via P 7→ P̃ to the O(d)-invariant polynomials on (Rd)n. Then as well as the
“pure” Laplace operators

∆i = ∆ii =

(
∂

∂xi

)(
∂

∂xi

)t

=
d∑

α=1

∂2

∂x2
iα

(1 ≤ i ≤ n)

on C[(Rd)n] that were used to define Pa(d), we also have the “mixed” Laplace operators

∆ij =

(
∂

∂xi

)(
∂

∂xj

)t

=
d∑

α=1

∂2

∂xiα ∂xjα
(1 ≤ i, j ≤ n) .

The same calculation as for ∆i shows that these correspond under the map (1) to the differential
operators

Dij = D
(d)
ij = d ∂ij +

n∑

k,l=1

tkl ∂ik∂jl . (31)

The Dij , which can now be defined for this equation also for d < n or d /∈ Z, commute with
one other and in particular with the pure Laplacians Di = Dii, so they preserve the condition
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of being harmonic, i.e. Dij (i 6= j) maps Pa(d) to Pa−ei−ej
(d), where ei is the vector with 1 in

the ith place and 0’s elsewhere. These “intertwining” operators will turn out to be very useful.

In exactly the same way, as well as the operators Ei : C[Sn]a → C[Sn]a corresponding to
the Euler operators

∑
α xi,α∂/∂xi,α (Remark following the Proposition-Definition in §1) we also

have maps Eij : C[Sn]a → C[Sn]a+ei−ej
for i 6= j, given explicitly by Eij =

∑n
k=1 tik ∂jk, which

correspond when d is integral and T = XXt to the “mixed Euler operators”
∑

α xi,α∂/∂xj,α (be-
cause these are again O(d)-invariant). Finally, we have operators Fij : C[Sn]a → C[Sn]a+ei+ej

for all i, j = 1, . . . , n given by multiplication with tij . In this section we will show that the
vector space spanned by all of these operators and by the identity is closed under commutators
and also under adjoints with respect to the scalar product defined in the previous section.

To check the Lie property involves computing a large number of different commutators. We
have six kinds of commutators ([D,D], [D,E], [D,F ], [E,E], [E,F ] and [F, F ]) and for each
one a number of different special cases depending on which indices are distinct and which are
equal. For instance, to give the commutators of the operators Dij with Fkl we have to consider
seven different cases, obtaining after somewhat tedious computations the seven formulas

[Dii, Fii] = 4Ei + 2d, [Dii, Fik] = 2Eki, [Dii, Fkl] = 0,

[Dij , Fij ] = Ei + Ej + d, [Dij , Fii] = 2Eij , [Dij , Fik] = Ekj , [Dij , Fkl] = 0

for i 6= j and k, l 6= i, j. If we modify the definition of Eij for i = j by setting Eii = Ei + d/2
rather than by the more natural-seeming formula Eii = Ei, then the scalar terms “2d” and “d”
in these equations drop out and the seven cases can be written in a uniform way. Moreover,
somewhat surprisingly, the corresponding simplification also occurs in all the other types of
commutators if we make the same substitution; in other words, the vector space spanned by the
operators Dij , Eij and Fij is already closed under commutators, without having to include also
the identity operator. More precisely, we have:

Theorem 4. For fixed n ∈ Z≥0 and d ∈ C, the vector space g ⊂ End(C[Sn]) spanned by

Dij = d∂ij +

n∑

k,l=1

tkl∂ik∂jl , Eij =
d

2
δij +

n∑

k=1

tik∂jk , Fij = tij (1 ≤ i, j ≤ n) (32)

is a Lie subalgebra, with commutators given by

[Dij , Dkl] = 0, [Dij , Ekl] = δikDjl + δjkDil, [Dij , Fkl] = δikElj + δilEkj + δjkEli + δjlEki,

[Eij , Ekl] = δjkEil − δilEkj , [Eij , Fkl] = δjkFil + δjlFik, [Fij , Fkl] = 0 (1 ≤ i, j, k, l ≤ n) .

Proof. As already indicated, this is just a straightforward but lengthy computation, with many
cases to be checked. We give the proof of the second commutation relation as an example. From
the definitions we have

[Dij , Ekl] = d
∑

m

[∂ij , tkm∂lm] +
∑

r,s,m

[trs∂ir∂js, tkm∂lm] ,

where all indices run from 1 to n. The first term is equal to d
∑

m(δikδjm + δimδjk)∂lm =
d (δik∂jl + δjk∂il), and the second to

∑

r, s,m

[
(δjkδsm + δjmδks)trs∂ir∂lm + (δikδrm + δimδrk)trs∂js∂lm − (δlrδms + δlsδmr)tkm∂ir∂js

]

= δjk
∑

r, s

trs∂ir∂ls + (1− 1)
∑

r

tkr∂ir∂jl + δik
∑

r, s

trs∂jr∂ls + (1− 1)
∑

s

tks∂js∂il .
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Adding these gives the desired result [Dij , Ekl] = δikDjl + δjkDil . The other statements in the
theorem can be checked in the same way. Alternatively, since each of the commutation relations
among the generators of g is polynomial in d and therefore need only be checked for values of
d ∈ Z≥n , we can work instead with the mixed Laplace and Euler operators and the operations
of multiplying by (xi, xj) on the space of polynomials in (Rd)n and check the commutation
relations there; then the calculations are different but the final result is the same. �

Observe that the operators Dij and Fij are symmetric in the two indices i and j, whereas Eij

is not, so the dimension of the Lie algebra g is equal to
n(n+ 1)

2
+ n2 +

n(n+ 1)

2
= 2n2 + n.

This is the same as the dimension of the simple Lie algebra

sp(2n,R) = {X ∈M2n(R) | XJn = −JnXt} , Jn =

(
0 −1n

1n 0

)
,

and indeed (working over R) we have an isomorphism g ∼= sp(2n,R), as we can see explicitly by
making the assignments

Dij 7→
(

0 0
−eij − eji 0

)
, Eij 7→

(
eij 0
0 −eji

)
, Fij 7→

(
0 eij + eji
0 0

)

(where eij (1 ≤ i, j ≤ n) is the elementary n × n matrix with 1 in the (i, j)th place and zeros
elsewhere) and comparing the commutators in g as given in the proposition with those in the
Lie algebra sp(2n). A better understanding of why sp(2n) occurs comes from the discussion
given in §1 about the connection between higher spherical polynomials and Siegel modular
forms. The Lie group Sp(2n,R) acts on the space of holomorphic functions F : Hn → C by

(F |g)(Z) = det(CZ +D)−d/2F ((AZ +B)(CZ +D)−1) for g =
(A B

C D

)
∈ G. (This is the action

used to define Siegel modular forms of weight d/2.) The action of G induces an action F 7→ F |X
of its Lie algebra sp(2n,R) via F |eεX = F + (F |X)ε+O(ε2), and from the calculation (setting

ε2 = 0 and X =
(A B

C D

)
)

F
∣∣( 1+εA εB

εC 1+εD

)
(Z) ≡ det

(
1 + ε(CZ +D)

)−d/2
F
(
(Z + ε(AZ +B))(1 + ε(CZ +D))−1

)

≡
(
1 − ε

d

2
tr(CZ +D)

)
F
(
Z + ε(AZ +B − Z(CZ +D))

)

we see that this action is given explicitly by

F |
(A B

C D

)
(Z) = − d

2
tr(CZ +D)F (Z) +

n∑

i, j=1

(
AZ +B − Z(CZ +D)

)
ij
∂∗
ijF (Z) ,

where ∂∗
ij =

1
2 (1 + δij)∂/∂zij . Using the above isomorphism g ∼= sp(2n,R), we then find

Dij 7→ dzij +

n∑

k,l=1

zikzjl ∂
∗
kl , Eij 7→

d

2
δij +

n∑

k=1

zik ∂
∗
jk , Fij 7→ ∂∗

ij

and this agrees with the definition of the generators in g if we remember from the discussion
in §1 that the variables T (argument of the higher spherical polynomials) and Z (argument of
the Siegel modular forms) are dual variables with respect to the Fourier expansion, so that tij
and ∂ij correspond to ∂∗

ij and zij . In fact, we can use this correspondence to see directly that the
generators of g correspond to the standard generators of sp(2n), thus obtaining yet a third proof
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of the commutation relations in Theorem 2. This is certainly related to the Weil representation
([15], [13]), but we will not discuss this any further here because the identification of g with
sp(2n,R) will not play any role in this paper.

We now relate the operators in g to the scalar products that were defined in §3. Since each
of the generators in (32) is homogeneous, in the sense that it sends C[Sn]a to C[Sn]a+δδδ for some
fixed δδδ ∈ Zn, and since the two scalar products ( , )d and ( , )1d are proportional in each multi-
degree, we only have to give the formulas for ( , )d, where they are simpler. Recall from §3
that (P,Q)d = Ed[PQ] for the linear map Ed : C[Sn]→ C defined by Ed[P ] = E(Rd)n

[
P̃
]
.

Proposition 1. For arbirary d ∈ C, i, j ∈ {1, . . . , n} and P ∈ C[Sn] we have

Ed[FijP ] = Ed

[(
Eij +

d

2
δij

)
P
]
= Ed[

(
Dij + d δij

)
P ] . (33)

Proof. Since each expression in (33) is a polynomial in d for any P , we may assume that d ∈ Z≥n

and that ( , )d is defined by (15). Note first that the operator ER

[
f
]
= 1√

2π

∫∞
−∞ f(x) e−x2/2 dx

(the special case n = d = 1 of Ed) satisfies the relation ER

[
xf

]
= ER

[
f ′] for any f ∈ C[x], as

one can see either from the explicit formulas ER

[
x2m

]
= (2m− 1)!! and ER

[
x2m−1

]
= 0 or, more

naturally, by using the identity

ER

[
f ′] − ER

[
xf

]
=

1√
2π

∫ ∞

−∞
d
(
e−x2/2 f(x)

)
= 0 ,

i.e., by integration by parts. This immediately gives ERd

[
xαf

]
= ERd

[
∂f/∂xα

]
(α = 1, . . . , d).

for any f ∈ C[Rd] and hence

E(Rd)n
[
xiαf

]
= E(Rd)n

[ ∂f

∂xiα

]
(i = 1, . . . , n, α = 1, . . . , d) . (34)

for any f ∈ C[(Rd)n]. These formulas allow us to compute ER, ERd and E(Rd)n on all monomials
(and hence on all polynomials) by induction on the degree.

Using (34) twice, we find, for all F ∈ C[(Rd)n] and all 1 ≤ i, j ≤ n, 1 ≤ α ≤ d,

E(Rd)n
[
xiαxjαF (X)

]
= E(Rd)n

[ ∂

∂xjα

(
xiαF

)]

= E(Rd)n
[
δijF + xiα

∂F

∂xjα

]
= E(Rd)n

[
δijF +

∂2F

∂xiα∂xjα

]

and hence, summing over α,

E(Rd)n
[
(xi, xj)F

]
= E(Rd)n

[
d δijF +

d∑
α=1

xiα
∂F

∂xjα

]
= E(Rd)n

[
d δij F + ∆ijF

]
. (35)

Applying this to F = P̃ with P ∈ C[Sn], we obtain (33) for all d ∈ Z≥n and hence for all d. �

Notice that either of the equalities Ed[tijP ] = Ed[(Eij+
d
2δij)P ] or Ed[tijP ] = Ed[(Dij+dδij)P ]

in (33), together with the normalization Ed[1] = 1, defines Ed uniquely, because the argument
of Ed on the right has lower degree than the one on the left. Proposition 1 therefore gives us
a new definition (to be added to the three previous definitions (19), (24)/(25) and (28)) of the
functional Ed : C[Sn] → C and hence of the scalar product ( , )d for arbitrary d ∈ C. Notice
also that the first equality in (33) for that i = j gives the useful identity

Ed[tiiP ] = (d+ ai)Ed[P ] for P ∈ C[Sn]a . (36)

This also follows from (17), since Ed[tiiP ] = εa+2ei
(d)E1

d[tiiP ] = εa+2ei
(d)E1

d[P ] = (d+ai)Ed[P ].

Proposition 1 describes the relation between the Lie algebra g and the functional P 7→ (P, 1)d.
The following more precise result describes its relation to the whole scalar product.
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Proposition 2. The Lie algebra g is equal to its own adjoint with respect to the action on the
space C[Sn] with the inner product (P,Q)d. Explicitly, the adjoint operators of the standard basis
elements of g are given by

D∗
ij = Dij − Eij − Eji + Fij , E∗

ij = −Eij + Fij , F ∗
ij = Fij . (37)

Proof. The third equality in (37) is trivial since (tijP )Q = P (tijQ) for any P and Q; notice

that it does not matter whether we write “Q” or “Q” since the integrations defining the scalar
products are taken over real-valued variables. The second equality (which includes the third
since Eij + E∗

ij is self-adjoint) follows from the first equality in (33) because Eij − d
2δij is a

derivation. To prove the first equality, we assume once again that d ∈ Z≥n and that the scalar
product is defined by (15). For F and G in C[(Rd)n] we have

∆ij(FG) = ∆ij(F )G + F ∆ij(G) +
d∑

α=1

(
∂F

∂xiα

∂G

∂xjα
+

∂F

∂xjα

∂G

∂xiα

)

and hence, denoting by ≡ congruence modulo the kernel of Ed and using (34) and (35),

F ∆ij(G) − ∆ij(F )G = −∆ij(FG) +
d∑

α=1

[
∂

∂xiα

(
F

∂G

∂xjα

)
+

∂

∂xjα

(
F

∂G

∂xiα

)]

≡ − ((xi, xj)− d δij)FG + F
d∑

α=1

(
xiα

∂G

∂xjα
+ xjα

∂G

∂xiα

)

= F
(
Eij + Eji − Fij

)
G .

The identity now follows by applying E(Rd)n to both sides and replacing F and G by P̃ and Q̃
with P, Q ∈ C[Sn]. �

Observe that equation (26), which was used in the last section to give a second and more
direct proof of the orthogonality of Pa(d) and Pb(d) for a 6= b, follows from (36) and the special
case i = j of the first identity in (37).

As a further consequence of Proposition 2, we get the following nice formula for the scalar
product of §3 with respect to the monomial basis of P(d).

Corollary. For any two multi-indices µµµ and ννν of the same total degree, the scalar product of
PM
µµµ and PM

ννν is given by (
PM
µµµ , PM

ννν

)
d

= Dννν
(
PM
µµµ ) , (38)

where Dννν denotes
∏

i<j D
νij

ij .

Proof. Let Π = Π
(d)
a be the projection from C[Sn]a onto the summand Pa(d) in the decompo-

sition (9). (We will give an explicit formula for this projection operator in eq. (44) of §5 using
the results of this section, but we do not need it here.) Then we have

(DijP, Q)d = (P, tijQ)d = (P, Π(tijQ))d for P ∈ Pa(d) , Q ∈ Pa−ei−ej
(d) , (39)

where the second equality follows from the definition of Π together with the second remark after
Theorem 2, and the first from the first formula in (37) together with the fact that spherical
polynomials are orthogonal to all polynomials of smaller degree (which is needed because the
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operator D∗
ij , like E∗

ij , is not homogeneous). On the other hand, for i 6= j, the definition of the
monomial basis implies that

PM
ννν = Π(d)

a

(
tijP

M
ννν−eij

)
for all ννν ∈ N0(a) , (40)

since tijP
M
ννν−eij

differs from Tννν by something belonging to the ideal of C[Sn]a generated by the tkk
and since the decomposition (9) implies (by induction on the total degree) that C[Sn]a is the
direct sum of Pa(d) and this ideal. Combining equations (40) and (39), we find

(
PM
µµµ , PM

ννν

)
d

=
(
PM
µµµ , Π(tijP

M
ννν−eij

)
)
d

=
(
Dij(P

M
µµµ ), PM

ννν−eij
)
)
d
.

Applying this identity repeatedly we find finally that this scalar product equals (Dννν(Pµµµ), P
M
0

).
But Dννν(Pµµµ) is a constant (polynomial of degree 0), PM

0
= 1, and (1, 1)d has been normalized to

be equal to 1. �

Proposition 2 shows that each of the 3- or 4-dimensional subspaces 〈Dij , Eij , Eji, Fij〉 of
which g is composed is already closed under taking adjoints. More precisely, the elements

D+
ij = D+

ji = Dij −
1

2

(
Eij + Eji

)
(1 ≤ i ≤ j ≤ n) ,

F+
ij = F+

ji = Fij (1 ≤ i ≤ j ≤ n) ,

E−
ij = −E−

ji = Eij − Eji (1 ≤ i < j ≤ n) ,

F−
ij = F−

ji = Fij − Eij − Eji (1 ≤ i ≤ j ≤ n)

(41)

give a basis of g consisting of selfdual or anti-selfdual elements. In particular, the subspaces
g± = {X ∈ g | X∗ = ±X} of g have dimensions n2 +n and n2, respectively, and g− is a sub-Lie
algebra of g, since [X,Y ]∗ = −[X∗, Y ∗]. More concretely we have

g− =

{(
A 1

2 (A+At)
0 −At

)}
∼= gl(n) .

Finally, we remark that instead of proving Propositions 1 and 2 for integral values of d ≥ n
and deducing the general case by polynomiality, one could prove them directly for all d ∈ C
by using the description of ( , )d in (24) together with the identity (again easily proved by
integration by parts)

E
L
d

[
sij F

]
= E

L
d

[ ∂F

∂sij
+ δij

d− i

sii
F
]

for all F ∈ C[Ln]
ev .

However, this calculation is much more complicated than the one with the X-variables because
the expressions for the operators Eij andDij in terms of the S-variables are no longer polynomial,
but involve powers of the diagonal elements skk of S in their denominators.

§5. The two canonical bases of Pa(d)

In §2 (Proposition 1 and the following remark) we observed that Theorem 1 implies the
existence of a canonical basis {PM

ννν }ννν∈N0(a) of Pa(d), characterized by the property that PM
ννν (T )

becomes equal to Tννν if one sets all tii equal to 0. In this section we will study this monomial
basis in detail. First, we will give an explicit construction of the polynomials PM

ννν in terms of a
certain “harmonic projection operator” (Proposition 1). This at the same time gives a second,
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more constructive, proof of Theorem 1 and its corollary. Next, as an application of the Lie
algebra g of differential operators introduced above, we will give an inductive construction of the
polynomials PM

ννν in terms of certain “raising operators” belonging to the universal enveloping
algebra of g. We then discuss the dual basis {PD

ννν } of the basis {PM
ννν } with respect to the

scalar product from §3 (for generic values of d ∈ C) and show that its members satisfy (and in
fact are determined by) the recursive property Dij(P

D
ννν ) = PD

ννν−eij
, where Dij are the “mixed

Laplace operators” from §4. Finally, again using the scalar product, we will show that each
product tijP

M
ννν (T ) can be written as a linear combination with constant coefficients of a bounded

number of basis elements PM
ννν′ (T ). This gives another recursive way to obtain the basis elements,

generalizing the classical recursion relations for Legendre and Gegenbauer polynomials.

We start with the construction of the PM
ννν by a projection operator. Denote by H(Rd) =

Ker(∆) ⊂ C[Rd] the subspace of harmonic polynomials on Rd. As we mentioned before the
corollary to Theorem 1 in §2, it is well-known that every polynomial P on Rd can be written
uniquely as

P (x) =
∑

j≥0

Pm(x) (x, x)m (42)

where each Pm is harmonic (and homogeneous of degree a−2m if P is homogeneous of degree a).
Denote by π(d) : C[Rd]→ H(Rd) the projection map sending P to P0, i.e., to the unique harmonic
polynomial which is congruent to P modulo the ideal in C[Rd] generated by (x, x). The following
formula for π(d) is surely well-known, but we include its proof for lack of a convenient reference.

Lemma. Suppose that P ∈ C[Rd] is homogeneous of degree a. Then

π(d)(P (x)) =
∑

0≤j≤a/2

1

4j j! (2− a− d/2)j
∆j(P (x)) (x, x)j , (43)

where (x)j = x(x+ 1) · · · (x+ j − 1) is the ascending Pochhammer symbol.

Proof. We have ∆(PQ) = ∆(P )Q+ 2
∑

α
∂P
∂xα

∂Q
∂xα

+ P∆(Q) for any P, Q ∈ C[Rd]. Apply this

to Q(x) = (x, x)j , for which we have

∂Q

∂xα
= 2j xα (x, x)j−1 ,

∂2Q

∂x2
α

= 2j (x, x)j−1 + 4j(j − 1)x2
α (x, x)j−2 ,

to get

∆
(
P (x)(x, x)j

)
= ∆(P (x)) (x, x)j + 4j

(
E(P (x)) + (d/2 + j − 1)P (x)

)
(x, x)j−1 ,

where E =
∑

α xα
∂

∂xα
is the Euler operator on C[Rd]. Replacing P by ∆j(P ) in this formula,

where P is homogeneous of degree a, we find

∆
(
∆j(P (x)) (x, x)j

)
= ∆j+1(P (x)) (x, x)j + 4j (a+ d/2− j − 1)∆j(P (x)) (x, x)j−1 ,

since ∆j(P ) has degree a − 2j. It follows that the expression
∑

γj ∆
j(P (x)) (x, x)j is in the

kernel of ∆ if γj−1 + 4j(a+ d/2− j − 1)γj = 0 for all j ≥ 1, and combining this recursion with
the condition γ0 = 1, which ensures that this expression is congruent to P (x) modulo (x, x),
gives the formula stated. �

Now using the correspondence between the operators Di on C[Sn] and ∆i on C[(Rd)n], we
find from the lemma that for each a ∈ Zn

≥0 the product operator

Π = Π(d)
a

=
n∏

i=1

( ∑

0≤j≤ai/2

tjii D
j
i

4j j! (2− ai − d/2)j

)
(44)
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(in which the order of the product does not matter since the operators for different i commute)
sends any P ∈ C[Sn]a to the unique element of Pa(d) which is congruent to P modulo the ideal
(t11, . . . , tnn) of C[Sn], i.e., it gives the projection onto the µµµ = 0-component of the direct sum
decomposition (9). (More precisely, the lemma gives this when d is an integer > n, and the
general case follows by “analytic continuation” since it is equivalent to a collection of identities
between rational functions of d, each true for infinitely many values of d.) In particular, we have
the following extension of eq. (40):

Proposition 1. The monomial basis of Pa(d) for d ∈ Cr Ξ(a) is given by

PM
ννν,d = Π(d)

a

(
Tννν

)
(ν ∈ N0(a)) , (45)

where Π
(d)
a : C[Sn]a → Pa(d) is the operator defined by equation (44).

We observe that the same argument as was used in the above calculation leads to a second
proof of Theorem 1 of §2 and to an explicit form of the decomposition (44) of polynomials on Sn.
Indeed, almost the same argument as the one used to prove (43) shows that the mth component
Pm(x) of the decomposition (42) of a polynomial P ∈ C[Rd]a is given by the formula

Pm(x) =
1

4mm! (a+ d/2− 2m)m

∑

0≤j≤a/2−m

(x, x)j ∆m+j(P (x))

4jj! (2m+ 2− a− d/2)j
. (46)

(One first checks that the expression on the right is annihilated by ∆ either by repeating the
calculation in the lemma or by observing that the sum is simply π(d)(∆mP (x)), and then ver-
ifies the equality (42) for the polynomials defined by (46) using a simple binomial coefficient
identity.4) We immediately deduce:

Proposition 2. The projection from C[Sn]a to Pa−2m (0 ≤ m ≤ a/2) defined by the direct
sum decomposition (9) is given explicitly by the operator

Π(d)
a,m =

n∏

i=1

(
1

4mi mi! (ai + d/2− 2mi)mi

∑

0≤j≤ai/2−mi

tjii D
mi+j
i

4j j! (2mi + 2− ai − d/2)j

)

and is, up to a scalar factor, equal to the map P 7→ Π
(d)
a−2m

(
Dm1

1 · · ·Dmn
n P

)
with Π

(d)
a as in (40).

We now turn to the construction of the monomial basis, starting with the constant function
PM
0

= 1, using “raising operators.” For all i 6= j we define elements Rij = Rji in the universal
enveloping algebra of g by

Rij = FiiFjjDij − 2(Ejj − 2)FiiEji − 2(Eii − 2)FjjEij + 4(Eii − 2)(Ejj − 2)Fij . (47)

An alternative way to write this definition, since Eij , Eji and Fij change the multidegree, is

Rij = FiiFjjDij − 2FiiEji(Ejj − 1) − 2FjjEij(Eii − 1) + 4Fij(Eii − 1)(Ejj − 1) . (48)

As operators on C[Sn], these operators map C[Sn]a to C[Sn]a+ei+ej
and in particular increase

the total degree by 2. We will explain the origin of the formulas (47) and (48) below.

4namely (with n = m+ j and A = a+ d/2− 1), that
∑n

m=0(A− 2m)
(

A
m

)(2n−A
n−m

)

= 0 if n > 0.
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Theorem 5. The raising operators Rij commute with one another and map the space P(n)(d)
of higher spherical polynomials to itself. For a ∈ (Z≥0)

n and ννν ∈ N0(a) the monomial basis
element PM

ννν ∈ Pa(d) is given by

PM
ννν =

1

ε2a(d− 2)
Rννν

(
1
)

(d ∈ C, d 6∈ 2Z≤1), (49)

where ε2a(d− 2) is defined by equations (14) and (18) and Rννν =
∏

i<j R
νij

ij .

Proof. The identities

[
Rij , Rkl

]
= 0 , Dk Rij = R

[k]
ij Dk (i 6= j, k 6= l) (50)

in the universal enveloping algebra of g, where R
[k]
ij is defined like Rij but with Eii − 2 and

Ejj − 2 in (47) replaced by Eii − 2 + 2δik and Ejj − 2 + 2δjk, can be checked directly from
the commutation relations given in §4. (However, this is very tedious. Two better ways will be
given at the end of the proof.) These identities prove the first two statements of the theorem.
For the last one, it suffices by induction to show that

Rij

(
PM
ννν

)
= (d+ 2ai − 2) (d+ 2aj − 2)PM

ννν+eij
(51)

But this is almost obvious: The first three terms in (48) are divisible by tii or tjj and the
operator 4(Eii − 1)(Ejj − 1) acts on C[Sn]a as multiplication by (d+ 2ai − 2)(d+ 2aj − 2), so

Rij

(
PM
ννν

)
(T )

∣∣∣
t11=···=tnn=0

= (d+ 2ai − 2) (d+ 2aj − 2) tijP
M
ννν (T )

∣∣∣
t11=···=tnn=0

= (d+ 2ai − 2) (d+ 2aj − 2)Tννν+eij ,

and now (51) follows from the definition of the monomial basis and the fact that Rij sends

P(n)(d) to itself. �

The proof just given is short, but has two disadvantages: the definition (47) (or (48)) is
completely unmotivated, and the commutation relations (50) are proved by a lengthy brute force
calculation. We describe two other approaches that are more illuminating and also illustrate
ideas that will be used again later.

(I) For i, j ∈ {1, . . . , n} and a ∈ Cn we define an operator Rij(a) by

Rij(a) = δ(T )a+ei+ej−(2−d)1/2 Dij δ(T )
(2−d)1/2−a , (52)

where δ(T )m is defined as in the Corollary to Theorem 1. (Note that δ(T )m is not well-defined
for non-integral m, but the right-hand side of (52) is well-defined because the ambiguity of
phase of the two δ(T )∗ terms cancel out.) This definition is motivated by the symmetry of
the inhomogeneous form of the differential system defining Pa(d) under a 7→ (2 − d)1 − a, a
symmetry which is implicit in Remark 4 of §3 and explicit in equation (8) in the case n = 3. A
direct calculation shows that

P ∈ C[Sn]a ⇒ Rij(a)P =

{
t2iiDi(P ) if i = j,

Rij(P ) if i 6= j.
(53)

This makes the fact that the operators Rij commute almost obvious, because applying Rij to

C[Sn]a is the same as applying Dij to δ(T )(2−d)1/2−aC[Sn]a, and the operators Dij all commute
with one another, and an exactly similar argument shows that the operators Rij map spherical
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polynomials to spherical polynomials, because (53) shows that the spherical polynomials in
C[Sn]a are precisely the polynomials killed by all Rkk(a).

(II) The second approach is to prove equation (51) directly using the harmonic projection

operators Π
(d)
a discussed in the first part of this section. This equation then implies equation (49)

and the facts that the operators Rij preserve P(n)(d) and (at least when restricted to this
space) that they commute with one another (because ννν + eij + ekl = ννν + ekl + eij). Because of
equation (40), all we have to do to establish (51) (in which we take i = 1, j = 2 for convenience)
is to show that

(d+ 2a1 − 2)(d+ 2a2 − 2)Π(d)
a

(
t12P

)
= 4(d+ 2a1 − 2)(d+ 2a2 − 2)t12P

− 2(d+ 2a2 − 2)t11E21(P ) − 2(d+ 2a1 − 2)t22E12(P ) + t11t22 D12(P )
(54)

for all P ∈ Pa(d). We do this using the commutation relations given in Theorem 4.

Denote by πk = π
(d)
k the kth factor in (44), so that Π

(d)
a = π1 · · ·πn. Since πk commutes with

F12 for k ≥ 3 and projects P to itself, we have Π
(d)
a

(
t12P

)
= π1π2

(
t12P

)
. From the commutation

relations given in Theorem 4 and the fact that Di = Dii annihilates P for all i, we find

D2

(
t12P

)
=

[
D2, F12

]
(P ) = 2E12(P ) , D2

2

(
t12P

)
= 2

[
D2, E12

]
(P ) = 0 ,

so that only the first two terms in the series defining π2 contribute to π2(t12P ) and we have

π2

(
t12P

)
= t12P −

1

2(2a2 + d− 2)
t22E12(P ) .

By the same argument, and since π1 commutes with F22, we find

π1π2

(
t12P

)
= F12(P ) − 1

2(2a1 + d− 2)
t11E21(P ) − 1

2(2a2 + d− 2)
t22 π1

(
E12P

)
,

and since an exactly similar argument using the commutation relation [D1, E12] = 2D12 gives

π1

(
E12P

)
= E12(P ) − 1

2(a1 + d− 2)
t11D12(P ) ,

this completes the proof of (54) and hence also of (49). It also explains the motivation for
the artificial-looking definition of Rij : this operator is the simplest element of the universal
enveloping algebra of the Lie algebra of §4 that is (up to a scalar factor in each homogeneous
component) adjoint to the mixed Laplace operator Dij with respect to the restriction of the
scalar product ( · , · )d to P(d).

We now come to the definition of the second canonical basis of P(n)(d). Theorem 5 tells us
that, for generic d, the monomial basis

{
PM
ννν (T ) | ννν ∈ N0(a)

}
of P(n)(d) is the same, up to

scalar factors, as the “ascending basis” defined by taking 1 as the basis element of P0(d) and
then applying the raising operators Rij to obtain the higher basis elements by induction. The
descending basis is defined, again for generic d, by a similar process in reverse.

Proposition-Definition. For generic d, there exists a unique basis
{
PD
ννν (T ) | ννν ∈ N0(a)

}
of

P(n)(d), called the descending basis, characterized by the property

Dij

(
PD
ννν

)
= PD

ννν−eij
(i 6= j) (55)

(where the right-hand side is to be taken as 0 if νij = 0) and the initial condition PD
0
(T ) = 1.

This follows immediately from the following lemma, in which Pa(d) = {0} if ai < 0 for some i.
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Lemma. Let a 6= 0 and d a complex number such that the inner product in Pa(d) is non-
degenerate. Suppose that for all i 6= j we are given polynomials Gij = Gji ∈ Pa−ei−ej

(d) such
that Dkl(Gij) = Dij(Gkl) for all i 6= j and k 6= l. Then there exists a unique polynomial
G ∈ Pa(d) such that Dij(G) = Gij for all i 6= j.

Proof. The proof is similar to that of Theorem 1. We will show by induction on |S| that, for
any set S of (unordered) pairs (i, j) with 1 ≤ i, j ≤ n, i 6= j, the following statements hold:

(i) The dimension of the spaceKa(S) :=
⋂

(i,j)∈S Ker(Dij), where Ker(Dij) = {P ∈ Pa(d) |
DijP = 0}, is equal to the number of ννν ∈ N0(a) with νij = 0 for all (i, j) ∈ S.

(ii) The map Dij : Ka(S)→ Ka−ei−ej
(S) is surjective whenever (i, j) 6∈ S.

(iii) Assume that for all (i, j) ∈ S, polynomials Gij ∈ Pa−ei−ej
(d) are given which satisfy

Dkl(Gij) = Dij(Gkl) for all (k, l) ∈ S. Then there exists G ∈ Pa(d) such that Dij(G) =
Gij for all (i, j) ∈ S.

We denote by Π = Π
(d)
a the harmonic projection. We saw earlier (eq. (39)) that the scalar

product (Q,DijP )d equals (Π(tijQ), P )d for any P in Pa(d) and Q in Pa−ei−ej
(d). It follows

that DijP = 0 if and only if P is orthogonal to all monomial basis polynomials PM
ννν with

νij > 0, and hence that the dimension of Ka(S) equals N0(a) minus the number of ννν ∈ N0(a)
with νij > 0 for some pair (i, j) ∈ S, which is precisely the statement of (i). Statement (ii)
follows immediately from (i) by comparing the dimensions. We now prove (iii) by induction on
the cardinality of S. The claim is true when |S| = 1 sinceDij : Pa(d)→ Pa−ei−ej

(d) is surjective
by (ii). Now assume that (iii) is true for some S and that Gij are given for (i, j) ∈ S∪{(k, l)} and
satisfy the compatibility condition. By the inductive assumption, there exists G0 ∈ Pa(d) such
that Dij(G0) = Gij for any (i, j) ∈ S. We have Dij(Gkl −Dkl(G0)) = Dkl(Gij −Dij(G0)) = 0,
so Gkl − Dkl(G0) ∈ Ka−ek−el(S). Since Dkl maps Ka(S) to Ka−ek−el(S) surjectively by (ii),
there exists G1 ∈ Ka(S) such that Dkl(G1) = Gkl −Dkl(G0). So if we set G = G0 + G1 then
Dkl(G) = Gkl and, since DijG1 = 0 for any (i, j) ∈ S, also Dij(G) = Gij . The uniqueness of G
follows from (i), which implies that the dimension of Ka(S) is 0 if S is the set of all (i, j) with
i 6= j and a 6= 0. �

Remark. The Lemma, and therefore also the Proposition-Definition, apply only to generic
values of d for which the scalar product on Pa(d) is non-degenerate. In fact this assumption
holds for all d /∈ Z<n. This will follow from the results in §9, where we will give an independent
proof of the existence of {PD

ννν } satisfying (55) using a generating function. To prove it directly,
we would need an a priori proof that

⋂
i,j Ker(Dij) = {0} for d /∈ Z. We were not able to

give this, since the argument used for Theorem 1 does not generalize in any obvious way. For
example, for a = (1, 1, 1, 1), then the space of harmonic polynomials is spanned by the three
monomials t12t34, t13t24 and t14t23; their images under D12 are t34 times d, 1 and 1, respectively,
so that there would seem to be a problem only if d = 0, but in fact the trouble occurs for the
two values d = −2 (where there is a 1-dimensional radical, with basis the sum of the three
polynomials above) and d = 1 (where the radical is 2-dimensional, spanned by their differences).

Theorem 6. The monomial and descending bases of Pa(d) are dual to one another with respect
to the scalar product.

Proof. Let µµµ, ννν ∈ N0. We have to show that
(
PM
ννν , PD

µµµ

)
d
= δννν,µµµ. We can assume that ννν and

µµµ have the same multidegree a, since otherwise the inner product vanishes automatically. We
proceed by induction on the total degree. If a = 0, then PM

ννν = PD
µµµ = 1 and (1, 1)d = 1 = δννν,µµµ.

Otherwise, we have νi,j > 0 for some i 6= j and we find, using the properties of the projection
operator Π, equation (39) and the induction assumption,

(
PM
ννν , PD

µµµ

)
d

=
(
Π(tijP

M
ννν−eij

), PD
µµµ

)
d

=
(
tijP

M
ννν−eij

, PD
µµµ

)
d

=
(
PM
ννν−eij

, DijP
D
µµµ

)
d

=
(
PM
ννν−eij

, PD
µµµ−eij

)
d

= δννν,µµµ . �
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In the preceding theorem we did not specify what d was. In fact there are two possible
interpretations. One is to assume, as we did in the preceding Proposition-Definition and Lemma,
that d is a specific complex number for which the scalar product is non-degenerate (i.e., in view
of the Remark above, that d /∈ Z<n). The other is to consider d as a variable. In that case the
coefficients of the canonical basis elements PM

ννν and PD
ννν , and the coefficients of the scalar products

(X,Y )d for any X, Y ∈ Q[Sn], are elements of the field K := Q(d), and Theorem 6 becomes
an identity over the field K. To make this clearer, take the example n = 4, a = (1, 1, 1, 1),
considered above. Here N0(a) = 3, N0(a) consists of the three 4 × 4 matrices ννν1 = e12 + e34,
ννν2 = e13 + e24, ννν3 = e14 + e23, and the space Pa(d) is spanned by the three monomials
P1(T ) = t12t34, P2(T ) = t13t24 and P3(T ) = t14t23. (This is obviously the monomial basis,
which here consists of actual monomials.) The corresponding Gram matrix is given by

(
Pi, Pj

)
1≤i, j≤3

=




d2 d d
d d2 d
d d d2


 (56)

and the descending basis by



PD
1 (T )

PD
2 (T )

PD
3 (T )


 = =

1

d(d− 1)(d+ 2)




d+ 1 −1 −1
−1 d+ 1 −1
−1 −1 d+ 1







P1(T )
P2(T )
P3(T )


 ,

in which, by virtue of Theorem 6, the 3 × 3 matrix is just the inverse of the matrix in (56).
Many more examples can be found in Table 2 in the appendix at the end of the paper.

We make one final observation. Define degree-preserving operators Cij (i, j = 1, . . . , n) by

Cij = FijDij − EijEji + Eii .

From the commutation relations given in Theorem 2, we find that Cij = Cji (because [Eij , Eji] =
Eii−Ejj) and that the Cij commute with all Dk. The latter property implies that the operators
Cij act on each space Pa(d). For i = j the operator Cii = FiiDi − Eii(Eii − 1) corresponds to
the usual Casimir operator in the Lie algebra sl(2) generated by the three operators Di, Eii and
Fii on (Rd)i , so we can think of the Cij as a kind of “mixed Casimir operators.” On Pa(d), the
operator Cii is equal to the scalar −(ai+ d/2)(ai+ d/2− 1) and the mixed operator Cij is given
by the commutator relation

[
Dij , Rij

]
= 4(ai + aj − 2) (Cij − ai − aj + aiaj) ,

but the operators Cij for i 6= j do not act as scalars and do not even commute with each other.
We do not know whether these operators have interesting applications.

§6. Higher spherical polynomials and invariant harmonic polynomials

In this section we look in more detail at what happens with the spaces P(n)(d) when d is a
positive integer smaller than n.

Our original motivation for the definition of P(n)(d) was to consider functions P (T ) whose

pull-back P̃ = P ◦ βn to (Rd)n is harmonic in each component xi ∈ Rd. Because the map

β∗
n : P 7→ P̃ is not injective for d < n, we did not use this as the definition of P(n)(d) in that

case, but instead defined P(n)(d) as
⋂n

i=1 Ker(Di) . In this section we study the relationship of
the three vector spaces

(i) Pa(d) =
{
P ∈ C[Sn]a | D1P = · · · = DnP = 0

}
,

(ii) Ha(d) =
(
Ha1

(Rd)⊗ . . .⊗Han
(Rd)

)O(d)
,

(iii) Va(d) =
{
P ∈ C[Sn]a | P̃ ∈ Ha(d)

}
,
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where Hai
(Rd) in (ii) is defined as in Remark 3 of §2. For d ≥ n, all three spaces are isomorphic.

In general, we have Pa(d) ⊆ Va(d) (because ∆i(P̃ ) = Di(P )∼ ), and we will show that the map
β∗
n : Pa(d)→ Ha(d) is surjective (Theorem 7). In particular, we have

dimHa(d) ≤ dimPa(d) ≤ dimVa(d) . (57)

At the end of this section we will show that in general all three dimensions are distinct, and will
determine all three of them exactly in the special case when d = n− 1.

Let us define two further spaces

Ka(d) = Ker
(
β∗
n : C[Sn]a →

(
C[Rd]a1

⊗ · · · ⊗ C[Rd]an

)O(d) )
,

K′
a
(d) = Ka(d) ∩ Pa(d) .

Clearly Ka(d) ⊆ Va(d).

Theorem 7. The diagram

0 → Ka(d) −→ C[Sn]a
β∗

n−→
(⊗n

i=1 C[R
d]ai

)O(d) −→ 0

‖ ⋃ ⋃

0 → Ka(d) −→ Va(d)
β∗

n−→ Ha(d) −→ 0⋃ ⋃ ‖

0 → K′
a
(d) −→ Pa(d)

β∗

n−→ Ha(d) −→ 0

is commutative with exact rows.

Proof. Only the surjectivity of β∗
n in each of the three rows has to be proved, since the spaces

on the left are by definition the kernel of β∗
n in each case. The surjectivity of β∗

n in the first row
is a classical result (“first fundamental theorem of invariant theory,” [16]), and the surjectivity
in the second row an immediate consequence of this, since Va(d) is defined as the inverse image
of Ha(d) in C[Sn]a . Thus the real assertion of the theorem is the statement that the map
β∗
n : Pa(d) → Ha(d) is surjective for all n and d (or equivalently, that the space Va(d) is the

sum of its two subspaces Ka(d) and Pa(d)). We prove this using the two following lemmas.

Lemma 1. For any P ∈ C[Sn]a and m ∈ Zn
≥0 we have

Di

(
δ(T )m P (T )

)
= δ(T )m Di(P (T )) + 2mi(d+2ai+2mi−2) δ(T )m−ei P (T ) (i = 1, . . . , n) .

Proof. This follows by induction on the non-negative integer mi from the commutation relations
[Di, Fii] = 4Eii = 4Ei + 2d and [Di, Fjj ] = 0 (i 6= j). �

Lemma 2. Let P =
∑

m
δ(T )m Pm(T ) be the decomposition of a polynomial P ∈ C[Sn] given

by the corollary to Theorem 1, where d is a positive integer. If P̃ = 0, then P̃m = 0 for every m.

Proof. This follows immediately from the commutativity of the diagram

C[Sn]a
∼=←− ⊕

0≤m≤ 1
2a
Pa−2m(d)

β∗
n ↓ ↓ β∗

n

C[Rd]a1 ⊗ · · · ⊗ C[Rd]an

∼=←− ⊕
0≤m≤ 1

2a
Ha1−2m1(R

d)⊗ · · · ⊗ Han−2mn
(Rd)
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in which the horizontal isomorphisms are those given by the decompositions (9) and (42). �

Returning to the proof of Theorem 7, let F ∈ Ha(d) and choose P ∈ C[Sn]a with P̃ = F . By
definition we have P ∈ Va(d) and by the relationship between Di and the Laplacian ∆i on (Rd)i
discussed in §1 we have (DiP )∼ = ∆i(P̃ ) = ∆i(F ) = 0 for all i. Let P =

∑
m
δ(T )m Pm(T )

be the decomposition of P given by (9). Applying Di to both sides of this equality and using
Lemma 1 (with P replaced by Pm and a by a− 2m), we find

Di(P ) =
∑

m≥0
mi≥1

2mi (d+ 2ai − 2mi − 2) δ(T )m−ei Pm(T ) .

The fact that Di(P )∼ = 0 and Lemma 2 then imply that P̃m = 0 for all m with mi > 0, because
the factor 2mi(d+2ai− 2mi− 2) is non-zero for d > 0 and 0 < mi ≤ ai/2, and since this is true

for every i, it follows that P̃m = 0 for all m 6= 0, so F = P̃ = P̃0 ∈ β∗
n

(
Pa(d)

)
. �

From Theorem 7 we see that Va(d) = Ka(d) + Pa(d) and hence that

dimHa(d) = dimVa(d) − dimKa(d) = dimPa(d) − dimK′
a
(d) (58)

so that the claim that both inequalities in (57) are in general strict is equivalent to the claim that
both inclusions 0 ⊆ K′

a
(d) ⊆ Ka(d) are in general proper. We will prove this by computing

all three spaces in question in the special case d = n− 1.

Proposition 1. For d = n− 1 we have the dimension formulas

dimHa(n− 1) = N0(a) − N0(a− 2) ,

dimPa(n− 1) = N0(a) ,

dimVa(n− 1) = N0(a) + N(a− 2) − N0(a− 2) ,

where 2 = 2 · 1 = (2, . . . , 2) .

Proof. In general, it is known (“second fundamental theorem of invariant theory”) that for d < n
the kernel of the map β∗

n is the ideal in C[Sn] generated by all (d + 1) × (d + 1) minors of the
coordinate T ∈ Sn. In particular, if d = n − 1 then this kernel is the ideal generated by the
single polynomial D ∈ C[Sn]2 defined by D(T ) = detT . In other words, we have

Ka(n− 1) = D · C[Sn]a−2 . (59)

To complete the proof, we will show that

K′
a
(n− 1) = D · Pa−2(n+ 3) . (60)

Equations (59) and (60) and Theorem 1 give dimKa(n − 1) = N(a − 2) and dimK′
a
(n − 1) =

N0(a − 2), and together with the exact sequences of Theorem 7 these imply the dimension
formulas given in the proposition.

To prove (60), we have to compute the effect of the ith Laplace operator Di on products of
the form P = D · Q. Since the formulas depend on the value of d, we will temporarily write

D
(d)
i rather than simply Di to denote the differential operator on C[Sn] defined by (5).
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Lemma 3. We have
D

(n−1)
i (D) = 0 (1 ≤ i ≤ n) (61)

and more generally

D
(n−1)
i (DQ) = DD

(n+3)
i (Q) (1 ≤ i ≤ n) (62)

for any polynomial Q ∈ C[Sn] .

Proof. The partial derivatives of D are easily seen to be given by

∂ijD = 2Dij (1 ≤ i, j ≤ n)

where Dij(T ) is the (i, j)-cofactor of T . (In checking this for i = j, one has to remember that
∂ii = 2∂/∂tii .) Using this and the formula

n∑

k=1

tjk Dik = δij D

(the product of T and its adjoint matrix equals det(T ) times the identity matrix), we find

D
(d)
i (D) = 2dDii +

n∑

j, k=1

tjk ∂ij( 2Dik)

= 2dDii + 2
n∑

j, k=1

(
∂ij(tjk Dik) − ∂ij(tjk)Dik

)

= 2dDii + 2

n∑

j=1

∂ij

( n∑

k=1

tjk Dik

)
− 2

n∑

j, k=1

δik(1 + δij)Dik

= 2dDii + 4Dii − 2
n∑

j=1

(1 + δij)Dii

= 2(d+ 1− n)Dii ,

and assertion (61) follows. (Another proof, more in keeping with the contents of this section, is as
follows. Let D =

∑
0≤m≤1

δ(T )m Dm with Dm ∈ P2−2m(d−1) be the canonical decomposition

of D as given by Theorem 1. From D̃ = 0 and Lemma 2 we deduce that D̃m = 0 for all m.
But then Dm ∈ Ker(β∗

n) = D ·C[Sn], and since the degree of Dm is smaller than that of D for
m 6= 0, this implies that Dm = 0 for all m 6= 0 and hence that D = D0 ∈ P2(n− 1) .) To prove
the second assertion, we apply the easily proved general formula

D
(d)
i (PQ) = D

(d)
i (P )Q + 2

n∑

j,k=1

tjk ∂ij(P ) ∂ik(Q) + P D
(d)
i (Q)

with d = n− 1, P = D and use (61) to find

D
(n−1)
i (DQ) = 2

n∑

k=1

(
2

n∑

j=1

tjk Dij

)
∂ik(Q) + DD

(n−1)
i (Q)

= D
(
D

(n−1)
i (Q) + 4∂ii(Q)

)
= DD

(n+3)
i (Q) . �

Formula (60) follows immediately: If P ∈ Ka(n − 1), we can write P = DQ with Q ∈
C[Sn]a−2, and equation (62) shows that P ∈ Pa(n− 1) if and only if Q ∈ Pa−2(n+ 3). �
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We end this section with a final remark. As we mentioned before the Corollary of Theorem 1
and have used several times, given a non-degenerate quadratic form Q(x) = (x, x) on Rd we
have a direct sum decomposition C[Rd] =

⊕
m≥0 Q(x)mH(Rd) of the space C[Rd] and hence a

direct sum decomposition

C[Rd]⊗n =
⊕

m≥0

( n∏

i=1

Q(xi)
mi

)
H(Rd)⊗n = H(Rd)⊗n ⊕ In ,

of its nth tensor power, where In is the ideal generated by the polynomials Q(x1), . . . , Q(xn)
in C[Rnd] = C[x1, . . . , xn], the splitting being given explicitly by the product of the projection

operators π
(d)
i (1 ≤ i ≤ n) defined in (43). In particular, a polynomial P (x1, . . . , xn) that is

harmonic with respect to each variable xi ∈ Rd and that belongs to the ideal In vanishes. But,
at least for d ≥ 3, the elements of In are precisely the polynomials vanishing on the discriminant
variety Dn = {(x1, . . . , xn) ∈ Cdn | Q(x1) = · · · = Q(xn) = 0}. (Proof: The quadratic form Q
is irreducible because a reducible form Q(x) = (atx)(btx) corresponds to the symmetric matrix
atb + abt of rank ≤ 2, so cannot be non-degenerate if d ≥ 3. But then Dn is the product of n
irreducible varieties and hence irreducible, so its associated ideal In is prime and hence equal
to its own radical. The assertion then follows from Hilbert’s Nullstellensatz.) This proves the
following statement, which will be used at the end of the next section in the case when n ≥ d = 4.

Proposition 2. A polynomial belonging to H(Rd)⊗n is completely determined by its restriction
to the set {Q(x1) = · · · = Q(xn) = 0} ⊂ Cdn. In particular, if this restriction is O(d)-invariant,
then so is the original polynomial.
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Chapter II. Explicit Constructions

§7. Construction of invariant harmonic polynomials for d = 4

In this section we will give a construction of higher spherical polynomials for the special case
d = 4 by identifying Cd in this case with the space M(2,C) of 2 × 2 complex matrices,5 with

the quadratic form g =
(
a b

c d

)
7→ det(g) = ad− bc. The group G = SL(2,C) acts on M(2,C) by

both right and left multiplication, and the combined action of G×G on M(2,C) ∼= C4 identifies
(G×G)/{±1} with the special orthogonal group SO(4).

Let V1 denote the standard 2-dimensional representation of G and Va (a ∈ N) its ath sym-
metric power, the (a + 1)-dimensional space of homogeneous polynomials of degree a in two
variables x and y. We have a G-invariant scalar product in Va given by

〈xpyq, xp′

yq
′〉 = (−1)p p! q! δp,q′ (p+ q = p′ + q′ = a) , (63)

so we obtain by tensor product a Gn-invariant scalar product 〈 , 〉 on Va = Va1 ⊗· · ·⊗Van
. Now

for each multi-index ννν ∈ N0(a) we have the G-invariant vector

wννν =
∏

1≤i<j≤n

(xiyj − xjyi)
νij

νij !
∈ Va ,

where (xi, yi) are the coordinates on Vai
. We define a function Fννν on M2(C)n by

Fννν(g) = 〈gwννν , wννν〉
(
g = (g1, . . . , gn) ∈M2(C)

n
)
,

and more generally set Fµµµ,ννν(g) = 〈gwµµµ, wννν〉 for any µµµ, ννν ∈ N0(a).

Proposition 1. The polynomial Fµµµ,ννν is a homogeneous harmonic polynomial of degree ai with
respect to gi ∈M2(C) ∼= C4 for each index i = 1, . . . , n. It is SO(4)-invariant for any µµµ and ννν,
and is O(4)-invariant if µµµ = ννν.

Proof. The homogeneity property is obvious. For the harmonicity we must show that ∆iFµµµ,ννν = 0

for each i, where gi =
( ai bi
ci di

)
, ∆i = 4

(
∂2

∂ai∂di
− ∂2

∂bi∂ci

)
. This follows from the observation

that ∆i annihilates F (aix+ biy, cix+ diy) for any twice differentiable function F (x, y), whence
∆i(gwµµµ) = 0 and a fortiori ∆i(〈gwµµµ, wννν〉) = 0 for any ννν. Finally, since wννν is (left) invariant
under the diagonal action of G on Va and the scalar product 〈 , 〉 is G-invariant, it is clear that
Fµµµ,ννν(g) = 〈gwµµµ, wννν〉 is invariant under both right and left multiplication of g by elements of
G, i.e., it is invariant under the action of SO(4). The G-invariance and (−1)a-symmetry of the
scalar product on Va and the assumption that a1+· · ·+an is even imply that Fµµµ,ννν(g

∗) = Fννν,µµµ(g),

where g 7→ g∗ is the involution on M2(C)n induced by the involution ∗ :
(
a b

c d

)
7→

( d −b

−c a

)
of

M2(C). Since this involution represents the non-trivial coset of SO(4) in O(4), it follows that
the polynomials Fµµµ,ννν + Fννν,µµµ, and hence in particular also the polynomials Fννν = Fννν,ννν , are O(4)-
invariant. �

We next define a generating function which has all of the polynomials Fµµµ,ννν(g) as its coeffi-
cients. Let U = (Uij) and V = (Vij) be antisymmetric n× n matrices with variable coefficients
(so that each is coordinatized by n(n− 1)/2 independent variables Uij , Vij with i < j) and set

F (g;U,V) =
∑

µµµ,ννν

Fµµµ,ννν(g)U
µµµVννν ,

5Here we work over C rather than R (cf. footnote 2 in §1) because the determinant form on 2× 2 matrices is

not isomorphic to the standard quadratic form
∑4

1 x
2
i over R, but is over C.
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where Uµµµ means
∏

i<j U
µij

ij and we set Fµµµ,ννν equal to 0 if µµµ and ννν have different multidegrees.
The homogeneity of the Fµµµ,ννν implies that this generating function is unchanged if we replace gi
by gi/λi and Uij by λiλjUij for any non-zero constants λi, so we may restrict ourselves to the
case when all the gi are unimodular.

Theorem 8. The generating function F (g;U,V) for g ∈ SL(2,R)n is given by

F (g;U,V) = D(g;U,V)−1/2 ,

where D(g;U,V), a polynomial in the coefficients ai, bi, ci, di of g and Uij , Vij of U and V, is
defined as the determinant of the symmetric 4n× 4n matrix




0n U a b
−U 0n c d
a c 0n V
b d −V 0n


 ,

where a, b, c, d are the n×n diagonal matrices with diagonal entries ai, bi, ci, di, respectively.

Proof. Extend the scalar product (63) to be 0 for polynomials of different degree, i.e., replace

the right-hand side of (63) by 〈xpyq, xp′

yq
′〉 = (−1)pp!q!δpq′δp′q. Then 〈u, v〉 = 0 for u ∈ Wννν ,

v ∈ Wµµµ with ννν·1 6= µµµ·1, so that the definition of Fµµµ,ννν(g) as 〈gwµµµ, wννν〉 holds for all µµµ and ννν.
From the definition of wµµµ we have

∑

µµµ

wµµµ U
µµµ =

∏

1≤i<j≤n

eUij(xiyj−xjyi) = exp
(∑

i,j

Uijxiyj
)
,

and hence

F (g;U,V) =
∑

µµµ,ννν

〈w∗
µµµ, wννν〉UµµµVννν =

〈
exp

(∑

i,j

Uijx
∗
i y

∗
j

)
, exp

(∑

i,j

Vijxiyj
)〉

,

where

(
x∗
i

y∗i

)
:= gi

(
xi

yi

)
. Using the identity (easily proved using polar coordinates)

δpq p! =
1

π

∫

C

xpx̄qe−|x|2 dµx (p, q ∈ Z≥0),

where dµx denotes the standard Lebesgue measure in C, we obtain the integral representation

〈xpyq, xp′

yq
′〉 = 1

π2

∫

C2

(−x)pyq ȳp′

x̄q′e−|x|2−|y|2 dµxdµy

or (changing x to −x) 〈f1, f2〉 = π−2
∫
C2 f1(x, y)f2(ȳ,−x̄)e−|x|2−|y|2dµxdµy for the scalar prod-

uct 〈·, ·〉 on ⊕
a Va. This gives the integral representation

F (g;U,V) =
1

π2n

∫

C2n

exp

(
−
[ n∑

i=1

(
xix̄i + yiȳi

)
−

∑

i,j

(
Uijx

∗
i y

∗
j + Vij x̄iȳj

)])
dµ

for F (g;U,V), where dµ = dµx1 · · · dµyn
is the Lebesgue measure on C2n. Now this integral

equals D−1/2 where D is the determinant of the quadratic form in square brackets, considered
as a form of rank 4n over R. The matrix representing this quadratic form with respect to
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the variables (y∗1 , . . . , y
∗
n,−x∗

1, . . . ,−x∗
n, ȳ1, . . . , ȳn,−x̄1, . . . ,−x̄n) is half of the one given in the

proposition, where we have to remember that gt
( 0 −1

1 0

)
g =

( 0 −1

1 0

)
. But we are taking the usual

Lebesgue measure with respect to real parts and imaginary parts of xi and yi for the integral
and we have ℜ(x) = (x+ x̄)/2, ℑ(x) = (x− x̄)/2i, so the factors of 2 cancel. �

Theorem 8 in principle gives us a way to calculate the polynomials Fµµµ,ννν for arbitrary n and
for arbitrary µµµ and ννν, but these polynomials can be written uniquely in terms of the numbers
tij = Tr(gigj) only if µµµ = ννν and n ≤ 4, because if µµµ 6= ννν then they are only SO(4)- rather than
O(4)-invariant, while if n > 4 then there are non-trivial relations among the tij (vanishing of
all 5× 5 minors) which mean that the representation of Fννν(g) as a polynomial in the tij is not
unique. Therefore the most important cases of the theorem are n = 3 (which will be treated
in detail in the next section) and n = 4 (where we have not been able to do any interesting
calculations). However, using the results of §5 we can prove the following result for arbitrary
values of n.

Proposition 2. The polynomials Fννν for d = 4 for any value of n coincide up to a scalar factor

with P̃M
ννν , the pull-backs under βn of the monomial basis polynomials PM

ννν ∈ P(n)(4) .

Proof. Since both Fννν and P̃M
ννν are harmonic with respect to each variable gi ∈ M2(R) = R4, it

suffices by Proposition 2 of §6 to show that they agree up to a constant factor when all the gi
have determinant 0. In view of the definition of PM

ννν , this means that we must prove that

〈
gwννν , wννν

〉
=

a!!!

ννν!!!2

∏

1≤i<j≤n

(
gi, gj

)νij
if det(g1) = · · · = det(gn) = 0 , (64)

where we have now inserted the constant, using the abbreviations ννν!!! =
∏

i<j νij !, a!!! =
∏

i ai! .

To prove (64), we first observe that a 2× 2 matrix of determinant 0 has rank ≤ 1 and hence
can be written as ξξξ rt for some column vectors ξξξ and r. So we can write each gi as ξξξir

t
i for some

column vectors ξξξi =
(
ξi
ηi

)
and ri =

(
ri
si

)
. We first claim that the scalar product (gi, gj) is then

given as the product of the two determinants |ξξξi ξξξj | and |ri rj |. This can be proved either by
multiplying everything out and checking or, slightly more elegantly, by observing that

(
gi, gj

)
= tr(g∗i gj) = tr(−JgtiJgj) = tr(−JriξξξtiJξξξjrtj) = (−ξξξtiJξξξj) tr(Jrirtj) = |ξξξi ξξξj | |ri rj | .

(Here J =
( 0 −1

1 0

)
as usual.) Next, we observe that gi

(
xi

yi

)
= (rixi + siyi)ξξξi , so we have

gwννν =
1

ννν!!!

n∏

i=1

(
rixi + siyi

)ai ·
∏

1≤i<j≤n

∣∣ξξξi ξξξj
∣∣νij

Finally, the definition of the G-invariant scalar product in Va as defined in (63) is easily seen to
be equivalent to

〈
(rx+ sy)a, P (x, y)

〉
= a!P (s,−r) for all P ∈ Va .

Combining these three facts, we get the desired equality (64) :

〈
gwννν , wννν

〉
=

1

ννν!!!

∏

i<j

∣∣ξξξi ξξξj
∣∣νij ·

〈 n∏

i=1

(rixi + siyi)
ai , wννν

〉

=
a!!!

ννν!!!2

∏

i<j

(∣∣ξξξi ξξξj
∣∣ ∣∣ri rj

∣∣
)νij

=
a!!!

ννν!!!2

∏

i<j

(
gi, gj

)νij
. �
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Remark. The proof of Proposition 2 did not use the O(4)-invariance of Fννν , and hence gives
another proof of this invariance, because of the second statement in Proposition 2 of §6.

§8. Higher spherical polynomials for n = 3

In the case n = 3, we have the extra fact that the polynomials Fµµµ,ννν all vanish except those
µµµ = ννν, since there is only one triple ννν with any given multidegree a, as given in (3), and the
polynomials Fµµµ,ννν with indices of different multidegrees vanish by definition. This case, which
will be treated in detail in this section, is therefore particularly interesting.

It will be convenient to rename the coordinates of Sn for n = 3. We set

2T =

( 2m1 r3 r2
r3 2m2 r1
r2 r1 2m3

)
. (65)

We will use the notations m and r to denote the triples (m1,m2,m3) and (r1, r2, r3) and will

consistently use the evident vector notation, e.g. mλλλ for a triple λλλ = (λ1, λ2, λ3) denotes
∏

mλi

i .

The indices i are taken modulo 3. We write a typical element of N0(a) as

(
0 ν3 ν2

ν3 0 ν1

ν2 ν1 0

)
with

νi ≥ 0, so that νi is the same as what was denoted νi+1,i+2 in the last section. According
to the result of §2, we know that Pa(d) is spanned by a unique (up to a scalar multiple)
polynomial Pννν(T ) = Pννν(m, r) whenever a and ννν are related as in (3). It is easily seen that
Pννν is a homogeneous polynomial of tridegree ννν if we assign to r1, r2, r3, m1, m2, and m3 the
tridegrees (1,0,0), (0,1,0), (0,0,1), (−1,1,1), (1,−1,1), and (1,1,−1), respectively.

In terms of the coordinates (65), the differential operator D1 computed in §1 is given by

1

4
D1 =

(
d

2
+m1

∂

∂m1
+ r2

∂

∂r2
+ r3

∂

∂r3

)
∂

∂m1
+ m3

∂2

∂r22
+ r1

∂2

∂r2∂r3
+ m2

∂2

∂r23
(66)

(and D2 and D3 by the same formula with the indices permuted cyclically).

This section, which is fairly long, will be divided into five subsections. In the first, we construct
generating functions whose coefficients give us a canonical generator Pννν(T ) of the 1-dimensional
space Pa(d). In the second, we compute the relation between the new basis elements and the
ones constructed in §5 and use this to compute the scalar products of the Pννν with themselves,
while the third and fourth subsections contain various recursion relations and explicit formulas
for the coefficients of these polynomials. The last subsection contains a brief discussion of the
n = 3 case of the inhomogeneous coordinates defined at the end of §1, of the related angular
coordinates, and of a somewhat surprising extra symmetry of these coordinates.

A. Generating function. We begin by writing out the generating function of Proposition 2
explicitly for n = 3. This generating function will then be generalized to arbitrary d.

For the case d = 4, we can choose Pννν(T ) canonically as Fννν(g) = 〈gwννν , wννν〉 defined as
in §6, where g = (g1, g2, g3) is a triple of matrices in M2(R) related to the 3 × 3 matrix T by
mi = det(gi), ri = Tr(gi+1g

∗
i+2). We introduce dummy variables X1, X2, X3 and define Xννν as

usual as Xν1
1 Xν2

2 Xν3
3 .

Proposition 1. The polynomials Pννν(T ) for n = 3, d = 4 are given by the generating function

∑

ννν

Pννν(T )X
ννν =

1√
∆0(T,X)2 − 4d(T )X1X2X3

, (67)
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where

∆0(T,X) = 1−
3∑

i=1

(riXi −miriXi+1Xi+2 −mi+1mi+2X
2
i )

and

d(T ) = 4 det(T ) =
3∏

i=1

ri −
3∑

i=1

mir
2
i + 4

3∏

i=1

mi .

Proof. This is just Theorem 8 for the special case n = 3, since we have already seen that in
that case the terms with µµµ 6= ννν in the generating function vanish. To compute the generating
function explicitly we must calculate the 12× 12 determinant D(g;U,V) defined in Theorem 8.
By direct calculation we find D(g;U,V) = ∆0(T,X)2 − 4d(T )X1X2X3 when all mi = 1, where
T is determined by g as explained above and Xi = Ui+1,i+2Vi+1,i+2, and the general case then
follows by homogeneity. �

Proposition 1 makes it easy to compute any polynomial Pννν explicitly. Here is a table for all ννν
with |ννν| ≤ 4, where we give only one representative for each S3-orbit of indices ννν:

P000 = 1 ; P100 = r1 ; P200 = r21 −m2m3 , P110 = 2r1r2 −m3r3 ;

P300 = r31 − 2m2m3r1 , P210 = 3r21r2 − 2m3(r1r3 +m2r2) ,

P111 = 8r1r2r3 − 4(m1r
2
1 +m2r

2
2 +m3r

2
3) + 8m1m2m3 ;

P400 = r41 − 3m2m3r
2
1 +m2

2m
2
3 , P310 = 4r31r2 − 3m3r

2
1r3 − 6m2m3r1r2 + 2m2m

2
3r3 ,

P220 = 6r21r
2
2 − 6m3r1r2r3 − 3m3(m1r

2
1 +m2r

2
2) +m2

3r
2
3 + 2m1m2m

2
3 ,

P211 = 18r21r2r3 − 9m1r
3
1 − 12r1(m2r

2
2 +m3r

2
3)− 4m2m3r2r3 + 26m1m2m3r1 .

We now state a generalization of Proposition 1 which gives explicit higher spherical polyno-
mials for n = 3 and for arbitrary values of ννν and d as the coefficients of a generating function.

Theorem 9. For T ∈ S3 as in (65) and X = (X1, X2, X3) let ∆0(T,X) and d(T ) be as in
Proposition 1 and set

R(T,X) =
∆0(T,X) +

√
∆0(T,X)2 − 4d(T )X1X2X3

2
. (68)

For any d ∈ C, define polynomials Pννν,d(T ) (ννν = (ν1, ν2, ν3) ∈ Z3
≥0) by the generating function

∑

ννν

Pννν,d(T )X
ννν =

R(T,X)−s

√
∆0(T,X)2 − 4d(T )X1X2X3

. (69)

where s = d/2− 2. Then Pννν,d(T ) belongs to the space Pa(d), where a is related to ννν by (3), and
generates this space if d 6∈ {2, 0, −2, −4, . . . } or if d = 2 and all νi are strictly positive.

Proof. Using the formula for D1 given in (66), we find by direct calculation that

1

4m2m3 − r21
D1

(
d(T )n

∆0(T,X)2n+s+1

)

= n(n+ s)
d(T )n−1

∆0(T,X)2n+s+1
− (2n+ s+ 1)(2n+ s+ 2)

d(T )n X1X2X3

∆0(T,X)2n+s+3
.
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Applying this identity to the expansion

1√
∆2

0 − 4d(T )X

(
∆0 +

√
∆2

0 − 4d(T )X

2

)−s

=
∞∑

n=0

(
2n+ s

n

)
(d(T )X)n

∆2n+s+1
0

(70)

shows that D1(Pννν,d) = 0. The vanishing of the other Di follows in the same way or by symmetry.
The final statement of the theorem follows because dimPa(d) = 1 for d 6∈ 2Z≤0 and since
Pννν,d 6≡ 0 for −s 6∈ N by the calculation of its leading term as given in Proposition 2 below. �

Using Theorem 9, we can compute the polynomials Pννν,d of any given degree, a typical value
(generalizing to arbitrary s the one given above for s = 0) being

P211,d(T ) =
1
2 (s+ 2)2(s+ 3)2r21r2r3 − 1

2 (s+ 2)(s+ 3)2m1r
3
1 − (s+ 2)2(s+ 3)(m2r

2
2 +m3r

2
3)r1

− (s+ 1)(s+ 2)2m2m3r2r3 + (s+ 2)(5s+ 13)m1m2m3r1 .

The polynomials Pννν,d(T ) for all ννν with |ννν| ≤ 6 are given in Table 1 at the end of the paper.

Remark 1. The expressions ∆0(T,X) and d(T )X1X2X3 appearing in the theorem can be
written as (1 − σ1/2)

2 − σ2 and 2σ3, respectively, where the σi are the elementary symmetric
polynomials in the eigenvalues (= coefficients of the characteristic polynomial up to sign) of the

3 × 3 matrix

(
0 X3 X2

X3 0 X1

X2 X1 0

)
T . This remark, and the generating function of Theorem 8, will be

greatly generalized in §9.
Remark 2. In the above proof, we simply wrote down the right-hand side of (69) as a

generalization of (67) and verified that its coefficients were spherical polynomials, which was an
easy calculation. The main point here is how to guess the correct formula (69). This was done
(roughly) in the following way. We wish to define for all d a generator Pννν,d of the 1-dimensional
space Pa(d) in such a way that the sum

∑
ννν Pννν,d(T )X

ννν is algebraic and agrees with (67) if d = 4.
Because of the one-dimensionality, we know that these functions, if they exist, must be scalar
multiples of both the monomial basis elements PM

ννν and the descending basis elements PD
ννν as

defined in §5, where the multiples are determined by computing the constant term and the effect
of the mixed Laplace operators Dij , respectively. So we begin by computing these things in the
already known case d = 4 (cf. Subsection B below, where these computations are done, assuming
the definition (69), for all d), and then insert s into the formulas obtained in the simplest way
possible such that the coefficients of Pννν do not acquire any denominators (which are prohibited
if
∑

PνννX
ννν is to be an algebraic function). This led to formulas (74) and (77) below, after which

the generating function (69) was found more or less by doing the calculations of Subsection B
in the reverse order.

Remark 3. It is interesting to compare the computations for n = 3 in the last two sections
(Proposition 1 and Theorem 9) with the classical case n = 2. In this case the polynomial Fµµµ,ννν(g)

defined in §7 equals Pa(T ) if µµµ = ννν =
( 0 a

a 0

)
for some integer a ≥ 0 and is 0 otherwise, where

T =
( m1 r/2

r/2 m2

)
with mi = det(g1) and r = tr(g1g

∗
2). The 8×8 determinant D(g;U,V) occurring

in Theorem 8, for U =
( 0 −u

u 0

)
and V =

( 0 −v

v 0

)
, is easily calculated to be (X2 − rX +m1m2)

2,

where X = uv, so we obtain the generating function
∑∞

a=0 Pa(T )X
a = (1− rX +m1m2X

2)−1

for the spherical polynomials Pa(T ) when d = 4. On the other hand, in Example 1 of §1
we calculated a generator of the one-dimensional space P(a,a)(d) for any a ≥ 0 and any d 6∈
2Z ∩ [4− 2a, 2− a], obtaining (with a suitable normalization) the formula

Pa,d

( m1 r/2

r/2 m2

)
=

∑

0≤l≤a/2

(
a− l

l

)(
a− l + d/2− 2

a− l

)
(−m1m2)

l ra−2l , (71)
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which in turn is equivalent to the more general generating function

∞∑

a=0

Pa,d

( m1 r/2

r/2 m2

)
Xa = (1− rX +m1m2X

2)1−d/2 . (72)

The formulas (71) and (72) are of course classical, the polynomials Pa,d being called Gegenbauer
polynomials in that case (with the special names Legendre polynomials if d = 3 and Chebyshev
polynomials if d = 2 or 4). In §9 we will show how to produce natural generating functions
generalizing (72) and (69) that give us canonical bases of Pa(d) for arbitrary values of n.

Notation. Let us fix the notation for the coefficients of the polynomials Pννν = Pννν,d. We

write T as in equation (65) and denote by C(λλλ;µµµ) the coefficient of mλλλrµµµ in Pννν . Clearly this
coefficient is 0 unless ννν, λλλ and µµµ are related by

νi = µi − λi + λi+1 + λi+2 , λi =
1

2

(
νi+1 + νi+2 − µi+1 − µi+2

)
(73)

(here i is considered modulo 3), so that we can omit the subscript ννν in C(λλλ;µµµ), but we can
also write Cννν(λλλ;µµµ) if this is needed for emphasis or clarity. We will also almost always omit
the “d” from the notation for the coefficients of Pννν,d, but of course these coefficients depend
(polynomially) on this parameter. As usual, we also work with s, where d = 2s+ 4.

B. Ratios of the various basis elements. In Chapter I, we gave two special bases
{PM

ννν } and {PD
ννν } for Pn(d). In the special case n = 3, we have now given a third basis {Pννν}

from the generating function (69). Since the (non-zero) spaces Pa(d) for n = 3 are all one-
dimensional, all three bases agree up to constants. In this subsection we compute these constants
of proportionality and at the same time the constant terms and the norms (with respect to the
canonical scalar product) of the polynomials Pννν .

Proposition 2. The higher spherical polynomial Pννν(T ) defined by the generating function (69)
for n = 3 is related to the monomial basis by

Pννν(T ) = 2ν1+ν2+ν3
(ν1 + ν2 + s)! (ν1 + ν3 + s)! (ν2 + ν3 + s)!

ν1! ν2! ν3! (ν1 + s)! (ν2 + s)! (ν3 + s)!
PM
ννν (T ) . (74)

Proof. In view of the definition of the monomial basis, this is equivalent to the statement that
the leading coefficient of the polynomial Pννν,d is given by

C(000;ννν) =

(
ν1 + ν2 + s

ν1

)(
ν2 + ν3 + s

ν2

)(
ν3 + ν1 + s

ν3

)
. (75)

Taking T with m1 = m2 = m3 = 0 in (69) and (70), so that Pννν(T ) = C(000;ννν) rννν , and setting
ti = riXi, we find

∑

ννν

C(000;ννν) tννν =
∞∑

n=0

(
2n+ s

n

)
(t1t2t3)

n

(1− t1 − t2 − t3)2n+s+1

=
∑

n,e≥0

(
2n+ s

n

)(
2n+ s+ e

e

)
(t1t2t3)

n (t1 + t2 + t3)
e

=
∑

n,a,b,c≥0

(2n+ s+ a+ b+ c)!

n! (n+ s)! a! b! c!
ta+n
1 tb+n

2 tc+n
3 .
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Hence

C(000;ννν) =

min(ν1,ν2,ν3)∑

n=0

(ν1 + ν2 + ν3 + s− n)!

n! (n+ s)! (ν1 − n)! (ν2 − n)! (ν3 − n)!
. (76)

This expression is symmetric in the three arguments νi, but more complicated than the formula
given in the proposition. To prove that formula, we first break the symmetry. We rewrite (76)
as C(000;ννν) =

(
ν1+ν2+s

ν1

)
C ′(ννν) with C ′(ννν) defined by

C ′(ννν) =
min(ν1,ν2,ν3)∑

n=0

(
ν1
n

)(
ν2 + s

ν2 − n

)(
ν1 + ν2 + ν3 + s− n

ν3 − n

)
.

Then for fixed ν1 we find the generating function

∑

ν2, ν3≥0

C ′(ν1, ν2, ν3)X
ν2 Y ν3

=

ν1∑

n=0

(
ν1
n

) ∞∑

ν2=n

(
ν2 + s

ν2 − n

)
Xν2

∞∑

ν3=n

(
ν1 + ν2 + ν3 + s− n

ν3 − n

)
Y ν3

=

ν1∑

n=0

(
ν1
n

) ∞∑

ν2=n

(
ν2 + s

ν2 − n

)
Xν2 Y n

(1− Y )ν1+ν2+s+1

=

ν1∑

n=0

(
ν1
n

)
Xn Y n

(1− Y )ν1+n+s+1

1

(1−X/(1− Y ))n+s+1

=
1

(1− Y )ν1 (1−X − Y )s+1

(
1 +

XY

1−X − Y

)ν1

=
(1−X)ν1

(1−X − Y )ν1+s+1
=

∞∑

ν3=0

(
ν1 + s+ ν3

ν3

)
Y ν3

(1−X)ν3+s+1

=
∞∑

ν2=0

∞∑

ν3=0

(
ν1 + ν3 + s

ν3

)(
ν2 + ν3 + s

ν2

)
Xν2 Y ν3

proving (75). �

We now give the relationship between Pννν and PD
ννν . The following proposition is just the

special case n = 3 of equation (135) of §9 below, which says that for any n the higher spherical
polynomials defined by a generalization (117) of the generating series (69) are proportional to
the descending basis elements, with a proportionality factor depending only on the total weight
k = 1

2 a · 1 . Recall the Pochhammer symbol (x)k = x(x+ 1) · · · (x+ k − 1).

Proposition 3. The polynomial Pννν(T ) is related to the descending basis by

Pννν(T ) = 2k (s+ 2)k (2s+ 2)k P
D
ννν (T ) , (77)

where k = ν1 + ν2 + ν3.

Now combining Proposition 2 and 3 with Theorem 6, we deduce the formula for the scalar
product of Pν ∈ Pa(d) with itself:

Corollary. For every ννν = (ν1, ν2, ν3) ∈ Z3
≥0 we have

(Pννν , Pννν)d = 22k
(
ν1 + ν2 + s

ν1

)(
ν2 + ν3 + s

ν2

)(
ν3 + ν1 + s

ν3

)
(s+ 2)k (2s+ 2)k , (78)
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where d = 2s+ 4 and k = ν1 + ν2 + ν3. �

Equation (78) can be used to simplify the computation of one of the coefficients in the
recursion (82) in Proposition 5 below. Conversely, as explained in the proof of that proposition,
one can also obtain the coefficient in question by direct computation and then derive (78) from
it, after which one can derive Proposition 3 using Theorem 6 and the fact that all of our bases
are a priori proportional, without needing to rely on the considerably harder results from §9.

C. Recursion relations. In Subsection A we defined canonical polynomials Pννν ∈ P(3)(d) by
means of a generating function. We now give five different recursion relations for the coefficients
of these polynomials, coming from the differential equation, the scalar product, the raising
operators, the mixed Laplacians, and the generating function, respectively.

1. Recursion relation coming from the differential equation. The first recursion is for
the coefficients of a single polynomial Pννν . According to Theorem 1 and its proof, all of the
coefficients of Pννν are determined (in fact, overdetermined) recursively by the harmonicity and
homogeneity properties from the “constant term” (specialization to t11 = t22 = t33 = 0, or to
m1 = m2 = m3 = 0 in the notation (65)). We make this explicit. In Subsection A we gave
the formula for the differential operator D1 in terms of the new coordinates (65), and of course
the formulas for the other Di are obtained by cyclic permutation of the indices. The equation
D1Pννν = 0 gives the recursion (with s = d/2− 2 as before)

λ1(λ1 + µ2 + µ3 + s+ 1)C(λ1, λ2, λ3;µ1, µ2, µ3)

+ (µ2 + 1)(µ2 + 2)C(λ1 − 1, λ2, λ3 − 1;µ1, µ2 + 2, µ3)

+ (µ2 + 1)(µ3 + 1)C(λ1 − 1, λ2, λ3;µ1 − 1, µ2 + 1, µ3 + 1)

+ (µ3 + 1)(µ3 + 2)C(λ1 − 1, λ2 − 1, λ3;µ1, µ2, µ3 + 2) = 0 . (79)

This gives any C(λλλ;µµµ) in terms of C(λλλ′;µµµ′) with λ′
1 < λ1 and hence by induction reduces

everything to the case λ1 = 0. Now the recurrence given by D2Pννν = 0 gives

λ2(λ2 + µ1 + µ3 + s+ 1)C(0, λ2, λ3;µ1, µ2, µ3)

+ (µ1 + 1)(µ1 + 2)C(0, λ2 − 1, λ3 − 1;µ1 + 2, µ2, µ3)

+ (µ1 + 1)(µ3 + 1)C(0, λ2 − 1, λ3;µ1 + 1, µ2 − 1, µ3 + 1) = 0 , (80)

which lets us get down to λ2 = 0, and similarly the recurrence from D3 gives

λ3(λ3 + µ1 + µ2 + s+ 1)C(0, 0, λ3;µ1, µ2, µ3)

+ (µ1 + 1)(µ2 + 1)C(0, 0, λ3 − 1;µ1 + 1, µ2 + 1, µ3 − 1) = 0 , (81)

which gets us down to λλλ = (0, 0, 0). But for fixed ννν there is only one coefficient C(λλλ;µµµ) with
λλλ = (0, 0, 0), namely C(000;ννν), which is given by Proposition 2 above. (This is the only point
where our specific normalization of the basis element of Pa(d) for n = 3 is used.) Summarizing,
we have:

Proposition 4. The coefficients of C(λλλ;µµµ) are determined by the recursive formulas (79)–(81)
together with the initial conditions (75).

We note, however, that determining the coefficients explicitly from the recursions (79)–(81)
is quite difficult. We will discuss this problem, and solve it in some cases, in Subsection D.

2. Recursion relation coming from the scalar product. In the method just described, we
fixed the index ννν and gave a recursive relation for the coefficients C(λλλ;µµµ) = Cννν(λλλ;µµµ) of Pννν(T )
by using the differential equation which this polynomial satisfies. A different approach is to
give a recursive formula for the polynomials Pννν themselves (and hence implicitly also for their
coefficients), as follows:
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Proposition 5. For all ν1, ν2, ν3 ≥ 0 we have

ν1(ν1 + s)Pν1,ν2,ν3 = (ν1 + ν2 + s)(ν1 + ν3 + s) r1 Pν1−1,ν2,ν3

− (ν2 + 1)(ν2 + s+ 1)m2 Pν1−1,ν2+1,ν3−1

− (ν3 + 1)(ν3 + s+ 1)m3 Pν1−1,ν2−1,ν3+1

− (ν1 + ν2 + ν3 + s)(ν1 + ν2 + ν3 + 2s)m2m3 Pν1−2,ν2,ν3

(82)

with the convention that any term having a negative index is to be interpreted as zero.

Proof. The idea is similar to the classical proof of the 3-term recursion for orthogonal poly-
nomials {Pν(x)} in one variable (corresponding to n = 2 in our setup). There one observes
that, since the polynomial Pν(x) has degree exactly ν, one can write xPν−1(x) as a linear
combination of Pν−i(x) (i = 0, 1, . . . ), and that the coefficient of Pν−i in this combination
vanishes for i ≥ 3 because then (xPν−1, Pν−i) = (Pν−1, xPν−i) = 0 by orthogonality. This
gives xPν−1 = aνPν + bνPν−1 + cνPν−2. The coefficient aν can be computed by comparing
the coefficients of xν on both sides. The coefficient bν can be computed in a similar way, but
by a longer calculation, if one knows the subleading coefficients of the polynomials, and the
coefficient cν by a similar but even longer calculation if one knows the third coefficients from
the top. Alternatively, the coefficients cν can be obtained from the calculation

cν+1 (Pν−1, Pν−1) = (xPν , Pν−1) = (Pν , xPν−1) = aν(Pν , Pν)

if one knows the norms of the polynomials Pν , or alternatively one can turn this calculation
around to obtain a recursive formula for these norms if one knows the cν . Here the same
arguments apply. Write the product r1Pν−1,ν2,ν3(T ) as a linear combination of other higher
spherical polynomials Pννν′(T ), where we can use the homogeneity of the polynomials to simplify
the formulas by setting m1 = m2 = m3 = 1. Then the same scalar product argument as
before gives that the coefficients of Pννν′ in this linear combination vanish for all multi-indices ννν′

except those occurring in (82). The coefficient of Pν1,ν2,ν3 in (82) is found easily by comparing
the coefficients of rν1

1 rν2
2 rν3

3 on both sides of the equation, using formula (75). The coefficient of

Pν1−1,ν2+1,ν3−1 is only slightly harder, because its top monomial rν1−1
1 rν2+1

2 rν3−1
3 does not occur

in any of the other terms on the right-hand side of (82) and the coefficient of this monomial
in Pν1,ν2,ν3 (where it corresponds to λλλ = (0, 1, 0)) can be obtained easily from (75) and the
recursion (81) or as a special case of Proposition 8 below. The calculation for Pν1−1,ν2−1,ν3+1

is of course exactly similar. Finally, the coefficient of Pν1−2,ν2,ν3 can be obtained in a similar
way, though with a little more computation, using the recursion (80) above or Proposition 9 in
Subsection D below. (Alternatively, they can be obtained with less computation by computing
the scalar products of both sides of (82) with Pν1−2,ν2,ν3 and using the orthogonality of the higher
spherical polynomials together with the explicit formula (78) for their norms. Conversely, as
already mentioned at the end of Subsection B, we can use the direct computation to obtain
alternative proofs of (78) and then of (77) that do not require appealing to the more general
results in §9.) The calculations are straightforward, though lengthy, and will be omitted. �

As well as (82) one of course also has the corresponding formulas for any cyclic permutation
of the indices i of νi, mi, and ri, since Pννν(T ) is symmetric under these permutations. This result
lets one compute all of these polynomials recursively starting with the initial value P0,0,0 = 1:
equation (81) lets one successively reduce the value of ν1 by (at least) one and hence expresses
any Pν1,ν2,ν3 in terms of polynomials P0,ν′

2,ν
′

3
, and then applying equation (81) with the indices

cyclically permuted one reduces in turn to polynomials of the form P0,0,ν′′

3
and finally to P0,0,0.

3. Recursion relation coming from the raising operators. The recursion just given
expresses the polynomial Pννν as a linear combination of four polynomials Pννν′ with “smaller”
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values of ννν′. The raising operators introduced in §5 permit us to do even better in the sense that
we can express Pννν in terms of a single predecessor (which can be chosen at will to be Pν1−1,ν2,ν3 ,
Pν1,ν2−1,ν3 or Pν1,ν2,ν3−1), but at the expense of using second order differential operators. More
concretely, equation (51) gives us the relation

4(ν1 + ν2 + s)(ν1 + ν3 + s)PM
ν1,ν2,ν3

= R23(P
M
ν1−1,ν2,ν3

) ,

where R23 is the operator defined in (47) (and of course similar formulas with R13 and R12),
and then we can use (74) to reexpress this identity in terms of our preferred basis {Pννν} as

2ν1(ν1 + s)Pν1,ν2,ν3 = R23(Pν1−1,ν2,ν3) . (83)

Notice that this recursion, unlike the others discussed here, works equally well for all values of n,
not just for n = 3.

4. Recursion relation coming from the mixed Laplacians. A fourth approach is to use
the defining property (55) of the descending basis elements PD

ννν , together with the relation (77)
between these functions and our preferred basis elements Pννν . We do not write this out in detail
since it is not particularly illuminating.

5. Recursion relation coming from the generating function. Finally, we can try to
compute all of the coefficients of the Pννν(T ) from the generating function (69), rather than
only the constant terms as was done in Proposition 2. A closed formula seems very hard to
obtain in this way, but we can obtain yet one more recursive formula for these coefficients, of
a somewhat peculiar type, as follows. The quantity R = R(T,X) defined in (68) satisfies the
quadratic equation R2 − ∆0(T,X)R + d(T )X1X2X3 = 0, where ∆0(T,X) and d(T ) are given
in Proposition 1, so from (69) we deduce the generating function identity

∑

ννν

Pννν,d(T )X
ννν − ∆0(T,X)

∑

ννν

Pννν,d+2(T )X
ννν + d(T )X1X2X3

∑

ννν

Pννν,d+4(T )X
ννν = 0 ,

and by comparing coefficients we obtain from this a formula for Pννν,d as a linear combination of
11 values of Pννν′,d+2 and Pννν′,d+4 .

D. Explicit formulas for the coefficients of Pννν,d. In this subsection we compute as far
as we are able the coefficients of the polynomials Pννν,d. The calculations require, and reveal,
some quite surprising combinatorial identities. However, the formulas are rather complicated
and are not used again, so that the reader who does not like this sort of thing can skip to
Susbsection E without any loss of continuity. We use the recursions given in the first paragraph
of Subsection B, i.e., we use (81), (80) and (79) in succession. The first step is easy, since from
formulas (81) and (75) we immediately find by induction the formula for C(λλλ;µµµ) when two of
the λi vanish:

Proposition 6. Let λλλ = (0, 0, λ3) and µµµ = (µ1, µ2, µ3) ≥ λλλ. Then

C(λλλ;µµµ) =
(−1)λ3(µ1 + µ2 + λ3 + s)!(µ1 + µ3 + s)!(µ2 + µ3 + s)!

λ3!µ1!µ2!(µ3 − λ3)!(µ1 + λ3 + s)!(µ2 + λ3 + s)!(µ3 − λ3 + s)!
.

Note that this is again a simple closed multiplicative formula, whereas using the generating
function directly would have given a formula for C(0, 0, λ3;µµµ) as a double sum.

We next consider the C(λλλ;µµµ) where only one of the λi vanishes. Here the formula which we will
obtain is no longer multiplicative, but it is a simple sum of products of binomial coefficients rather
than the four-fold sum that we would get if we simply expanded the generating function (69).
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Equation (80) is equivalent by induction over λ2 to the formula

C(0, λ2, λ3;µµµ) =
(−1)λ2 (µ1 + µ3 + λ2 + s)!

µ1!µ3! (µ1 + µ3 + 2λ2 + s)!

min(λ2,µ2)∑

n=max(0,λ2−λ3)

(µ3 + n)!(µ1 + 2λ2 − n)!

n! (λ2 − n)!

× C(0, 0, λ3 − λ2 + n;µ1 + 2λ2 − n, µ2 − n, µ3 + n) .

Substituting into this the formula from Proposition 6, we find the expression

C(0, λ2, λ3;µµµ) = = (−1)λ3
(µ2 + µ3 + s)! (µ1 + µ2 + λ3 + s)!(µ1 + µ3 + λ2 + s)!

µ1! (ν2 + s)! (ν3 + s)!

× S(−µ3; 0, λ2 − λ3;λ2, µ2;µ1 + µ2 + λ2 + λ3 + s), (84)

where S(a; b, c; d, e; f) for integers a ≤ b, c ≤ d, e ≤ f is defined by

S(a; b, c; d, e; f) =
1

(b− a)!(c− a)!(f − d)!(f − e)!

min(d,e)∑

n=max(b,c)

(−1)n (n− a)! (f − n)!

(n− b)! (n− c)! (d− n)! (e− n)!
.

Formula (84) expresses C(λλλ;µµµ) when λ1 = 0 as a simple sum of multinomial coefficients as op-
posed to the quadruple sum expression which would have been obtained by using the generating
function (69). On the other hand, it is not symmetric in the indices “2” and “3”. In looking for
a symmetric expression, we discover the remarkable symmetry property

(−1)d+eS(a; b, c; d, e; f) = S(c; d, e; f, d+ e− b; f − a+ c) (85)

(where the right-hand side is zero if f − a < d+ e− b− c). The proof is amusing and the reader
may enjoy looking for it. Applying (85) to (84) gives the new expression

C(0, λ2, λ3;µµµ) =
(µ2 + µ3 + s)!

µ1!λ2!λ3! (ν2 + s)! (ν3 + s)!

×
min(µ3+λ2,µ2+λ3)∑

n=max(λ2,λ3)

(−1)n n! (ν1 + ν2 + ν3 + s− n)!

(n− λ2)! (n− λ2)! (µ3 + λ2 − n)! (µ2 + λ3 − n)!
,

(86)

which is again a simple sum of multinomial coefficients but is now symmetric in indices 2 and 3.

We now look for an explanation of the symmetry property (85). Combining (85) with the
trivial symmetries under b↔ c and d↔ e, (a; b, c; d, e; f) 7→ (a+k; b+k, c+k; d+k, e+k; f+k)
(k ∈ Z, and up to sign (−1)k) and (a; b, c; d, e; f) 7→ (k− f ; k− e, k− d; k− c, k− b; k− a) (again
up to sign), we find that there are 9 essentially different sums ±S which are equal by (85). The
nine inequalities on the variables a through f can be made uniform by writing (a; b, c; d, e; f) as
(a1 + a2 − b3; a1, a2; b1, b2; b1 + b2 − a3) where bi ≥ aj for all i and j. The formula which makes
all symmetries evident is then

S(a1 + a2 − b3; a1, a2; b1, b2; b1 + b2 − a3)

=

min(b1,b2,b3)∑

n=max(a1,a2,a3)

(−1)n
(n− a1)!(n− a2)!(n− a3)!(b1 − n)!(b2 − n)!(b3 − n)!

,
(87)

whose proof we omit. Inserting this into (84) gives the following formula, which is again sym-
metric in the indices “2” and “3” but in general has fewer terms than (84) or (86) (for instance,
it reduces to a single term if any of the seven integers λ2, λ3, µ2, µ3, ν1, ν2 or ν3 is 0):
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Proposition 7. Let λλλ = (0, λ2, λ3) and µµµ = (µ1, µ2, µ3) subject to the three inequalities νi ≥ 0,
where ν1 = µ1 + λ2 + λ3, ν2 = µ2 − λ2 + λ3, ν3 = µ3 + λ2 − λ3. Then

C(0, λ2, λ3;µµµ) = (−1)λ3
(µ2 + µ3 + s)! (µ1 + µ2 + λ3 + s)! (µ1 + µ3 + λ2 + s)!

µ1! (ν2 + s)! (ν3 + s)!
×

min(λ2,λ3)∑

n=max(0,λ2−µ2,λ3−µ3)

(−1)n
(λ2 − n)!(λ3 − n)!(ν1 − n+ s)!n!(µ2 − λ2 + n)!(µ3 − λ3 + n)!

.

Finally, we come to the general coefficient C(λλλ;µµµ). Equation (79) and induction on λ1 give

C(λλλ;µµµ) =
(−1)λ1 (µ2 + µ3 + λ1 + s)!

µ2!µ3! (µ2 + µ3 + 2λ1 + s)!

∑

a,b,c≥0
a+b+c=λ1

(µ2 + a+ 2b)! (µ3 + a+ 2c)!

a! b! c!

× C(0, λ2 − c, λ3 − b;µ1 − a, µ2 + a+ 2b, µ3 + a+ 2c) .

Substituting into this any of the three formulas obtained above for C(0, λ2, λ3;µµµ) gives a formula
for the general coefficient C(λλλ;µµµ) as a triple sum rather than an octuple one, which is what we
would get from the generating function (69). For instance, the expression obtained using the
formula in Proposition 7 is

C(λλλ;µµµ) =
(µ2 + µ3 + λ1 + s)!

µ2!µ3!(ν2 + s)!(ν3 + s)!

∑

a,b,c≥0
λ1−µ1≤b+c≤λ1

λ2−ν3≤a+c≤λ2

λ3−ν2≤a+b≤λ3

(−1)λ1+a

a! b! c! (λ1 − b− c)! (λ2 − a− c)! (λ3 − a− b)!

× (µ1 + µ2 + λ3 + b+ s)!(µ1 + µ3 + λ2 + c+ s)!(µ2 + λ1 + b− c)!(µ3 + λ1 − b+ c)!

(ν1 − a+ s)! (µ1 − λ1 + b+ c)! (ν2 − λ3 + a+ b)! (ν3 − λ2 + a+ c)!
.

This formula is symmetric in the indices “2” and “3”, but not in all three indices. Despite a fair
amount of effort we were not able to simplify it or to find an expression for C(λλλ;µµµ) as a triple
sum which is symmetric in all three indices. The formula for C(0, λ2, λ3;µµµ) in Proposition 7 can
be written as

C(0, λ2, λ3;µµµ) =
(µ2 + µ3 + s)! (µ1 + µ2 + λ3 + s)! (µ1 + µ3 + λ2 + s)!

µ1!µ2!µ3! (ν1 + s)! (ν2 + s)! (ν3 + s)!

× CoeffY λ2Zλ3

(
(1− Y )µ2(1− Z)µ3(1− Y Z)ν1+s

)
,

which has a obvious generalization to

C(λλλ;µµµ)
?
=

3∏

i=1

(λi + µi+1 + µi+1 + s)!

µi! (νi + s)!
× Coeff

X
λ1
1 X

λ2
2 X

λ3
3

( 3∏

i=1

(1−Xi)
µi(1−Xi+1Xi+2)

νi+s

)
.

but unfortunately this formula, which is symmetric and relatively simple, is not correct when all
three λi are strictly positive; for instance, for C(1, 1, 1; 0, 0, 0) it gives 0 rather than the correct
value of 4(s+ 2).

We remark that the numbers S(a; b, c; d, e; f) are, up to simple normalizing factors, equal
to the well-known Wigner 3j-symbols or Clebsch-Gordan coefficients occurring in the theory
of angular momentum in quantum mechanics, and that an equality equivalent to (87) can be
found in the physics literature. It is quite likely that the general coefficients C(λλλ;µµµ) can also be
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expressed in terms of the more complicated 6j-symbols (or Racah coefficients) and 9j-symbols
of quantum mechanics, but we were not able to check whether this is the case.

E. Inhomogeneous coordinates and angular coordinates. As we already discussed at
the end of §1, the homogeneity of the higher spherical polynomials makes it natural to consider
them also as polynomials on the space S1n of n×n symmetric matrices with 1’s on the diagonal,
or on the open subset S1,+n of this space consisting of positive definite matrices. For n = 3,
this latter set can be identified by mapping t to the matrix T = T (t) defined in (7) with the
semi-algebraic set

T =
{
t = (t1, t2, t3) ∈ R3

∣∣ |ti| < 1, ∆(t) > 0
}

(88)

shown in Figure 1 below, where ∆ : R3 → R is the polynomial

∆(t) = detT (t) = 1− t21 − t22 − t23 + 2t1t2t3 . (89)

(To see that t 7→ T (t) is surjective, recall that a symmetric matrix is positive definite if and only
if its principal minors are positive. In fact only the top left minors are needed, so to define T
it suffices to require ∆(t) > 0 and |t3| < 1.) By Remark 4 after Theorem 2 in §3, we know
that the higher spherical polynomials Pννν(T ) = Pννν,d(T ) for a fixed value of d = 2s+ 4 > 2 then
form an orthogonal Hilbert space basis of L2(T , ∆sdt1dt2dt3). (Compare eq. 20). In this final
subsection of §8 we wish to discuss a few further properties of the set T (alternative coordinates,
symmetry, . . . ). These properties will also play a role in [12], where we will study the differential
equation (8) and its non-polynomial solutions.

We begin by mentioning two simple algebraic properties. The first is that the adjoint of the
matrix T = T (t) (i.e., the matrix T ∗ such that TT ∗ = ∆ · 13) is given by

T ∗ =




1− t21 ∆3 ∆2

∆3 1− t22 ∆1

∆2 ∆1 1− t23


 , where ∆i :=

1

2

∂∆

∂ti
= tjtk − ti . (90)

(Here and in the rest of this subsection, whenever we write indices i, j and k in the same
formula we mean that {i, j, k} = {1, 2, 3}.) The other is that the determinant ∆ has three
algebraic factorizations

∆ = ∆+
1 ∆−

1 = ∆+
2 ∆−

2 = ∆+
3 ∆−

3 , (91)

where the quantities ∆±
i are defined, using the convention and quantities just introduced, by

∆±
i =

√(
1− t2j

)(
1− t2k

)
± ∆i . (92)

We will give an explanation and refinement of these factorizations below.

We now consider the symmetries of the set T , which involve a small surprise for which we
have no real explanation. The polynomial ∆ defined in (89) and the set T defined by (88) have
a symmetry group G of order 24, given by the six permutations of the ti together with the four
changes of sign of the ti preserving their product, i.e. G = S3 ⋉ E where

E =
{
εεε = (ε1, ε2, ε3) ∈ {±1}3

∣∣ ε1ε2ε3 = 1
}

(Klein group). This group can be identified with S4 by identifying the set of indices {1, 2, 3}
with the three possibile partitions of {1, 2, 3, 4} into two disjoint 2-tuples via i↔ {{j, k}, {i, 4}}
for {i, j, k} = {1, 2, 3}. The surprise is that the set T itself can be rewritten in a visibly
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ti = cos θi

Figure 1: The semi-algebraic set T and the tetrahedron Tθ

S4-symmetric manner. We describe this here algebraically, and below in terms of angular

coordinates. Let Ŝ14 denote the set of 4 × 4 real symmetric matrices that have 1’s on the
diagonal and whose (i, j)- and (k, l)-entries sum to 0 whenever {i, j, k, l} = {1, 2, 3, 4}. The

group S4 acts on Ŝ14 by simultaneous permutations of the rows and columns, and if we identify

G with S4 as explained above, then we have an S4-equivariant isomorphism S13 ∼= Ŝ14 given by

T =




1 t3 t2
t3 1 t1
t2 t1 1


 ↔ T̂ =




1 t3 t2 −t1
t3 1 t1 −t2
t2 t1 1 −t3
−t1 −t2 −t3 1


 . (93)

The principal 2 × 2 minors of T̂ are just the numbers 1 − t2i and the principal 3 × 3 minors of

T̂ are all equal to ∆, so the inequalities defining the set T say precisely that the principal 2× 2

and 3 × 3 minors of T̂ are positive. This is an S4-invariant condition and hence explains the
S4-symmetry of T (except that we cannot really explain the origin of the isomorphism (93)).

Note that for the positive definiteness of the matrix T̂ (rather than just of its submatrix T )

we need the positivity of all its principal minors, so that T̂ is positive definite if and only if T

is and the determinant of T̂ is positive. This determinant, unlike that of T , has a rational
factorization, as

∏
εεε∈E

(
1 + εεε · t

)
, the factors being the eigenvalues of the constant eigenvectors

{(ε1, ε2, ε3,−1)}εεε∈E of T̂ . Finally, we mention that the adjoint of T̂ is a matrix of the same

form as T̂ but with the diagonal entries 1 replaced by ∆ and the off-diagonal entries ti replaced
by the expressions

t̂i = ti
(
1 + t2j + t2k − t2i

)
− 2tjtk = ti ∆ − 2∆j∆k . (94)

These quantities will occur again in [12] in the construction of non-polynomal solutions of (8).

Our next topic, which again involves a surprise for which we have no real explanation, concerns
angular coordinates. In the case of 2×2 symmetric matrices, corresponding to classical spherical
polynomials, one frequently makes the change of variables t = cos θ to identify the space S1,+2 ={( 1 t

t 1

)
| −1 < t < 1

}
with the interval (0, π). Here we make the corresponding substitution

ti = cos θi with θi ∈ (0, π). The surprise is that the semi-algebraic set T , which is shaped like a
rounded tetrahedron, is then mapped isomorphically onto the linear tetrahedron

Tθ =
{
(θ1, θ2, θ3) ∈ R3

∣∣ θi < θj + θk < 2π − θi for {i, j, k} = {1, 2, 3}
}
, (95)

which is the interior of the convex hull of the four vertices (0, 0, 0), (0, π, π), (π, 0, π) and (π, π, 0)
of the cube [0, π]3. (See Figure 1.) This gives another explanation of the isomorphism between
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the symmetry group of T andS4, identified with the group of permutations of these four vertices.
But we can do even better: if we introduce new coordinates δν (ν = 1, 2, 3, 4) by

δi =
θj + θk − θi

2
(1 ≤ i ≤ 3), δ4 = π − θ1 + θ2 + θ3

2
, (96)

then the angles θi can be expressed in terms of the δν by

θi = δj + δk , π − θi = δi + δ4 (1 ≤ i ≤ 3), (97)

the tetrahedron Tθ is identified with the simplex {(δ1, δ2, δ3, δ4) ∈ R4
>0 | δ1 + δ2 + δ3 + δ4 = π},

and G acts simply by permuting the δ’s. The six numbers {±ti}1≤i≤3 are the six numbers

{cos(δµ + δν)}1≤µ<ν≤4, these being precisely the non-diagonal entries of the matrix T̂ defined
in (93) and with the same numbering. Finally, the three factorizations of ∆ given in (91) can
be replaced by the single fourfold factorization

∆ = 4
4∏

ν=1

sin δν , (98)

which explains and refines (91) because the functions ∆−
i and ∆+

i are equal to 2 sin δi sin δ4
and 2 sin δj sin δk, respectively. This equation also makes it clear that the condition ∆ > 0 is
equivalent to the inequalities δν > 0 and hence explains why the sets T and Tθ correspond.

§9. A universal generating function for the descending basis

In Remark 1 in §8.A we observed that the generating function of Theorem 9 could be expressed
in terms of only three quantities, namely the coefficients of the characteristic polynomial of the
product of T with a 3×3 matrix of “dummy” variables Xj . That remark will now be generalized

to construct a generating function for all n whose coefficients give a basis of the space P(n)(d)
for all n and d, and in fact a basis that coincides, up to scalar factors, with the “descending”
basis of P(n)(d) defined in Chapter I.

We fix n (at least initially), but take d to be generic. Equivalently, we work over the field
K = Q(d) rather than thinking of d as a specific complex number. (Compare the discussion
following Theorem 6 in §5.) We would like to construct a generating function over K[Sn] whose
coefficients Pννν(T ) are multiples of the descending basis, i.e., which satisfy

Dij Pννν(T )
.
= Pννν−eij

(T ) (99)

for all ννν ∈ N0 and all i, j = 1, . . . , n. Here
.
= denotes equality up to a non-zero constant and we

are also using the convention that Pννν=0 if some entry of ννν is negative, so (99) includes the fact
that each Pννν belongs to P(n)(d). Generalizing the observation about Theorem 9 quoted above,
we make the following Ansatz for the form of this generating function:

∑

ννν∈N0

Pννν(T )X
ννν = G(n)(σ1(XT ), σ2(XT ), . . . , σn(XT )) , (100)

where G(n) is some power series in n variables, σa of a square matrix denotes the ath elementary
symmetric function of its eigenvalues, X is a symmetric n × n matrix of “dummy” variables

xij = xji with xii = 0 for all i, and Xννν =
∏

i 6=j x
νij/2
ij =

∏
i<j x

νij

ij . Our object is to show that
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a function G(n)(σ1, . . . , σn) can be found such that the coefficients Pννν defined by (100) satisfy
the property (99). By the Remark cited above, we already know the answer for n = 3, namely

G(3)(σ1, σ2, σ3) =
1√

∆2
0 − 8σ3

(
∆0 +

√
∆2

0 − 8σ3

2

)− d−4
2

, ∆0 :=
(
1− σ1

2

)2 − σ2 . (101)

It will turn out that the functions G(n) are actually independent of n in the sense that there is
a single power series G(σ1, σ2, . . . ) in infinitely many variables such that each G(n)(σ1, . . . , σn)
is simply G(σ1, . . . , σn, 0, 0, . . . ). (Notice that such a power series makes sense because we
can introduce a grading by |σa| = a and then the space of monomials of any fixed degree is
finite-dimensional.) The power series G turns out not to be quite unique, but to be uniquely
determined by G(1)(σ1) = G(σ1, 0, 0, . . . ), which is arbitrary. The choice corresponding to (101)
in the case n = 3 and to the classical generating function of Gegenbauer polynomials in the
case n = 2 is G(1)(σ1) = (1− σ1/2)

2−d, and this will be our standard choice, but there exist at
least two other special choices which have some nice properties, as will be discussed briefly in
Subsection C.

Since this section is again quite long, we have divided it into subsections. In Subsection A
we show how to characterize the power series G(n) such that the Taylor coefficients Pννν in (100)
satisfy (99), and prove that for each k the space of the degree k parts of such power series is
one-dimensional, which implies the desired existence and uniqueness results. The proofs of two
of the propositions needed for this are quite long and are given separately in Subsection B,
which can be omitted without loss of continuity. One consequence of the proof is that if G(1)

(which is arbitrary) is chosen to be holomorphic in d, then the coefficients of the power series
G(n) have poles only at integral values of d. This implies the result, left open in §5, that the
scalar product on P(n)(d) is non-degenerate for all d ∈ CrZ<n . Subsection A also contains an
explicit inductive construction of the power series G(n) from an arbitrary initial value of G(1)

by applying suitable differential operators. Finally, in Subsection C we give a discussion of the
various good choices of G(1) and a number of examples and partial results about the coefficients
of the power series G(n) for the standard choice. We have not been able to find a complete
formula for the coefficients in general.

A. Existence of the power series G(n). We fix the notation

V = K[[σ1, σ2, σ3, . . . ]], Vk = Vdeg=k ,

where K = Q(d) as before and the degrees are determined by |σa| = a. Thus Vk is finite-
dimensional, of dimension p(k) (number of partitions of k), and V ∼=

∏
k≥0 Vk. We have a

homomorphism V → K[Sn][[X]] defined by F 7→ F̃ , where

F̃ (T,X) := F (σ1(XT ), σ2(XT ), . . . , σn(XT ), 0, 0, . . . ) .

Our goal is to find a G(n) such that the coefficients Pννν in (100) satisfy (99), so the first thing

we need is to compute the action of all Dij on F̃ for arbitrary F . (Note that the operators Dij

do not involve the X-variables, so Dij(G
(n)) =

∑
(DijPννν)X

ννν .) The image of the map F 7→ F̃ is
not stable under Dij , but the following proposition, whose proof will be given in Subsection B,

calculates Dij(F̃ ) for all F ∈ V in terms of only the quantities ∂ij(σa) and certain differential
operators Lp that do preserve V . For convenience we set ∂a = ∂/∂σa, while ∂ij retains its usual
meaning (1 + δij) ∂/∂tij .
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Proposition 1. For p ≥ 1, define a second order differential operator Lp : V → V of degree
−p (i.e., Lp(Vk) ⊆ Vk−p) by

Lp =
(
d+ 1− p

)
∂p + 2

( ∑

a, b≥p

−
∑

0<a, b<p

)
σa+b−p ∂a ∂b , (102)

where σq is taken to be 1 if q = 0 and 0 if q < 0. Then for all i and j we have

Dij =

∞∑

p=1

∂ij(σp)Lp . (103)

The more precise meaning of (103) for a given value of n is that

Dij

(
F̃
)

=
n∑

p=1

∂ij(σp(XT )) L̃p(F ) (1 ≤ i, j ≤ n) ,

where the sum over p can be extended to infinity if one likes since σp(XT ) = 0 for p > n.
Note that here one could replace the sums in (102) by the subsums with 1 ≤ a, b ≤ n and
a + b − p ≤ n, since if a + b − p > n then σa+b−p vanishes, and if a + b − p ≤ n then a and
b are ≤ n automatically in the first sum and also in the second sum whenever p ≤ n. Similar
remarks apply to all later formulas, which we will write in a way not explicitly mentioning n,
but remembering that, when we apply them to σi = σi(XT ) for matrices X and T of a fixed
size n, then σa = 0 for all a > n.

Corollary. Let W =
⋂

p≥2 Ker(Lp) ⊂ V . Then for any F ∈ W we have Dii(F̃ ) = 0 and

Dij(F̃ ) = 2xij L̃1(F ) for i 6= j.

Proof. This follows immediately from (103), since ∂ii(σ1(XT )) = 0 and ∂ij(σ1(XT )) = 2xij . �

The following proposition, whose proof will also be postponed to Subsection B, is crucial.

Proposition 2. The operators Lp satisfy the commutation formula

[
Lp1 , Lp2

]
= −2

∑

p1<p≤p2

∂p1+p2−p Lp (0 < p1 < p2) . (104)

Corollary. The subspace W of V is mapped into itself by L1. More generally, the space
W 〈m〉 := ⋂

p>m Ker(Lp) ⊂ V is mapped into itself by Lm for all m ≥ 1.

Proof. This follows immediately from (104). In fact, we need only that the product Lp2Lp1 is
in the left ideal generated by Lp’s with p > p1. �

We now use this to deduce the main result of this subsection:

Theorem 10. The space Wk = W ∩ Vk is one-dimensional for each k ≥ 0. If Gk is a non-zero
element of Wk for every k ≥ 0, then L1(Gk) is a non-zero multiple of Gk−1 for all k ≥ 1
and if we set G =

∑
k Gk ∈ W then the polynomials Pννν ∈ K[Sn] defined by G =

∑
Pννν(T )X

ννν

satisfy (99).

Proof. For each m ≥ 1 we denote by V (m) the ring K[σ1, . . . , σm] and by ρm : V → V (m) the
restriction map G 7→ G(σ1, . . . , σm, 0, 0, . . . ). We will show by downwards induction on m that
for each m ≥ 0 the composite map

ρm
∣∣
W 〈m〉 : W 〈m〉 −→ V

ρm−→ V (m) (105)
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is an isomorphism. The case m = 1 gives the first assertion of the theorem, since V (1) = K[σ1]
is 1-dimensional over K in each degree. Here “downward induction” makes sense because both
maps (105) preserves degree and are obviously isomorphisms in degree k when m > k, so that
the “initial step” of the induction is automatically satisfied.

We will show below that the map (105) is injective. For the surjectivity we use a dimension

argument. Denote by Wk〈m〉 and V
(m)
k the degree k parts of W 〈m〉 and V (m), respectively. The

dimension of V
(m)
k is the number pm(k) of partitions of k into parts ≤ m. These numbers are

given by the generating function

∞∑

k=0

pm(k) tk =
1

(1− t)(1− t2) · · · (1− tm)
,

and from this or directly from the definition one sees that they satisfy the recursion

pm(k) = pm(k −m) + pm−1(k) (106)

(with the initial condition p0(k) = δk0 and the convention pm(k) = 0 for k < 0). On the other
hand, Lm acts on W 〈m〉 by the corollary to Proposition 2, clearly with kernel W 〈m − 1〉, so
since Lm has degree −m we have an exact sequence

0 −→Wk〈m− 1〉 −→Wk〈m〉 Lm−→Wk−m〈m〉 (107)

for every m and k (with the convention that the last space is {0} if m > k). If we assume that the
map (105) is an isomorphism for m, then it follows from (107) and (106) that dimWk〈m− 1〉 ≥
pm−1(k) = dimV

(m−1)
k , and hence, assuming that the injectivity is known in general, that the

map (105) with m replaced by m− 1 is an isomorphism, completing the induction.

It remains to prove the injectivity in (105). To do this we will show that

Ker(Lp) ∩ Ker(ρp−1) ⊆ Ker(ρp) (108)

for all p. Then for F ∈W 〈m〉 = Ker(Lm+1)∩ Ker(Lm+2)∩ · · · we can apply (108) successively
with p = m+1, m+2, . . . to get ρm(F ) = 0⇒ ρm+1(F ) = 0⇒ ρm+2(F ) = 0⇒ · · · and hence
F=0, proving the injectivity of ρm.

To prove (108), write the expansion of an arbitrary element F ∈ V as

F (σ1, σ2, . . . ) =
∑

r≥0

A(r)
σr

r!!!
=

∑

r1,r2,···≥0

A(r1, r2, . . . )
σr1
1

r1!

σr2
2

r2!
. . . , (109)

where r runs over∞-tuples (r1, r2, . . . ) with ri ≥ 0 for all i and ri = 0 for all but finitely many i.
(The coefficient A(r) is an element of K ⊂ Q(d) and will be denoted A(r; d) when we want to
make the dependence on d explicit.) We also make the convention

r0 = 1 , r−1 = r−2 = · · · = 0 , (110)

and will also write simply A(r1, . . . , rp) for A(r1, . . . , rp, 0, 0, . . . ) if ri = 0 for all i > p. Studying
ρp(F ) means looking only at the coeficients A(r1, . . . , rp) in the expansion (109). If F ∈ Ker(Lp),

then by computing the coefficient of
σ
r1
1

r1!
. . .

σ
rp−1
p−1

rp−1!

σ
rp−1
p

(rp−1)! in Lp(F ) we find

A(r) =
2

d− p+ 2rp − 1

∑

0<a, b<p
a+b≥p

ra+b−p A(r − ea+b−p + ea + eb − ep) (111)
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for all r = (r1, . . . , rp) with rp > 0, where ei as usual denotes the vector with a 1 in the ith place
and 0’s elsewhere (so e0 = 0) and r0 = 1 by the convention (110). From this formula it follows
inductively that all coefficients A(r1, . . . , rp) are determined by the coefficients A(r1, . . . , rp−1)
and hence that ρp−1(F ) = 0 ⇒ ρp(F ) = 0, as was to be proved.

This completes the proof of the isomorphy of the map (105) and hence of the first statement of
Theorem 10. The other two statements are now easy. Choose a basis {Gk} of the 1-dimensional
space Wk for each k ≥ 0. From the corollary to Proposition 2 we see that L1(Gk) is a multiple

of Gk−1 for all k ≥ 1, and this multiple is non-zero because of (107), since Wk〈0〉 ∼= V
(0)
k = {0}

for k > 0. Write L1(Gk) = ckGk−1 and write G =
∑∞

k=0 Gk as
∑

ννν Pννν(T )X
ννν . By the corollary

to Proposition 1 we haveDi(G̃k) = 0 andDij(G̃k) = 2ckxijG̃k−1 , and comparing the coefficients
of Xννν on both sides of this equality we find that Di(Pννν) = 0 and Dij(Pννν) = 2c‖ννν‖Pννν−eij

for all
ννν 6= 0, where ‖ννν‖ = ∑

i<j νij . �

Before finishing this subsection, we mention two consequences of the explicit recursion (111).
First, in this formula, the only denominators that occur are of the form d− d0 with d0 ∈ Z. It
follows that, if we choose our normalization of the functions Gk ∈ Wk (or equivalently, of the
function G(1)) to have coefficients in the subring

R = Q
[
d,

1

d
,

1

d± 1
,

1

d± 2
, . . .

]
(112)

of K consisting of rational functions of d having poles only at integers, then the whole function
G has coefficients in this ring. The coefficients ck ∈ K relating L1(Gk) and Gk−1 also have
no zeros or poles in d outside of Z, and it follows that the descending basis elements PD

ννν (T )
that we constructed in §5 also have coefficients in the ring R. In particular, these polynomials
exist for any d ∈ C r Z. It then follows from the duality between the bases {PD

ννν } and {PM
ννν }

(Theorem 6 and the remarks immediately preceding and following it) that the scalar product in
P(n)(d) is non-degenerate for these values of d. But we already know that the scalar product is
non-degenerate for real d > n − 1, because it is defined by a convergent integral with strictly
positive integrand (cf. Theorem 2), so we deduce the following result, already mentioned in §5:

Theorem 11. The scalar product in P(n)(d) is non-degenerate for all d ∈ Cr Z<n .

We remark that the non-degeneracy for d ∈ Z≥n can also be obtained purely algebraically,
without using the positivity of the scalar product, since the denominator d− d0 in (111) always
satisfies d0 < p (because rp ≥ 1) and since p ≤ n for the coefficients A(r) occurring in G(n).

The second observation is that the recursion (111) leads relatively easily to a “closed formula”
for the generating series G(σ1, σ2, . . . ). Indeed, for each n, let us expand the generating function
G(n) = ρn(G) (n > 1) as a power series

G(n)(σ1, . . . , σn) =
∞∑

r=0

g(n)r (σ1, . . . , σn−1)
σr
n

r!

(
g
(n)
0 = G(n−1)

)

in its last variable σn. Applied to any function involving only σ1, . . . , σn, the operator Ln equals
(d+ 1− n)∂n + 2σn∂

2
n − 2Mn, whereMn is the second order differential operator

Mn =
∑

0<a, b<n
a+b≥n

σa+b−n ∂a ∂b , (113)

with σ0 = 1 as usual. Equating the coefficient of σr
n in Ln(G

(n)) to 0 therefore gives

d− n+ 2r + 1

2
g
(n)
r+1 = Mn

(
g(n)r

)
(r ≥ 0) (114)
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and hence, by induction on r and using the initial condition g
(n)
0 = G(n−1), the general formula

g(n)r =
1

( 12 (d− n+ 1))r
Mr

n

(
G(n−1)

)
(r ≥ 0) .

Since the operatorsMn and (multiplication by) σn commute, this implies that

G(n)(σ1, . . . , σn) = J d−n−1
2

(σnMn)
(
G(n−1)(σ1, . . . , σn−1)

)
, (115)

where Jν(x) is the power series

Jν(x) =
∞∑

r=0

xr

r! (ν + 1)r
= 1 +

x

ν + 1
+

x2

2(ν + 1)(ν + 2)
+ · · · , (116)

related to the J-Bessel function Jν(x) by Jν(x) =
(x/2)ν

Γ(ν+1)Jν(−x2/4). Now induction on n gives

G(n)(σ1, . . . , σn) = J d−n−1
2

(σnMn) J d−n
2

(σn−1Mn−1) · · · J d−3
2
(σ2M2)

(
G(1)(σ1)

)
, (117)

the desired “closed formula” for G(n) (or even, if we extend the product of operators infinitely
to the left, for the whole generating function G). The form of (117) makes it clear that the
power series G(1)(σ1) can be chosen arbitrarily but then determines all of the higher power
series G(n)(σ1, . . . , σn). Summarizing, we have:

Theorem 12. The universal generating function G(n) can be obtained for all n ≥ 1 from an
arbitrary choice of G(1) by (117), where Jν(x) and Mn are the power series and second order
differential operator defined by (116) and (113), respectively.

The above argument described the generating function G(n) for generic values of d in terms
of the initial choice G(1), the key point being that G(n) is determined in terms of G(n−1) by
equation (115) as long as (d−n−1)/2 is not a negative integer. We end this subsection by saying
something about the exceptional cases whereG(σ1, . . . , σn) is not determined by its specialization
to σn = 0. For clarity we write W (n)(d) for the space of functions in V (n) = K[[σ1, . . . , σn]]
annihilated by L2, . . . ,Ln, including the dependence on d in the notation. Then we have:

Proposition 3. Suppose that G(σ1, . . . , σn) ∈W (n)(d)r{0} with G(σ1, . . . , σn−1, 0) ≡ 0. Then
d = n+ 1− 2m for some integer m ≥ 1 and G has the form

G(σ1, . . . , σn) =

∞∑

ν=0

Mν
n(g)(σ1, . . . , σn−1)

σm+ν
n

ν! (m+ ν)!
(118)

for some function g ∈ W (n−1)(d + 4m) = W (n−1)(n + 2m + 1). Conversely, for any m ∈ Z≥1

and any g ∈W (n−1)(n+2m+1), the function G defined by (118) belongs to W (n)(n− 2m+1).

Proof. Write G as
∑

r≥0 gr(σ1, . . . , σn−1)σ
r
n/r!, and let m ≥ 1 be the smallest integer for which

gm 6≡ 0. From L(n,d)
n (G) = 0 we get 1

2 (d−n+2r+1)gr+1 =Mn(gr) for all r ≥ 0 (equation (114)).
Applying this with r = m−1 gives d = n−2m+1, and then applying it inductively for r = m+ν
gives gm+ν = Mν

n(gm)/ν! for all ν ≥ 0, so G has an expansion as in (118) with g = gm. To

prove that the function g belongs to W (n−1)(d+ 4m), we must show that L(n−1,d+4m)
p g = 0 for

all 2 ≤ p < n, where for clarity we write L(n,d)
p for the operator Lp in V (n) with a given value

of d. From the definition (102) we get

L(n,d)
p = L(n−1,d+4m)

p + 4
(
σn

∂

∂σn
− m

) ∂

∂σp
+ 2σn

∑

p<i<n

∂2

∂σi ∂σn+p−i
(2 ≤ p < n),
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and the claim then follows by computing the coefficient of σm
n in the equation L(n,d)

p (G) = 0.
Conversely, if g ∈W (n−1)(n+2m+1), then by reversing the above calculations we find that the

function G defined by (118) satisfies G = O(σm
n ), G ∈ Ker

(
L(n,d)
n

)
, and L(n,d)

p (G) = O(σm+1
n )

for 2 ≤ p < n. But by the corollary to Proposition 2, L(n,d)
p (G) for 2 ≤ p < n also belongs to

Ker
(
L(n,d)
n

)
, and then it must vanish since the first part of the proof shows that any element of

this kernel for d = n+ 1− 2m is determined by its σm
n term. �

B. Proofs of the closed formula and commutation relation for Lp. In this subsection
we prove Propositions 1 and 2. Both proofs are rather lengthy and, as already mentioned,
can be omitted without loss of continuity. To simplify them somewhat, we define coefficients
ε(m), ε±a,b(m) ∈ {0,±1,±2} for a, b, m ∈ Z as follows:

ε(m) = sign(m+ 1
2 ) =

{
+1 if m ≥ 0,

−1 if m < 0,

ε+a,b(m) = ε(a−m) + ε(b−m) =





+2 if a, b ≥ m,

−2 if a, b < m,

0 otherwise,

ε−a,b(m) = ε(a−m)− ε(b−m) =





+2 if b < m ≤ a,

−2 if a < m ≤ b,

0 otherwise.

Then the definition (102) of the operators Lp on V can be written more compactly as

Lp = (d+ 1− p) ∂p +
∑

a,b≥1

ε+a,b(p)σa+b−p ∂a ∂b (p ≥ 1) (119)

(with ∂a = ∂/∂σa, and with the convention that σ0 = 1 and σa = 0 if a < 0), and the
commutation relation (104) can be written as

[Lp, Lq] =
∑

a, b≥1
a+b=p+q

ε−p,q(b) ∂a Lb (p, q ≥ 1). (120)

Proof of Proposition 1. Since both the left- and right-hand sides of (103) are second order
differential operators, it suffices to prove their equality on monomials in K[σ1, σ2, . . . ] of degree
≤ 2, i.e., for 1, σa and σaσb (a, b ≥ 1). The first case is trivial (both sides are zero), the second
case can be rewritten (since Lp(σa) = (d+ 1− p)δap) in the form

Dij(σp) = (d+ 1− p) ∂ij(σp) (1 ≤ i, j ≤ n, 1 ≤ p ≤ n) , (121)

and the third case is equivalent, by virtue of (119) and (121), to the identity

Dij(σaσb) =
∞∑

p=1

∂ij(σp)
[
(d+ 1− p)(δapσb + δbpσa) + 2 ε+a,b(p)σa+b−p

]

= Dij(σa)σb + σa Dij(b) + 2
∑

p≥1

ε+a,b(p) ∂ij(σp)σa+b−p , (122)

It therefore suffices to prove the formulas (121) and (122).
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For this purpose, it will be convenient to use generating functions. Let λ be an independent
variable and set

P = Pλ = X−1 + λT , ∆ = ∆λ = det(Pλ) = det(X)−1
n∑

p=0

σp λ
p .

The subscript “λ” will be omitted when no confusion can result. Since the factor det(X)−1 is
independent of λ and the T -variables, (121) can be rewritten in the form

D0
ij(∆) =

(
1 − λ

d

dλ

)
∂ij(∆) , (123)

where D0
ij := Dij − d∂ij denotes the purely second degree part of the differential operator Dij .

(Cf. the definition of Dij in eq. (31).) Since the (i, j)-entry Pij of P equals λtij + (X−1)ij , we
see from the expansion of det(P ) as a sum of products that

∂ij(∆) = 2λ∆i;j , (124)

where ∆i;j is defined as (−1)i+j times the determinant of the (n − 1) × (n − 1) matrix P i;j

obtained from P by omitting its ith row and jth column. (The factor 2 in (124) arises for i 6= j
because P is symmetric and contains tij twice, and for i = j because ∂ii = 2 ∂/∂tii.) Since each
entry of the matrix P i;j = λT i;j + (X−1)i;j contains λ multiplied by the corresponding entry of
T i;j , which is some tkℓ with k 6= i, ℓ 6= j, we have

∂

∂λ

(
∆i;j

)
=

n∑

k, ℓ=1

tkℓ ∆
i,k;j,ℓ , (125)

where ∆i,k;j,ℓ is the determinant of the (n − 2) × (n − 2) matrix obtained from P by omitting
its ith and kth rows and jth and ℓth columns, multiplied by (−1)i+k+j+ℓ and by an additional
factor sgn(i − k) sgn(j − ℓ) to take into account the antisymmetry of the determinant (and
∆i,k;j,ℓ = 0 if i = k or j = ℓ). Combining (124) and (125) gives

(
1 − λ

d

dλ

)
∂ij(∆) = −2λ2 ∂

∂λ

(
∆i;j

)
= −2λ2

∑

k, ℓ

tkℓ ∆
i,k;j,ℓ . (126)

On the other hand, using (124) with (i, j) replaced by (j, ℓ) and computing ∂ik of it by the same
argument, we find

∂ik∂jℓ(∆) = 2λ∂ik
(
∆j;ℓ

)
= 2λ2

[
∆i,j;k,ℓ + ∆k,j;i,ℓ

]
. (127)

(Here there are two terms on the right-hand side rather than a factor of 2 as in (124), because
P j;ℓ is no longer symmetric.) Multiplying this by tkℓ and summing over all 1 ≤ k, ℓ,≤ n gives

D0
ij(∆) =

∑

k, ℓ

tkℓ ∂ik∂jℓ(∆) = 2λ2
∑

k,ℓ

tkℓ ∆
k,j;i,ℓ . (128)

(The whole contribution from the first term on the right-hand side of (127) drops out because it
is antisymmetric in k and ℓ while tkℓ is symmetric.) Interchanging i and j in this formula and
using the antisymmetry once again, we see that the right-hand sides of (126) and (128) agree,
completing the proof of (123) and hence of (121).
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We now turn to equation (122). Again we use the generating function ∆λ = det(Pλ), but this
time for two independent variables λ and µ (which we now cannot omit from the notations).
From the definition of Dij together with equation (124), which by the standard formula for the

inverse of a matrix can be written in the form ∂ij(∆λ) = 2λ∆λ(P
−1
λ )ij , we find

Dij(∆λ∆µ) − Dij(∆λ)∆µ − ∆µ Dij(∆l) =
∑

k, ℓ

tkℓ
(
∂ik(∆l)∂jℓ(∆µ) + ∂ik(∆µ)∂jℓ(∆λ)

)

= 4λµ∆λ ∆µ

∑

k, ℓ

(
(P−1

λ )ik tkℓ (P
−1
µ )ℓj + (P−1

µ )ik tkℓ (P
−1
λ )ℓj

)

= 4λµ∆λ ∆µ

(
P−1
λ T P−1

µ + P−1
µ T P−1

λ

)
ij

= −8λµ∆λ ∆µ

(
P−1
λ − P−1

µ

λ − µ

)

ij

(
because T =

Pλ − Pµ

λ− µ

)

= − 4

λ− µ

(
µ∆µ ∂ij(∆λ) − λ∆λ ∂ij(∆µ)

)

=
4

det(X)2

∑

p≥0, q≥0

σq ∂ij(σp)
λq+1µp − µq+1λp

λ − µ
,

and now expanding the fraction in the last line as a geometric series and comparing the coeffi-
cients of λaµb on both sides we obtain the desired equation (122). �

Proof of Proposition 2. Any element of the Weyl algebra Q[σa, σ2, . . . , ∂1, ∂2, . . . ] can be written
uniquely using the commutation relation [∂a, σb] = δab as a sum of monomials σ∗

1σ
∗
2 · · · ∂∗

1∂
∗
2 · · · ,

so it suffices to put the left- and right-hand sides of equation (120) into this form and compare
coefficients. We claim that both sides of (120) are equal to

2
∑

i, j≥1
i+j=p+q

(d+ 1− i) ε−p,q(i) ∂i ∂j +
∑

i, j, k≥1

ε−p,q(p+ q − k) ε+i,j(p+ q − k)σi+j+k−p−q ∂i∂j∂k .

For the left side we use the commutation relation to find in succession

[∂p, Lq] =
∑

a+b=p+q

ε+a,b(q) ∂a∂b ,

[σi∂a∂b, σI∂A∂B ] = σi (δb,I∂a + δa,I∂b)∂A∂B − σI (δB,i∂A + δA,i∂B)∂a∂b ,

[Lp, Lq] =
∑

i+j=p+q

[
(d+ 1− p)ε+i,j(q) − (d+ 1− q)ε+i,j(p)

]
∂i∂j

+
∑

i, j, k>0

(
ε+i,j(q) ε

+
k,i+j−q(p) − ε+i,j(p) ε

+
k,i+j−p(q)

)
σi+j+k−p−q ∂i∂j∂k .

The final expression gives [Lp, Lq] as a sum of canonically ordered monomials in the Weyl algebra
and can be compared with the formula given at the beginning of the proof. The coefficients of
∂i∂j and σi+j+k−p−q∂i∂j∂k in the two formulas do not agree as they stand, but if we symmetrize
with respect to i and j (resp. to i, j and k), they do. (The somewhat tedious verification of
this can be done either directly, by checking the various cases according to the inequalities
satisfied by the variables, or else by forming generating functions out of the coefficients in
question and comparing their values.) Similarly, if we use the commutation relations to calculate
the right-hand side of (120), then after symmetrization we find the expression stated at the
beginning of the proof except that the coefficient of ∂i∂j in the first sum has an extra term∑

1≤h≤p+q ε
−
p,q(h)ε

+
i,j(h), but this sum vanishes since ε−p,q(h) is invariant and ε+i,j(h) anti-invariant

under h 7→ p+ q + 1− h (= i+ j + 1− h). Again we omit the details of the computation. �
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C. Special cases and explicit formulas. In SubsectionA, we gave the proof of Theorem 10
in an algebraic form that led to an explicit recursion for the coefficients, and also recast it as
an explicit inductive construction of the power series G(n) := ρn(G) via differential operators
(eqs. (111) and (117)). Either of these can be used to make numerical calculations in any
desired special case. In this final subsection we describe some of the results obtained, and a few
supplementary results.

1. We start by looking at some small values of n. For the case n=1 it might seem that
nothing needs to be said, since, as we have seen, the function G(1)(σ1) can be chosen arbitrarily.
However, in fact not all choices are equally good, as we will see in a moment when we consider
the next two values n = 2 and n = 3. Furthermore, there is a direct connection between
the choice of G(1) and the constants of proportionality relating various normalizations of our
canonical bases of higher spherical polynomials, and we discuss this point briefly here because
it casts some light on the calculations done in §8 for n = 3. Write the generic choice of power
series G(1)(σ1) as

G(1)(σ1) =
∞∑

k=0

γk
k!

σk
1 (129)

with γ0 = 1, where γk in general may depend on d. Our standard choice, dictated by the
generating function (72) for n = 2 or (101) for n = 3, will be

γk = 2−k (d− 2)k , G(1)(σ1) = (1− σ1/2)
2−d (130)

(or by an appropriate limiting value if d = 2). The polynomials corresponding to this normal-
ization will be denoted simply by Pννν(T ) (or Pννν,d(T )). However, we will also consider various
other possible choices. The simplest and most natural one, which will occur again in points 2.
and 6. below, is

γ
k

= 1 , G(1)(σ1) = eσ1 . (131)

We will denote the corresponding generating function by G(σ1, σ2, . . . ) and its coefficients by
A(r1, r2, . . . ), and notice that any other choice is related to this one by Gk = γk Gk and A(r) =
γk A(r), where k =

∑
iri. Similarly, the higher spherical polynomials Pννν(T ) by

∑

ννν∈N0

Pννν(T )X
ννν = G(n)(σ1(XT ), σ2(XT ), . . . , σn(XT )) , (132)

i.e., by (100) with G(n) replaced by G(n), are related to the standard polynomials by the formula

Pννν(T ) = 2−k(d− 2)k Pννν(T )
(
k = ‖ννν‖ :=

∑

i<j

νij =
1
2 1

t · ννν · 1
)
. (133)

Let us look how the higher spherical polynomials defined by these various choices are related
to the descending basis defined in §5. Begin with an arbitrary choice of G(1) as in (129). In

Theorem 10 we showed that L1(G
(n)
k ) = ck G

(n)
k−1 for certain constants ck independent of n.

Applying this to n = 1, with G
(1)
k (σ1) = γkσ

k
1/k!, and observing that the operator L1 equals

simply d ∂1 + 2σ2
1∂1 for n = 1, so that L1(σ

k
1 ) = k(d + 2 − 2)σk−1

1 , we find that the constants
ck are related to the coefficients γk in (129) by ck = (d+ 2k− 2) γk/γk−1. In particular, for the

simplest generating functions Gk we have simply L1(G
(n)
k ) = (d+ 2k− 2)G

(n)
k−1 for all n, k ≥ 1,

so from (132) and the corollary to Proposition 1 we get Dij(Pννν(T )) = 2(d+ 2k − 2)Pννν−eij
(T ),

where k = ‖ννν‖. Comparing this with the defining property (55) of the descending basis, we
obtain:
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Proposition 4. The higher spherical polynomials Pννν(T ) defined by the generating series (132)
are related to the descending basis by

Pννν(T ) = 22k (d/2)k P
D
ννν (T ) (ννν ∈ N0, k = ‖ννν‖) . (134)

Combining this with equation (133), we find that we have also proved the formula

Pννν(T ) = 2k (d/2)k (d− 2)k P
D
ννν (T ) (ννν ∈ N0, k = ‖ννν‖) . (135)

relating our standard basis to the descending basis. This generalizes the result already proved in
Proposition 3 of §8 for the case n = 3, and clarifies the origins of the two Pochhammer symbols
occurring in equation (77).

2. To see which choices of γk have good properties, we look first at the case n=2, where,
as we already mentioned in §8.A, the polynomials Pννν(T ) are called Gegenbauer polynomials
in general and Legendre (resp. Chebyshev) polynomials in the special case d = 3 (resp. d = 2
or 4). With the normalization fixed in (71) they are given by the generating function (72),
which corresponds in our notation (since the elementary symmetric functions of the eigenvalues

of
( 0 X

X 0

)( m1 r/2

r/2 m2

)
are σ1 = rX and σ2 = (r2/4−m1m2)X

2) to

G(2)(σ1, σ2) =
(
(1− σ1/2)

2 − σ2

)−s−1
(d = 2s+ 4) (136)

and hence to the normalization given in (130). As already stated, this will be our default
choice of normalization from now on, but it seems worth mentioning that there are at least
two other special choices that have special properties for n = 2 and therefore should also be
considered. If we look in a standard reference work like [1], F22.9, we find, as well as the
generating function (72), two other generating functions for Gegenbauer polynomials, namely,
in our notations,

∞∑

a=0

2a

(2s+ 2)a
Pa,d

( m1 r/2

r/2 m2

)
Xa = erX Js+1/2

(
(r2 − 4m1m2)X

2
)
, (137)

∞∑

a=0

(s+ 3/2)a
(2s+ 2)a

Pa,d

( m1 r/2

r/2 m2

)
Xa =

(
1− rX/2 +

√
1− rX +m1m2X2

2

)−s−1/2

√
1− rX +m1m2X2

, (138)

where Jν(x) is the modified Bessel function (116). We can write these in σp-coordinates as

G(2)(σ1, σ2) = eσ1 Js+1/2(4σ2) ,

Ĝ(2)(σ1, σ2) =
1√

(1− σ1/2)2 − σ2

(
1− σ1/2 +

√
(1− σ1/2)2 − σ2

2

)−s−1/2

,
(139)

corresponding to the two n = 1 initializations (131) and

γ̂k = (s+ 1/2)k , Ĝ(1)(σ1) = (1− σ1/2)
−s−3/2 . (140)

Notice that the generating function (138), like the standard generating function (72), is
algebraic when d is rational. One can ask whether there are any other generating functions
that are algebraic, at least for special values of s. In this connection we can observe that the
n = 1 specializations of all three generating series in (136) and (139), namely the functions
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G(1), Ĝ(1) and G(1) given in equations (130), (131) and (140), belong to a single one-parameter

family (1−σ1)
−K (up to trivial rescalings σ1 7→ λσ1, with the function G(1) corresponding to the

degenerate case K = λ−1 →∞). The corresponding n = 2 generating series are hypergeometric,
and using Schwarz’s theorem we can check that none of them is algebraic except when s is rational

and K equals either 2s + 2 or s + 3/2 (corresponding to G or Ĝ) or when s is an integer, in
which case they are algebraic for every value of K.

3. We next look at the case n=3, where we already know that the answer for G(n) (in
the standard normalization (130)) is the function given in (101). The coefficients of Pννν(T )
as polynomials in the coefficients of T were studied in §8.D and were extremely complicated
expressions that we could not evaluate completely in closed form in all cases. The coefficients of
G(3), on the other hand, turn out to be very simple. For n = 3 the space W (3) ⊂ K[[σ1, σ2, σ3]]
is given by the vanishing of only two operators

L2 = (d− 1) ∂2 + 2σ2∂
2
2 + 4σ3∂2∂3 − 2∂2

1 , L3 = (d− 2) ∂3 + 2σ3∂
2
3 − 4∂1∂2 − 2σ1∂

2
2 .

(The other terms in (102) can be omitted by virtue of the remarks following the statement of

Proposition 1.) If we write G(3) as
∑

α,β,γ≥0 Aα,β,γ
σα
1

α!

σβ
2

β!

σγ
3

γ! , so that Aα,β,γ = A(α, β, γ) in the

notation of (109), then the conditions L2(G
(3)) = L3(G

(3)) = 0 translate into the recursions

(d+2β+4γ−1)Aα,β+1,γ = 2Aα+2,β,γ , (d+2γ−2)Aα,β,γ+1 = 4Aα+1,β+1,γ + 2αAα−1,β+2,γ .

The right-hand side of the second of these equations can be replaced using the first equation by
the simpler expression 2(α+2β+4γ+d+1)Aα−1,β+2,γ , and using this one finds easily that the
solution of these recursions, with the initial conditions Aα,0,0 = 2−α(2s+ 2)α, is given by

Aα,β,γ = 2γ−α (2β + 4γ + 2s+ 2)α (2γ + s+ 1)β (γ + s+ 1)γ , (141)

where d = 2s+ 4 and (x)m = x(x+ 1) · · · (x+m− 1) is the ascending Pochhammer symbol as
usual. We thus obtain the following very simple description of G(3) as a power series.

Proposition 5. The generating function G(3) is given by

G(3)(σ1, σ2, σ3) =
∑

α, β, γ ≥ 0

2γ−α

(
α+ 2β + 4γ + 2s+ 1

α

)(
β + 2γ + s

β

)(
2γ + s

γ

)
σα
1 σ

β
2 σ

γ
3 ,

(Note that we could also have obtained this expansion directly, using equation (70) and the
binomial theorem, as the Taylor expansion of the algebraic function (101).)

We also mention that the n = 3 case allows us to reduce the freedom of choice that we still
had for n = 2, since neither the function Ĝ(3) corresponding to the functions (137) or (140), nor
the functions n = 3 corresponding to G(1)(σ1) = (1−σ1)

−K for s integral and other choices than
K = s+ 3/2 or K = 2s+ 2, turn out to be algebraic, leaving out standard normalization (130)
as the only one (up to rescaling) that gives algebraic generating functions up to n = 3. From
now on we always assume that we have made this choice.

4. For n>>>3 the coefficients of the generating function G(n) no longer factor nicely into
linear factors, and the generating function itself no longer seems to be algebraic in general
for any choice of the initial function G(1). We will consider in detail the case n=4. Write

G(4) =
∑

α,β,γ,δ≥0 Aα,β,γ,δ
σα
1

α!

σβ
2

β!

σγ
3

γ!
σδ
4

δ! . Then the equation L4(G
(4)) = 0 gives the recursion

d+ 2δ − 3

2
Aα,β,γ,δ+1 = 2Aα+1,β,γ+1,δ + Aα,β+2,γ,δ + 2αAα−1,β+1,γ+1,δ + βAα,β−1,γ+2,δ ,
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and this allows us to reduce the calculation of all Aα,β,γ,δ to that of Aα,β,γ,0 = Aα,β,γ , which
is given by (141). Already for δ = 1 the explicit formulas for the coefficients Aα,β,γ,δ become
complicated, but they can nevertheless be used to calculate as many terms of the power series
G(4) as we want, or alternatively, we can use eq. (115) to compute G(4) directly from G(3).
Carrying out these calculations for various small values of d (d = 4, 5, . . . , 10) and up to fairly
large degrees led to a number of conjectural statements, most of which we were then able to
prove. These experiments, results, and proofs will be described in detail in §10. Here we mention
only the highlights:

(a) For d = 4 the function G(4) is algebraic.

(b) For d = 6, 8 and 10 the function G(4) is not algebraic, but certain derivatives of it are.
Specifically, the images of G(4) under E + 3 for d = 6, under (E + 4)(E + 5)(E + 6) for d = 8,
and under (E +5)(E +6)(E +7)(E +8)(E +9) for d = 10, where E as usual denotes the Euler
operator, all turned out experimentally to be algebraic functions, leading to the conjectural
statement that

(
E+3s
2s−1

)
G(4)(σ1, σ2, σ3, σ4; 2s+ 4) is algebraic for all positive integral values of s.

This will be proved in §10.
(c) For d = 5, 7 and 9 we find numerically that the power series G(4) is not algebraic, but

does have integral coefficients after rescaling by some simple factor (involving only the prime 2
for d = 5 and d = 7 and only the primes 2 and 3 for d = 9). We conjecture that this is true for
all odd values of d ≥ 5.

5. In points 1.–4. above, we looked at the full generating series G(n) for small values of n.
In a different direction, we can consider instead small values of the weight k. Here we can give
a closed formula for any fixed value of k, the first examples being

G1 =
1

2
(d− 2)σ1 ,

G2 =
1

4

(
d− 1

2

)
σ2
1 +

d− 2

2
σ2 ,

G3 =
1

8

(
d

3

)
σ3
1 +

d(d− 2)

4
σ1σ2 + d σ3 ,

G4 =
1

16

(
d+ 1

4

)
σ4
1 +

(d+ 1)d(d− 2)

16
σ2
1σ2 +

d(d+ 2)

2
σ1σ3 +

d(d− 2)

8
σ2
2 +

d(5d+ 6)

2(d− 3)
σ4 .

Expressed differently, for each value of k there are only finitely many coefficients A(r1, r2, . . . )
of weight k, corresponding to the partitions k = r1 + 2r2 + · · · , and each of these coefficients is
a rational function of s independent of n, e.g., the coefficient A(3, 2, 0, 1) of σ3

1σ
2
2σ4/12 (of total

weight k = 11) is given by

A(3, 2, 0, 1; d) =
(s+ 3)(s+ 4)(s+ 5)(s+ 6)(10s3 + 169s2 + 935s+ 1634)

2s+ 1
,

where we have written d = 2s+ 4 as usual. In general these rational functions are complicated,
as this example shows, and it is unlikely that one give a general formula for them in closed
form. However, we can give a complete formula for their asymptotic behavior as s (or d) tends
to infinity, e.g. A(3, 2, 0, 1; d) ∼ 5s6 as s→∞ in the above example.

Proposition 6. For each fixed value of r = (r1, r2, . . . ), the coefficient A(r; d = 2s + 4) of∏
p σ

rp
p /rp! in G(σ1, σ2, . . . ) is a rational function of s with asymptotic behavior

A(r; 2s+ 4) ∼
(
1r1 1r2 2r3 5r4 · · ·

)
sr1+r2+r3+··· , (142)

as s→∞, where the coefficient is
∏∞

i=1 C
ri
i−1 with Cn = 1

n+1

(
2n
n

)
, the nth Catalan number.
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Proof. We already know that A(r; d) is a rational function of s (in fact, an element of the ring R
defined in (112)) and that it is determined completely by the recursion (111) with the initial
conditions A(k, 0, 0, . . . ; d) = γk, with γk as in (130). In this recursion each coefficient A(r) is
expressed as a linear combination of coefficients A(r′′′) with r′i = ri − δi,p + δi,a + δi,b − δi,a+b−p

for some integers a, b > 0 with a+ b ≥ p. Since each r′′′ is less than r in lexicographical ordering,
we may assume by induction that (142) holds for A(r′′′; d). (The initial value of the induction
is correct, since γk = 2−k(d − 2)k ∼ sk as s → ∞.) If a + b > p, then

∑
i≥1 r

′
i =

∑
i≥1 ri,

so A(r′′′; d) grows like the same power of s as in the as-yet-unproved formula for A(r; d), and
the factor 2/(d − p + 2rp − 1) ∼ 1/s in front of the sum in (111) implies that these terms give
a negligible asymptotic contribution. If a + b = p, then

∑
i≥1 r

′
i is larger by 1 than

∑
i≥1 ri,

so the contributions of these terms in (130) have the same power of s as in (111). Also, the

product
∏

i≥1 C
r′i
i−1 is equal to Ca−1Cb−1/Cp−1 times the product

∏
i≥1 C

ri
i−1, so the correctness

of formula (142) follows from the identity
∑

a+b=p Ca−1Cb−1 = Cp−1, which is the standard
recursion relation for the Catalan numbers. �

6. In fact we can extend the idea of 5. further by giving closed formulas for A(r; d) when
only r2, r3, . . . are fixed and r1 (or equivalently k = r1 +2r2 +3r3 + · · · ) as well as d is allowed
to vary. For instance, we find that for every value of k and n the coefficient A(k − 2, 1, 0, . . . )

of σk−2
1 σ2/(k − 2)! in G

(n)
k is equal to 21−k(d − 2)k/(d − 1). The factor of 2−k(d − 2)k in this

expression suggests that it would be better to work with the other normalization A(r) (cf. (133)),
in which case the formula in question simplifies to just A(k − 2, 1, 0, . . . ) = 2/(d − 1). In this
example the value is independent of k and is an element of the ring R defined in (112), but in
general it turns out to be a polynomial in k with coefficients in R. In other words, we have an
expansion of the weight k part of G as

Gk(σ1, σ2, . . . , σk) =
k∑

l=0

Hl(σ2, σ3, . . . , σl; k)
σk−l
1

(k − l)!
(143)

where each Hl is a polynomial of (weighted) degree l in σ2, . . . , σl with coefficients in R[k], the
first values being

H0 = 1 , H1 = 0 , H2 =
2

d− 1
σ2 , H3 = 8

d+ k − 2

(d+ 1)(d− 1)(d− 2)
σ3 ,

H4 = 8
5d2 + (12k − 27)d+ 8k2 − 36k + 34

(d+ 3)(d+ 1)(d− 1)(d− 2)(d− 3)
σ4 +

4

(d+ 1)(d− 1)

σ2
2

2!
,

H5 = 32
P5

(d+ 5)(d+ 3)(d+ 1)d(d− 1)(d− 2)(d− 3)(d− 4)
σ5

+ 16
d+ k − 2

(d+ 3)(d+ 1)(d− 1)(d− 2)
σ2σ3 ,

H6 = 64
P6

(d+ 7)(d+ 5)(d+ 3)(d+ 1)d(d− 1)(d− 2)(d− 3)(d− 4)(d− 5)
σ6

+ 16
5d3 + (12k − 25)d2 + (8k2 − 28k + 22)d+ 8(k − 1)(k − 2)

(d+ 5)(d+ 3)(d+ 1)d(d− 1)(d− 2)(d− 3)
σ2σ4

+ 64
(d+ k − 1)(d+ k − 2)

(d+ 5)(d+ 3)(d+ 1)d(d− 1)(d− 2)

σ2
3

2!
+

8

(d+ 3)(d+ 1)(d− 1)

σ3
2

3!
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with

P5 = 7d4 + (28k − 72)d3 + (40k2 − 206k + 231)d2 + (20k3 − 152k2 + 338k − 210)d

+ 4(k − 1)(k − 2)(k − 5) ,

P6 = 21d5 + (120k − 350)d4 + (270k2 − 1574k + 2047)d3 + (280k3 − 2412k2 + 6188k − 4582)d2

+ (112k4 − 1200k3 + 4166k2 − 5278k + 1760)d+ 40(k − 1)(k − 2)(k − 6)(2k − 7) .

Here we should warn the reader that, although all the coefficients shown in this list have only
simple poles in d, this property fails in general and in fact already in degree 7, where the

coefficient of σ2σ5
σk−7
1

(k−7)! has a factor (d+1)2 in its denominator. (That this example involves σ5

is no accident, since it follows immediately from (115) that A(r1, r2, r3, r4) has a denominator
at most (s + 1/2)r4 and hence has at most simple poles.) It is also perhaps worth mentioning
that formula (143) for the weight k part Gk of the generating function can also be written in an
equivalent form for the full function G =

∑
k Gk as

e−σ1 G(σ1, σ2, σ3, . . . ) = 1 +
2

d− 1
σ2 + 8

d+ 1 + σ1

(d+ 1)(d− 1)(d− 2)
σ3

+ 8
5d2 + 21d+ 18 + 12(d+ 3)σ1 + 8σ2

1

(d+ 3)(d+ 1)(d− 1)(d− 2)(d− 3)
σ4 +

4

(d+ 1)(d− 1)

σ2
2

2!
+ · · ·

∈ R[σ1][[σ2, σ3, . . . ]] . (144)

7. Our next point is that the new expansion (143) has an asymptotic property generalizing
Proposition 6 to the case when k and s both go to infinity. Notice first that equation (142),
when written in terms of the renormalized coefficients A(r; d), takes the form

A(r; 2s+ 4) ∼
(
1r2 2r3 5r4 · · ·

)
s−r2−2r3−3r4−··· ,

in which r1 does not occur at all. This is for k constant, but suggests now also looking at the
asymptotics for s→∞ of the coefficients of A(r; 2s+4) as polynomials in k. If we do this for the
values listed in the table of Hl above, then we see a nice multiplicative property: the coefficient
of σ2 in H2 is asymptotically equal to 1

s as s→∞, the coefficient of σ4 in H4 is asymptotically

equal to 5s2+6ks+2k2

s5 as s → ∞, and the coefficient of σ2σ4 in H6 is asymptotically equal to
5s2+6ks+2k2

s6 , which is the product of these two expressions. Similarly, the coefficient of σ2
3/2!

in H6 is asymptotically equal to (2s+k)2

s6 as s → ∞, and this is the square of the asymptotic
formula for the coefficient of σ3 in H3. In other words, we seem to have an asymptotic formula

A(r; 2s+ 4) ∼
∞∏

p=1

(
cp−1(k/s)

sp−1

)rp

(145)

as s and k go simultaneously to infinity, where the cn(λ) are certain universal polynomials of
λ = k/s whose first few values are

c0(λ) = 1, c1(λ) = 1, c2(λ) = λ+ 2, c3(λ) = 2λ2 + 6λ+ 5,

c4(λ) = 5λ3 + 20λ2 + 28λ+ 14, c5(λ) = 14λ4 + 70λ3 + 135λ2 + 120λ+ 42 .

(In particular, the formula (145) remains unchanged if one replaces the product by one starting
at p = 2 instead of p = 1.) To guess what these polynomials are, we first notice that compatibility
with Proposition 6 requires that the constant term cn(0) equals Cn, the nth Catalan number,
and that by inspection the highest term of cn(λ) for n ≥ 1 is Cn−1λ

n−1. Since the generating
function of

∑
n≥0 Cnx

n is the reciprocal of a slightly simpler function, we look at the first few

terms of the reciprocal of the series
∑

n≥0 cn(λ)x
n and immediately find that the coefficient of

xn in this reciprocal has the very simple form −Cn−1(λ + 1)n−1 for all n ≥ 1. This leads to
the definition of the polynomials cn(λ) given in the following proposition, whose proof will be
shorter than the discussion leading up to it.
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Proposition 7. For fixed values of r2, r3, · · · ≥ 0, the coefficient A(r1, r2, r3, . . . ; d = 2s + 4)
of

∏
p≥1 σ

rp
p /rp! in Gk(σ1, σ2, . . . ) (k = r1 + 2r2 + · · · ) is a polynomial in r1 or in k of de-

gree
∑

p≥3(p − 2)rp with coefficients in the ring R, and the asymptotic behavior of this coeffi-

cient as s and k tend to infinity is given by (145), where the polynomials cn(λ) are defined by
the closed formula

cn(λ) =





1 if n = 0,

(2n)!

n!(n− 1)!

n−1∑

j=0

(
n− 1

j

)
λj

(n+ j)(n+ j + 1)
if n ≥ 1

(146)

or by the generating function

∞∑

n=0

cn(λ)x
n =

1 + 2λ −
√
1− 4(λ+ 1)x

2 (λ+ x)
. (147)

Proof. Both the general form (143) of the generating function and the formula (145) for the
asymptotic behavior of its coefficients follow from the recursion relation (111) for these coeffi-
cients (which is equally valid for the coefficients A(r) as for the standard coefficients A(r), only
the initial conditions being different), and the proof of Proposition 7 is almost identical to the
proof of Proposition 6: the only difference is that the terms in (111) with a + b = p + 1 now
also contribute to the leading term of the expansion (because the coefficient r1 of A(r′′′) for these
terms is of the same order as s) and that the identity Cp−1 =

∑
a+b=p Ca−1Cb−1 used in the

proof of Proposition 6 must therefore be replaced by the more complicated identity

cp−1(λ) =
∑

a, b≥1
a+b=p

ca−1(λ) cb−1(λ) + λ
∑

a, b≥2
a+b=p+1

ca−1(λ) cb−1(λ) (p ≥ 2) ,

which is in turn easily seen to be equivalent to the generating function (147). �

8. Finally, we can use our generating functions to prove two statements about the determinant
of the Gram matrices discussed in §5. We showed there (Theorem 6) that the monomial and
descending bases are dual to one another with respect to the scalar product of §3, and hence
that the two N0(a)×N0(a) Gram matrices

(
PM
µµµ , PM

ννν

)
µµµ,ννν∈N0(a)

and
(
PD
µµµ , PD

ννν

)
µµµ,ννν∈N0(a)

are inverses of one another for generic values of d. From Theorem 11 we know that both matrices
are regular and invertible away from integer values of d ≤ n − 1. It follows that the “Gram
determinant” function GDM

a
(d) ∈ Q(d) defined by

GDM
a
(d) = det

( (
PM
µµµ , PM

ννν

)
µµµ,ννν∈N0(a)

)

is a rational function with zeros and poles only at integer values of its argument, i.e., that
GDM

a
(d) has the form C

∏
m(d+m)e(m) for some constant C = Ca and exponents e(m) = ea(m)

depending on a, with e(m) = 0 for all but finitely many values ofm, and e(m) = 0 for allm ≤ −n.
In the next proposition we will (1) give C and

∑
m e(m) (or equivalently, the asymptotics of

GDM
a
(d) as |d| → ∞) in all cases, and (2) give a complete formula for GDM

a
(d) whenever n > 3

and N0(a) = 1 (so that GDM
a
(d) is the determinant of a 1 × 1 matrix), in which case the

exponents e(m) turn out to depend only on the half-degree k = 1
2 (a1 + · · ·+ an).
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Proposition 8. (1) As d→∞ with a fixed, we have

GDM
a
(d) ∼

∏

ννν∈N0(a)

(
ννν!!! dk

)

where ννν!!! :=
∏

i<j νij ! .

(2) Suppose that N0(a) = 1 for some a with n ≥ 4 and ai ≥ 1 for all i. Then

GDM
a
(d) =

( n−1∏

i=1

ai!

)
(d+ 2k − 2) (d− 1)k−1 .

Proof. (1) As in 5. above, we denote by Gk the weight k part of the standard generating
function. Then by (117), we have

Gk =
(d− 2)k
2kk!

σk
1 +O(dk−1) .

This is because the operator σiMi with 2 ≤ i ≤ n on polynomials of weight k in σ1, . . . , σi−1

does not change the weight and the action of ((d− i+1)/2)r(σiMi)
r decreases the order by dr,

so the dominant asymptotic term as d → ∞ comes from the coefficient of σk
1 . For any index ννν

of weight k, the coefficient of xννν in σk
1 is given by (2kk!/ννν!)Tννν , so by (135) we have

PD
ννν =

1

ννν! (d/2)k
Tννν + O

(
d−k−1

)
=

1

ννν! (d/2)k
PM
ννν + O

(
d−k−1

)

and hence (
PD
µµµ , PD

ννν ) ∼ δµµµ,ννν
ννν! dk

+O
(
d−k−1

)
.

Since GDM
a
(d) = det((PD

µµµ , PD
ννν ))−1, we have the assertion.

(2) By symmetry, we may assume that a1 ≤ a2 ≤ · · · ≤ an. Since N0(a) = 1, we have
an = a1 + · · · + an−1 (cf. Remark 2. in §2) and the corresponding index ννν = (νij) ∈ N0(a)
satisfies νin = ai for i < n and νij = 0 for other (i, j). In order to calculate GDM

a
(d), we only

need the coefficient of PD
ννν at Tννν . We see this coefficient by the generating function. To see this,

since νij = 0 if i < n and j < n, we may put xij = 0 for pairs (i, j) with i < n and j < n in the

generating function. Under this substitution, we have σl = 0 for l ≥ 3, σ1 = 2
∑n−1

i=1 tinxin and

σ2 =
(∑n−1

i=1 tinxin)
2 = σ2

1/4. So the standard generating function reduces to

(
(1− σ1/2)

2 − σ2

)−(d−2)/2
= (1− σ1)

−(d−2)/2 =
∞∑

k=0

((d− 2)/2)k
k!

σk
1 .

Expanding σk
1 , the coefficient of xννν = xa1

1n · · ·x
an−1

n−1,n is given by 2k · ((d − 2)/2)k/a1! · · · an−1!.

By (135), we have

(
PD
ννν , PD

ννν

)
=

1

(d− 1)k−1(d+ 2k − 2) a1! · · · an−1!
.

This proves the assertion. �
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§10. Algebraic generating functions for the case n = 4

As mentioned in pointC.4. of §9, the formalism developed in that section permitted extensive
numerical calculations of the generating function G(4)(σ1, σ2, σ3, σ4) that led to the formulation
of a number of interesting properties, some of which we later proved and some of which remain
conjectural. In this section give these results and their proofs, also including a brief description
of the experiments that led up to them, without which the statements would be completely un-
motivated. The first three subsections treat the case of even values of d, proving the algebraicity
of

(
E+3s
2s−1

)
G(4) (where d = 2s+ 4 as usual) that was already mentioned in §9.C.4. In §10.D we

strengthen this result by proving that the generating series having these functions as coefficients
is also algebraic. The last two subsections are devoted to a brief discussion of the case of odd d,
for which the results are still conjectural, and to a final remark concerning the case when n is
larger than 4.

A. Even values of d : experimental results. We look first at the case d = 4 (s = 0),
since the generating function for n = 3 was particularly simple for this value of d (§8.A). The
expansion of G(4)(σ1, . . . , σ4) for d = 4 begins

1 + σ1 +
3σ2

1 + 4σ2

4
+

σ3
1 + 4σ1σ2 + 8σ3

2
+

5σ4
1 + 40σ2

1σ2 + 192σ1σ3 + 16σ2
2 + 832σ4

16
+ · · · .

To simplify the coefficients of this and thus improve our chances of recognizing the function, we
specialize the variables σp. Since we already know the n = 3 function, we must not specialize σ4

to 0, so the simplest choice is to take σ1 = σ2 = σ3 = 0. Doing this, we find that the function
y = G(4)(0, 0, 0, x/4) (where the factor 1/4 is included just to reduce the size of the coefficients)
has a power series expansion in x beginning

y = 1 + 13x + 321x2 + 8989x3 + 265729x4 + 8097453x5 + · · · .

Calculating this series to many terms and looking for linear relations among monomials of small
degree in x and y, we find that within the accuracy of the calculation the function y satisfies
the quadratic equation

(1− 34x+ x2)2 y4 − (1 + x)(1− 34x+ x2) y2 + 9x = 0 ,

the solution of which is the explicit algebraic function

y =

√
1 + x+

√
1− 34x+ x2

2 (1− 34x+ x2)
=

1

2
√

1− 6
√
x+ x

+
1

2
√
1 + 6

√
x+ x

. (148)

Repeating the calculation for various other specializations of G(4) and interpolating the results
obtained, we are led to conjecture the following result, whose proof will be given in §10.B.

Proposition 1. The function y0 = y0(σ1, σ2, σ3, σ4) = G(4)(σ1, σ2, σ3, σ4; d = 4) is algebraic of
degree 4 over Q(σ1, . . . , σ4) and is given explicitly by

y0 =

√
∆1 +

√
∆2

2∆2
, (149)

where ∆1 and ∆2 are defined by

∆0 = (1− σ1/2)
2 − σ2 , ∆1 = ∆2

0 − 8σ3 + 4σ4 , ∆2 = ∆2
1 − 16σ4(4− 2σ1 −∆0)

2 .
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We remark that for σ4 = 0 we have ∆1 = ∆2
0−8σ3 and ∆2 = ∆2

1, so the right-hand side of (149)

reduces in that case to 1/
√

∆2
0 − 8σ3, in accordance with formula (101) when d = 4.

After this initial success we look at the case d = 5, but here there seems to be no algebraic
formula. (We will return to this question in §10.E.) On the other hand, when we look at the
following case d = 6, the situation is better. Here the expansion of y = G(4)(0, 0, 0, x/4) begins

1 + 9x + 153x2 +
16213

5
x3 + · · · + 24075859253492406153684681487509

29
x21 + · · · .

Unlike the corresponding series for d = 4 and d = 5, which to the accuracy of the computation
were in Z[[x]] and Z[[x/64]], respectively, this series appears to have infinitely many primes in
its denominator, in which case it is definitely not algebraic since the Taylor coefficients of an
algebraic function always belong to Z[1/N ] for some integer N . On the other hand, looking
more carefully, we find that the denominator of the coefficient of xn is always a divisor of 4n+3,
which means that the power series y1 := 4xy′ + 3y has integral coefficients, and now applying
the same numerical procedure as before to y1 leads to the experimental formula

y1 =

√
1 + x−

√
1− 34x+ x2

2x (1− 34x+ x2)
=

1

2
√
x(1− 6

√
x+ x)

− 1

2
√

x(1 + 6
√
x+ x)

, (150)

very similar to the corresponding formula (148) for the d = 4 case. More generally, when we
look at the Taylor expansion of y = G(4)(σ1, σ2, σ3, σ4; 6) for general values of the σp, we find
that the denominators in the coefficients are always divisors of k + 3, where k is the degree of
the monomial in question, so that we must replace y by y1 = (E + 3)y to get integrality, where
E =

∑
p pσp is the Euler operator that multiplies a monomial of weight k in the σp by k. Just

as before, by identifying the power series obtained for several other specializations as algebraic
functions and interpolating, we are led to guess the following proposition, whose proof will also
be given in Subsection B below.

Proposition 2. The generating function G(4) is not algebraic for d = 6, but its image under
E + 3, where E is the Euler operator defined above, is algebraic and is given by the formula

y1 =

√
∆1 −

√
∆2

8σ4 ∆2
, (151)

where ∆1 and ∆2 have the same meaning as in Proposition 1.

We observe that the product of y1 and the function y0 in (149) equals (4 − 2σ1 − ∆0)/∆2,
which is a rational function in the initial variables σp, so that the function fields generated by
the two algebraic functions y0 and y1 coincide.

Continuing to higher values, we find that for d = 8 (s = 2) we have to apply the differential

operator 1
6 (E+4)(E+5)(E+6) =

(
E+6
3

)
to y to achieve integrality and that it is then algebraic

(this case will also be discussed further in §10.B), while for d = 10 (s = 3) we need to apply(
E+9
5

)
to get integrality of the Taylor coefficients, with no smaller polynomial in E sufficing.

These special cases suggest the following theorem, whose proof will occupy most of this section.

Theorem 13. For s ∈ Z≥0 define ys = ys(σ1, σ2, σ3, σ4) by

ys =

{
G(4)(σ1, σ2, σ3, σ4; 4) if s = 0,

(
E+3s
2s−1

)
G(4)(σ1, σ2, σ3, σ4; 2s+ 4) if s ≥ 1.

(152)
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Then each ys is algebraic of degree 4 over K = Q(σ1, σ2, σ3, σ4). More precisely, each ys belongs
to the 2-dimensional subspace Ky0+Ky1 = K(

√
∆2) y0 of the degree 4 extension K(y0) = K(y1)

of K, where y0 and y1 are given by (149) and (151), respectively.

Remark. Applying a polynomial P (E) in the Euler operator to the generating function G(n)

is the same as multiplying the degree k terms by P (k) for each k ≥ 0, and hence is equivalent
to working with a different initialization G(1)(σ1) =

∑
k≥0 P (k)(d− 2)k(σ1/2)

k/k! of the n = 1
generating function. So our discussion can be summarized by saying that for s ∈ Z≥0 there is a

normalization of the initial generating function G(1) which makes G(n) algebraic for all n ≤ 4.

Finally, we mention an identity which is of interest in itself and will have an interpretation
in terms of the generating series with respect to s studied in §10.D. For s ∈ N, define

y±s (0) = y±s (σ1, σ2, σ3, 0) =

(
E + 3s

2s− 1

)(
As

±√
∆2

0 − 8σ3

)
, (153)

where A± :=
(
∆0 ±

√
∆2

0 − 8σ3

)
/2 , and

y±s = y±s (σ1, σ2, σ3, σ4) =
∞∑

r=0

Mr
4

(
y±s (σ1, σ2, σ3, 0)

) σr
4

r! (s+ 1
2 )r

, (154)

so that (by (115)) ys = y+s . The following identity will be proved in §10.C.

Theorem 14. The functions y+s and y−s coincide for s ∈ N.

B. Algebraicity and non-algebraicity proofs for G(4) when s is integral. In this
section we give the proofs of Propositions 1 and 2 and begin the discussion of higher even values
of d. These proofs involve the introduction of new coordinates for the ring Q[σ1, σ2, σ3, σ4] and
thus suggest the problem, which may be an interesting direction for further research, of finding
new coordinates for the whole ring Q[σ1, σ2, . . . ] that could help to clarify the structure of the
generating function G(n) for higher values of n. (We return to this point briefly in §10.F.)

Motivated by the experimental formula (149) and a certain amount of trial and error, we
make the (invertible) change of variables

σ1 = 2u1 + 2 , σ2 = u2 + u2
1 + 4u1 , σ3 = u3 + u1u2 + 2u2

1 . (155)

In terms of these variables the operatorM4 defined in (113) becomes simply

M4 =
∂2

∂u2
2

+
∂2

∂u1∂u3
, (156)

and, if we write g3 and g4 for the functions G(3) and G(4) expressed in the variables ui and σ4,
then equations (101) and (115) take the form

g3(u1, u2, u3; d = 2s+ 4) =
1√

u2
2 − 8u3

(−4u1 − u2 +
√
u2
2 − 8u3

2

)−s

, (157)

g4(u1, u2, u3, σ4; d) =
∞∑

r=0

(
∂2

∂u2
2

+
∂2

∂u1∂u3

)r(
g3(u1, u2, u3; d)

) σr
4

r! (s+ 1
2 )r

. (158)
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If s = 0, then g3 is independent of u1 and (158) simplifies to g4 =
∞∑

r=0

∂2rg3
∂u2r

2

σr
4

r! (1/2)r
. This

formula makes it very natural to make the further (non-invertible) change of variables

σ4 = X2/4 , (159)

in which case it can be written using Taylor’s formula and the duplication formula for the gamma
function as

g4(u1, u2, u3, X
2/4) =

∞∑

r=0

∂2rg3(u1, u2, u3)

∂u2r
2

X2r

(2r)!
=

g3(u1, u2 +X,u3) + g3(u1, u2 −X,u3)

2

=
1

2

(
1√

(u2 +X)2 − 8u3

+
1√

(u2 −X)2 − 8u3

)
. (160)

Squaring this gives

g24 =
u2
2 +X2 − 8u3 +

√
(u2

2 +X2 − 8u3)2 − 4u2
2X

2

2
(
(u2

2 +X2 − 8u3)2 − 4u2
2X

2
) =

∆1 +
√
∆2

2∆2

with ∆1 and ∆2 as in Proposition 1, completing the proof of equation (149).

The case s = 1 (d = 6) is only slightly more complicated. Write y0 for the expression (101)
with s = 1 and y01 for its image under E+3, where E denotes the Euler operator

∑
p σp ∂/∂σp.

Because E is a derivation and E(σ3) = 3σ3, we find

y01 =
(
E + 3

)[ 1

4σ3

(
∆0√

∆2
0 − 8σ3

− 1

)]
=

1

4σ3
E

(
∆0√

∆2
0 − 8σ3

)

=
−2E(∆0) + 3∆0

(∆2
0 − 8σ3)3/2

=
u2

(u2
2 − 8u3)3/2

=
∂

∂u2

( −1√
u2
2 − 8u3

)
,

which (a) is again independent of u1, and (b) can be expressed as a u2-derivative. Now the
relationship between y1 = (E + 3)G(4) and y01 is the same as the relationship (115) between
y = G(4) and y0, because the operator σ4M4 (or σnMn for any n) is homogeneous of degree 0
and therefore commutes with E. We therefore get

y1 =
∞∑

r=0

∂2r

∂u2r
2

(
y01
) σr

4

r! (3/2)r
=

1

X

∞∑

r=0

∂2r+1

∂u2r+1
2

( −1√
u2
2 − 8u3

)
X2r+1

(2r + 1)!

=
1

2X

(
1√

(u2 −X)2 − 8u3

− 1√
(u2 +X)2 − 8u3

)
, (161)

which is equivalent to formula (151) by a calculation similar to the one for s = 0.

This completes the proof of the part of Proposition 2 saying that y1 as an algebraic function.
For the assertion that y itself is not algebraic in general, it suffices to prove the non-algebraicity
of the specialization to σ1 = σ2 = σ3 = 0, i.e., to prove that the integral of the function (150)
divided by x1/4 is not algebraic. We already know “morally” that it is not, because its first
Taylor coefficients contain many different primes in the denominator, as was mentioned in the
previous subsection, and this is also confirmed by asking a computer system like “Mathematica”
to carry out the integral, obtaining as output the statement that there is no algebraic formula.
A formal proof is as follows. We want to show that the integral w =

∫
u dt, where

u =
1

2
√

P−
− 1

2
√

P+

, with P± = P±(t) = 1± 6t2 + t4 ,
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is not algebraic. By a theorem of Liouville, if w is algebraic it must belong to the function
field Q(t, u) = Q(t) + Q(t)

√
P+ + Q(t)

√
P− + Q(t)

√
P+P−. So we can assume that w =

a+ b
√
P+ + c

√
P− + d

√
P+P− where a, b, c, d are rational functions of t. From w′ = u, we get

2b′P− + bP ′
− = 1, 2c′P+ + cP ′

+ = −1, and a = d = 0. By comparing the Laurent expansions
around each t = α ∈ P1(C) (distinguishing the cases P−(α) = 0, P−(α) 6= 0 and α =∞), we see
that b has no poles on the complex projective line and hence is a constant, which is obviously a
contradiction. This completes the proof of Proposition 2. �

Remark. We can recast the calculations just given for s = 0 and s = 1 into a slightly different
and more suggestive form by using the differential equation L4(G

(4)) = 0 directly rather than
the expansion of G(4) as an infinite linear combination of terms Mr

4(G
(3))σr

4. For instance, if
s = 0 then we have

1

2
L4 =

1

2

∂

∂σ4
+ σ4

∂2

∂σ2
4

− M4 =
∂2

∂X2
−M4 =

( ∂

∂X
+

∂

∂u2

)( ∂

∂X
− ∂

∂u2

)
− ∂2

∂u1∂u3
,

so the unique function of u1, u2, u3 and X that is annihilated by L4, even in X, and equal
to a given function h(u2, u3) when X = 0 is simply 1

2

(
h(u2 +X,u3) + h(u2 −X,u3)

)
, and we

recover (160) without any need for using the infinite sum of differential operators occurring in
eq. (115) and with almost no computation at all. Similarly, if s = 1 then we have

1

2
L4 = X−1 ∂2

∂X2
X − M4 = X−1

(( ∂

∂X
+

∂

∂u2

)( ∂

∂X
− ∂

∂u2

)
− ∂2

∂u1∂u3

)
X ,

so the unique function of u1, u2, u3 and X that is annihilated by L4, even in X, and equal to
∂h(u2, u3)/∂u2 when X = 0 is simply 1

2X

(
h(u2 +X,u3)− h(u2 −X,u3)

)
, and we recover (161)

easily.

This completes our discussion of the cases s = 0 and s = 1. To understand how the general
case should go, we look at the next case s = 2 (d = 8). Here by direct calculation we find

y02 :=
1

6
(E + 4)(E + 5)(E + 6)G(3)(σ1, σ2, σ3; 8)

= −2 3u2(u
2
2 − 8u3) + u1u2(u

2
2 + 12u3) + 4u3(u

2
2 + 2u3)

(u2
2 − 8u3)7/2

=
1

6

(
3

∂2

∂u2∂u3
+ 2u1

∂3

∂u3
2

)(
1√

u2
2 − 8u3

)
+

1

12

∂3

∂u3
2

(
u2√

u2
2 − 8u3

)

and hence

y2 =
∞∑

r=0

Mr
4(y

0
2)

σr
4

r! (5/2)r
=

∞∑

r=0

(
∂2r

∂u2r
2

+ r
∂2r

∂u1∂u
2r−2
2 ∂u3

+ O
( ∂2

∂u2
1

))
(y02)

6(r + 1)X2r

(2r + 3)!

=

∞∑

r=0

(r + 1)

(
(2r + 3)

∂2r+2

∂u2r+1
2 ∂u3

+ 2u1
∂2r+3

∂u2r+3
2

)(
1√

u2
2 − 8u3

)
X2r

(2r + 3)!

+
1

2

∞∑

r=0

(r + 1)
∂2r+3

∂u2r+3
2

(
u2√

u2
2 − 8u3

)
X2r

(2r + 3)!

=
2

X

∞∑

r=0

∂2r+1

∂u2r+1
2

(
1

(u2
2 − 8u3)3/2

)
X2r+1

(2r + 1)!

+
1

4X

∂

∂X

1

X

∞∑

r=−1

∂2r+3

∂u2r+3
2

(
u2 + 4u1√
u2
2 − 8u3

)
X2r+3

(2r + 3)!
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= − 1

X

[
1

(
(u2 −X)2 − 8u3

)3/2 −
1

(
(u2 +X)2 − 8u3

)3/2
]

− 1

8X

∂

∂X

1

X

[
u2 −X + 4u1√
(u2 −X)2 − 8u3

− u2 +X + 4u1√
(u2 +X)2 − 8u3

]
.

This is an explicit algebraic function of σ1, . . . , σ4 and we can check directly that it belongs to
the function field generated over K by the function y0 or y1 or, more precisely, to the subspace
of this field anti-invariant under its Galois automorphism over its subfield K(

√
∆2). After a

good deal of computation we find that y2 is given with respect to the basis y0, y1 of this space
by

y2 =
u2∆0∆1 − 4σ4∆1 − 2u2∆̃0

16σ4∆2
y0 −

∆0∆
2
1 − 8u2σ4(3u2∆0 − 4σ4) + ∆̃0∆1

16σ4∆2
y1 ,

with ∆̃0 = 4σ4(∆0 − u2 + 8), confirming Theorem 13 in this case.

Looking at the three cases treated so far, we see that all we needed in these cases was that
the initial values ys(0) = ys(σ1, σ2, σ3, 0) of the functions defined in (152) had the form

y0(0) = h0,0 , y1(0) = ∂2h1,1 , y2(0) =
(3
2
∂3 + u1∂

2
2

)
∂2h2,1 + ∂3

2h2,2

for some functions hs,i depending on u2 and u3 but not on u1, where ∂p = ∂/∂up. The same
thing happens for the next case s = 3, the required decomposition this time having the form

y3(0) =
(15
4
∂2
3 + 5u1∂

2
2∂3 + u2

1∂
4
2

)
∂2h3,1 +

(5
2
∂3 + u1∂

2
2

)
∂3
2h3,2 + ∂5

2h3,3

for appropriately chosen functions h3,i of u2 and u3. Continuing to higher s, we find each time
that ys(0) has a decomposition

ys(0) =
s∑

i=1

Ms,i hs,i (s ≥ 1) (162)

where Ms,i (1 ≤ i ≤ s) are the differential operators

Ms,i =
s∑

j=i

(
s− 1

2

s− j

)
uj−i
1

(j − i)!
∂s−j
3 ∂2j−1

2 (163)

and hs,i (1 ≤ i ≤ s) the functions given by

hs,i =
(−1)s2s−i(s− 1)!

(2s− 1)! (i− 1)!

1√
∆2

0 − 8σ3

(
u2 −

√
∆2

0 − 8σ3

2

)i−1

. (164)

We verified (162) by computer up to s = 16, and will prove it for all s ∈ N in the next two
subsections. Here we show that it implies the algebraicity assertion in Theorem 13. This is a
special case of the following more general statement.

Proposition 4. Let Ms,i (1 ≤ i ≤ s) be the operator defined in (163). Then the function

∞∑

r=0

σr
4

r! (s+ 1
2 )r

Mr
4

(
Ms,ih

)
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is algebraic for any algebraic function h of u2 and u3.

Proof. Since h is independent of u1, we have (using (156)) the identity

Mr
4

(
Ms,ih

)
=

(∑

l≥0

(
r

l

)
∂2r−2l
2 ∂l

1∂
l
3

)( s∑

k=i

(
s− 1

2

s− k

)
uk−i
1

(k − i)!
∂s−k
3 ∂2k−1

2

)
h

=
s∑

j=i

(s−j∑

l=0

(
r

l

)(
s− 1

2

s− j − l

))
uj−i
1

(j − i)!
∂s−j
3 ∂2r+2j−1

2 h

=
s∑

j=i

(
r + s− 1

2

s− j

)
uj−i
1

(j − i)!
∂s−j
3 ∂2r+2j−1

2 h . (165)

It follows that

∞∑

r=0

σr
4

r! (s+ 1
2 )r
Mr

4

(
Ms,ih

)
=

s∑

j=i

(
s− 1

2

s− j

)
uj−i
1

(j − i)!
∂s−j
3

( ∞∑

r=0

σr
4

r! (j + 1
2 )r

∂2r+2j−1
2 h

)
,

and this is algebraic because for each j ≥ 1 we have the identity

∞∑

r=0

σr
4 ∂

2r+2j−1
2 h

r! (j + 1
2 )r

= (3/2)j−1
∂j−1

∂σj−1
4

∞∑

r=1−j

(4σ4)
r+j−1 ∂2r+2j−1

2 h

(2r + 2j − 1)!

= (3/2)j−1
∂j−1

∂σj−1
4

(
h(u2 +X,u3) − h(u2 −X,u3)

2X

)
(166)

with X =
√
4σ4 as in (159). �

Remark. There is an interesting relation between the formalism here and certain differential
operators from smooth functions of one variable to functions of two variables introduced in [14].
These operators6 are defined by

DnF (x, y) =
(−1)n
n!

n∑

i=0

(2n− i)!

i! (n− i)!

(−1)iF (i)(x) − F (i)(y)

(x − y)2n−i+1
(n = 0, 1, 2, . . . ) , (167)

the first three cases being

D0F (x, y) =
F (x)− F (y)

x − y
,

D1F (x, y) =
F ′(x) + F ′(y)

(x − y)2
− 2

F (x)− F (y)

(x − y)3
,

D2F (x, y) =
1

2

F ′′(x)− F ′′(y)
(x − y)3

− 3
F ′(x) + F ′(y)

(x − y)4
+ 6

F (x)− F (y)

(x − y)5
.

Though DnF (x, y) has an apparent pole of order 2n + 1 along the diagonal x = y, it is in
fact smooth there. Other attractive properties of Dn proved in [14] are that it annihilates
polynomials of degree ≤ 2n (as one can verify by hand in the above formulas for 0 ≤ n ≤ 2),
that it is given on monomials xm of degree ≥ 2n+ 1 by

Dn

(
x 7→ xm

)
(x, y) =

∑

r+s=m−1

(
r

n

)(
s

n

)
xr−nys−n ,

6with the slightly different notation and normalization (DnF )(x, y) = n! (x− y)n+1(DnF )(x, y) in [14]
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and that it satisfies the SL(2)-equivariance property Dn(F |−2ng) = Dn(F )|−n−1,−n−1g for all

g ∈ SL(2,C), where |k (and similarly |k,k′) denotes the usual “slash operator”
(
f |k

(
a b

c d

))
(x) =

(cx+ d)−kf
(
ax+b
cx+d

)
. All of these follow from the integral representation ([14], Prop. 4(v))

DnF (x, y) =
1

n!2 (x− y)2n+1

∫ x

y

(z − y)n(x− z)nF (2n+1)(z) dz

=
1

n!2

∫ 1

0

tn (1− t)n F (2n+1)
(
tx+ (1− t)y

)
dt .

We can also rewrite DnF (x, y) in terms of the derivatives of F only at (x+ y)/2, though at the
expense of changing the finite sum (167) to an infinite one. To do this, we combine the integral
representation just given with the usual Taylor expansion to find

(DnF )(u+X,u−X) =
1

22n+1n!2

∫ 1

−1

(1− t2)n F (2n+1)(u+ tX) dt

=
1

22n+1n!2

∞∑

r=0

(∫ 1

−1

t2r(1− t2)ndt

)
F (2r+2n+1)(u)

X2r

(2r)!
.

Computing the coefficient in parentheses by the beta integral and the duplication formula as

∫ 1

−1

t2r(1− t2)ndt =

∫ 1

0

xr− 1
2 (1− x)ndx =

n! Γ(r + 1
2 )

Γ(n+ r + 3
2 )

=
22n+1n!2

(2n+ 1)!

(2r)!

22rr! (n+ 3
2 )r

,

we find the following formula for the Taylor expansion of (DnF )(u+X,u−X) :

(DnF )(u+X,u−X) =
1

(2n+ 1)!

∞∑

r=0

F (2r+2n+1)(u)
(X/2)2r

r! (n+ 3
2 )r

. (168)

Together with (167) this gives another algebraic expression for the sum in eq. (166).

C. Properties of the generating function for fixed integral values of s. In the last
subsection we reduced the proof of Theorem 13 to the proof of the experimentally discovered
identity (162). In this subsection we will recast this identity in a nicer form and investigate
some of its consequences, and will prove Theorem 14. The proof of the identity itself will follow
from the generating function identities proved in §10.D.

Throughout this subsection we take as independent variables the variables ui introduced
in (155), and set ∂i = ∂/∂ui . We also set

∆0 = (1− σ1/2)
2 − σ2 = −u2 − 4u1 , ∆1 = ∆2

0 − 8σ3 = u2
2 − 8u3 ,

corresponding to the definitions in Propositions 1 and 2 at σ4 = 0. With these notations the

quantity A± occurring in (153) is given by A± = ∆0±
√
∆1

2 .

The first observation is that for a function h that does not depend on u1 the operator (163)
can be written in the more attractive form

Ms,i(h) = Ms−1/2
4

(
us−i
1

(s− i)!
h

)
. (169)
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Here the fractional powerMs−1/2
4 of the differential operator (156) is not defined as an operator,

but makes sense on functions of u1, u2, u3 that are polynomials of degree ≤ s− 1 with respect
to u1 if we use the binomial theorem to define

Ms−1/2
4 =

s−1∑

l=0

(
s− 1/2

l

)
∂ 2s−2l−1
2 (∂1∂3)

l (170)

for such functions. The observation (169), whose proof is immediate from (170) and the definition
of Ms,i, also clarifies the identity (166) appearing in the proof of Proposition 4 above, since the

left-hand side of this identity can be written as Mr+s−1/2
4

(
us−i
1 h/(s − i)!

)
and the fractional

powerMr+s−1/2
4 then expanded by the binomial theorem in the same way as was done in (170).

Substituting (169) and (164) into (162) and using the binomial theorem, we find that the
expression appearing on the right-hand side of (162) is simply Y +

s (0), where we define

Y ±
s (0) = Y ±

s (σ1, σ2, σ3, 0) = − 1

(2s− 1)!
Ms−1/2

4

(
As−1

±√
∆1

)
. (171)

We will see in a moment that Y +
s (0) = Y −

s (0), corresponding to (but much easier than) the
corresponding assertion for y±s (0) in Theorem 14. If, in analogy with (154), we also define

Y ±
s = Y ±

s (σ1, σ2, σ3, σ4) =
∞∑

r=0

Mr
4

(
Y ±
s (0)

) σr
4

r! (s+ 1
2 )r

, (172)

then the identities to be proved are

y+s (σ4) = y−s (σ4) = Y +
s (σ4) = Y −

s (σ4) , (173)

where we have suppressed the dependence on σ1, σ2 and σ3. It clearly suffices to prove this
for σ4 = 0, since each of the four functions in (173) is obtained from its value at σ4 = 0 by
applying the operator

∑
r≥0(σ

r
4/r!(s+

1
2 )r)M

r
4 .

Before proceeding we write the formula for Y ±
s (σ4) in a more explicit form. From the defini-

tion (170) (with s replaced by r + s) and the formula ∂1(A
±) = −2 we get

Mr+s− 1
2

4

(
As−1

±√
∆1

)
=

s−1∑

l=0

(
r + s− 1

2

l

)
∂2r+2s−2l−1
2 ∂l

1∂
l
3

(
As−1

±√
∆1

)

=
∑

l+n=s−1

(−1/2)l(2s− 1)! (s+ 1
2 )r

l! (2n+ 1)! (n+ 3
2 )r

∂l
3∂

2r+2n+1
2

(
An

±√
∆1

)

and hence

Y ±
s (σ1, σ2, σ3, σ4) = −

∑

l+n=s−1

(−1/2)l
l!

∂l
3

[
1

(2n+ 1)!

∞∑

r=0

σr
4

r! (n+ 3
2 )r

∂2r+2n+1
2

(
An

±√
∆1

)]
.

We can now use (168) to write the inner sum as Dn

(
An

±/
√
∆1

)
(u2 + X,u2 − X), giving an

explicit expression for Y ±
s as an algebraic function of its arguments and showing that it belongs

to the space described in Theorem 13. We also see immediately that Y +
s = Y −

s , because
(An

+ − An
−)/
√
∆1 is a polynomial of degree at most n − 1 in u2 and hence is annihilated by
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∂2r+2n+1
2 (or even by ∂n

2 ). Finally, we can use simple binomial coefficient identities to rewrite
the formula in a slightly different form, which will be used in §10D:

Y ±
s (σ1, σ2, σ3, σ4) = −

∑

l+n=s−1

(−1/2)l
l!

∂l
3

[ ∞∑

r=0

(
n+r
r

)
(4σ4)

r

(2r + 2n+ 1)!
∂2r+2n+1
2

(
An

±√
∆1

)]
. (174)

We end the subsection by giving the proof of Theorem 14. As already noted, it suffices to show
that y+s (0) = y−s (0). We observe first that the form of the functions y±s (0) can be simplified:

y±s (0) =

(
E + 3s

2s− 1

)
A−s

±√
∆1

=

(
E + 3s

2s− 1

)
(2σ3)

−s As
∓√
∆1

=
1

(2σ3)s

(
E

2s− 1

)
As

∓√
∆1

, (175)

where we have used A+A− = 2σ3 and E(σ3) = 3σ3. The proof of the desired identity y+s (0) =
y−s (0) now depends on the following proposition.

Proposition 5. Define polynomials B
(s)
k = B

(s)
k (σ1, σ2, σ3) (k ≥ 0) by the generating function

B(s)(x) =
∞∑

k=0

B
(s)
k xk =

1√
∆̃2

0 + 8σ3x3(1− x)

(
∆̃0 +

√
∆̃2

0 + 8σ3x3(1− x)

2

)s

, (176)

where ∆̃0 = ∆̃0(x) = 1 + 2u1x+∆0x
2. Then we have the identities

(E − k)B
(s)
k = (2s− k − 1)B

(s)
k−1 (177)

for all k ≥ 0 (with B
(s)
−1 := 0) and

B
(s)
2s−2 =

As
+ −As

−√
∆1

(178)

Since the definition (176), discovered only after considerable experimentation, is not very

enlightening, we give a few examples of the functions B
(s)
k and properties (177) and (178). From

B(s)(x) ≡ Rs−1 (mod x3) we see that the first three values of B
(s)
k are given by

B
(s)
0 = 1 , B

(s)
1 = 2(s− 1)u1 , B

(s)
2 = 2(s− 1)(s− 2)u2

1 + (s− 1)∆0 .

From this, using E(u1) = u1 + 1 and E(∆0) = 2∆0 + 2u1, we find

E(B
(s)
0 ) = E(1) = 0 ,

(E − 1)(B
(s)
1 ) = 2(s− 1)(E − 1)(u1) = (2s− 2)B

(s)
0 ,

(E − 2)(B
(s)
2 ) = 2(s− 1)(s− 2)(2u1) + (s− 1)(2u1) = (2s− 3)B

(s)
1 ,

verifying (177) for these three values, while for (178) we have

B0 = 1 =
A+ −A−√

∆1

, B
(2)
2 = ∆0 =

A2
+ −A2

−√
∆1

.

The proof that Proposition 5 implies Theorem 14 is almost immediate. Equation (177) and

induction on n give
(
E−2s+1+n

n

)
B

(s)
2s−2 = B

(s)
2s−2−n for all n ≥ 0. In particular,

(
E

2s−1

)
B

(s)
2s−2
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vanishes, and in view of (178) and (175) this proves the theorem. It remains to prove the
proposition.

Proof of (177): We have to show that

E(B(s)) = x
[
(1− x)

∂B(s)
∂x

+ (2s− 2)B(s)
]
.

Define Ẽ =
1

x
E − (1− x) ∂

∂x , which is still a derivation. Also set Z = σ3x
3(1− x), so that

B(s) = 1√
∆̃2

0 + 8Z

(∆̃0 +

√
∆̃2

0 + 8Z

2

)s

,

Then

Ẽ(Z) =
3Z

x
− (1− x)σ3(3x

2 − 4x3) = 4Z

Ẽ(∆̃0) = 2(u1 + 1) + 2(u1 +∆0)x− (1− x)(2u1 + 2∆0x) = 2∆̃0 ,

In other words, ∆̃0 and Z are of degree 2 and 4 with respect to the modified Euler operator Ẽ,

so Ẽ(B(s)) = 2(s− 1)B(s) as desired.
Proof of (178): Since ∆̃0 −

√
∆̃2

0 + 8Z = O(x3), we can replace B(s) by

B̃(s) =
1√

∆̃2
0 + 8Z

[(∆̃0 +

√
∆̃2

0 + 8Z

2

)s

+
(∆̃0 −

√
∆̃2

0 + 8Z

2

)s]

without changing the value of the coefficient of x2s−2. But B̃(s) is a polynomial, given explicitly
by

2s−1B̃(s) =
∑

0≤2j≤s−1

(
s

2j + 1

)
∆̃s−2j−1

0 (∆̃2
0 + 8Z)j

=
∑

0≤2j≤s−1

(
s

2j + 1

)
(∆0x

2 + · · · )s−2j−1((∆2
0 − 8σ3)x

4 + · · · )j

= x2s−2 (∆0 +
√
∆1)

s − (∆0 −
√
∆1)

s

2
√
∆1

+ · · · ,

where “· · · ” denotes lower order terms as x→∞. The result follows.

Remark. If we replace the expressions ∆0 = (1 − σ1/2)
2 − σ2 and ∆1 = ∆2

0 − 8σ3 by the
corresponding homogeneous forms

∆0(u, v) = (u− σ1v/2)
2 − σ2v

2 , ∆1(u, v) = ∆0(u, v)
2 − 8σ3uv

3

of degrees 2 and 4, respectively, in u and v, then ∆̃0 = ∆0(1−x, x), ∆̃2
0+8Z = ∆1(1−x, x), and

the strange-looking “modified Euler operator” Ẽ used in the proof above is simply the ordinary
Euler operator u ∂u + v ∂v with respect to the homogeneous variables u and v.
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D. Generating function with respect to s. Since we have shown that both y±s and Y ±
s

are independent of the choice of sign, we can write them simply as ys and Ys, respectively, and
to obtain (173) it will suffice to prove that Ys(0) = ys(0). We will not do this directly, but rather
by proving (for σ4 = 0) the equality of the two generating functions

Y(T ) = Y(σ1, σ2, σ3, σ4;T ) =
∞∑

s=1

Ys(σ1, σ2, σ3, σ4) T
s−1 , (179)

y(T ) = y(σ1, σ2, σ3, σ4;T ) =

∞∑

s=1

ys(σ1, σ2, σ3, σ4) T
s−1 (180)

with respect to the index s. This approach gives the additional dividend that the generating
function y(T ) turns out itself to be an algebraic function. This of course implies the algebraicity
of each of its Taylor coefficients ys, but it does not make superfluous the algebraic calculations
of the last two subsections because, rather surprisingly, the degree drops under differentiation
in T and specialization to T = 0 : the function y(T ) will turn out to be algebraic of degree 6
over Q(σ1, . . . , σ4, T ), whereas Theorem 13 says that each individual ys(T ) satisfies an algebraic
equation of degree only 4.

Equation (174) simplifies considerably when we substitute it into the generating series (179),
and we obtain:

Y(T ) =
∞∑

l=0

(−T/2)l
l!

∂l
3

[ ∞∑

m=0

∂2m+1
2

(2m+ 1)!

( ∑

n+r=m

(
m

n

)
(4σ4)

r(TA±)n√
∆1

)]

=
∞∑

m=0

∂2m+1
2

(2m+ 1)!

[ ∞∑

l=0

(−T/2)l
l!

∂l
3

(
(4σ4 + TA±)m√

∆1

)]

=

∞∑

m=0

∂2m+1
2

(2m+ 1)!

[
1√

∆1 + 4T

(
4σ4 + T

∆0 ±
√
∆1 + 4T

2

)m]
, (181)

where in the last line we have used the Taylor expansion and the fact that changing u3 to
u3 − T/2 leaves ∆0 unchanged but changes ∆1 to ∆1 + 4T .

This expression can be further simplified by using Lagrange’s theorem. Recall that this
theorem is an identity generalizing Taylor’s theorem which, in one of its forms, states that

∞∑

n=0

1

n!

dn

dxn

(
f(x) b(x)n

)
=

f(z)

1 − b′(x)

∣∣∣∣
z= x+b(z)

(182)

whenever the series makes sense (e.g., when everything is complex and absolutely convergent, or
when the variables are power series in x with b(x) = O(x2), or when b is a power series in some
other variable with positive valuation). The corresponding “odd Lagrange theorem,” obtained

by replacing b(x) and f(x) by ±
√
B(x) and F (x)/

√
B(x) and taking the difference of the two

equations obtained, says that

∞∑

m=0

1

(2m+ 1)!

d2m+1

dx2m+1

(
F (x)B(x)m

)
=

∑

±

F (z)

2(z − x) − B′(z)

∣∣∣∣
z= x±

√
B(z)

. (183)

Applying this (with x and z−x replaced by u2 and w) to (181), we find after a short calculation
that the two formulas (181) can be written in the form

Y(T ) =
T

P ′(w1)
+

T

P ′(w2)
= − T

P ′(w3)
− T

P ′(w4)
, (184)
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where w1 and w2 (resp. w3 and w4) are the solutions of

w1 =
√
4σ4 + TA+(u1, u2 + w1, u3 − T/2) , w2 = −

√
4σ4 + TA+(u1, u2 + w2, u3 − T/2)

(resp. of the corresponding equations with A+ replaced by A−) and where

P (w) = (w2 − 4σ4 − T∆0(u1, u2 + w, u3 − T/2)/2)2 − T 2∆1(u1, u2 + w, u3 − T/2)/4

= w4 + Tw3 − (8σ4 +∆0T )w
2

− (4σ4T − 2u1T
2)w + (16σ2

4 + 4∆0σ4T + 2σ3T
2 − T 3) (185)

is the monic quartic polynomial having w1, . . . , w4 as its roots. The equality of the two expres-
sions in (184), which appeared there because we had shown computationally that Y +

s = Y −
s for

each s, now has a much more natural proof via the residue theorem, since

4∑

i=1

1

P ′(wi)
=

∑

α∈P1(C)

Resw=α

( dw

P (w)

)
= 0 . (186)

We now turn to the second generating function (180), which we will evaluate by using the odd
Lagrange theorem again in combination with the formula (175). To achieve this, we introduce
a “dummy” variable of homogeneity x by setting σp = Apx

P (1 ≤ p ≤ 4), so that

∆0 = (1−A1x/2)
2 − A2x

2 , ∆1 = ∆2
0 − 8A3x

3 , A± = (∆0 ±
√
∆1)/2

become functions of x and the Euler operator E becomes simply x d/dx . Then (175) gives

y(0, T ) =

∞∑

s=1

T s−1

(2σ3)s

(
E

2s− 1

)
As

±√
∆1

=
1

2A3x2

∞∑

m=0

(T/2A3x)
m

(2m+ 1)!

d2m+1

dx2m+1

(Am+1
±√
∆1

)
,

and applying (183) we find

y(0, T ) =
2∑

i=1

A+(zi)/
√
∆1(zi)

2(zi − x) − A′
+(zi)

= −
4∑

i=3

A−(zi)/
√
∆1(zi)

2(zi − x) − A′
−(zi)

(187)

where z1 and z2 (resp. z3 and z4) are the solutions of the equations

z1 = x+

√
TA+(z1)

2A3x
, z2 = x−

√
TA+(z2)

2A3x
(188)

(resp. of the same equations with A+ replaced by A−). Now substituting back Ap = σp/x
p into

the equations (188), we find that they are homogeneous (of degree 1) in z and x, so that only
the ratio z/x matters, and making the change of variables w = Tz/(z−X) we find that the four
numbers zi correspond exactly to the four numbers wi defined above and that the right-hand
side of (187) coincides exactly with that of (184) with σ4 specialized to 0. This finally completes
the proof of (173) and hence of Theorem 13,

We end by formulating a theorem describing the algebraic nature of the generating function(s)
we have just computed.
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Theorem 15. The square of the function y(σ1, . . . , σ4;T ) defined in (180) is algebraic of de-
gree 3 over Q(σ1, . . . , σ4, T ).

Proof. This follows almost immediately from (184). Let N = K(w1, . . . , w4) denote the splitting
field of the polynomial P (w) defined in (185) over the field K = Q(σ1, . . . , σ4, T ). The fact that
the trace of hi := T/P ′(wi) vanishes implies that the set {(h1 + h2)

2, (h1 + h3)
2, (h1 + h4)

2} is
invariant under the Galois group of N over K, so the polynomial Q(t) =

∏4
i=2(t − (h1 + hi)

2)
has coefficients in K, and equation (184) says that Y2 is a root of this polynomial. �

We can get an explicit expression for Q(t) using Ferrari’s formula. If w is a root of the
polynomial P (w) defined in (185), then h = T/P ′(w) belongs to the field generated by w and
hence also satisfies a fourth degree equation. This equation has a vanishing cubic term because
of eq. (186), and by direct computation we find that it is given explicitly by

a4h
4 + 0h3 + a2h

2 + a1h + 1 = 0 ,

where

a1 = T (T − 4u2) ,

a2 = 6(u1 − 1)T 3 +
(
72u2

1 + 4∆0(7u1 − 4) + 1
2∆

2
0 − 3

2∆1 − 12σ4

)
T 2

− 4
(
∆0∆1 + 4(8 + 4u1 + 3∆0)σ4

)
T − 32σ4(∆1 + 4σ4) ,

a4 =
disc(P )

T 4
= −27T 6 + · · · + 256σ2

4

(
(∆1 + 4σ4)

2 − 16u2
2σ4

)
.

Ferrari’s formula tells us that the cubic polynomial having as its roots the three numbers

(h1 + h2)
2 = (h3 + h4)

2, (h1 + h3)
2 = (h2 + h4)

2, (h1 + h4)
2 = (h2 + h3)

2

is given by
Q(t) = a24 t

3 + 2a2a4 t
2 + (a22 − 4a4) t − a21 .

Then Q(y2) = 0 is the sextic equation satisfied by our generating function y = y(σ1, . . . , σ4, T ).

E. Odd values of d. As already mentioned in A. above, for odd values of d we were not able
to find any closed formula for the function G(4), either as an algebraic function or an integral
of an algebraic function or as the solution of a linear differential equation with polynomial
coefficients. On the other hand, in another respect these functions were actually better behaved
than they were for even d. Namely, unlike the case of even d, where the coefficients of the power
series for d > 4 had infinitely many prime numbers occurring in their denominators and where
each successive value of d required more differentiation of G(4) in order to achieve integrality,
here the power series are apparently always integral after rescaling x by a fixed factor. For
instance, for d = 5 the same specialization G(4)(0, 0, 0, x/4) as we used in §10.A has a Taylor
series beginning

y = 1 +
155

16
x +

194985

1024
x2 +

74509435

16384
x3 +

499522579465

4194304
x4 + · · · , (189)

and within the limits of our calculation belongs to Z[[x/64]]. Moreover, this integrality holds
not only for this particular specialization, but (experimentally) for the full generating series
G(4)(σ1, σ2, σ3, σ4; d = 5), which begins

1+
3σ1

2
+
3σ2

1 + 3σ2

2
+
5σ3

1 + 15σ1σ2 + 20σ3

4
+

15σ4
1 + 90σ2

1σ2 + 280σ1σ3 + 30σ2
2 + 620σ4

16
+ · · · .
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and in which the coefficient of degree k (up to k = 194, the limit of our computation) is always
2−k times a polynomial in the σp with integral coefficients. (The specialized series (189) has
an even stronger integrality property: up to a power of 2, the coefficient of xm, corresponding
to degree 4m, seems always to be divisible by 4m+ 1. The corresponding property for the full
series, which would say that the terms of total degree k are divisible by k+1, is not always true.
However, we do find that all the terms of total degree p− 1 or p− 2 are divisible by p if p is an
odd prime number, as one can see in the case p = 5 in the expansion given above.) Similarly,
for d = 7, 9, 11 and 13 we find that the terms of degree k in G(4)(σ1, σ2, σ3, σ4; d) are integral
after multiplication by 2kDd in the range tested, where D7 = 1, D9 = 3, D11 = 5 and D13 = 35.
Based on these experimental results, we formulate:

Conjecture. After rescaling σp 7→ 2pσp (1 ≤ p ≤ 4), the generating series G(4)(σ1, σ2, σ3, σ4; d)
has a bounded denominator for every odd value of d ≥ 5.

In view of this conjecture, we can wonder whether the generating series for odd d are perhaps
algebraic after all, even though we were not able to recognize even the special case (189) as
an algebraic function. The following argument strongly suggests that they are not algebraic,
and furthermore that—unlike what we saw in the case of even d—this remains true even after
taking their images under any polynomial in the Euler operator. (This is a little surprising since

the polynomial in E that we needed for d even, namely
(
E+3s
2s−1

)
, makes sense also for d ≥ 5

odd, since 2s− 1 is then still a non-negative integer.) Denote by an the coefficient of xn in the
power series (189). Since both of the special functions (149) and (150), corresponding to G(4)

and its derivative under E + 3 for d = 4 and d = 6, respectively, had singularities at the root
x = (1+

√
2)−4 of 1− 34x+x2 = 0, we expect these coefficients to grow asymptotically like Cn,

where C = (1 +
√
2)4 = 17 + 12

√
2. In fact, applying the numerical extrapolation method that

is described in [17] and in §5.1 of [6], we find the conjectural asymptotic expansion

an
?∼ ACn

n

(
1 − b1

n
+

b2
n2
− · · ·

)
(190)

with coefficients A, b1, b2, . . . given numerically to high precision by

A ≈ 0.3900174223865606939417147 ,

b1 ≈ 0.35826456543968 , b2 ≈ 0.1163559071350 , . . . .

We can recognize these numbers as

A
?
=

(1 +
√
2)2

29/4 π
, (191)

and

b1
?
= 5

6−
√
2

26
, b2

?
= 5

183− 62
√
2

212
,

b3
?
= 5

5802− 2773
√
2

218
, b4

?
= 5

389055− 211804
√
2

225
,

b5
?
= 5

13542450− 7562711
√
2

231
, b6

?
= 5

469116531− 283263874
√
2

237
,

where we can assert with a very high degree of confidence that these numerically guessed values
are in fact correct. (In the case of A, for example, which is the most important value, the
extrapolation method was first applied using only half of the known coefficients an to give a
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15-digit prediction; this was then recognized as the number given in (191); and then a new
calculation using all of the known coefficients gave a 25-digit value for A whose first 24 digits
agreed with the prediction.) Formula (190) says that the function y has a logarithmic singularity
at x = C−1, which is incompatible with its being an algebraic function but would not preclude
its being the integral of an algebraic function, but (190) and (191) together, if they are true,
imply that P (E) y cannot be algebraic for any polyomial P (E) in the Euler operator E with
integral coefficients, since the leading coefficient in the Laurent expansion of this function around
x = 1/C would equal π times an algebraic number, and a function that is algebraic over C(x)
and belongs to Q[[x]] has to be algebraic over Q(x) and hence must have algebraic Laurent
coefficients in its expansion at any algebraic point.

F. Final remarks. We do not know how to generalize to higher values of n the results that
we found in this section for n = 4. In particular, it is hard to see how to generalize the change of
variables (155) from n = 3 to larger n, and even harder to see how the change of variables (155)
and (159) can be generalized from n = 4 to larger n. However, we did find a change of variables
that makes the differential operators Mn simpler for all n, and that seems worth mentioning.
Define new variables τp (p = 1, 2, . . . ) by the generating function equality

√
1 + σ1x+ σ2x2 + σ3x3 + · · · = 1 + τ1x+ τ2x

2 + τ3x
3 + · · · ,

so that the first τp are given by

τ1 =
1

2
σ1 ,

τ2 =
1

2
σ2 −

1

8
σ2
1 ,

τ3 =
1

2
σ3 −

1

4
σ1σ2 +

1

16
σ3
1 ,

τ4 =
1

2
σ4 −

1

4
σ1σ3 −

1

8
σ2
2 +

3

16
σ2
1σ2 −

5

128
σ4
1 .

Then an easy calculation shows that

Mn = 4
∑

i+j=n

∂2

∂τi∂τj
, (192)

which is simpler than the original definition (113) in two respects:

• there are only O(n) rather than O(n2) terms, and
• the terms belong to the commutative algebra Q(∂/∂τp)p≥1 rather than to the non-
commutative algebra Q(σp, ∂/∂σp)p≥1.

Unfortunately, we have not been able to see how to use these new variables to make any of the
generating function calculations simpler.
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Tables of higher spherical polynomials

Table 1. Spherical polynomials for n = 3

We give a table of the polynomials Pννν,d(T ) for all ννν = (ν1, ν2, ν3) with |ννν| ≤ 5, extending
the one given in the special case d = 4 after Proposition 1 of §8. As there, we give only one
representative for each S3-orbit of indices ννν. As usual, we write s for (d− 4)/2 and (x)r for the
ascending Pochhammer symbol x(x+ 1) · · · (x+ r − 1).

|ννν| = 0 :

P000 = 1

|ννν| = 1 :

P100 = (s+ 1) r1

|ννν| = 2 :

P200 =
(s+ 1)2

2
r21 − (s+ 1)m2m3

P110 = (s+ 1)2 r1r2 − (s+ 1)m3r3

|ννν| = 3 :

P300 =
(s+ 1)3

6
r31 − (s+ 1)2 m2m3r1

P210 =
(s+ 1)3

2
r21r2 − (s+ 1)2 m3(r1r3 +m2r2)

P111 = (s+ 2)3 r1r2r3 − (s+ 2)2
(
m1r

2
1 +m2r

2
2 +m3r

2
3

)
+ 4(s+ 2)m1m2m3

|ννν| = 4 :

P400 =
(s+ 1)4

24
r41 −

(s+ 1)3
2

m2m3r
2
1 +

(s+ 1)2
2

m2
2m

2
3

P310 =
(s+ 1)4

6
r31r2 −

(s+ 1)3
2

m3r1(r1r3 + 2m2r2) + (s+ 1)2 m2m
2
3r3

P220 =
(s+ 1)4

4
r21r

2
2 −

(s+ 1)3
2

m3(2r1r2r3 +m1r
2
1 +m2r

2
2)

+
(s+ 1)2

2
m2

3(r
2
3 + 2m1m2)

P211 =
(s+ 2)2(s+ 3)2

2
r21r2r3 −

(s+ 2)(s+ 3)2

2
m1r

3
1

− (s+ 2)2(s+ 3) r1(m2r
2
2 +m3r

2
3) − (s+ 1)(s+ 2)2 m2m3r2r3

+ (s+ 2)(5s+ 13)m1m2m3r1

|ννν| = 5 :

P500 =
(s+ 1)5
120

r51 −
(s+ 1)4

6
m2m3r

3
1 +

(s+ 1)3
2

m2
2m

2
3r1
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P410 =
(s+ 1)5

24
r41r2 −

(s+ 1)4
6

m3r
2
1(r1r3 + 3m2r2) +

(s+ 1)3
2

m2m
2
3(2r1r3 +m2r2)

P320 =
(s+ 1)5

12
r31r

2
2 −

(s+ 1)4
6

m3r1(3r1r2r3 +m1r
2
1 + 3m2r

2
2)

+
(s+ 1)3

2
m2

3 (r1r
2
3 + 2m2r2r3 + 2m1m2r1)

P311 =
(s+ 2)3

6

(
(s+ 2)(s+ 4) r31r2r3 − (s+ 4)m1r

4
1 − 3(s+ 2) r21(m2r

2
2 +m3r

2
3)
)

− (s+ 2)2

(
(s+ 2)2 m2m3r1r2r3 − (3s+ 10)m1m2m3r

2
1

− (s+ 2)m2m3(m2r
2
2 +m3r

2
3) + 4m1m

2
2m

2
3

)

P221 =
(s+ 2)(s+ 3)2

2

( (s+ 3)(s+ 4)

2
r21r

2
2r3 − (s+ 4) r1r2(m1r

2
1 +m2r

2
2)

− 2(s+ 3)m3r1r2r
2
3 − sm3r3(m1r

2
1 +m2r

2
2) + m2

3r
3
3

+ 12m1m2m3r1r2

)
+ (s+ 2)(s+ 3)(s− 3)m1m2m

2
3r3

|ννν| = 6 :

P600 =
(s+ 1)6
720

r61 −
(s+ 1)5

24
m2m3r

4
1 +

(s+ 1)4
4

m2
2m

2
3r

2
1 −

(s+ 1)3
6

m3
2m

3
3

P510 =
(s+ 1)6
120

r51r2 −
(s+ 1)5

24
m3r

3
1(r1r3 + 4m2r2) +

(s+ 1)4
2

m2m
2
3r1(r1r3 +m2r2)

− (s+ 1)3
2

m2
2m

3
3r3

P420 =
(s+ 1)6

48
r41r

2
2 −

(s+ 1)5
24

m3r
2
1(4r1r2r3 +m1r

2
1 + 6m2r

2
2)

+
(s+ 1)4

4
m2

3 (r
2
1r

2
3 + 4m2r1r2r3 + 2m1m2r

2
1 +m2

2r
2
2)

− (s+ 1)3
2

m2m
3
3(m1m2 + r23)

P411 =
(s+ 2)4

24

(
(s+ 2)(s+ 5) r41r2r3 − (s+ 5)m1r

5
1 − 4(s+ 2) r31(m2r

2
2 +m3r

2
3)
)

− (s+ 2)3
6

(
3(s+ 2)2 m2m3r

2
1r2r3 − (7s+ 29)m1m2m3r

3
1

− 6(s+ 2)m2m3r1(m2r
2
2 +m3r

2
3)
)

+
(s+ 1)3(s+ 2)

2
m2

2m
2
3r2r3 −

3(s+ 2)2(3s+ 11)

2
m1m

2
2m

2
3r1

P330 =
(s+ 1)6

36
r31r

3
2 −

(s+ 1)5
12

m3r1r2(3r1r2r3 + 2m1r
2
1 + 2m2r

2
2)

+
(s+ 1)4

2
m2

3(r1r2r
2
3 +m1r

2
1r3 +m2r

2
2r3 + 2m1m2r1r2)

− (s+ 1)3
6

m3
3r3(6m1m2 + r23)
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P321 =
(s+ 2)4(s+ 3)2

12
r31r

2
2r3

− (s+ 2)3
12

r21r2

(
6(s+ 3)2m3r

2
3 + 3(s+ 3)(s+ 5)m2r

2
2 + 2(s+ 4)2m1r

2
1

)

− (s+ 2)3
6

m3r1r3

(
(s− 1)(s+ 4)m1r

2
1 + 3(s+ 1)(s+ 3)m2r

2
2 − 3(s+ 3)m3r

2
3

)

+
(s+ 2)2

2
m2m3r2((s+ 4)(7s+ 25)m1r

2
1 + (s+ 3)2m2r

2
2 + (s+ 3)(2s+ 5)m3r

2
3)

+ (s+ 2)2(s
2 − 13)m1m2m

2
3r1r3 − (s+ 2)2(5s+ 17)m1m

2
2m

2
3r2

P222 =
(s+ 3)32

8
r21r

2
2r

2
3 −

(s+ 3)3(s+ 4)2

2
r1r2r3(m1r

2
1 +m2r

2
2 +m3r

2
3)

− (s− 2)(s+ 3)3(s+ 4)

4
(m1m2r

2
1r

2
2 +m2m3r

2
2r

2
3 +m1m3r

2
1r

2
3)

+
(s+ 3)2(s+ 4)2

4
(m2

1r
4
1 +m2

2r
4
2 +m2

3r
4
3) + (s+ 3)3(7s+ 22)m1m2m3r1r2r3

+
(s+ 3)(s2 − 5s− 30)

2
m1m2m3

(
(s+ 3)(m1r

2
1 +m2r

2
2 +m3r

2
3)− 2m1m2m3

)

Table 2. Spherical polynomials and Gram matrices for n = 4 and n = 5

n=4 .

First we repeat the example at the end of section 5. For multidegree a = (1 1 1 1), we have

k
(
= 1

2

∑4
i=1 ai)

)
= 2 and dimPa(d) = 3. For

A =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , B =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , C =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ∈ N0(a),

the monomial basis is given by PM
A = t12t34, P

M
B = t13t24, P

M
C = t14t23. The Gram matrix

((PD
ννν , PD

µµµ ))ννν,µµµ∈N0(a) also tells us the coefficients of the expansion of PD
ννν in terms of the monomial

basis PM
µµµ , e.g. we have

d(d− 1)(d+ 2)PD
A = (d+ 1)PM

A − PM
B − PM

C .

If we encode the multi-indices ννν of the descending basis by the corresponding monomials
xννν =

∏
i<j x

νij

ij , then this formula can be expressed in a visually clearer form by presenting

the coefficients of the polynomial d(d− 1)(d+ 2)PD
A in the form of a table

t12t34 t13t24 t14t23

x12x34 d+ 1 −1 −1
x13x24 −1 d+ 1 −1
x14x23 −1 −1 d+ 1
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and this is the form in which we will present the data for higher multi-indices.

For any polynomial P (T ) = P ((tij)) ∈ C[Sn] and a permutation σ on n letters, we write
Pσ(T ) = P ((tσ(i),σ(j))). If P (T ) ∈ Pa(d), then we have Pσ ∈ Pσa(d) where σa = (aσ(i)). It
is obvious that (Pσ, Qσ)d = (P,Q)d. So if σa = a, then σ permutes the monomial basis, and

also the descending basis. In the above example, we have PM
B = P

(23)
A and PC = P

(24)
A , so the

symmetry of the table is quite obvious.

a = (1 1 1 3), k = 3, dimPa(d) = 1 .

Here, since the dimension is 1 we have to give only one monomial basis element PM
ννν . It is

t14t24t34 −
t44

d+ 2
(t12t34 + t13t24 + t14t23) ,

where we do not need to specify the index ννν because the leading term (the only one that survives
if we set all tii equal to 0) tells us us what it is. In this case the corresponding descending basis
element PD

ννν is simply 1/(d−1)d(d+4) times the monomial basis element, which we can express
(rather unnecessarily, in this case) in our new tabular form by saying that the polynomial
(d− 1)d(d+ 4)PD

ννν is given by the table

t14t24t34

x14x24x34 1

From now on we list only the monomial basis polynomials (writing simply Pi, 1 ≤ i ≤ dim,
rather than PM

ννν , since ννν can be read off from the leading term, and including symmetries
as explained above), the common factor F by which the descending basis elements must be
multiplied in order to make all coefficients in their representation with respect to the monomial
basis polynomials with integral coefficients, and then a table of these coefficients.

a = (1 1 2 2), k = 3, dimPa(d) = 3 .

P1 = t12t
2
34 −

1

d
t12t33t44

P2 = t13t24t34 −
1

d
(t14t24t33 + t13t23t44) +

1

d2
t12t33t44

P3 = (P2)
(34) = t14t23t34 −

1

d
(t14t24t33 + t13t23t44) +

1

d2
t12t33t44

F = 2(d− 2)(d− 1)d(d+ 2)(d+ 4)

t12t
2
34 t13t24t34 t14t23t34

x12x
2
34 d2 + 2d− 4 −2d −2d

x13x24x34 −2d 2(d2 + d− 4) −2d+ 8

x14x23x34 −2d −2d+ 8 2(d2 + d− 4)

a = (1 1 2 4): k = 4, dimPa(d) = 1.

P1 = t14t24t
2
34 −

t44
d+ 4

(t14t24t33 + 2t14t23t34 + 2t13t24t34 + t12t
2
34)

+
t244

(d+ 2)(d+ 4)
(2t13t23 + t12t33)

F = 2(d− 1)d(d+ 1)(d+ 6) and PD = F−1PM = F−1P1
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a = (1 1 3 3), k = 4, dimPa(d) = 3.

P1 = t12t
3
34 −

3

d+ 2
t12t34t33t44

P2 = t13t24t
2
34 −

2

d+ 2
(t13t23t34t44 + t14t24t33t34)

− 1

(d+ 2)2

(
d t13t24t33t44 − 2 t12t33t34t44 − 2 t14t23t33t44)

P3 = (P2)
(34) = t14t23t

2
34 −

2

d+ 2
(t14t24t33t34 + t13t23t34t44)

− 1

(d+ 2)2

(
d t14t23t33t44 − 2 t12t33t34t44 − 2 t13t24t33t44

)

F = 6(d− 2)(d− 1)d(d+ 1)(d+ 4)(d+ 6)

t12t
3
34 t13t24t

2
34 t14t23t

2
34

x12x
3
34 d2 + 5d− 2 −3(d+ 2) −3(d+ 2)

x13x24x
2
34 −3(d+ 2) 3(d2 + 3d− 6) −3(d− 6)

x14x23x
2
34 −3(d+ 2) −3(d− 6) 3(d2 + 3d− 6)

a = (1 2 2 3), k = 4, dimPa(d) = 3.

P1 = t12t24t
2
34 −

1

d
t14t22t

2
34

+
t44

d(d+ 2)

(
t14t22t33 + 2 t13t22t34 − d t12(t24t33 + 2 t23t34)

)

P2 = P
(23)
1 = t13t

2
24t34 −

1

d
t14t

2
24t33

+
t44

d(d+ 2)

(
t14t22t33 + 2 t12t24t33 − d t13(t22t34 + 2 t23t24)

)

P3 = t14t23t24t34 −
1

d
(t14t

2
24t33 + t14t22t

2
34)

− t44
d(d+ 2)

(
d t23(t14t23 + t13t24 + t12t34)− 2 (t14t22t33 + t12t24t33 + t13t22t34)

)

F = 2(d− 2)(d− 1)d(d+ 1)(d+ 4)(d+ 6)

t12t24t
2
34 t13t

2
24t34 t14t23t24t34

x12x24x
2
34 d2 + 4d− 4 −2(d+ 2) −2(d− 2)

x13x
2
24x34 −2(d+ 2) d2 + 4d− 4 −2(d− 2)

x14x23x24x34 −2(d− 2) −2(d− 2) 2(d2 + 3d− 2)
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a = (2 2 2 2), k = 4, dimPa(d) = 6.

P1 = t212t
2
34 −

1

d
(t212t33t44 + t11t22t

2
34) +

1

d2
t11t22t33t44 =

1

d2
(dt212 − t11t22)(dt

2
34 − t33t44)

P2 = (P1)
(23) = t213t

2
24 −

1

d
(t213t22t44 + t224t11t33) +

1

d2
t11t22t33t44

P3 = (P1)
(24) = t214t

2
23 −

1

d
(t214t22t33 + t223t11t44) +

1

d2
t11t22t33t44

P4 = t13t14t23t24 −
1

d

(
t13t14t22t34 + t12t14t24t33 + t11t23t24t34 + t12t13t23t44)

+
1

d2

(
t214t22t33 + t11t

2
24t33 + t11t22t

2
34 + t213t22t44 + t11t

2
23t44 + t212t33t44

)
− 3

d3
t11t22t33t44

P5 = (P4)
(23) = t12t14t23t34 −

1

d

(
t13t14t22t34 + t12t14t24t33 + t11t23t24t34 + t12t13t23t44

)

+
1

d2

(
t214t22t33 + t11t

2
24t33 + t11t22t

2
34 + t213t22t44 + t11t

2
23t44 + t212t33t44

)
− 3

d3
t11t22t33t44

P6 = (P4)
(24) = t12t13t24t34 −

1

d

(
t13t14t22t34 + t12t14t24t33 + t11t23t24t34 + t12t13t23t44

)

+
1

d2

(
t214t22t33 + t11t

2
24t33 + t11t22t

2
34 + t213t22t44 + t11t

2
23t44 + t212t33t44

)
− 3

d3
t11t22t33t44

F = 4(d− 3)(d− 2)(d− 1)d(d+ 1)(d+ 2)(d+ 4)(d+ 6)

t212t
2
34 t213t

2
24 t214t

2
23

x2
12x

2
34 d4 + 5d3 − 10d2 − 36d+ 24 2(d2 + 12) 2(d2 + 12)

x2
13x

2
24 2(d2 + 12) d4 + 5d3 − 10d2 − 36d+ 24 2(d2 + 12)

x2
14x

2
23 2(d2 + 12) 2(d2 + 12) d4 + 5d3 − 10d2 − 36d+ 24

x13x14x23x24 4(d− 10)d −4(d− 2)d(d+ 4) −4(d− 2)d(d+ 4)

x12x14x23x34 −4(d− 2)d(d+ 4) 4(d− 10)d −4(d− 2)d(d+ 4)

x12x13x24x34 −4(d− 2)d(d+ 4) −4(d− 2)d(d+ 4) 4(d− 10)d

t13t14t23t24 t12t14t23t34 t12t13t24t34

x2
12x

2
34 4(d− 10)d −4(d− 2)d(d+ 4) −4(d− 2)d(d+ 4)

x2
13x

2
24 −4(d− 2)d(d+ 4) 4(d− 10)d −4(d− 2)d(d+ 4)

x2
14x

2
23 −4(d− 2)d(d+ 4) −4(d− 2)d(d+ 4) 4(d− 10)d

x13x14x23x24 4(d− 2)2(d+ 3)(d+ 4) −4(d3 − 7d2 − 10d+ 24) −4(d3 − 7d2 − 10d+ 24)

x12x14x23x34 −4(d3 − 7d2 − 10d+ 24) 4(d− 2)2(d+ 3)(d+ 4) −4(d3 − 7d2 − 10d+ 24)

x12x13x24x34 −4(d3 − 7d2 − 10d+ 24) −4(d3 − 7d2 − 10d+ 24) 4(d− 2)2(d+ 3)(d+ 4)
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n=5 .

a = (1 1 1 1 2). dimPa(d) = 6.

In this case the symmetry group acts transitively on the monomial basis.

P1 = t12t35t45 −
1

d
t12t34t55

P2 = (P1)
(23) = t13t25t45 −

1

d
t13t24t55

P3 = (P1)
(24) = t14t25t35 −

1

d
t14t23t55

P4 = (P1)
(13) = t15t23t45 −

1

d
t14t23t55

P5 = (P1)
(14) = t15t24t35 −

1

d
t13t24t55

P6 = (P1)
(13)(24) = t15t25t34 −

1

d
t12t34t55

F = (d− 2)(d− 1)d(d+ 2)(d+ 4)

t12t35t45 t13t25t45 t14t25t35 t15t23t45 t15t24t35 t15t25t34

x12x35x45 d2 + 2d− 4 −d −d −d −d 4

x13x25x45 −d d2 + 2d− 4 −d −d 4 −d
x14x25x35 −d −d d2 + 2d− 4 4 −d −d
x15x23x45 −d −d 4 d2 + 2d− 4 −d −d
x15x24x35 −d 4 −d −d d2 + 2d− 4 −d
x15x25x34 4 −d −d −d −d d2 + 2d− 4

a = (1 1 1 1 4), dimPa(d) = 1.

P1 = t15t25t35t45 −
t55

d+ 4

(
t12t35t45 + t13t25t45 + t14t25t35 + t15(t25t34 + t24t35 + t23t45)

)

+
t255

(d+ 2)(d+ 4)
(t12t34 + t13t24 + t14t23)

F = (d− 1)d(d+ 1)(d+ 6) and PD = F−1PM = F−1P1
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a = (1 1 1 2 3), dimPa(d) = 6.

Here the monomial basis is given by P1, P
(23)
1 , P

(123)
1 , P2, P

(12)
2 and P

(13)
2 , where

P1 = t12t35t
2
45 −

1

d+ 2
t12t55(t35t44 + 2 t34t45)

P2 = t14t25t35t45 −
1

d
t15t25t35t44

+
1

d(d+ 2)
t55

(
t44(t15t23 + t13t25 + t12t35) − d t14(t23t45 + t24t35 + t25t34)

)

In this case we have

F = 2(d− 2)(d− 1)d(d+ 1)(d+ 4)(d+ 6)

and the product of F with the Gram matrix of the descending basis (ordered as above) is

t12t35t
2
45 t13t25t

2
45 t15t23t

2
45

x12x35x
2
45 d2 + 5d− 2 −(d+ 2) −(d+ 2)

x13x25x
2
45 −(d+ 2) d2 + 5d− 2 −(d+ 2)

x15x23x
2
45 −(d+ 2) −(d+ 2) d2 + 5d− 2

x14x25x35x45 −2(d+ 2) −2(d+ 2) 8

x15x24x35x45 −2(d+ 2) 8 −2(d+ 2)

x15x25x34x45 8 −2(d+ 2) −2(d+ 2)

t14t25t35t45 t15t24t35t45 t15t25t34t45

x12x35x
2
45 −2(d+ 2) −2(d+ 2) 8

x13x25x
2
45 −2(d+ 2) 8 −2(d+ 2)

x15x23x
2
45 8 −2(d+ 2) −2(d+ 2)

x14x25x35x45 2(d2 + 4d− 4) −2(d− 2) −2(d− 2)

x15x24x35x45 −2(d− 2) 2(d2 + 4d− 4) −2(d− 2)

x15x25x34x45 −2(d− 2) −2(d− 2) 2(d2 + 4d− 4)
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a = (1 1 2 2 2), dimPa(d) = 10.

The monomial basis is P1, P2, P
(34)
2 , P

(35)
2 , P3, P

(45)
3 , P

(34)
3 , P

(345)
3 , P

(354)
3 , P

(35)
3 , with

P1 = t12t34t35t45 −
t12
d
(t235t44 + t33t

2
45 + t234t55) +

2

d2
t12t33t44t55,

P2 = t13t23t
2
45 −

1

d
(t13t23t44t55 + t12t33t

2
45) +

1

d2
t12t33t44t55

=
1

d2
(d t13t23 − t12t33)(d t

2
45 − t44t55),

P3 = t13t24t35t45 −
1

d
(t13t25t35t44 + t13t24t34t55 + t15t24t33t45)

+
1

d2
(t13t23t44t55 + t14t24t33t55 + t15t25t33t44)−

1

d3
t12t33t44t55

F = 2(d− 3)(d− 2)(d− 1)d(d+ 1)(d+ 2)(d+ 4)(d+ 6)

In this case, the Gram matrix of the descending basis, multiplied by F , is a 10× 10 matrix with
rather complicated entries (for instance, its first two diagonal entries are 2(d−2)(d3+6d2+3d−6)
and d4 + 5d3 − 10d2 − 36d + 24), so we do not write it out. However, the Gram matrix of the
monomial basis in this case is somewhat simpler, and has polynomial coefficients after being
multiplied by F ∗ = d2/(d− 1)(d+ 2). We give a part of this matrix, namely, the set of values
F ∗(Pi, P

M
µµµ ) for 1 ≤ i ≤ 3 and all ten µµµ (ordered as above), in the following table. The remaining

70 values, of course, follow from the symmetry.

t12t34t35t45 t13t23t
2
45 t14t24t

2
35 t15t25t

2
34

P1 (d− 2)d2(d+ 4) 0 0 0

P2 0 2(d− 1)d2(d+ 2) 4d2 4d2

P3 (d− 2)d(d+ 4) 2(d− 1)d(d+ 2) 2(d− 1)d(d+ 2) 2(d− 2)d

t13t24t35t45 t13t25t34t45 t14t23t35t45

P1 (d− 2)d(d+ 4) (d− 2)d(d+ 4) (d− 2)d(d+ 4)

P2 2(d− 1)d(d+ 2) 2(d− 1)d(d+ 2) 2(d− 1)d(d+ 2)

P3 (d− 1)2(d+ 2)2 (d− 2)(d− 1)(d+ 2) d3 + 3d2 − 4d+ 4

t14t25t34t35 t15t23t34t45 t15t24t34t35

P1 (d− 2)d(d+ 4) (d− 2)d(d+ 4) (d− 2)d(d+ 4)

P2 2(d− 2)d 2(d− 1)d(d+ 2) 2(d− 2)d

P3 (d− 2)2 (d− 2)2 (d− 2)(d− 1)(d+ 2)

91



Table 3. Determinants of Gram matrices

In §9.C.8. we explained that the determinant GDM
a
(d) of the Gram matrix for the monomial

basis has the form C
∏

m≥1−n(d + m)e(m) for some C ∈ Q× and e(m) ∈ Z. We give a table

of the exponents e(m) and of the constant C for n = 4 and all tuples a with k ≤ 8 (written
as (a1 a2 a3 a4) with 1 ≤ a1 ≤ a2 ≤ a3 ≤ a4, and also a4 ≤ a1 + a2 + a3 since otherwise the
dimension N0(a) is 0), and then a shorter table for n = 5 and all tuples a with k ≤ 6. The
tabulated values of m are consecutive to the left of the vertical line and even to its right.

n=4 .

k=2, 3, 4, 5 .

k dimPa(d) a C −3 −2 −1 0 1 2 4 6 8

2 3 (1111) 1 2 3 0 1

3 1 (1113) 1 1 1 0 0 1

3 (1122) 2 1 3 1 0 3 1

4 1 (1124) 2 1 1 1 0 0 1

3 (1133) 23 · 3 1 3 3 2 −1 3 1

(1223) 22 2 3 1 2 0 3 1

6 (2222) 26 1 3 6 1 3 6 3 1

5 1 (1135) 2 · 3 1 1 1 1 0 0 1

(1225) 22 1 1 1 1 0 0 1

3 (1144) 25 · 33 1 3 3 3 2 −1 3 1

(1234) 24 · 3 2 3 2 3 1 0 3 1

(1333) 23 3 3 3 3 −4 3 3 1

(2224) 23 3 3 0 3 2 0 3 1

6 (2233) 28 · 3 1 4 6 4 5 0 6 3 1

k=6 .

dim a C −3 −2 −1 0 1 2 3 4 6 8 10

1 (1146) 23 · 3 1 1 1 1 1 0 0 0 1

(1236) 22 · 3 1 1 1 1 1 0 0 0 1

(2226) 23 1 1 1 1 1 0 0 0 1

3 (1155) 29 · 33 · 5 1 3 3 3 3 2 0 −1 3 1

(1245) 26 · 33 2 3 2 3 3 2 −1 0 3 1

(1335) 26 · 32 2 3 3 3 1 2 0 0 3 1

(1344) 25 · 3 3 3 4 3 −1 2 −3 3 3 1

(2235) 25 · 3 3 3 1 3 2 2 0 0 3 1

6 (2244) 213 · 33 1 4 6 5 6 4 3 −3 6 3 1

(2334) 210 · 32 1 5 6 6 6 −1 3 0 6 3 1

10 (3333) 218 · 36 3 7 10 11 9 −4 4 10 6 3 1
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k=7 .

dim a C −3 −2 −1 0 1 2 3 4 6 8 10 12

1 ⋆ (see below) 1 1 1 1 1 1 0 0 0 1

3 (1166) 210 · 34 · 53 1 3 3 3 3 3 2 0 −1 3 1

(1256) 210 · 33 · 5 2 3 2 3 3 3 2 −1 0 3 1

(1346) 28 · 34 2 3 3 3 2 3 1 0 0 3 1

(1355) 27 · 33 3 3 4 3 0 3 1 −3 3 3 1

(1445) 27 · 32 3 3 5 3 1 3 −4 0 3 3 1

(2246) 27 · 33 3 3 1 3 3 3 1 0 0 3 1

(2336) 27 · 32 3 3 2 3 1 3 2 0 0 3 1

6 (2255) 217 · 36 · 5 1 4 6 5 6 6 5 2 −3 6 3 1

(2345) 215 · 34 1 5 6 7 6 2 5 0 0 6 3 1

(2444) 212 · 33 1 6 6 8 6 3 5 −9 6 6 3 1

(3335) 212 · 33 1 6 6 8 6 −3 5 3 0 6 3 1

10 (3344) 223 · 38 3 8 10 13 10 1 7 −2 10 6 3 1

Here ⋆ denotes the list {(1157), (1247), (1337), (2237)} of a with dimPa(d) = 1, the correspond-
ing C-values being 120, 48, 36 and 24.

k=8 .

dim a C −3 −2 −1 0 1 2 3 4 5 6 8 10 12 14

1 ⋆ (see below) 1 1 1 1 1 1 1 0 0 0 0 1

3 (1177) 212 · 36 · 53 · 7 1 3 3 3 3 3 3 2 0 0 −1 3 1

(1267) 211 · 34 · 53 2 3 2 3 3 3 3 2 0 −1 0 3 1

(1357) 212 · 34 · 5 2 3 3 3 2 3 3 2 −1 0 0 3 1

(1366) 211 · 33 · 5 3 3 4 3 0 3 3 2 −1 −3 3 3 1

(1447) 210 · 36 2 3 3 3 3 3 1 2 0 0 0 3 1

(1456) 29 · 34 3 3 5 3 2 3 −1 2 −3 0 3 3 1

(1555) 29 · 33 3 3 6 3 3 3 −3 2 −6 3 3 3 1

(2257) 211 · 33 · 5 3 3 1 3 3 3 3 2 −1 0 0 3 1

(2347) 29 · 34 3 3 2 3 2 3 2 2 0 0 0 3 1

(3337) 29 · 33 3 3 3 3 0 3 3 2 0 0 0 3 1

6 (2266) 224 · 37 · 53 1 4 6 5 6 6 6 5 3 −1 −3 6 3 1

(2356) 219 · 37 · 5 1 5 6 7 6 3 6 4 3 −3 0 6 3 1

(2446) 220 · 36 1 5 6 8 6 4 6 −1 3 0 0 6 3 1

(2455) 217 · 35 1 6 6 9 6 5 6 −4 3 −6 6 6 3 1

(3346) 217 · 35 1 6 6 9 6 −1 6 2 3 0 0 6 3 1

10 (3445) 228 · 310 3 9 10 15 10 5 9 −5 4 0 10 6 3 1

(3355) 231 · 311 · 5 3 8 10 14 10 4 9 4 4 −6 10 6 3 1

15 (4444) 248 · 318 6 12 16 21 15 10 12 −12 5 15 10 6 3 1

Here ⋆ denotes the list {(1168), (1258), (1348), (2248), (2338)} of a with dimPa(d) = 1, the
corresponding C-values being 720, 240, 144, 96 and 72.

93



n=5 .

k=3, 4, 5, 6 .

k dimPa(d) a C −4 −3 −2 −1 0 1 2 3 4 6 8 10

3 6 (11112) 1 2 6 3 0 6 0 1

4 1 (11114) 1 1 1 1 0 0 0 1

6 (11123) 23 3 6 5 3 0 0 6 1

10 (11222) 23 1 7 10 1 4 10 0 6 1

5 1 (11125) 2 1 1 1 1 0 0 0 1

6 (11134) 26 · 33 3 6 6 6 2 0 0 6 1

(11224) 26 4 6 4 6 3 0 0 6 1

10 (11233) 28 · 3 1 8 10 7 9 −2 0 10 6 1

15 (12223) 212 3 12 15 6 12 5 0 15 6 1

22 (22222) 210 1 6 22 22 −7 16 22 0 21 6 1

6 1 (11136) 2 · 3 1 1 1 1 1 0 0 0 1

1 (11226) 22 1 1 1 1 1 0 0 0 1

6 (11145) 212 · 36 3 6 6 6 6 3 −1 0 6 1

(11235) 29 · 33 4 6 5 6 5 3 0 0 6 1

(12225) 29 5 6 3 6 6 3 0 0 6 1

10 (11244) 214 · 36 1 8 10 8 10 8 4 −6 10 6 1

(11334) 213 · 32 1 9 10 12 10 −3 4 0 10 6 1

15 (12234) 219 · 33 3 13 15 11 15 6 5 0 15 6 1

21 (22224) 230 6 17 21 12 21 15 6 0 21 6 1

(12333) 227 · 33 6 18 21 21 20 −9 6 21 15 6 1

29 (22233) 231 · 3 1 10 28 29 15 28 −1 7 29 21 6 1

Final remark. In these tables, non-zero exponents e(m) occur only if 1 − n ≤ m ≤ k − 3 or
if k − 2 ≤ m ≤ 2k − 2 and m is even, the latter statement being highlighted by the vertical
lines that we have inserted. This suggests that the dimension of the space Pa(d) has its generic
value N0(a), and that both the generic monomial and descending basis elements give bases of
this space, in any of the following four cases:

• d 6∈ Z ,
• d ≥ n ,
• d ≤ −2k ,
• d ≤ 2− k and d odd.

This is in fact true, and follows by combining results given at various points of our paper,
namely Theorem 3 of §3 (which tells us that the inner product of monomials is polynomial
in d), Theorem 5 of §5 (which tells us how to get the monomial basis by iterating the “raising
operator”), Theorem 6 of §5 (giving the duality between the monomial and descending bases),
equation (117) in §9.A (which tells us how to get the generating function by repeated applications
of appropriate differential operators), and equation (134) of §9.C (which relates the generating
function basis to the descending basis). But there are still many mysteries, e.g., why the value
of e(2k − 2) should always be 1, as the tables suggest.
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List of Notations

We list the principal notations, omitting those that are used only locally, and including section
or equation numbers when this seems helpful.

Sn space of real symmetric n× n matrices, with coordinate T = (tij)
C[Sn], C[V ] space of polynomials on Sn or on any vector space V
βn map (Rd)n → Sn defined by (x1, . . . , xn) 7→ ( (xi, xj) ) or X 7→ XXt

β∗
n induced map P 7→ P̃ = P ◦ βn from C[Sn] to C[(Rd)n]
N set of symmetric n× n matrices ννν = (νij) with νij ∈ Z≥0, νii even

Tννν (ννν ∈ N ) monomial
∏

t
νij/2
ij in C[Sn]

∂ij (1 ≤ i, j ≤ n) partial derivative w.r.t. tij , multiplied by 2 if i = j
0, 1, 2 vectors consisting of n 0’s, resp. 1’s, resp. 2’s
N0 set of ννν ∈ N with νii = 0 for all i
N (a), N0(a) (a ∈ Zn

≥0) set of ννν in N , resp. N0, with ν · 1 = a

N(a), N0(a) (a ∈ Zn
≥0) cardinality of N (a), resp. N0(a)

C[Sn]a (a ∈ Zn
≥0) subspace of C[Sn] spanned by monomials Tννν with ννν ∈ N (a)

Di, Ei (1 ≤ i ≤ n) ith Laplace, resp. Euler differential operators on C[Sn] [ §1 ]
P(n)(d), Pa(d) (a ∈ Zn

≥0) subspace of C[Sn], resp. C[Sn]a, annihilated by all Di

S0n space of matrices T ∈ Sn with all tii equal to 0
Φ the generically bijective map P(n)(d) ⊂ C[Sn]→ C[S0n] ∼= CN0

Ξ(a) (a ∈ Zn
≥0) exceptional set 2Z ∩ ∪ni=1[4− 2ai, 2− ai] in Theorem 1 [ §2 ]

δ(T )m (m ∈ Zn
≥0) diagonal monomial

∏n
i=1 t

n
ii ∈ C[Sn]2m

PM
ννν = PM

ννν,d monomial basis of P(n)(d) [ §2 ]
H(Rd) space Ker(∆) of harmonic polynomials in C[Rd]
(x)n (x ∈ C, n ∈ Z≥0) increasing Pochhammer symbol x(x+ 1) · · · (x+ n− 1)

π(d), Π
(d)
a projection map C[Rd]→ H(Rd), resp. C[Sn]a → Pa(d) [ §2 ]

S1n space of matrices T ∈ Sn with all tii equal to 1
S+n , S1,+n space of positive definite matrices in Sn, resp. S1n
ERd , ESd−1 , E(Rd)n , E(Sd−1)n expectation value w.r.t. probability measures on these spaces [ §3 ]
( , )d, ( , )1d scalar products on C[Sn], resp. C[S1n] [ §3 ]
Ed, E

1
d the corresponding functionals ( , 1)d, ( , 1)1d

cn(d), c
1
n(d) normalizing constants in the definitions of the scalar products

εa(d), εa(d) normalizing factors relating the two scalar products [ eqs. (14), (18) ]
L+
n space of lower triangular n× n matrices with positive diagonal entries

E
L
d functional on C[Ln]

ev defined in (25)
Dij , Eij , Fij (1 ≤ i, j ≤ n) mixed Laplace and Euler operators and multiplication by tij [ §4 ]
g the Lie algebra spanned by all Dij , Eij , Fij [ §4 ]
Rij , Cij (1 ≤ i, j ≤ n) raising, resp. “mixed Casimir” operators on C[Sn] [ §5 ]
PD
ννν = PD

ννν,d descending basis of P(n)(d) (§5)
K the field Q(d), with d considered as a variable [ §5, §9 ]
R the subring Q[d, d−1, (d± 1)−1, (d± 2)−1, . . . ] of K [ §9, eq. (112) ]
Lp the differential operator w.r.t. σ1, . . . , σn [ §9, eq. (102) ]
Mp the “main” part of Lp [ §9, eq. (113) ]
G(n) the standard generating function [ §9, eqs. (117) and (130) ]
Gk the weight k part of the generating function [ §9 ]
Pννν(T ), Pννν,d(T ) the standard spherical polynomial [ §8.A, §9.C.1 ]
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[4] S. Böcherer, T. Satoh, and T. Yamazaki, On the pullback of a differential operator and its
application to vector valued Eisenstein series, Comment. Math. Univ. St. Pauli 41 (1992),
1-22.

[5] S. Böcherer and R. Schulze-Pillot, On the central critical value of the triple product L-
function., Number theory (Paris, 1993–1994), London Math. Soc. Lecture Note Ser. 235,
Cambridge Univ. Press, Cambridge (1996), 1–46.

[6] D. Grünberg and P. Moree, Sequences of enumerative geometry: congruences and asymp-
totics., Experim. Math. 17 (2008), 409–426.

[7] T. Ibukiyama, On differential operators on automorphic forms and invariant pluri-harmonic
polynomials, Comment. Math. Univ. St. Pauli 48 (1999), 103–118.

[8] T. Ibukiyama (ed.), Differential Operators on Modular Forms and Application. Proceedings
of the 7-th Autumn Workshop on Number Theory, Ryushi-do, (2005), 176+vi pages.

[9] T. Ibukiyama and H. Katsurada, Exact critical values of the symmetric fourth L function
and vector valued Siegel modular forms, J. Math. Soc. Japan. 66 (2014), 139–160.

[10] T. Ibukiyama, H. Katsurada, C. Poor and D. Yuen, Congruences to Ikeda-Miyawaki lifts
and triple L-values of elliptic modular forms, J. Number Theory 134 (2014), 142–180.

[11] T. Ibukiyama, T. Kuzumaki and H. Ochiai, Holonomic systems of Gegenbauer type poly-
nomials of matrix arguments related with Siegel modular forms, J. Math. Soc. Japan 64/1
(2012), 273–316.

[12] T. Ibukiyama and D. Zagier, Higher spherical functions, in preparation.

[13] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic poly-
nomials, Invent. Math. 44 (1978), 1–47.

[14] M. Vlasenko and D. Zagier, Higher Kronecker “limit” formulas for real quadratic fields,
J. reine angew. Math. 679 (2013), 23–64.
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