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Abstract

A new kind of quantum Calogero model is proposed, based on a hyperbolic
Kac–Moody algebra. We formulate nonrelativistic quantum mechanics on the
Minkowskian root space of the simplest rank-3 hyperbolic Lie algebra AE3 with
an inverse-square potential given by its real roots and reduce it to the unit future
hyperboloid. By stereographic projection this defines a quantum mechanics on
the Poincaré disk with a unique potential. Since the Weyl group of AE3 is a
Z2 extension of the modular group PSL(2,Z), the model is naturally formulated
on the complex upper half plane, and its potential is a real modular function.
We present and illustrate the relevant features of AE3, give some approximations
to the potential and rewrite it as an (almost everywhere convergent) Poincaré
series. The corresponding Dunkl operators are constructed and investigated.
We find that their commutativity is obstructed by rank-2 subgroups of hyper-
bolic type (the simplest one given by the Fibonacci sequence), casting doubt on
the integrability of the model. We close with some remarks about the energy
spectrum, which is a deformation of the discrete parity-odd part of the spectrum
of the hyperbolic Laplacian on automorphic functions. An appendix with Don
Zagier investigates the computability of the potential. We foresee applications
to cosmological billards and to quantum chaos.



1 Introduction

To every finite Coxeter group of rank n one can associate a (classical and quantum) maximally super-
integrable mechanical system known as a (rational) Calogero–Moser model (Calogero model for short)
living in 2n-dimensional phase space with momenta pi and coordinates xi collected into x P Rn [1, 2, 3].
It is determined by the Hamiltonian

H “ 1
2

n
ÿ

i“1

p2
i ` V pxq with V pxq “ 1

2

ÿ

αPR
gαpgα´~q

α¨α

2pα¨xq2
, (1.1)

where ‘¨’ denotes the standard Euclidean scalar product in Rn, and the sum runs over the root system R
consisting of all nonzero roots α belonging to the Coxeter-group reflections 1

sα : Rn Ñ Rn via sαx “ x´ 2 x¨αα¨αα . (1.2)

The real coupling constants gα are constant on each Weyl-group orbit, so in an irreducible simply-laced
case they all agree, gα“g. For the classical Hamiltonian, ~“0, while in the quantum case we represent
the momenta by differential operators,

pi “
~
i
B
Bxi “: ´i~ Bi such that rxi, pjs “ i~ δij . (1.3)

Henceforth we set ~ “ 1 for convenience.

There exist a variety of generalizations for these models, but we like to mention only their restriction
to the unit sphere Sn´1 given by x¨x “ 1,

HΩ “ ´ 1
2L

2 ` Upϑq with L2 “
ÿ

iăj

pxiBj´x
jBiq

2 and Upϑq “ x¨xV pxq , (1.4)

which has been named the (spherical) angular Calogero model [4, 5, 6]. In the quantum version, L2

is the (scalar) Laplacian on Sn´1, and the potential U depends only on its angular coordinates ϑ “
tϑ1, . . . , ϑn´1u. Since V pxq is singular at the mirror hyperplanes α¨x“0 of the Coxeter group, Upϑq blows
up at their intersection with the unit sphere. The full as well as the angular Calogero model and their
generalization have a rich history as paradigmatic many-body integrable models (for a review, see [7, 8]).

Generalizing to infinite Coxeter groups of the affine type renders the coordinates periodic, x P Tn,
which turns rational Calogero models into Sutherland models [9]. However, to the author’s knowledge,
hyperbolic Coxeter groups [10] have not been employed to this purpose. In the present paper, we propose a
rational Calogero model based on one of the simplest hyperbolic Coxeter groups, namely the paracompact
right triangular hyperbolic group labelled by rp, q, rs “ r2, 3,8s and Coxeter–Dynkin diagram ‚—

8
‚—

3
‚

(see Fig. 1). This happens to be the Weyl group of the simplest hyperbolic rank-3 Lie algebra AE3, a
double extension of A1 ” sl2 [11].2 Its root space is of Lorentzian signature, which we take as p´,`,`q.
Denoting the phase-space coordinates by pxµ, pµq for µ “ 0, 1, 2, the Minkowski metric by ηµν and
the Lorentzian scalar product again by ‘¨’, the Hamiltonian then has the form (employing the Einstein
summation convention and pulling the coupling out of the potential)

H “ 1
2η
µνpµpν ` gpg´1qV pxq “ 1

2

`

´p2
0 ` p

2
1 ` p

2
2

˘

` 1
2

ÿ

αPR

gpg´1q

pα ¨ xq2
, (1.5)

where the sum is restricted to the set R of real roots, which we normalize to α¨α “ 2. Since R for AE3

decomposes into two Weyl orbits R` and R´ [17], we may actually split the potential into two pieces
and weigh them individually. However, for the sake of simplicity we keep the couplings equal for this
paper, g`“g´“g. We also do not consider the possible inclusion of imaginary roots in the potential.

Like the Euclidean theory can be reduced to the unit sphere, the Minkowskian variant can be restricted
to the one-sheeted hyperboloid (x¨x “ 1) or (one sheet of) the two-sheeted hyperboloid (x¨x “ ´1). In

1We sum over both positive and negative roots and correct the overcount due to the pair pα,´αq by a factor of 1{2.
2Other names for this algebra are F [12], H3 [13], HA

p1q
1 [14, 15] or A^̂1 [16].

1



Figure 1: Poincaré disk model of fundamental domain triangles for the hyperbolic Coxeter group r2, 3,8s

order to produce a model on a Riemannian manifold (with Euclidean signature), we consider the future
hyperboloid H2 given by x¨x “ ´1 and x0 ą 1. Let us parametrize the Minkowski future by

x0 “ r cosh θ , x1 “ r sinh θ cosφ , x2 “ r sinh θ sinφ with r P Rą0 , θ P Rě0 , φ P r0, 2πs
(1.6)

so that we may restrict to r“1 and obtain the quantum Hamiltonian of a “hyperbolic Calogero model” 3

HΩ “ ´ 1
2L

2`gpg´1qUpθ, φq with L2 “ B2
θ`coth θ Bθ`csch2θ B2

φ and Upθ, φq “ r2 V pxq ,
(1.7)

where L2 is just the (scalar) Laplacian on H2. Our task will be to compute and characterize the poten-
tial V respective U .

2 The real roots of the Kac–Moody algebra AE3

In order to formulate the Calogero potential for the real roots of AE3 we need to collect some facts about
this simplest of hyperbolic Kac–Moody algebras [13, 12, 11]. Starting from its Cartan matrix,

A “

¨

˝

2 ´2 0
´2 2 ´1

0 ´1 2

˛

‚ , (2.1)

we parametrize the three simple roots αµ of length-square 2 in three-dimensional Minkowski space R1,2

with a Minkowski-orthonormal basis teµu “ te0, e1, e2u,

eµ¨ eν “ ηµν for pηµνq “ diagp´1,`1,`1q , (2.2)

3not to be confused with the hyperbolic Calogero–Sutherland model [2, 3].
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via
α0 “

?
2
`

1?
3
e0 ´ e1 ´

1?
3
e2

˘

, α1 “
?

2 e1 , α2 “
?

2
`

´ 1
2e1 `

1
2

?
3 e2

˘

. (2.3)

For symmetry reasons we add the non-simple root

α3 “ ´α1´α2 “
?

2
`

´ 1
2e1 ´

1
2

?
3 e2

˘

, (2.4)

so that the overextended simple root can be rewritten as

α0 “

b

2
3 e0 ´

2
3 α1 `

2
3 α3 . (2.5)

The three roots αi, i “ 1, 2, 3, belong to an A2 subalgebra and obey the relations

α1 ` α2 ` α3 “ 0 , αi¨αi “ 2 , αi¨αj “ ´1 pi‰jq , pαi ´ αjq¨αk “ 0 pi‰k‰jq . (2.6)

The real roots of AE3 lie on the one-sheeted hyperboloid x¨x“2 and are given by

α “ ` α0 `mα1 ` nα2 with `,m, n P Z and α ¨ α “ 2 , (2.7)

where the length condition translates to the diophantine equation

p`´mq2 ` n pn´mq “ 1 . (2.8)

Since the roots come in pairs pα,´αq, it suffices to analyze ` ě 0 only. At any given “level” ` the solutions
furnish (generically several) highest weights of the “horizontal” A2 ” sl3 subalgebra plus their images
under its S3 Weyl-group action,

pm,nq Ñ pm,m´nq Ñ p2`´n,m´nq Ñ p2`´n, 2`´mq Ñ p2`´m`n, 2`´mq Ñ p2`´m`n, nq .
(2.9)

Such a sextet of weights belongs to an A2 representation with Dynkin labels

rp̄, q̄s “ r´2``2m´n,´m`2ns ô pm,nqhw “ 1
3 p4``2p̄`q̄, 2``p̄`2q̄q (2.10)

for the highest-weight values pm,nqhw in (2.9). Fig. 2 shows the distribution of the real roots for low
levels.

Figure 2: Hyperboloid x¨x “ 2 (green) and real roots α (red) for 0 ď ` ď 12 (left) and 0 ď ` ď 122 (right)

We obtain a parametrization more symmetric under spatial rotations by replacing α0 with e0 us-
ing (2.5) and employing a kind of barycentric coordinates,

x “ x0 e0 ` x̄
i αi with x̄1`x̄2`x̄3 “ 0 . (2.11)
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In these coordinates, the real roots take the form

α “

b

2
3 ` e0 ` ᾱ with ᾱ “ 1

3 p̄ α1 `
1
3 q̄ α2 `

1
3 r̄ α3 and p̄` q̄ ` r̄ “ 0 , (2.12)

where p̄ and q̄ coincide with the Dynkin labels in case ᾱ is a highest A2 weight. The S3 Weyl group
action simply permutes the coefficients pp̄, q̄, r̄q and multiplies them with the sign of the permutation. On
a given level ` the A2 weights ᾱ all have the same length-square ᾱ¨ᾱ “ 2 ` 2

3`
2. On may translate the

diophantine equation (2.8) to the Dynkin labels and obtain

´p̄q̄ ´ p̄r̄ ´ r̄p̄ ” p̄2 ` q̄2 ` p̄ q̄ “ `2 ` 3 as well as 3 | `´ p̄` q̄ . (2.13)

The number of A2 representations grows erratically with the level, as displayed in Fig. 3. Two represen-
tations appear first at `“6, three at `“12, four at `“30, eight at `“72 and so on.

50 100 150 200
level

2

4

6

8

number of A2 irreps

Figure 3: Multiplicity of A2 representations occurring at level `

At level zero one simply finds the adjoint representation,

` “ 0 : pm,nqhw “ p1, 1q ô rp̄, q̄s “ r1, 1s . (2.14)

Although the number of solutions grows quickly with ` it is easy to give a few infinite families of real
roots (see also [11]),

` ě 1 : pm,nqhw “ p2`, ``1q ô rp̄, q̄s “ r`´1, 2s ,

` “ 3k ě 3 : pm,nqhw “ p5k`1, 4kq ô rp̄, q̄s “ r2, 3k´1s ,

` “ kpk`1q ě 6 : pm,nqhw “ p2kpk`1q´1, kpk`2qq ô rp̄, q̄s “ rk2´2, 2k`1s ,

(2.15)

where at `“6 the second and third series coincide for k“2, the k“1 solution is contained in the first series
at `“3, and the `“1 solution is degenerate under the Weyl group action,

pm,nq “ p2, 2q, p2, 0q, p0, 0q ô rp̄, q̄s “ r0, 2s . (2.16)

With increasing level the real roots hug the lightcone, as is apparent from Fig. 4. The roots of the first
family are also neatly expressed as

α “ ` ni ˘ αi for i “ 1, 2, 3 with αhw “ ` n2 ` α2 (2.17)
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Figure 4: Projective view α
|α¨e0|

´ e0 of the real roots α for 1 ď ` ď 100 (the red circle is the lightcone)

in terms of a triplet of null vectors

n1 “ α0 ´ α2 ´ α3 “

b

2
3 e0 `

1
3 pα3 ´ α2q “

?
2
`

1?
3
e0 ´

1?
3
e2

˘

,

n2 “ α0 ` α1 ´ α3 “

b

2
3 e0 `

1
3 pα1 ´ α3q “

?
2
`

1?
3
e0 `

1
2e1 `

1
2
?

3
e2

˘

,

n3 “ α0 ` α1 ` α2 “

b

2
3 e0 `

1
3 pα2 ´ α1q “

?
2
`

1?
3
e0 ´

1
2e1 `

1
2
?

3
e2

˘

,

(2.18)

which satisfy the relations

ni¨ni “ 0 , ni¨nj “ ´1 pi‰jq , αi¨nj “
ř

kεijk , n1`n2`n3 “
?

6 e0 , p` ni ˘ αiq
2 “ 2 . (2.19)

Since the real roots

α “
?

2
`

sinh η e0 ` cosh η cosχ e1 ` cosh η sinχ e2

˘

(2.20)

are spacelike and located on a one-sheeted hyperboloid, the fix planes of the corresponding reflections sα,

α¨x “ 0 ô tanh η “ tanh θ cospχ´φq , (2.21)

are timelike planes through the origin, which we call “mirrors”. They intersect the lightcone and the
two-sheeted hyperboloid x¨x “ ´1. The reflections sα act on the Minkowskian components xµ of a
point x as psαxq

µ “ Sµνx
ν with

`

Sµν
˘

“

¨

˝

1 0 0
0 cosχ ´ sinχ
0 sinχ cosχ

˛

‚

¨

˝

cosh 2η ´ sinh 2η 0
sinh 2η ´ cosh 2η 0

0 0 1

˛

‚

¨

˝

1 0 0
0 cosχ sinχ
0 ´ sinχ cosχ

˛

‚ . (2.22)

Each such hyperbolic reflection preserves the radial coordinate r “
?
´x¨x and the time orientation but

reverses the spatial orientation (detS “ ´1), hence it represents an involution on the future hyperboloid.
A collection of such mirrors is displayed in Fig. 5, and Fig. 6 shows their intersections with the x0“1
plane.
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Figure 5: The real-root mirrors for levels |`| ď 3 (the green hyperboloid is x¨x “ 2)

Figure 6: Intersection of the mirror planes (blue) for |`| ď 5 and the lightcone (red) with the x0“1 plane.
The standard fundamental alcove is shaded.

6



3 The potential

The “horizontal” A2 slicing of the root space into levels ` P Z leads to a decomposition of the potential,

V pxq “
ÿ

`PZ

V`pxq with V`pxq “
1
2

ÿ

αPR`

1

pα ¨ xq2
, (3.1)

where R` denotes the set of real roots α with α¨e0 “

b

2
3 `. Clearly, V´` “ V`.

Let us take a look at levels zero and one. Summing over the adjoint representation of A2,

V0pr, θ, φq “
ÿ

i“1,2,3

1

pαi ¨ xq2
“

1

2 r2

ˆ

1

cos2φ
`

1

cos2pφ´ 2π
3 q
`

1

cos2pφ` 2π
3 q

˙

“
1

2 r2

1

cos23φ
(3.2)

is just the celebrated Pöschl–Teller potential, independent of θ. For level one we sum over the three
extremal weights of the r0, 2s representation,

V1pr, θ, φq “
ÿ

i“1,2,3

1

prni`αis ¨ xq2

“
3

2 r2

ˆ

1

pcosh θ ` 2 sinh θ sinφq2
`

1

pcosh θ ` 2 sinh θ sinpφ´ 2π
3 qq

2
`

1

pcosh θ ` 2 sinh θ sinpφ` 2π
3 qq

2

˙

“
18

r2

cosh4θ ` 3 sinh4θ ` 4 cosh θ sinh3θ sin 3φ

pcosh 3θ ´ 3 cosh θ ` 4 sinh3θ sin 3φq2
.

(3.3)

It is also possible to sum over whole families of solutions to the diophantine equation (2.8). Let us
do so for the first family in (2.15), extending it to negative levels (to include the negative real roots) and
including levels zero and one with their proper weight inside V ,

V1st family “ ´V0 ´ V1 `

8
ÿ

`“0

ÿ

i“1,2,3

ˆ

1

pr` ni`αis ¨ xq2
`

1

pr` ni´αis ¨ xq2

˙

“ ´V0 ´ V1 `
ÿ

i“1,2,3

2

pni¨xq2

8
ÿ

`“0

`2 `
`

αi¨x
ni¨x

˘2

“

`2 ´
`

αi¨x
ni¨x

˘2‰2

“ ´V0 ´ V1 `
ÿ

i“1,2,3

1

pni¨xq2

ˆ

1
`

αi¨x
ni¨x

˘2 `
π2

sin2
`

παi¨xni¨x

˘

˙

“
ÿ

i“1,2,3

ˆ

π2

pni¨xq2 sin2
`

παi¨xni¨x

˘ ´
1

prni`αis ¨ xq2

˙

,

(3.4)

where the V0 contribution got cancelled on the way. Although this is only a part of the full potential, it
does show some characteristic features of V :

• the A2 subgroup’s Weyl group S3 yields a dihedral symmetry and six-fold mirrors,

• infinitely many mirrors intersect in the three null lines λni,

• in the `Ñ8 limit the mirrors accumulate in the three null planes ni¨x “ 0.

• the mirrors tessalate the interior of the lightcone with infinitely many triangular Weyl alcoves

• a fundamental Weyl alcove is spanned by te0, 2e0`e2, 2e0`
?

3e1`e2u

A contour plot of log V on the plane x0“1 is given in Fig. 7 for one Weyl alcove.
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Figure 7: Contour lines of log V for the standard fundamental alcove intersecting the x0“1 plane

4 Mapping to the complex half-plane

Since our model is scale invariant, for the potential we can restrict ourselves to the future hyperboloid
r2 “ ´x¨x “ 1 and x0 ě 1. It is convenient to pass to complex embedding coordinates

t “ x0 and w “ x1 ` ix2 with t2 ´ w̄w “ 1 . (4.1)

By a stereographic projection (see Fig. 8) the hyperboloid gets mapped to the unit disk v̄v ď 1 for v P C,

w

t`1
“
v

1
ñ w “

2v

1´ v̄v
, v “

w

1`
?

1`w̄w
, t “

1` v̄v

1´ v̄v
. (4.2)

The metric induced from the Minkowski metric turns this into the Poincaré disk model of the hyperbolic
plane H2. The intersection curves with the mirrors of level zero and one are easily computed as

` “ 0 : v ` v̄ “ 0 , ρ̄ v ` ρ v̄ “ 0 , ρ v ` ρ̄ v̄ “ 0 ,

` “ 1 : |v ´ 2i|2 “ 3 , |v ´ 2iρ|2 “ 3 , |v ´ 2iρ̄|2 “ 3 ,
(4.3)

where
ρ “ e2πi{3 ñ ρ2 “ ρ̄ , ρ` ρ̄ “ ´1 , 1` ρ` ρ2 “ 0 . (4.4)

Adding the infinity of real-root mirrors produces a paracompact triangular tessalation of type rp, q, rs “
r2, 3,8s. Each of the hyperbolically congruent triangles has angles π

2 , π3 and 0, and at the corresponding
vertices there meet 4, 6 and infinitely many triangles, thus one vertex is always at the boundary, as is
visible from Fig. 9.

We employ a variant of the Cayley map to further pass to the complex upper half plane H Q z,

v “ ´i
ρ z ` 1

z ` ρ
ô z “

1´ iρ v

i v ´ ρ
, (4.5)

such that the boundary |v|“1 becomes the real axis Im z“0. The direct relation between w and z reads

w “
2
?

3

p1`ρ zqpρ̄`z̄q

z ´ z̄
“

2
?

3

ρ zz̄ ` pz`z̄q ` ρ̄

z ´ z̄
“

2 ρ
?

3

pz`ρ̄qpz̄`ρ̄q

z ´ z̄
, (4.6)

and the mirror curves at level zero and one become (in the same order as in (4.3))

` “ 0 : z z̄ “ 1 , z ` z̄ “ 1 , pz´1qpz̄´1q “ 1 ,

` “ 1 : z ` z̄ “ 0 , p2z´1qp2z̄´1q “ 1 , z ` z̄ “ 2 .
(4.7)
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-1

1

2

3
t

Figure 8: Stereographic projection of the hyperboloid (green) to the disk (red), with the lightcone (yellow)

Figure 9: The mirror lines (blue) for |`| ď 5 in the Poincaré disk v̄vă1 (with red boundary v̄v“1)
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The first two curves in the `“0 list and the first one at `“1 bound a standard fundamental domain

F “
 

z P H
ˇ

ˇ |z| ě 1 and 0 ď < z ď 1
2

(

, (4.8)

which is co-finite (with a hyperbolic volume of π6 ) but not co-compact due to a cusp at i8. Fig. 10 shows
the mirror lines of Fig. 9 mapped to the upper half plane H. Any other triangle in the tessalation is

Figure 10: The mirror lines (blue) for |`| ď 5 in the upper half plane = z ą 0 (with red boundary = z “ 0)

reached by applying a suitable element of PGL(2,Z), the group of integral 2ˆ2 matrices with determinant
`1 or ´1 modulo t˘1u:

z ÞÑ

#

az`b
cz`d if

ˇ

ˇ

a b
c d

ˇ

ˇ “ `1

az̄`b
cz̄`d if

ˇ

ˇ

a b
c d

ˇ

ˇ “ ´1
with a, b, c, d P Z . (4.9)

This happens to be the Weyl group of our hyperbolic Kac-Moody algebra. It can be generated by the
three reflections

s1 “ sα1 : z ÞÑ 1{z̄ , s2 “ sα2 : z ÞÑ 1´z̄ , s3 “ sα0´2α3 : z ÞÑ ´z̄ , (4.10)

whose fixpoints form the three mirror curves mentioned above, which bound the fundamental trian-
gle (4.8). The two generators of the even subgroup PSL(2,Z) are

T “ s2s3 : z ÞÑ z`1 and S “ s1s3 : z ÞÑ ´1{z , (4.11)

and its standard fundamental domain is cut in half by the extra reflection s3. In matrix representation
p a bc d q we have

s1 p“ p 0 1
1 0 q , s2 p“ p 1 ´1

0 ´1 q , s3 p“ p 1 0
0 ´1 q , T p“ p 1 1

0 1 q , S p“ p 0 ´1
1 0 q , (4.12)

up to multiplication by ´1 of course. The simple-root reflection sα0
: z ÞÑ z̄

2z̄´1 appears in the middle
of our `“1 lists (4.3) and (4.7). Choosing it instead of s3 leads to a fundamental domain with the cusp
sitting at 1 rather than i8. In any case, it is clear that the potential Upzq “ V

`

r“1, θpzq, φpzq
˘

is a real
automprphic function with respect to PGL(2,Z). We end this section by displaying logU in the Poincaré
disk and in the upper half plane for the standard fundamental domain in Fig. 11.
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Figure 11: Contour lines of logU for a fundamental domain in the v disk (left) and the z plane (right)

5 The potential as a Poincaré series

Our potential is a sum over all real roots α of AE3, thus each reflection sα inside PGL(2,Z) provides one
summand. These reflections are given by traceless matrices R of determinant ´1,4

sα ” sR : z ÞÑ
pz̄ ` q

rz̄ ´ p
with R “

ˆ

p q

r ´p

˙

and p2 ` q r “ 1 . (5.1)

The scalar product in root space is an invariant bilinear form,

α¨α1 “ trpsα sα1q “ 2 p p1 ` q r1 ` r q1 P Z . (5.2)

From (4.6) we see that the real function α¨x odd under sα becomes a real quadratic polynomial in z
and z̄ divided by |z´z̄|. A quick computation shows that

α¨x “
?

2 i
z´z̄

“

r z z̄ ´ ppz`z̄q ´ q
‰

(5.3)

is indeed odd under the reflection (5.1). Therefore, on the upper half plane the potential is expressed as

Upzq ” V
`

xpzq
˘

“
1

4

ÿ

R

|z ´ z̄|2

rr z z̄ ´ ppz`z̄q ´ qs2
“

1

4

ÿ

R

4 y2

rrpx2`y2q ´ 2p x´ qs2
“:

1

4

ÿ

R

uRpzq (5.4)

where z “ x` i y and the sum runs over all reflections R in (5.1), with R and ´R contributing the same.
Comparison with

´α¨x “
?

2 i
z´z̄

“

p2`´mq zz̄ ` pn´`qpz`z̄q ` pm´nq
‰

(5.5)

provides the translation between the labels pp, q, rq and p`,m, nq, up to a common sign of course. As an
aside, we characterize in the following table the two orbits (e for ` even, o for ` odd) of the Weyl group
on the set R of real roots.

` m n p q r
e o o o e o

R` e e o o o e
e o e e o o

R´ o e e o e e

Restricting our potential to one of the two Weyl orbits removes either the `“odd or the `“even mirror
lines from all diagrams and doubles the fundamental domain. In an Appendix with Don Zagier we outline
how far one can proceed with an explicit computation of the potential function Upzq.

4The matrix entries pp, q, rq are not to be confused with the tessalation labels.
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The potential Upzq is a real modular function under the action of GL(2,Z), which is manifest via

uRpMzq “ uM´1RM pzq for Mz “ az`b
cz`d with a, b, c, d P Z . (5.6)

Hence, we can replace the sum over R with sums over appropriate orbits by the adjoint action of GL(2,Z)
for a suitable reference, say

R0 “
`

1 0
0 ´1

˘

ô z ÞÑ ´z̄ ô uR0pzq “
y2

x2
“: upzq , (5.7)

and obtain 5

2Upzq “
1

4

ÿ

M

uM´1R0M pzq “
1

4

ÿ

M

upMzq “
1

4

ÿ

M

pad´bcq2 y2

racpx2`y2q ` pad`bcqx` bds2
. (5.8)

The question is: over which subset of GL(2,Z) matrices does this sum run? Since our fundamental
domain F in (4.8) is half of the standard one for PSL(2,Z), all reflections R should be covered using
adjoint orbits by matrices Mn of determinant n “ ad´bc equal to one or two. Indeed, for R P R`, we
can find a unique (up to sign and the footnote) matrix M2 such that R “ M´1

2 R0M2. In the case of
R P R´, in constrast, there are two such matrices M2, which have the form

´

2a1 2b1

c1 d1

¯

and
´

a1 b1

2c1 2d1

¯

ñ det
´

a1 b1

c1 d1

¯

“ 1 , (5.9)

so such reflections R are covered twice by summing over M2. However, they also make up (again uniquely)
the M1 orbit of R0. Therefore, we can correct the overcount by subtracting,

2Upzq “ F2pzq ´ F1pzq for Fnpzq :“ 1
4

ÿ

Mn

upMzq . (5.10)

The function F2 can be obtained from F1 by applying a Hecke operator T2 (for weight k“0),

F2pzq “ pT2F1qpzq “
ÿ

ad“2
a,dą0

ÿ

b pmod dq

F1

`

az`b
d

˘

“ F1p2zq ` F1p
z
2 q ` F1p

z`1
2 q , (5.11)

and thus we have
2Upzq “ F1p2zq ` F1p

z
2 q ` F1p

z`1
2 q ´ F1pzq . (5.12)

Therefore, it suffices to compute the Poincaré series

F1pzq “
1
4

ÿ

MPSLp2,Zq

upMzq . (5.13)

There is another path to this result, which provides a useful connection to binary quadratic forms.6

Let us define [18]

rFDpzq “
1

2

ÿ

QpDq

D y2

rApx2`y2q `B x` Cs2
“

1

2

ÿ

QpDq

D y2

|Az2 `B z ` C|2 ´ y2
, (5.14)

where QpDq denotes the set of binary quadratic forms As2`Bst`Ct2 over Z with discriminant D “

B2´4AC. For D“1 there is a bijection between Qp1q and PSL(2,Z) by solving

a c “ A , b d “ C , a d “ 1
2 pB`1q , b c “ 1

2 pB´1q . (5.15)

We conclude that rF1 “ F1. For D“4 we have a bijection between Qp4q and our reflections R in (5.1),

r “ A , ´2p “ B , ´q “ C . (5.16)

5The left-hand side is doubled because tc, d,´a,´bu yields the same adjoint action as ta, b, c, du.
6I thank Don Zagier for pointing out this and (5.11).
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Therefore, the potential can also be expressed as

2Upzq “ rF4pzq “
1

2

ÿ

Qp4q

4 y2

rApx2`y2q `B x` Cs2
. (5.17)

Now, Qp4q can be reduced to Qp1q, and it is not too hard to check that indeed [18]

rF4pzq “ pT2
rF1qpzq ´ rF1pzq “ rF1p2zq ` rF1p

z
2 q `

rF1p
z`1

2 q ´ rF1pzq , (5.18)

confirming (5.12). It thus suffices to compute the generalized real-analytic Eisenstein series

rF1pzq “
1

2

ÿ

Qp1q

y2

rApx2`y2q `B x` Cs2
“

1

2

ÿ

Qp1q

y2

|Az2 `B z ` C|2 ´ y2
, (5.19)

where Qp1q indicates a discriminant B2 ´ 4AC “ 1. As was shown in [18], this sum converges almost

everywhere.7 However, it does not decay at i8, but grows as rF1px`iyq „ y2 for y Ñ8.

The form (5.17) can be translated back to the unit hyperboloid and indeed the Minkowski future,
with the result

V pxq “
ÿ

Qp4q

3
“

p2A´B`2Cqx0 `
?

3pA´Cqx1 ´ pA´2B`Cqx2
‰2 , (5.20)

where the sum runs over all integers A, B and C subject to the Qp4q condition B2 ´ 4AC “ 4. In
this way, the real roots are parametrized by binary quadratic forms, which is of course equivalent to the
solutions of the diophantine equation (2.8) but may be more convenient or manageable.

6 Dunkl operators

Calogero models in a Euclidean space are known to be maximally superintegrable. This is also the case
for the spherical reduction of the rational models. One key instrument to establish this property is the
Dunkl operators [19]

Di “ Bi ´
g
2

ÿ

αPR

αi
α¨x

sα for i “ 1, . . . , n (6.1)

and their angular versions
Lij “ xiDj ´ xjDi , (6.2)

respectively. Their crucial property is the commutation rDi,Djs “ 0, while the Lij deform the angu-
lar momentum algebra to a subalgebra of a rational Cherednik algebra [20]. It is known that every
Weyl-invariant polynomial in the Di or in the Lij will, upon its restriction ‘res’ to Weyl-invariant func-
tions, provide a conserved quantity, i.e. an operator which commutes with the Hamiltonian H or HΩ,
respectively. Indeed, the Hamiltonians themselves can be expressed in this way,

´2H “ res
n
ÿ

i“1

D2
i “

n
ÿ

i“1

B2
i ´ res

ÿ

αPR

α¨α

2pα¨xq2
gpg´sαq ,

´2HΩ “ res
ÿ

iăj

L2
ij ´ 2E0 “ L2 ´ res

ÿ

αPR

α¨αx¨x

2pα¨xq2
gpg´sαq ,

(6.3)

with the ground-state energy

E0 “ 1
2 res gSpgS`n´2q for S “ 1

2

ř

αsα . (6.4)

Let us repeat this construction for R1,2 and the restriction to the hyperboloid x¨x “ ´r2 “ ´1. We
define the ‘hyperbolic Dunkl operators’ (i “ 1, 2)

C “ x1B2´x
2B1 ´

g
2

ÿ

αPR

x1α2
´x2α1

α¨x sα and Bi “ ´x0Bi ´ x
iB0 `

g
2

ÿ

αPR

x0αi´xiα0

α¨x sα (6.5)

7On the mirror curves one summand is infinite. The critical part is the A“0 subsum,
ř

CPZ y
2px`Cq´2 “ π2y2 sin´2πx.
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with α¨x “ ´α0x0`αixi as deformed rotation and boost generators. Lorentz indices are raised and low-
ered with the Minkowski metric. In complex coordinates (4.1) on the hyperboloid these Dunkl operators
read 8

C “ ipwBw´w̄Bw̄q ´ i g4

ÿ

αPR

wαw̄´w̄αw

α¨x sα and

B` “ B1`iB2 “ 2
?

1`ww̄ Bw̄ `
g
2

ÿ

αPR

tαw´wαt

α¨x sα “ pB´q˚ .
(6.6)

In half-plane coordinates they take the form

?
3 C “ pz`ρqpz`ρ̄qBz ` pz̄`ρqpz̄`ρ̄qBz̄ `

g
2

ÿ

αPR

pr´2pqzz̄ ´ pq`rqpz`z̄q ` pq`2pq

r zz̄ ´ p pz`z̄q ´ q
sR ,

?
3 B` “ ρ pz`ρ̄q2Bz ` ρ pz̄`ρ̄q

2Bz̄ `
g
2

ÿ

αPR

p2r`2ρpqzz̄ ` pρq`ρ̄rqpz`z̄q ` p2q´2ρ̄pq

r zz̄ ´ p pz`z̄q ´ q
sR ,

?
3 B´ “ ρ̄ pz`ρq2Bz ` ρ̄ pz̄`ρq

2Bz̄ `
g
2

ÿ

αPR

p2r`2ρ̄pqzz̄ ` pρ̄q`ρrqpz`z̄q ` p2q´2ρpq

r zz̄ ´ p pz`z̄q ´ q
sR .

(6.7)

These operators obey the algebra

rC , B˘s “ ˘iB˘ ` Opgq and rB` , B´s “ ´2i C ` Opgq , (6.8)

where the Opgq deformations are determined by the action of the differential parts on the reflection parts
and by the commutators of the reflection parts themselves.

A standard computation shows that the commutator of two Dunkl operators, rDµ,Dνs, reduces to
the antisymmetric part (under µØ ν) of

g2Yµν :“ g2

4

ÿ

α,β

1 αµβν
α¨x sαpβ¨xq

sαsβ “
g2

4

ÿ

α,β

1αµβν ´ pα¨βqαµαν
α¨x β¨x

sβsα , (6.9)

where the prime indicates excluding pairs with β“˘α. In the last step, under the sum we substituted
β Ñ sαβ “ β ´ pβ¨αqα, i.e. sβ Ñ sαsβsα, and used sαα “ ´α or s2

α “ 1. Hence, the criterion for Dunkl
operators to commute is the vanishing of a two-form,

Y ” Yµν dxµ^dxν “ 1
8

ÿ

α,β

1 α^ β

α¨x β¨x
rsα, sβs

!
“ 0 (6.10)

where we abbreviated αµdxµ“α and βνdxν“β. Note that the four pairs pα,˘βq and p´α,˘βq contribute
equally to the double sum.

In order to generate the Hamiltonian HΩ in (1.4), we compute

ÿ

µăν

LµνLµν “ C2 ´ 1
2 pB`B´ ` B´B`q “ ´L2 `

ÿ

αPR

x¨x

pα¨xq2
gpg´sαq ` gSpgS`1q ´ g2 ηµνYµν (6.11)

by generalizing the results in [20] to R1,2. We remark that, due to the indefinite root-space signature
and x¨x“´1, the relative sign between

ř

L2 and the Hamiltonian is flipped and the ground-state energy
E0 “ ´

1
2 res gSpgS`1q is negative and formally infinite. Besides this energy shift, our Dunkl operators

can generate the Hamiltonian provided that pYµνq is not only symmetric but also traceless, i.e.

ηµνYµν “ ´ 1
8

ÿ

α,β

1 α ¨ β

α¨x β¨x
tsα, sβu

!
“ 0 . (6.12)

8The differential parts are C “ Bφ and B˘ “ e˘iφpBθ ˘ i coth θBφq.
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7 Integrability?

A test for integrability of our hyperbolic Kac–Moody Calogero model is the validity of (6.10) and (6.12),
i.e. Y “ 0 and Y µµ “ 0. We shall now investigate these conditions.

For classical root systems indeed Y “ 0, because the double sum in (6.10) can be recast as a sum
over planes of contributions stemming from the real root pairs lying in a given plane Π, which add up to
zero for any such plane. In our hyperbolic model, this is obvious only for root pairs pα, βq at level `“0,
which form the A2 subalgebra with a hexagon of roots and α¨β“˘1 throughout. Generically however,
two arbitrary real roots α and β generate an infinite planar collection of real roots,

α ÝÑ sβα ÝÑ sαsβα ÝÑ sβsαsβα ÝÑ . . . and β ÝÑ sαβ ÝÑ sβsαβ ÝÑ sαsβsαβ ÝÑ . . .
(7.1)

and their negatives. The roots in either string are related by hyperbolic reflections and rotations, but
α and β need not be. All these comprise the real roots of a rank-2 subalgebra whose Cartan matrix
reads [21]

Am “

ˆ

2 ´m
´m 2

˙

for m “ |α¨β| P t0, 1, 2, 3, 4, . . .u (7.2)

and whose Weyl group is
 

psαsβq
k´1 , psαsβq

k´1sα
(

for k P Z (7.3)

because psαsβq
´1 “ sβsα and s2

α “ s2
β “ 1. Each odd element is a reflection on a hyperplane orthogonal

to some real root γk, while the even elements are elliptic, parabolic or hyperbolic elements of PSLp2,Zq,
for mď1, m“2 or mě3, respectively.

Without loss of generality we can choose the signs of α and β such that α¨β “ ´m ď 0. Any real
root in Πm “ xαβy is a linear combination

γ “ ξ α ` η β with pξ, ηq P Z2 and ξ2 ` η2 ´mξ η “ 1 . (7.4)

Rather than finding the integral points on this quadric, we may compute the coefficients ξ and η recursively
from (7.1). We recombine these two sequences in an alternating fashion (and flipping half of the signs)
into a double-infinite sequence

γ2`´1 “ psαsβq
`´1α and γ2` “ psαsβq

`´1sαβ ô sγk “ psαsβq
k´1sα (7.5)

with k, ` P Z. Due to sαα “ ´α and sββ “ ´β it reads

 

γk
(

“
 

. . . , ´sβsαsβα , ´sβsαβ , ´sβα,´β , α , sαβ , sαsβα , sαsβsαβ , . . .
(

(7.6)

and reproduces the ordering of the corresponding Weyl reflections in (7.3), with γ0 “ ´β and γ1 “ α.
The real roots γk are the integral points on the positive branch of the quadric (7.4), while the negative
branch contains the set t´γku.

Remembering sγx “ x´ px¨γq γ we combine the reflections

γk
sβ
ÞÝÑ ´γ´k and γk

sα
ÞÝÑ ´γ´k`2 with γk

αØβ
ÞÝÑ ´γ1´k (7.7)

and find for γk “ ξkα` ηkβ the recursion

ξk`1 “ mξk ´ ηk and ηk`1 “ ξk for γk “ ξkα` ηkβ . (7.8)

This yields the three-term recursion relation

ξk`1 ´mξk ` ξk´1 “ 0 with ξ1 “ 1 and ξ0 “ η1 “ 0 . (7.9)

We note that the recursion can be iterated to the right as well as to the left, with

ξ´k “ ´ξk and η´k`1 “ ´ηk`1 . (7.10)
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One may check that

γk¨γk1 “ 2 pξkξk1 ` ξk´1ξk1´1q ´m pξkξk1´1 ` ξk´1ξk1q “ ξk´k1`1 ´ ξk´k1´1 (7.11)

due to (7.9), so that indeed γk¨γk “ ξ1´ξ´1 “ 2. The recursion can be solved explicitly,

ξk`1 “

tk{2u
ÿ

`“0

p´1q`
ˆ

k´`

`

˙

mk´2` for k “ 0, 1, 2, 3, . . . (7.12)

giving
ξk`1 “ 1 , m , m2´1 , m3´2m, m4´3m`1 , m5´4m3`3m, . . . , (7.13)

or via a generating function

F pzq :“
8
ÿ

k“0

ξk`1 z
k ñ F pzq “

`

1´mz ` z2
˘´1

. (7.14)

The zeros of the characteristic polynomial provide a simple closed expression,

z2
˘ ´mz˘ ` 1 “ 0 ñ z˘ “

1
2

`

m˘
a

m2´4
˘

ñ ξk`1 “
1´ z2k`2

˘

zk˘ p1´ z
2
˘q

, (7.15)

equally valid for both signs. Another useful parametrization of the real roots in Πm “ xαβy is

γk “ ηkγ̄ ` pξk´ηkqα “ ξk´1γ̄ ` pξk´ξk´1qα with γ̄ “ α`β , (7.16)

which exhibits the symmetry axis γ̄ of the quadric (7.4).

Equipped with these tools, we can further specify

Y “
ÿ

tΠu

Y Π “

8
ÿ

m“0

ÿ

tΠmu

Y Πm (7.17)

with, representing Πm “ xαβy,

Y Πm “ 1
2 α^β

ÿ

k,k1PZ

pξkηk1 ´ ξk1ηkq rsγk , sγk1 s

pξk α¨x` ηk β¨xq pξk1 α¨x` ηk1 β¨xq

“ 1
2 α^β

ÿ

k,k1PZ

ξk1´k
 

psαsβq
k´k1 ´ psβsαq

k´k1
(

pξk α¨x` ξk´1 β¨xq pξk1 α¨x` ξk1´1 β¨xq

“ ´α^β
8
ÿ

`“1

ÿ

kPZ

ξ`
 

psαsβq
` ´ psβsαq

`
(

“

ξk´1 γ̄¨x` pξk´ξk´1qα¨x
‰ “

ξk´`´1 γ̄¨x` pξk´`´ξk´`´1qα¨x
‰ ,

(7.18)

where we used that ξkξk1´1´ξk1ξk´1 does not change under a common shift of k and k1.

For m“0,
ξk “ . . . , 1 , 0 , ´1 , 0 , 1 , 0 , ´1 , 0 , 1 , 0 , ´1 , . . . , (7.19)

and the situation is trivial since αKβ, thus rsα, sβs “ 0 and no further roots are generated, so the
subalgebra is A1 ‘A1. For m“1,

ξk “ . . . , 0 , ´1 , ´1 , 0 , 1 , 1 , 0 , ´1 , ´1 , 0 , 1 , . . . , (7.20)

so the ellipse in (7.4) contains one additional root α`β (and all negatives), making up an A2 subalgebra.
Its contribution to Y is proportional to

1

α¨x β¨x
`

1

β¨x γ¨x
`

1

γ¨x α¨x
“
pα`β`γq¨x

α¨x β¨x γ¨x
“ 0 for γ “ ´pα`βq . (7.21)
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Figure 12: Real root system tγ “ ξα` ηβu for “elliptic planes” from |α¨β| “ 0 (left) or 1 (right)

Therefore, Y Πm vanishes for m “ 0 and 1. The corresponding finite root systems are shown in Fig. 12.
A more interesting case occurs for m“2. Here, the real roots lie on two straight lines (see Fig. 13 left),

ξk “ k ñ ˘γk “ k α` pk´1qβ “ pk´1qγ̄ ` α (7.22)

where γ̄ “ α`β happens to be null and orthogonal to α and β. This set of roots creates the affine

extension psl2 ” pA1 ” A
p1q
1 of sl2. Obviously, any pair of roots in this set has a scalar product of 2 or ´2.

Such an psl2 subsystem is generated by any non-orthogonal pair of real roots from levels `“˘1 and |`|ď1.
Its contribution to Y evaluates to

Y Π2 “ ´α^β
8
ÿ

`“1

`
 

psαsβq
` ´ psβsαq

`
(

ÿ

kPZ

“

k γ̄¨x` α¨x
‰´1“

pk´`q γ̄¨x` α¨x
‰´1

“ α^β
8
ÿ

`“1

`
 

psαsβq
` ´ psβsαq

`
( π

` pγ̄¨xq2

!

cot
`

πr`´α¨x
γ̄¨x s

˘

` cot
`

πrα¨xγ̄¨x s
˘

)

“ 0

(7.23)

due to cotpxq ` cotp`π´xq “ 0. Hence, also the affine subalgebras do not obstruct the commutativity of
the Dunkl operators.

As soon as we go beyond level one, real root pairs with mą2 show up, and the associated quadric (7.4)
is a hyperbola (see Fig. 3 right for m“3). Let us inspect the simplest such case, m“3, where the coefficient
sequence happens to be the even half of the Fibonacci sequence (k “ 1, 2, 3, . . .),

ξk`1 “ 3 ξk ´ ξk´1 with ξ1“1 & ξ0“0 ñ ξk “ 1, 3, 8, 21, 55, 144, 377, 987, . . . “ f2k , (7.24)

where fn`1 “ fn`fn´1 with f0 “ 0 [22, 23]. The root scalar products take the values˘2,˘3,˘7,˘18,˘47
etc.. In this case, the contribution to the two-form Y becomes

Y Π3 “ ´α^β
8
ÿ

`“1

ÿ

kPZ

f2`

 

psαsβq
` ´ psβsαq

`
(

“

f2k γ̄¨x` f2k`1 α¨x
‰ “

f2k´2` γ̄¨x` f2k´2``1 α¨x
‰ , (7.25)

with the understanding that f´n “ p´1qn`1fn extends the Fibonacci sequence to the left. As numerical
checks show, the individual sums over k P Z do not vanish, nor does the total expression. Turning off one
of the two Weyl orbits in the root-sum for the Dunkl operator (6.1) does not help since odd values of m
require both α and β to lie in R`, and thus only this orbit contributes here. We are forced to conclude
that Y ‰ 0 for our model, so its Dunkl operators Dµ do not commute, and we cannot construct higher
conserved charges unfortunately. Likewise, Y µ

µ does not vanish either, and thus res
ř

L2 in (6.11) does
not reproduce the Hamiltonian HΩ.
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Figure 13: Real roots for a “parabolic plane” (|α¨β|“2, left) and for a “hyperbolic plane” (|α¨β|“3, right)

8 The energy spectrum

We are ultimately interested in the spectrum of our Hamiltonian HΩ (1.7), which on the complex upper
half-plane reads (z “ x` iy)

HΩ “ ´ 1
2 y

2pB2
x ` B

2
yq ` gpg´1qUpzq with z P F . (8.1)

As a start, let us consider the situation where the coupling g goes to zero (or one).9 Turning off the
coupling does not imply removing the potential, however, since the latter is singular at BF . Rather, it
keeps an infinite wall right on the domain’s boundary, which only imposes Dirichlet boundary conditions
on the free spectral problem for ∆ [25].

Harmonic analysis on the fundamental domain FYp´ sFq of PSL(2,Z) is a rich area of mathematics
intimately related to the theory of automorphic forms [26, 27, 28]. It in well known that ´∆ is essentially
self-adjoint and non-negative on the Hilbert space of square-integrable automorphic functions. Since
it commutes with all Hecke operators Tn and with the parity operator P : z ÞÑ ´z̄, the spectrum on
FYp´ sFq decomposes into

• an even part: P -even eigenfunctions, Neumann boundary conditions on BF , continuous spectrum
from 1

4 to 8 with embedded discrete eigenvalues, plus zero eigenvalue for the constant function,

• an odd part: P -odd eigenfunctions, Dirichlet boundary conditions on BF , infinite discrete and
supposedly simple spectrum above „ 91.14, see Fig. 14.

| | | | | | | | | | || | | | | | | | | | || |
0 200 400 600 800

λ

Figure 14: Discrete odd eigenvalues λip0q ď 1000 of the Laplacian on PGLp2,ZqzH

The P -even eigenfunctions are invariant under the reflections sα while the P -odd ones are antiinvariant.
Therefore, the extension from PSL(2,Z) to PGL(2,Z) (producing the restriction to F) projects onto the
even part. The infinite boundary walls, however, effect the opposite: they reduce the free spectrum to

9In the “Euclidean” Calogero models and their spherical reductions, analytic integrability allows for a shift operator (or
intertwiner), which maps the energy spectrum at a value g to the spectrum at g`1, leading to partial isospectrality [24].
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the odd part (for both domains), thus are responsible for removing the continuum. Hence, only the
odd discrete eigenvalues are relevant for HΩ|gÑ0, and the eigenfunctions are known as odd Maaß wave
forms or cusp forms. None of the eigenvalues is known analytically, but many low-lying ones have been
computed numerically to high precision [29, 30].

Even though we do not have at our disposal a closed analytic formula for our potential (notwithstand-
ing the Poincaré series (5.19)), it is clear from the positivity of U that increasing g (beyond 1

2 ) will raise
all the discrete eigenvalues λipgq. In case some of the integrable structure of the angular Calogero models
extends to our hyperbolic one, we may expect the eigenvalue flow to be isospectral, i.e.

λipg`1q “ λi`δpgqpgq thus λipg“nq “ λi`δnp0q (8.2)

with some positive shifts δpgq and δn, respectively. If this holds, then the spectrum at any integer value
of g will agree with the odd part above except for a finite number of missing eigenvalues at the bottom. It
will be interesting to test this hypothesis numerically, in order to find evidence for or against integrability
of this type of models.

9 Conclusions

Spherical angular Calogero models are obtained by reducing a rational Calogero model in Rn to the
sphere Sn´1. Analogously, we have defined a hyperbolic angular model by reducing a Calogero Hamilto-
nian in R1,n´1 to the (future) hyperboloid Hn´1. The main difference to the conventional angular model
is the non-compactness of hyperbolic space and the replacement of a finite spherical Coxeter reflection
group by an infinite hyperbolic one. As a consequence, the Calogero-type potential of the model is an
infinite sum over all hyperbolic reflections and not easily obtained in a closed form. However, it is a real
automorphic function of an associated hyperbolic Kac–Moody algebra.

We have worked out the details for the rank-3 case of AE3 leading to a PGL(2,Z) invariant quantum
mechanical model on the Poincaré disk or the complex upper half plane. In this case, the potential can be
reformulated as a Poincaré series, which converges outside the mirror lines of PGL(2,Z). We then asked
whether the integrability of the spherical angular models extends to the hyperbolic ones. To this end,
we introduced the hyperbolic Dunkl operators for the AE3 algebra and computed their commutators. It
turned out that the presence of hyperbolic rank-2 subalgebras in AE3 ruins the commutativity, which is
an obstacle to integrability.

Finally, the energy spectrum of the AE3 hyperbolic Calogero model is a deformation of the discrete
parity-odd part of the spectrum of the hyperbolic Laplacian on square-integrable automorphic functions,
because the singular lines of the potential impose Dirichlet boundary conditions on the boundary of the
fundamental domain. It remains to be seen whether the spectral flow with the coupling g is isospectral
under integral increments of g.

Since the Weyl-alcove walls of certain hyperbolic Kac–Moody algebras are the cushions of the billard
dynamics in the BKL approach [31, 32], the small-g limit of our hyperbolic Kac–Moody Calogero system
provides a model for cosmological billards [11]. The chaotic dynamics of such billards seems to be con-
sistent with a formal integrability of the corresponding hyperbolic Toda-like theories [11]. Furthermore,
an alternative description of BKL dynamics leads instead to Euler–Calogero–Sutherland potentials of
the sinh´2 type, which also produce sharp walls in the BKL limit [33, 34]. This nurtures the hope that
also our Calogero-type potentials retain a kind of integrability. Finally, the well-known quantum chaotic
behavior of hyperbolic billards [35] may be “tamed” by turning on our Kac–Moody Calogero potential,
since in the large-g limit the wave function will get pinned near the bottom of the potential. We hope
that this opens a door to interesting further studies in this field.
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A Appendix (with Don Zagier): Computing the potential

In this appendix we investigate the numerical evaluation of the potential function Upzq. We have to sum
over infinitely many triples p`,m, nq or pp, q, rq subject to a diophantine equation, see (5.3)–(5.5),

Upzq “
ÿ

p,q,r

p2`qr“1

y2

rrpx2`y2q ´ 2p x´ qs2
“

´

ÿ

r“0

` 2
ÿ

rą0

¯

ÿ

p,q

p2`qr“1

y2

rrpx2`y2q ´ 2p x´ qs2
“: U0pzq ` 2Uąpzq ,

(A.1)
where we used that pp, q, rq and p´p,´q,´rq contribute equally. The r“0 part is easily summed up since
then p “ ˘1, which yields

U0pzq :“ 2
ÿ

qPZ

y2

r2x` qs2
“

2π2y2

sin2
p2πxq

. (A.2)

For Uą we do not know how to compute the sum in closed form. The decomposition of the root space
detailed in Section 2 suggests to slice the space of triples according to fixed values of

` “ r ´ p´ q ñ q “ r ´ p´ ` , (A.3)

in which case the discussion there shows that for each fixed value of ` we are left with only a sum over
finitely many pairs pp, rq. Specifically, if we rewrite the diophantine equation p2 ` qr “ 1 as

3 r2 ` pr ´ 2pq2 “ 4p` r ` 1q ď 4 r p``1q (A.4)

then we see that for r ą 0 we must have ` ě 0 and also r ď 4p``1q{3, reducing the sum over r to a finite
one. Then only those r for which 4` r ` 4´ 3r2 is a square give a contribution. Thus we obtain

Uąpzq “
8
ÿ

`“0

t4pl`1q{3u
ÿ

r“1

ÿ

s2“4`r`4´3r2

y2

rrpx2`y2q ´ pr´sqx´ r`s
2 ``s

2
, (A.5)

where the inner sum is almost always empty and never has more than two terms.

The expression (A.5) converges rather slowly. But one can do better, by going back to (A.1) and
reducing the inner sum to a finite one in the following way. For each fixed rą0 we denote this inner sum
by Urpzq and rewrite it as

Urpzq “
y2

r2

ÿ

p P Z

p2”1 pmod rq

1
“

px´ p
r q

2 ` y2 ´ 1
r2

‰2 “
y2

r2

ÿ

p pmod rq

p2”1 pmod rq

S
`

x´ p
r ,
a

y2 ´ 1
r2

˘

(A.6)

where the function S is defined on CˆC by Spx, aq :“
ř

n PZ

“

px´nq2` a2
‰´2

, which obviously depends
only on x (mod 1). Using a partial fraction decomposition of the summand together with Euler’s formulæ
for

ř

nPZ 1{px`nq and
ř

nPZ 1{px`nq2, we find the closed formula

Spx, aq “
π

2 a3

sinhp2π aq

coshp2π aq ´ cosp2π xq
`

π2

a2

coshp2π aq cosp2π xq ´ 1
`

coshp2π aq ´ cosp2π xq
˘2 . (A.7)

Inserting this into (A.6) then expresses each Urpzq as a finite sum of elementary functions, and for-
mula (A.1) takes on the more explicit form

Upzq “
2π2 y2

sin2
p2πxq

` 2
8
ÿ

r“1

y2

r2

ÿ

p pmod rq

p2”1 pmod rq

S
`

x´ p
r ,
a

y2 ´ 1
r2

˘

(A.8)

in which we now simply define Spx, aq by the trigonometric formula (A.7).

Formula (A.8) is both simpler and more rapidly convergent than the original expression (A.1), since the
internal infinite sums have been evaluated explicitly, and it also converges more rapidly than the “slicing
by ` ” formula (A.5). As a demonstration, we list in the table below ten-digit values of the partial sums
Upz,Rq defined by truncating (A.8) at r“R for a typical point z1 “ 0.1`0.7 i and values of R going up to
one million. We have also included the values Upz2, Rq at the modular image z2 “ ´1{z1 “ ´0.2` 1.4 i,
both as a test of the modularity of Upzq and as a confirmation of the accuracy of the computation.
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R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000

Upz1, Rq 52.24167922 52.24327256 52.24429208 52.24465475 52.24484553 52.24496635 52.24500890

Upz2, Rq 52.24339662 52.24417862 52.24467954 52.24485793 52.24495185 52.24501138 52.24503236

It takes PARI about 17 minutes for R“105 and about 28 hours for R“106 on a standard workstation to
compute the values for each point zi given in this table. The output suggests that the final numbers are
correct to about 7 significant digits.

The very erratic dependence of the numbers Urpzq on r, due to the sum over square-roots of 1 modulo r
in (A.6), prohibits further analytic simplification. For the same reason, the infinite sum for Upzq, although
convergent, is not very tractable numerically. However, the convergence of the partial sums Upz,Rq for
R Ñ 8 can be accelerated by adding a suitable correction term. The following heuristic argument
suggests what this correction term should be. If the inner sum in (A.8) were over all values of p (mod r)
then, since the value of

a

y2 ´ 1
r2 « y is close to y for r large, this inner sum for large r would simply

be r times a Riemann sum for the integral
ş

R{Z
Spx, yqdx “

ş

R
px2`y2q´2dy “ π{2y3 and hence could

be approximated by rπ{2y3. The actual inner sum is only over Nprq rather than r values of p (mod r),
where Nprq denotes the number of square-roots of 1 modulo r. Hence, if these square-roots are more or
less uniformly distributed on the interval r1, rs on the average, which is a reasonable heuristic assumption,
then the value of the inner sum should be roughly Nprqπ{y3 on average. Therefore, the contribution of
the terms in (A.8) with rąR (the “tail”) should be approximately π{y times

ř

rąRNprq{r
2 for R large.

The value of the arithmetic function Nprq fluctuates a lot, but its average behavior is quite regular, and
one can give the asymptotic value of the sum

ř

rąRNprq{r
2 without difficulty. Specifically, from the

Chinese remainder theorem we find that Nprq is multiplicative, meaning that N
`
ś

pνii
˘

“
ś

Nppνii q,
and Nppνq in turn is easily evaluated as 2 for p an odd prime and νě1 (the only two square-roots of 1
in this case being ˘1 (mod pr)), and as 1 or 2 or 4 for p“2 and ν“1, 2, or ě3, respectively (the only
square-roots of 1 in the latter case being ˘1 and ˘1`2r´1 (mod 2r)). This gives

N psq :“
8
ÿ

r“1

Nprq

rs
“

´

1`
1

2s
`

2

4s
`

4

8s
`

4

16s
` . . .

¯

ź

pą2

´

1`
2

ps
`

2

p2s
`

2

p3s
` . . .

¯

“
1 ` 2´2s ` 21´3s

1 ´ 2´s

ź

pą2

1` p´s

1´ p´s
“

`

1 ´ 2´s ` 21´2s
˘ ζpsq2

ζp2sq
,

(A.9)

where ζpsq denotes the Riemann zeta function. In particular, N psq has a double pole at s“1 with principal

part ζp2q´1

ps´1q2 ` O
`

1
s´1

˘

, so Nprq behaves “on the average” like ζp2q´1 log r, and
ř

rąR

Nprq
r2 is asymptotically

equal to ζp2q´1 logR
R . This suggests that we can improve the convergence of

ř

Urpzq by replacing the
partial sums Upz,Rq by

U p0qpz,Rq “ Upz,Rq `
6

πy

logR

R
. (A.10)

This is indeed the case, as we see from the following table below, in which we have tabulated the corrected
partial sums with the same parameters as before.

R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000

U p0qpz1, Rq 52.24419214 52.24462358 52.24488249 52.24496886 52.24501205 52.24503796 52.24504659

U p0qpz2, Rq 52.24465308 52.24485413 52.24497474 52.24501499 52.24503511 52.24504718 52.24505121

We can improve these values further by adding an appropriate term C{R to (A.10), where C is a con-
stant depending on z but not on R. For this, we must first give a more precise estimate of

ř

rąRNprq{r
2

for R large. The function ζpsq is holomorphic except for a simple pole at s“1, with ζp1`εq “ ε´1`γ`Opεq
as ε Ñ 0, where γ is Euler’s constant. It has no zeros in the half-plane <psq ą 1 (or even <psq ą 1

2 if
we assume the Riemann Hypothesis), so N psq has the same poles as ´c ζ 1psq ` c1 ζpsq in the half-plane
<psq ą 1

2 (resp. ą 1
4 on RH), where

c “
1

ζp2q
“

6

π2
“ 0.6079271 . . . and c1 “ c

´

2γ ´
1

2
log 2 ´ 2

ζ 1p2q

ζp2q

¯

“ 1.184108 ¨ ¨ ¨ . (A.11)
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This implies that Nprq behaves on the average like c log r`c1, and that we have the asymptotic estimate

8
ÿ

r“R`1

Nprq

r2
„

c logR` c` c1
R

, (A.12)

with an error of the order of R´3{2`ε unconditionally or R´7{4`ε if we assume the Riemann Hypothesis.
This suggests that we can further improve the convergence of

ř

Urpzq by replacing U p0qpz,Rq of (A.10)
with

U p1qpz,Rq “ U p0qpz,Rq `
π

y

c` c1
R

, (A.13)

and this is indeed confirmed by the values shown in the following table.

R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000

U p1qpz1, Rq 52.24499640 52.24502571 52.24504334 52.24504929 52.24505226 52.24505404 52.24505464

U p1qpz2, Rq 52.24505521 52.24505520 52.24505517 52.24505520 52.24505522 52.24505522 52.24505523

However, although these values are better, we see clearly from the graphs shown in Figure 15 that
even U p1qpz1, Rq, though much more nearly constant than U p0qpz1, Rq, is still off by a linear term in 1{R.

Figure 15 Figure 16

To understand the reason for this, we must refine the heuristic argument given above. We begin by
noting that the values of pr for p2 ” 1 (mod r) are in fact not completely uniformly distributed modulo 1,
even on the average, because the two values corresponding to p ” ˘1 (mod r) are always very near to 0.
For the remaining Nprq´2 values the heuristic assumption of equidistribution at first sight still seems
plausible, in which case the corresponding contribution to each term Urpzq with r large would have the
same average behavior as

`

Nprq´2
˘

π
r2y , but the two values of p{r near 0 give a contribution to Urpzq of

approximately 2y2Spx, yq{r2 each. This suggests the improved correction

U p2qpz,Rq “ U p1qpz,Rq `
4y2S˚px, yq

R
with S˚px, yq :“ Spx, yq ´

π

2y3
(A.14)

instead of (A.13), and this indeed does give a further improvement of the convergence, as one sees in the
table below and also in the graph in Figure 16. But this same graph makes it clear that we still do not
have the right linear correction term. The reason for this is more subtle and is the most interesting part
of the discussion.

R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000

U p2qpz1, Rq 52.24509364 52.24507433 52.24506279 52.24505901 52.24505712 52.24505599 52.24505561

U p2qpz2, Rq 52.24505562 52.24505540 52.24505525 52.24505524 52.24505524 52.24505523 52.24505523
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This final heuristic argument depends on the observation that not only are the two obvious square-
roots ˘1 of 1 (mod r) not randomly distributed modulo r, but that there are infinitely many other
non-randomly distributed square-roots, each occurring for a set of integers r of positive asymptotic
density. For instance, if r ” 10 pmod 25q, which happens for 4% of all integers, then the two further
numbers ˘pr{5 ´ 1q are also square-roots of 1 (mod r), because r{5 ´ 1 is congruent to ´1 modulo r{5
and to `1 modulo 5. For these two values of p, one has p

r ” ˘
1
5 `O

`

1
r

˘

, which are indeed not randomly
distributed. More generally, for any rational number α “ N{D with N and D coprime and D ą 0, we
consider integers rą0 of the form Dn with n ” ´2N´1 pmod Dq. Then the number p “ Nn ` 1 is
congruent to 1 modulo n and to ´1 modulo D, so that p2 ” 1pmod rq, while p

r “
N
D `

1
r is extremely

close to α if r is large. For fixed α, the set of integers r of this form constitutes a single congruence
class modulo D2 and hence has asymptotic density 1{D2. Hence, approximating x ´ p

r by x ´ α and
a

y2 ´ 1
r2 by y in (A.6) , we see that the total contribution of these terms to the “tail” r ą R in (A.6)

is approximately 2 y2

D2R Spx´ α, yq. To get the final answer, we must sum this over all rational numbers α
pmod 1q, i.e., over all denominators D ą 0 and all numerators N pmod Dq prime to N .

The easiest way to do this is to use the Fourier expansion of the periodic function Spx, aq which is
given by

Spx, aq “
π

a3

´1

2
`

8
ÿ

n“1

`

1` 2πna
˘

e´2πna cosp2πnxq
¯

. (A.15)

(There are two ways to see this: either one writes the Fourier expansion of Spx, aq as
ř

nPZ Snpaq e2πinx

with Snpaq “
ş

R{Z
Spx, aq e´2πnx dx “

ş

R
e´2πnx

px2`a2q2
dx and computes the integral by the Cauchy residue

theorem, or else one simply evaluates the expression on the right-hand side of (A.15) in closed form using
the formulæ for the sum of a geometric series or its derivative, obtaining precisely the right-hand side
of (A.7).) The constant term π{2a3, in this expansion, with a replaced by

a

y2 ´ 1
r2 « y and inserted

into (A.8), gives exactly the approximation π
y

ř

rąR
Nprq
r2 to Upzq ´ Upz,Rq that we used in our initial

heuristic argument and that led via (A.12) to the function U p1qpz,Rq defined in (A.13). The further
correction term coming from all rational numbers α pmod 1q as explained above therefore has the form
Cpzq{R, with Cpzq given by

Cpx`iyq “ 2y2
8
ÿ

D“1

1

D2

ÿ

N (mod D)
pN,Dq“1

S˚
`

x´N
D , y

˘

(A.16)

with S˚px, aq as in (A.14). Replacing S˚px, aq by its expression as a sum of exponentially small terms
given in (A.15) and interchanging the order of summation, we find

Cpx`iyq “
2π

y

8
ÿ

n“1

εpnq p1`2πnyq e´2πny cosp2πnxq with εpnq :“
8
ÿ

D“1

1

D2

ÿ

N (mod D)
pN,Dq“1

e2πinN{D .

(A.17)
The sum over N pmod Dq is the well-known Ramanujan sum, whose value is given as the sum of dµpD{dq
(µ “ Möbius function) over all common divisors d of D and n. Therefore, writing D as d k with k ą 0
we find

εpnq “
ÿ

d|n

8
ÿ

k“1

µpkq

d k2
“

6

π2
σ´1pnq , (A.18)

where σipnq :“
ř

d|n d
i as usual. This finally gives (z “ x`iy)

Cpzq “
12

πy

8
ÿ

n“1

`

σ´1pnq ` 2π σ1pnq y
˘

e´2πny cosp2πnxq “ ´
12

πy
log

ˇ

ˇηpzq
ˇ

ˇ ´ <
`

E2pzq
˘

, (A.19)

where ηpzq “ eπiz{12
ś

p1´ e2πinzq24 and E2pzq “ 1´ 24
ř

σ1pnq e2πinz denote the Dedekind eta-function
and the quasimodular Eisenstein series of weight 2 on the full modular group, respectively. Note that
each of the two terms on the right-hand side of (A.19) is the sum of a constant ˘1 and an exponentially
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small term of the order of e´2πy, but that their sum Cpzq decays exponentially as y“=pzq grows. This
explains why in the tables above the convergence of both U p1q and U p2q was much faster for z2 (y2“1.4)
than for z1 (y1“0.7).

Summarizing, we have given an argument suggesting that the “correct” refinement of the truncated
sum Upz,Rq should be given by

U p8qpz,Rq “ U p1qpz,Rq `
Cpzq

R
(A.20)

with Cpzq defined by (A.19) for z in the complex upper half-plane. The table below and the graph
in Figure 17 both confirm that this improved version of the previous functions U piqpz,Rq (i “ 0, 1, 2)
does indeed converge very much faster to its limiting value Upzq than any of them did, with the error
now decaying faster than 1{R. (Both the numerical experiments and a heuristic argument suggest that
the true order of magnitude of this difference should be something more like plogRq2{R2.) Finally, the
graph in Figure 18 gives one last improvement. Here, we have replaced the function U p8qpz,Rq by
a function Upz,Rq defined as the average value of the numbers U p8qpz,R1q for R1 in the (somewhat
arbitrarily chosen) interval r2R{3, Rs. The calculations up to the same limit R“106 as before now yield
14 significant digits rather than the original 7.

R 10 000 50 000 100 000 500 000 1 000 000

U p8qpz1, Rq 52.2450557618857 52.2450552157850 52.2450552237500 52.2450552285072 52.2450552288639

U p8qpz2, Rq 52.2450554614623 52.2450552195214 52.2450552255882 52.2450552288339 52.2450552288596

Figure 17 Figure 18

For the sake of honesty it should perhaps be mentioned that, if our goal were simply to obtain a
better convergence of Upz,Rq to Upzq as R Ñ 8, then we could have avoided the whole discussion of
the “right” linear correction term C{R to (A.10). One may simply use a least-squares fit to obtain C
numerically from our tabulated values (as we in fact did originally, with results that were not all that
much worse than U p8q). Alternatively, at the cost of a little loss of accuracy, one may replace U p0qpRq
by the expression 2U p0qpRq ´ U p0qpR{2q, which eliminates any linear term in 1{R and is unchanged by
employing U p1q, U p2q, or U p8q instead of U p0q. However, our analysis leading to the final correction term
as given by (A.10), (A.13) and (A.20) with (A.19) is mathematically interesting and seemed worth giving,
especially in view of the unexpected occurrence of the nearly modular functions log

ˇ

ˇηpzq
ˇ

ˇ and <
`

E2pzq
˘

.
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