PERIODS OF MODULAR FORMS ON TI'3(N)
AND PRODUCTS OF JACOBI THETA FUNCTIONS

YOUNGJU CHOIE, YOON KYUNG PARK, AND DON ZAGIER

ABSTRACT. Generalizing a result of [I5] for modular forms of level one,
we give a closed formula for the sum of all Hecke eigenforms on I'g(N),
multiplied by their odd period polynomials in two variables, as a single
product of Jacobi theta series for any squarefree level N. We also show
that for N = 2, 3 and 5 this formula completely determines the Fourier
expansions of all Hecke eigenforms of all weights on I'g(NV).

1. INTRODUCTION AND STATEMENT OF THEOREMS

It is well known that to any cusp form f on the full modular group
I'1 = SLy(Z) one can associate the period polynomial

(1) ri(X) = /000 f(r) (X =) 2dr (k = weight of f)

and that the maps f +— r;" and f +— T;d assigning to f the even and odd
parts of ry are both injective, with known images. Furthermore, if f is
a Hecke form (= normalized Hecke eigenform), then the odd two-variable
polynomial

r(X) e (Y) 4+ r9(X) r§(Y)
(20)5=3(f, f)

transforms under o € Gal(C/Q) by R,(y) = o(Ry), so Ry has coefficients in
the number field Q; generated by the Fourier coefficients of f and, denoting
by B,"*P the basis of Hecke cusp forms f of weight k on I'y, the sum

2)  RpX)Y) = € CX,Y]

(3) CRXYir) = gy 2 RAXY)SG)
feBP

belongs to Q[[¢]][X,Y] for each integer k > 0. (Here ¢ = ¢*™" as usual.)

In [I5], a surprising identity was proved showing that all of these func-
tions can be assembled into a single four-variable generating function that
has a very simple expression as a product of Jacobi theta functions. More
precisely, it was shown that if one defines C(X,Y, ) for £ > 0 by adding
to C}."*P(X,Y, 7) a term for the normalized Eisenstein series G, of weight k
(with a suitable definition of Rg, (X,Y’) that will be recalled below), then
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the generating function

(X +Y)(XY —1) > o
X2Yy272 + Z Cr(X.Y,m)T
k=2

(4) CX,Y,7,T) =

is given by the formula
0 (XY —=1)T) 0. ((X +Y)T)
0-(XYT)6,(XT) 0-(YT)0,(T) "’

where 60 (u) denotes the classical Jacobi theta function

(5) C(X,Y,7,T) = 0.(0)2

o0
(6) Or(u) = ¢ T[(1 - M@ =) (1 — " le™).

n=1

Until now, attempts to find an analogous result for higher levels were not

successful, and it was thought that the fact that the generating function for
all level one Hecke forms and their periods had a multiplicative expression
as a single product of theta functions was an accident, due to the special
structure of I'; as a group with two generators and of the algebra of modular
forms on I'; as a free algebra on two generators. In this paper, we will show
that this belief was wrong and that there is a statement of precisely the
same form for modular forms on I'g(V) for every squarefree integer N.

Theorem 1. Let N > 0 be squarefree and for every integer k > 2 define
1

(7) Ck,N(vavT) = (k‘—2)' Z Rf(X7Y)f(T)7
JeBy, N

where By n is the basis of Hecke forms on I'o(N) defined in §2 and where
R;(X,Y) is defined by and when f is a cusp form and in the way
explained in §2 when f is an Eisenstein series. Then the generating function
(X+Y)(NXY —1)
NX?2Yy277?

[e.e]
+ > Cen(X,Y, 1) T2
k=2

(8) Cy(X,Y,7,T) :=

s given in terms of the level one theta function @ by
0,(0) 0, (X +Y)T) 8y, (0) On- (NXY — 1)T)
97’ (XT) 07’ (YT) QNT(NXYT) 0NT (T)

This theorem gives a simple way to find the polynomial Rf(X,Y) in
Q[X, Y] for any Hecke cusp form f of weight k on T'o(N) if the Hecke ba-
sis Bi,n is supposed known, just by decomposing the coefficient of Tk=2
in the theta-product in @ with respect to that basis and taking the co-
efficient of f. In [I5] it was shown that for N = 1 a stronger statement
holds: even though the construction of the generating function involves
summing over all Hecke forms in each weight and therefore apparently has
destroyed information about the individual terms, an easy algebraic lemma
implies that the coefficient of T%-2 in the symmetrized generating func-
tion C(X,Y,7,T) 4+ C(—X,Y,7,T) has a unique decomposition as a sum of

(9) Cn(X,Y,7,T) =
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dim My (T'1) terms of the form f(7)r(X)s(Y) with r(X) even and s(Y") odd,
and therefore the formula uniquely determines the Hecke eigenforms on I'y
themselves, as well as their period polynomials. The corresponding state-
ment cannot be true for the generating function of Theorem [1|in general, be-
cause for all but a few levels the space of modular forms of weight k on I'g(N)
has a larger dimension than the space of polynomials of degree < k—2. (We
plan to return to this question in a later paper, where Theorem|[I]is general-
ized to include more period polynomials for each eigenform.) However, for
small N this obstruction is not present and one can in fact prove the exact
analogue of this second result also:

Theorem 2. For N € {2,3,5} the identity in Theorem completely deter-
mines the Fourier coefficients and periods of all Hecke forms on I'o(N).

The paper is organized as follows. In Section [2] we give the precise defi-
nitions and main properties of all of the quantities occurring in Theorem
and |2, including the definitions of the Petersson scalar product (f, f) and
of the period polynomial 7;(X) when f is an Eisenstein series. In the next
section we compute the Eisenstein part of the generating function and
use this to show that the left- and right-hand sides of @ agree at all cusps
of T'g(N). This reduces the proof of Theorem [1] to the statement that the
scalar products of any f € le,l]s\’,p with the two sides of @ agree. In Section
we review the notion of Rankin-Cohen brackets and the formula expressing
the periods of a cusp form in terms of its scalar products with Rankin-
Cohen brackets of Eisenstein series, and give a simplified presentation of the
proof of given in [I5]. The generalizations of these results to all square-
free levels N are then given in the following section, completing the proof of
Theorem([I} Along the way we also obtain a formula for the eigencomponents
of C n with respect to the action of the group of Atkin-Lehner operators
(Theorem (3] Section [3]) In Section |§| we give numerical examples illustrating
Theorem [I] for small levels and also showing both how Theorem [2] works for
the levels stated and how it fails for modular forms of level 7. The proof of
Theorem [2] together with some further information about modular forms of
these small levels, is given in the final section.

This paper is based on an earlier paper by the first two authors alone,
completed in 2014, in which a result equivalent to Theorem (1| was proved
for prime levels. It was then found by the third author that after some
reorganization the same proof worked for arbitrary squarefree levels.

2. MODULAR FORMS ON I'g(/N) AND THEIR PERIODS

In this section we give the complete definitions of all of the quantities
appearing in the statements of the theorems given in the introduction, in-
cluding the canonical basis of Hecke forms for I'o(NN) and the definition of
the Eisenstein part of the generating series and . None of the material
is new, but we have included full details for the reader’s convenience.
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Our notations for modular forms are standard. We write H for the upper
half-plane, ¢ = €*™7 for a generic variable 7 € H, and f(7) = > an(f) ¢"
for the Fourier expansion of a modular form f. For k& € 2Z we define the
“slash operator” | by

(A7) = (ad = b 2(er + a)+ (200,

for v = &+ (‘;Z) € PGLJ (R) and for any function f : H — C. Thus a
modular form of weight k on a subgroup I' C PGLJ (R) satisfies f|y = f
for all y € T.

We denote by Mj, and Sj the spaces of modular forms and cusp forms,
respectively, on the full modular group, and by M n or My(I'o(IN)) and
SN or Si(Lo(N)) the spaces of modular forms and cusp forms, respectively,
on the group I'o(N), where N will always denote a squarefree number and
where I'g(N) (and later its normalizer I'j(IV)) will always be considered as
subgroups of PGLj (R). The space My, v has three main decompositions:
into Eisenstein series and cusp forms, into new forms and various types of
old forms, and into eigenspaces for the Atkin-Lehner involutions. Each of
them has a particularly simple form because N is squarefree.

We start with the decomposition My n = M,];:l]f, ® Sk,n, where ME% is
the space spanned by the FEisenstein series of Welght k and level N. The
group I'o(N) has v(N) = 2! cusps, where v(IN) denotes the number of
divisors of N and ¢ its number of prime factors. For k > 4 the space M, Elﬁf
has the same dimension and a basis given by the functions Gy (dr) with d|N,
where G}, = —g—g + > 51 0k—1(n) ¢" is the normalized Eisenstein series of

level 1. If k£ = 2, then these functions still span M,]El;[, but now this space
has dimension only v(N) —1, since the form Ga(7) is only quasimodular and
the linear combination }°; y ca G2(dr) is modular only if >~ cq/d = 0.

We next turn to old and new forms. By an old form on I'o(N) we mean
any linear combination of functions f(d7r) where f is a modular form of
level N; with N a strict divisor of N and d a divisor of N/Nj. Thus all
Eisenstein series are old (and even “very old,” coming all the way from
level 1) if N > 1 and k > 4. We will consider them to be old also if N > 1
and k = 2, since G2 is quasimodular of level 1 and they are therefore old
as quasimodular forms as well as being modular of level N. For N > 1 the
space of new forms of weight k on I'g (V) is a subspace of Si, x and is defined
there as the space of forms that are orthogonal with respect to the Petersson
scalar product to all old forms. (For N = 1 the new forms are simply the
whole space My.) We then have the decomposition

Siv = D D Sim Ve
Np|N d|N/Ny

where V; = (29), so that f|;Vy(r) = d*/2f(dr). As in the introduction,
we define a Hecke form in M), y to be a simultaneous eigenform f of all
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Hecke operators T, with (n, N) = 1, normalized by ai(f) = 1, in which
case f|xTn = an(f)f for all n prime to N. In particular, Gy is a Hecke
form for N = 1. The finite set By of Hecke forms in Mp% (which are
sometimes called the newforms, written with no space) forms a basis of this
space. The set of all f(dr) with f € By%, and dN1|N (with d = 1 omitted
and f(d7) replaced by dGy(dT) — Ga(7) if Kk = 2 and N; = 1) then forms
a basis of M n. But this is not a good choice, since its elements neither
have multiplicative Fourier coefficients nor are mutually orthogonal. To get
a better basis we must use the Atkin-Lehner operators.

Denote by ®(N) the set of divisors of N, made into a group isomorphic
to (Z/QZ)t by the multiplication N1 *NQ = NlNQ/(Nl, NQ)Q. If M e @(N),
then since (M, N/M) =1 we can find Wy, € (X2 |Z ) with det(Wy) = M.
The W)y is called the Atkin-Lehner involution. Any two such matrices differ
on the left (and also on the right) by an element of I'g(N), so the function
fleWas for f € My, n is independent of the choice of matrix W), and again
belongs to My, . This defines an action of the group ®(N) on M), x and an
eigenspace decomposition My ny = ®€6©(N)V M,in, where the sum ranges
over the characters of ©(N) (i.e., the homomorphisms ¢ : D(N) — {£1})
and where M y is the space of f € My with fleWar = e(M)f for all
M|N. This eigenspace decomposition is compatible with the splitting into
new and old forms in two different senses. On the one hand, since the Atkin-
Lehner involutions commute with the Hecke operators T, for (n,N) =1,
every newform is automatically an eigenfunction of the group ©(N). This
means that the basis B9 of MY is the union over all e € D(N)" of the
subset Bgiv\;’s of newforms belonging to M ,i ~ (all of which are cusp forms
except for f = G in the case N =1, =1, k > 4). On the other hand, for
each decomposition N = N{N, and each character g9 € CD(NQ)V, we have a
linear map (cf. [1], Prop. 2)

L, + Miny — My, Ly, (Mily,) € Ml (Ver € D(M1)Y)
given by
(10) L) = £| (S evi) = | (3 eawa),

d| N2 d| N2

where the second equality holds because W,V € To(Ny) if d|No. It then
follows by induction on ¢, the number of prime factors of N, that

M, = @D L (RN e eDM)Y, pie) = o)

N=NiN

Together these two statements imply that My y has a basis B}; N given by

v = I {«ed o resmm@}
N=N1Ns
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for every ¢ € ®(N)Y. The union of these bases for all e € D(N)V is the
basis By n of My y occurring in Theorem (1 We have By y = BEIJSV]_[BC“SP

with BEIJSV consisting of the functions Gf, y := L y(Gy) for all € € D(N)Y
except € = 1 in the case k = 2. We also observe that the group of Atkin-
Lehner involutions W), permutes the 2¢ cusps of I'g(IV) simply transitively,
and that the group I'§(N) generated by I'g(NN) and all of the W), which is
the normalizer of T'g(NN) in PGLJ (R), has only one cusp. This will be used
later.

For each Hecke form f the L-series L(f,s) = Y .2, an(f)n® has an
Euler product expansion L(f,s) = Hp L(f,p™®)p, where the product is over
all primes and where each factor L(f, X), is a rational function of X. If
feM ,j ~ is a newform then these functions have the form

k—1y2y~1 -
1) L), = (DX e T
(1 + e(p)p*/> 71 X) if p| N,

while for an oldform f = I,?N (f1) with f1 € Bnew "1 we have

1 f N ,
" HA = B {1+sz(p)pk/2x ;ngNZ.

(This includes the case when N1 = 1 and f; = G}, in which case L(f1, X), =
(1 —X)~%1 - p*~1X)~1) Combining these statements gives a description
of L(f,X)p for all f € By ny and all primes p that will be used later.
Finally, we discuss, first in the case of cusp forms, the two quantities
(f, f) and 7¢(X) appearing in the definition of R¢(X,Y’). The former, of
course, denotes the Petersson scalar product of f with itself, but we should
emphasize that in our normalization this scalar product is defined as the
integral of | f (z+iy)|?y*~2dx dy over a fundamental domain for the group I'y
in the case of eq. and for the group I'g(NV) in the case of eq. . When we
are discussing I'g(/N), we shall always use (-, -) to denote the scalar product
with respect to that group, so that if a form f € S y happens to be modular
on T'o(Ny) for some proper divisor Ny of N then (f, f) is [[o(N1) : To(N)]
times the scalar product of f with itself with respect to I'g(NN1), which to
avoid confusion we then denote by (f, f)n,. If f € Bj y has the form
GCE?N?(fl) for some f; € B,‘:Nl, where N = N1Ns and € = 169 as above,
then the two scalar products (f, f) = (f, f)~ and (f1, fi)n, are related by

(13) (LN = ufdw - [12(p + 220 a(n)p ™2 + 1),

p|N2

as one can show in several ways, e.g. by applying the Rankin-Selberg method
to express (f, f) as a multiple of the residue of the Rankin-Selberg zeta
function Y, a,(f)?n™% at s = k and then using the relationship (12)) to
relate that zeta function to the corresponding one for fi.
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The period polynomial 7 is defined for a cusp form f of weight k and any
level by (1)) and belongs to the space Vi_5 := (1, X,..., X¥72) of C[X]. We
have r¢(X) = Zﬁ;g(—l)" (F~2) () X527 with “periods” ry,(f) defined
by

n+1
(14) r / flr)yrdr = (Z'Z),:rl (f,n+1) 0<n<k-2).

As in the introduction, we write r{'(X) and r?d(X ) for the even and odd
parts of 7¢(X) and write “ev/od” for statements that apply to both parities,

e.g., T;V/Od € VBV/Od with an obvious notation. The group PGLj (R) acts
on Vi_s by |a—k. In particular, for the Fricke involution Wy = ( J(\), _01) €
PGL3 (R), a simple calculation shows that we have 7, wy = —7flo—kWn

(the minus sign arises because Wy interchanges 0 and o), so
(15) fesSiy = rpeViyy:=Ker(l+eN)Wy,Vis).

Equivalently, 7_o_n(f) = (=1)"t1e(N)N*/2=1=7p (f), corresponding to
the functional equation of the L-series of f. Another simple calculation
shows that 7|, v, = 7|2, Vg for all d|N (this time with a plus sign, because
the matrix V; = (g (1)) fixed the endpoints 0 and oo of the integral )
Together with this implies the relationship

(16) f=Li, () = rp(X) = Y ea(d)d 2 ry (dX)
d| N

between the period polynomial of an old form and the period polynomial
of the new form of lower level from which it is induced. Finally, for later
purposes we mention that r¢(X) for f € S; 5 can also be given by

~ 1 1
_ _ k/2—1 yrk—2
A7) rp(X) = FOT) — e(N) N R o )
for any 7 € H, where f (X, 7) is the truncated version of (|1} . ) defined by
(18) / f(r — 2 dr! (tTeH).

If fisa Hecke form, then it is known that there are non-zero numbers
w§ € R, wf € iR such that the coefficients of r§"(X )/w?d and r?d(X)/w;i"
and the number w?ij}d /i(f, f) belong to the number field Q; generated by
the Fourier coefficients of f, and transform by o if f is replaced by f7 =
st 0(an(f)) ¢" with o € Gal(Q/Q). (See [8] and Chapter V of [7].) For
instance, for the unique newform f=q—8¢*+12¢3 +64¢*+- - in Sg(I'o(2))
we have r§V(X) /w9! = 8X0 34X +17X° 1, rOd( )/w§ = 4X5 5X3+X
and w§" /z<f f) =32/17 with de = 0.001759 - - -7 and w}’ = 0.01049 -
It follows just as in the level one case that the polynomials R:(X,Y) deﬁned
by have coefficients in Qy for f € B;'x and that the cuspidal part of
Cn(X,Y,7,T) belongs to Q[X,Y][[¢, T]].
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For the theorem, we also need to treat the case of non-cusp forms. Here
neither the integral defining 7¢(X) nor that defining (f, f) converges, but
in [I5] extensions of both quantities were defined, the main differences with
the cuspidal case being that 7(X) no longer belongs to V,_s but to the
slightly bigger space

Vieo = (X 51, XY = v, ,eC-XtpC-XFT,

and that (f, f) can be negative. The definitions in both cases are simple:
the Petersson product (f, f) is defined as the same multiple of the residue at
s =k of > ag(n)>n~* as in the cuspidal case (it turns out that this L-series
has a simple pole at s = k whether f is cuspidal or not), and the period
“polynomial” r¢(X) is defined by the same formula as in the cuspidal

case, which is again independent of the choice of 7 € H, but with f(X,7)
now defined by

~ 00 — T k—1
Foxm = [T () - an(0) (X =) i+ aoln) T

rather than by . The coefficients of the Laurent polynomial r¢(X) are
related to the special values of the L-series of f essentially as before. Since
the L-series of G, is just ((s)((s—k+1), it is simple to use these definitions
to calculate the contribution CF(X,Y,7) = ﬁRGk (X,Y)G(7) of the
Eisenstein series G}, € By 1 to Cix(X,Y, 7). The result, given in [I5], is

(19)  CPP(XY,7) = [(1=XM)Qu(Y) + (1= Y 72)Qu(X)] Ei(7),

where Ei(7) = Gi(7)/Gr(c0) = 1 — %—iq — -+ (B = the kth Bernoulli
number) is the Eisenstein series normalized to have the value 1 at co, where

(20) ax) = Y Tl g
r,s>0 even
r4+s=k

(Notice that the condition “r and s even” is not needed unless k = 2, in which
case the expression is zero anyway.) From the definitions just given,
it is clear that both the results and relating the Petersson norm
and period polynomial of an oldform f = °€Ii,2N2 (f1) to the corresponding
invariants of f; remain true in the non-cuspidal case, so taking f; = Gy,
Ny = N and €2 = € one immediately gets the corresponding results for the
Eisenstein case. The result will be given in the next section, in which we
compute the total contribution of all of the Eisenstein series in M, y to the
generating function Cy.

This completes our discussion of the definitions and main properties of
all of the quantities appearing in Theorem

3. EISENSTEIN SERIES ON I'g(/N) AND THEIR PERIODS

Before proceeding, we introduce a notational convention that will be use-
ful both for the proofs and for the discussions of the numerical examples.
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This is to decompose each odd function of X and Y as the sum of its “even-
odd” part and its “odd-even part” (obtained by interchanging X and Y),
and to denote the first of these by the corresponding German (fraktur) let-
ters. Thus we write R¢(X,Y) as R¢(X,Y) + R (Y, X) with

Rp(X,Y) + Rp(-=X,Y) _ {7 (X)rp(¥)

2 —@OFS3{S )
and similarly Ci(X,Y,7) = €(X,Y,7) + € (Y, X, 7), etc., for the corre-
sponding generating functions. Then we have, for example,
NX?% -1
NX2YT?

(21) Rp(X,Y) =

o0
(22) Y (X7 Ya T, T) = + Z Q:k,N(Xa Y7 T) Tk_2 :
k=2

It is also convenient to introduce the notation By(X,Y,7,T) for the
right-hand sides of @, so that the statement of Theorem |1 can be writ-
ten simply as Cy = By. The object of this section is to show that at least
the Eisenstein parts of Cy and By agree, i.e., that the difference between
Cn(X,Y,7,T) and By(X,Y,7,T) vanishes in all of the cusps. Since these
cusps are all obtained from the cusp at infinity by applying Atkin-Lehner
involutions, as discussed in §2| it is enough for this to show that

(23) (Cn[Wm)(X,Y,00,T) = (By[Wn)(X,Y,00,T)  VMeD(N),

where |W)y is the operator given by applying |,Was (with respect to the
variable 7) to the coefficient of T%~2 for each k > 0. To prove , we will
calculate both generating series independently and show their equality.

To calculate the left-hand side of we need only the contribution of the
Eisenstein series. As we have already discussed, the space M, Elﬁf of Eisenstein
series of weight k on ['g(N) has dimension v(N) = 2! if kK > 2 (and one less
if k£ = 2). It has three natural bases: the forms (G od)(7) := Gi(dr) with d
ranging over D(N), the forms Gf,  := L y(Gy) with € ranging over D(N)Y,

and the forms E,(j\), with P ranging over the cusps of I'g(N), where E,(CPA),

denotes the Eisenstein series that equals 1 (in a suitable sense) at P and 0 at
all of the other cusps of I'g(IV). Since the group of Atkin-Lehner involutions
acts simply transitively on the cusps of I'g(/V), the Eisenstein series E,(clj\),
for the cusp P = Wy (00) with M|N (which is the cusp represented by a171y
rational number whose denominator has g.c.d. N/M with N) can be taken

simply to be E,(s;,)|kWM, where

00 1 N
~ €00(N)oo\Lo (N) pIN AN

with u(d) = Mobius function and Ey(7) = % as before. In this section

we will need only the basis of Hecke forms G7, 5, but the proof of Theorem
in §5| will use all three bases: the Eisenstein series associated to the cusps
of T'o(N) are the ones needed to apply the Rankin-Selberg method, the
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Eisenstein series G o d coming directly from level one are the ones that
will appear in the expansion of By as a sum of Rankin-Cohen brackets,
and the Hecke forms Gi, y are the convenient ones when we need to exploit
the orthogonality with respect to the Petersson product of modular forms
on I'g(N) with different Atkin-Lehner eigenvalues.

We begin by computing the Eisenstein part of C, x(X, Y, 7), which we can
write with the convention introduced above as QEJSV(X Y, )+ QﬁE’iJSV(Y, X, 1),
where

1
(k—2)!

(25) CN(X Y, 7) = Y. Ra [(XY)G(r).

£€D(N)V

(In principle, we should add the condition “c # 1 if k = 2” to the summa-
tion, but this is not necessary since the symmetry property of periods implies
that r§¥(X) = 0 and hence Ry(X,Y) =0 for all f € M5 y if e(N) = 1.) We
can compute each summand in this expression directly from the level one

formula together with equations and applied to the case
Ny =1, Ny = N, fi; = Gj. The first of these, together with the formula

ap(Gy) = p*~1 + 1 for p prime, gives

<GZ,N7 Gi,N) ot B
(G, Gr) 2 11|_JI\7(1 + e()p?) (1 + e(p)p'*/?).

The second can be written symbolically as rge | = L5 4 y(rg,) with an
obvious notation, and since

L5 g1 =XF2) = (1 = e(N) N2 X522) - TT(1+ e(pp'™+7?)
pIN

by an easy calculation (consisting of interchanging the divisors d and N/d in
the sum defining the coefficient of X k_Q), we obtain from the equation

%GiN(X,Y) i 1 — e(N)Nk/2-1 x k=2 . GE’ (7_)
RN l_ifwzl—l—e(p)pkﬂ) Loen (@) gy

Gr(o0)
If we now substitute into this the value

(GinIkWar)(00) = (e(M)Gj y)(00) = e(M) Y e(d)d"? Gr(o0) ,
d|N

then the denominator cancels and we obtain

Rae (XY
PO T (G Wi (o) = 27 (+(0) — o001 N2 x5-2)
(k — 2)! :
B, B
-r Zs (r—s)/2y r—1
><< Z sl e(d)d" )2y )
r,s>0 even d|N

r4+s=k
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We now insert this formula into and sum over all ¢ € D(N)V, using the
identity 27 Y"_e(d)e(d’) = dqa for d, d' € D(N), to find

B B r—s8 S—r
CnleWu) (X, Y, 00) = LM —NTIM T X2y
) | |
r,s>0 even s
r+s=k

Substituting this in turn into and using the standard generating func-
tion identity 2 B,t"" /r! = coth(t/2), we obtain

r > 0 even

4(Cn|Wa)(X,Y,00,T) = coth VMYT ooth T — coth XXYT oot VMXT

2 2vVM 2vVM 2
The symmetrization of this in X and Y is a product of two differences of hy-
sinh(b — a)

perbolic cotangents, and using the identity cotha —cothb = ——————
sinh(a) sinh(b)

we obtain finally the following result describing the values of Cy at all cusps:
Proposition 1. For any divisor M of N, we have
(Cn[WuM)(X,Y,00,T) =
sinh(vM (X + Y)T/2) sinh((1 — NXY)T/2v/M)
4 sinh(vVM XT/2) sinh(v/MYT/2) sinh(T/2vM) sinh(NXYT/2v/M)

To complete the proof of C%S = B%is, we also have to compute the value
of By at all cusps. But this is much easier. We can write the definition of
By (X,Y,7,T), the right-hand side of @, as

(26) By(X,Y,7,T) = F(XT,YT)Fy.(T,~NXYT),
where

/
(27) Fy(u,v) = 26+ v)

0, (u)0-(v)

with 6, as in (6). The function F, was defined and studied in [I5] (but
in fact already by Kronecker, as the author learned later) and will be used
again in the next section. Here we need only its modular transformation

property
u v cuv /2mi
28 Fa,‘r (7, ) == d ( ) FT 5
(28) Hi\er+d et +d (er +d) exp ct +d (u,v)
for (¢%) € SLy(Z), which follows immediately from the definition and from
the standard transformation property of 6, with respect to the modular
group. From the definition of |Wj; we have
M

(T +d)?
Where(‘; g) is a matrix representing Wy, i.e., an integer matrix satisfying
Mla, Nle, M|d and ad — bc = M. We have Wy, = ap Vi and VWi, =

Majy Vi, where V, = (8?) as in and where aj; = ('Z;%Z) and

(29) (BN’WM)(X7 Y, T, T) =

ar+b VvMT
cr+d er+d)’

(30,2
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ay = (c/aN A(;%]y) both belong to SL2(Z). Inserting into and
using for apr and o, we obtain

(By|Wy)(X,Y,7,T) = Fuyr(VMXT, VMYT) F%( T NXYT>

vM VM
after a short calculation. (The two exponential terms coming from
cancel.) Now letting 7 — oo and observing that the limiting value at 7 = oo
of 0;(2)/0.(0) equals 2sinh(z/2), we find the same limiting value as the one
given in Proposition (I} This completes the proof of equation .

The calculation just given also lets us refine Theorem [I] to a formula
for each eigencomponent of Cy under the action of the group of Atkin-
Lehner involutions, which is useful both theoretically and for computational
purposes (as will be illustrated in Section @ Indeed, once we have finished
the proof of Theorem [I] and shown that Cy = By, we can write the above
formula for (By|Wir)(X,Y, 7,T) as a formula for (Cn|Wi)(X,Y, 7,T), and
the average of these expressions over all divisors M of N, weighted with the
value of (M) for some € € D(N)V, gives the e-eigencomponent of Cy. We

state the result in the following theorem, which will be proved as soon as
Theorem [T is:

Theorem 3. For each even integer k > 2 and for each homomorphism
e € D(N)V define C§ 5 by the same formula as in but with the sum
restricted to f € B . Then the four-variable generating function

(X+Y)(NXY —1)

Cy(X,Y,7,T) := 6.1 NXIY I

o
+ ) Cin(X Y, )T
k=2

can be evaluated in terms of the theta function @ as

(00 (00

» (A7)

Orrr (VMXT) Orr7 (VMYT) (AXYTY g

VM

1 0, (0) Oy (VIM(X +Y)T) O
gi D e(M) X o

M|N

4. RANKIN-COHEN BRACKETS AND PERIODS OF CUSP FORMS OF LEVEL 1

Write Bg v(X,Y,7) for the coefficient of 772 in By(X,Y,7,T). Then
Theorem [1] says that By, y = Cj, y for all k. Since both By y and Cy, y are
the sum of their Eisenstein and their cuspidal parts, and since we have just
proved the equality of the Eisenstein parts agree, it suffices to prove that
the cuspidal parts also agree. This in turn is equivalent to showing that
(f,Br.n) = (f,Ckn) for every f in the basis Bz?;,p of Sk n, and in view of
the definition of Cy y and the orthogonality of the elements of thl;,p this
is equivalent to the formula

r(X) r9(Y) + r9(X) rf(Y)

(30) <fa Blc,N(XaK )> = (2i)k73(k‘—2)!




PERIODS OF MODULAR FORMS ON T'g(N) 13

Our proof of this equality will be modelled on the proof given in [I5] for
the level 1 case. The main ingredients of that proof were the Rankin-Cohen
brackets of two modular forms and their modifications when one or both
of the arguments is replaced by the quasimodular Eisenstein series G2, an
identity of Rankin and Zagier expressing the Petersson product of a Hecke
cusp form f with such a bracket as a product of periods of f, and the Laurent
expansion of the function F;(u,v) defined in (27)). In this section we review
each of these things and present the proof o for N =1 given in [15]
in a form that is a little simpler than the one there and that makes the
generalization to the case of arbitrary squarefree level as simple as possible.
This generalization will then be carried out in the following section.

The Rankin-Cohen bracket of two holomorphic functions F' and G in H
is the bilinear combination of derivatives

R = (M (BT o) e,

ma mi
mi, mz>0
mi1+mo=m

where ki, ko > 0, m > 0 are integers and D = D, = L d q d%' This

2w dr
definition was found by Cohen [2], who proved that [F|x, g, G|k, g]ﬁ,’il”f” =

[F, G]gﬁl’b)\kl+k2+2mg for any g € GL$ (R). In particular, if F and G are

modular of weights k1 and ko on some Fuchsian group, then [F, G]gil’kz) is

modular of weight k = k1 + ko 4+ 2m on the same group. In the case when
F and G are Eisenstein series of level 1, one has the modified Rankin-Cohen
bracket [15]
k1,k
(Grys Grol,, = [Ghi» Gkg}( bhe)

(31) n 5k2,2 Dm—i—l(le) . (_1)m5k1’2 Dm+1(Gk2)
2 m+ ki 2 m + ko

9

which is still modular of the same weight k& even if one or both of ki or ko
equals 2, in which case the corresponding Eisenstein series Gy, or Gy, is
only quasimodular. If f € Si is a Hecke cusp form of weight k, then results
of Rankin [10] and Zagier [12, 15] say that the Petersson scalar product of f
with this modified Rankin-Cohen bracket is given in all cases by

(32)  — (20" (f. [Gra Chol) = <’“‘2

m

)Tm(f) Ttk —1(f) -

This formula, whose proof is based on the Rankin-Selberg convolution method,
will be generalized to our case in the next section (Proposition .

The other ingredient of the proof of in [I5] was a formula expressing
the Laurent coefficients at the origin of the meromorphic function - defined
by as derivatives of Eisenstein series, namely

(33) Fr(u,v) = Z Gem (T) (uk_l + vk_l) (uv)™
k>0,m>—1
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with g, (which is non-zero only for k even) defined by

—2D™
Ge(m) > 0,
(34) Gk (7) = ¢ ml(m +k —1)!
Ok.,2 if m=-1.

With these preparations, the proof of the identity in the case N =1
is quite easy. The basic observation is that the modified Rankin-Cohen
bracket of Eisenstein series defined above, rescaled by a convenient factor,
can be written uniformly in all cases as

4 [Grys Giylm
= = —]_ mz y
Gk1,k2,m (kl +m — 1)| (kZ +m — 1)' Z ( ) Ik1,m1 Jka,mo
mi, mg>—1
m-+mo=m
where the terms m; = —1 and my = —1 correspond to the correction terms

needed in the definition when k; or ko equals 2. Inserting into ([26))
and comparing the coefficients of T2 on both sides, we therefore find

B (X,Y,7) = > (XY R (A= (XYY (XY)™ gy g (7)) -

k1,k2>0, m>0
k1+ko+2m=k

From this and we find that the scalar product of a Hecke form f € BzUSp
with By, 1 is given by

202k =2U(f, Bra(X,Y, ) = ) (k;f) <m—]f—;12— 1)

k1,k2>0, m>0
k1+ko+2m=k

() Py -1 () (XB T YR (1 — (XY= (XY)™

k — k — o
- = (") ronmxy
0<i, j<k—2 L J
1#j (mod 2)

= rY(X)r(Y) + (X)) (Y.

(Here the second equality follows by breaking up the set of pairs (i, j) with
i # j (mod 2) into four subsets according as ¢ 2 j and i+j 2 k—2 and using
the symmetry property rr_o—;(f)rr—2—;(f) = —ri(f)r;(f).) This completes
the proof of for N =1 and hence of the equality B; = C;.

5. PROOF OF THEOREM 1

To carry out the corresponding proof in the case of squarefree level N, we
must define the extended Rankin-Cohen brackets for all pairs of Eisenstein
series of the same weight k& and compute their scalar products with both old
and new Hecke forms f in Sj n in terms of the periods of f. We will need
to work with all three bases {God | d € D(N)}, {G} v | € € D(N)"} and

{G,(CO?\;MWM | M € ©(N)} discussed in §3| As we already said there, each of
these will be the best choice for some part of our calculation. In particular,



PERIODS OF MODULAR FORMS ON T'g(N) 15

the modified Rankin-Cohen bracket that we will need is [Gg,, G, © N]m,
which we define by exactly the same formula as in but with Gy, replaced
by Gy, o N. The basic statement that we need is the formula for its scalar
product with Hecke cusp forms given by the following proposition.

Proposition 2. For k1, ks > 0 even and m > 0 the function
N 4 Nk2/2
(35) ko = - il
(k1 +m — 1) (kg + m — 1)!

is a modular form of weight k = ki + ko + 2m on T'o(N), and its Petersson
scalar product with any Hecke cusp form f € B} is given by

(N) k-2 k=2 \ rm(f) rmtki—1(f)
36 = )
(36)  {F 951 o m) ( m ) (m +k—1/) (20)k3(k —2)!
Given this proposition, the proof of follows exactly as in the level 1
case. The definition of gkjlka m can be rewritten in the form

N m
g @ =S (N2 0 (7) Grma (N T,

mi,me>—1
m—+meo=m

so from we see just as before that the coefficient By, y(X,Y,T) of TH~2
in By(X,Y,7,T) has the expansion

S (XPTeyRIh - (VYR YY) ) ().

k1,k2>0, m>0
ki1+ko+2m=k

Gy, G, ON}m

This already proves the first statement of the proposition above (which
can, of course, be established in several other ways), since the modularity
properties of 6 or F; imply that By n(X,Y,7) is modular of weight k£ and
level N in 7. In combination with it gives

g - S ()

k1,k2>0, m>0
k1+ko+2m=k

T () Tk -1 () (X7 YRID (L - (NXY)RT ) (XY)™

- 2 (D)) momnxy
i) (mod 2)
= X)) + (X))

for any f € B, by exactly the same computation as before except that

now the symmetry property of the periods used is rx—2—m (f)rmik,—1(f) =
—N*2= e (£)rmar,—1(f). This completes the proof of Theorem |1| assuming
equation , so it remains only to prove this equation.

The main tool needed for this proof is the Rankin-Selberg method. In its
simplest form this gives the formula (f, gEy,) = ((ki L(f*xg,k—1) for

47r)k71
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any f € S, and any g € My, with real Fourier coefficients, where k = k1 + ko
and L(f * g,s) denotes the convolution L-series Y 7, an(f)an(g)n=* (or
its meromorphic continuation). More generally, it was shown in [12] that

(c0) _ (k=2 (k2 +m—1)! o
(37) <f7 [97Ek27N]m> - (47T)k_1(k2—1)' L(f*g7 k m 1)7
for any N, any g € My, y with real coefficients, any f € Sin and any
m > 0, where now k = ki + ko + 2m. If N = 1, the cusp form f is
a Hecke eigenform, and the function g is the Eisenstein series G, then
a well-known elementary calculation (which we will repeat below) shows

that L(fxg,s) = Lg&;&gfé’fgl), and this in conjunction with the relation
between the periods of f and the special values of its L-function at arguments
se€{l,...,k—1} gives the equation used for the proof of Theorem [1{in
the level 1 case. For the case of squarefree level N, a similar formula holds
in principle for any Hecke form f € BCUSP and any g € M ,;Ele, but with two
new aspects: first of all, f can be an old or newform and we must treat

both cases, and secondly, the formula for the convolution of f and g now

has the form
_ L(f,s)L(f,s — ki +1)
(39) L *g.9) = AG) =5 T

where A(s) is a rational function of all p® with prime p dividing N that de-
pends on the particular Eisenstein series g chosen. Also, if we compare
with the equation that we want to prove, then we see that the Rankin-

Cohen bracket occurring in does not have the form [g,E(Oo) |m that
we need. To complete the proof, we therefore must find a spemﬁc choice
of the Eisenstein series g such that on the one hand the Petersson scalar
products of the cusp form f with [Gk,, Gk, © N}, and with [g, G,(c ])V]m are
proportional, and on the other hand the value of the factor A(s) in at
s =k —m —1is equal to 1. The lemma below says that such an Eisenstein
series exists and can be chosen independent of the integer m and of the
Hecke form f, but does depend on the eigenvalue € of f with respect to the
group of Atkin-Lehner involutions (as well as of course on N, k1 and k2).

Lemma 1. For fized even integers ki, ko > 0 and for every e € D(N)V,
define an FEisenstein series Gilkﬁv in ME?N by

(39) Gy = D_eld)
dIN
Then form >0, k = ki1 4+ ko + 2m and any f € Sli,N’ we have
k 00
(40) <f) [Gk17Gk2 ON]m> = sz(oo) ' <f7 [GZ;EW El(cg,l)\f]m>

and

od.

e,ka . o o
(41)  L(f+Gu%, k—m—1) = k)
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Proof. We write G* for G‘E kQ for simplicity. Because of the orthogonality of

the different eigenspaces of the group of Atkin-Lehner involutions, to prove
it suffices to show that

(42) ([le, GkQ o N]m)(s) _ sz(oo) ([Ga (oo])v

for any m > 0, where k = k1 + ko + 2m as before and where we denote by
F(®) the e-eigencomponent of a modular form F on I'g(N). The proof of this
is an algebraic juggling game using the different bases of M E‘S . First of all,

)(6)

Jm

applying the orthogonality relation ) R e(d)e (d ) = ots dd to the definition
Gi,N = ZdIN e(d) dk’/QGk od, we get the expression

1
(43) Grod = o 3 ed)Giy  (dEDN))
e€D(N)V

for the eigenfunction decomposition of each Gy o d. Applying this with
(k,d) replaced by (ki,1) and by (k2,N), and observing that the Rankin-
Cohen bracket of an e;-eigenfunction and an eg-eigenfunction is an €1e9-
eigenfunction (because of the basic modular equivariance property of the
bracket), we obtain

4—t
([Gri» Gy ON]m)(e) = Nk2/2 Z e2(N) [Gi x» Gy ]

€1,62€D(N)V
€160=¢

On the other hand, from equations and we obtain

1
G5 = 5 D eldyd™? Y ad)Gy

d|N e1€D(N)V
1 — €
= o5 > H(1+5€1(p)19 k2/2) G
e1€D(N)V p|N

and from equations and we obtain

(00)  _ 1 N 2 €2
Gin(o0) BTN = iy k() /2( > ez<d>Gk2,N)

dN £2€D(N)V

:% Z H( k2/2+1) Gl

e2€D(N)V p|N

and combining these two equations gives

4=t -
Gy (00) ([G7, Elcc);N]m)(E) = NE/2 Y. e [Gh v Gl

€1,e2€D(N)V
€169=¢

Comparing this with the previous result we obtain equation .
To establish , we will show first that holds for g = Gilk?v for
some function A(s) that is a product over all prime factors of N of functions
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Ap(p~*) each of which has the value 1 at s = k —m — 1. This works because
the L-series of both f and G® have Euler products, and we can therefore
work one prime at a time. Explicitly, the L-series of G is given by

L(GF,s) = > e(d)d

() C(s — hy + 1)

AN
ki—kgy . 1
= I+ 0™ ) T e

We write any L-series L(s) with an Euler product as [[, L,(p~*) where
L,(X) is a rational function of X. By the discussion in Section [2, we can
write any Hecke form f € By \ as f = OC,?NQ (f1) with f; € BZ?\’}'{‘EI for some
decomposition N = Ny Ny and corresponding decomposition € = £1£9, and
then L(f, X), is given by equation in terms of L(f1, X)p, which in turn
is given by equation with N, € and f replaced by N1, €1 and fi. The
local calculation splits into three cases, according as p{ N, p| N1 or p|Na.

Case 1: p{ N. In this case we have

1 [ee) pk’l 1 Z+1) 1 .
L(G*, X), = X
( ’ )P (1 _ X)(l _ pklle ZZ: k1 1 _
and
1 0 oitl — gt
L(f,X), = — & TP i
(fv )p 1_ap(f)X+pk71X2 ZZ; O‘_B
where a + 8 = a,(f), aff = pF~1. Tt follows that
O pki-1)(i+1) _ 1 44t _ gitl
€ p ﬁ i
L(f * G 7 p - Z k1 1 _ o — /8 X
_ 1 apk‘l—l - Bphi—1 o a 3
(a—B)(P"1—1) [1—aph—1X 1-pph-1X 1-aX 1-BX
1 — pk+k1—2 X2

(1 —apfr=1X)(1 = gpFr~1X)(1 — aX)(1 - BX)

L(f? X)P L(fapkl_lX)p
C(pk+k1 72X2)p )

establishing the prime-to-N part of equation . This is the standard
method of calculation, but in fact there is a simpler way that does not require
factoring the denominator of L(f, X), into linear factors: one decomposes
L(G*, X)p by partial fractions in the form %5 + and then gets

L(f *G%,X), as e1 L(f, X)p + caL(f, pkl_lX)p.

C2
1-pF1—1X
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Case 2: p|Ny. This is the “p-new” case, since p { Ny and therefore f is a
newform as far as the prime p is concerned. Equations and give

1 © S
L(sz)p = L(flaX)p = 1+ 61(p)pk/271X = Z(_pk/Q—lgl(p))Z X'
=0

while the formula for L(G®, s) given above (here with e(p) = €1(p)) gives

_ lte(p)p X
(=X -phiX)

(44) L(G%, X)yp

The calculation here is easier than in the generic case p { N, because the
form of L(f, X), as a geometric series means that its convolution with any
power series in X is obtained simply by replacing X by —e1(p)p*/?>~1X in
that power series. We therefore get after a short calculation

1—phtmIX L(f, X), L(f, M X)),

)
(45) L(f = G, X)p = 1— phthi—2x2 C(plf+k1f2X2)p

—k+m+1

and since the first factor takes the value 1 at X = p , we have estab-

lished the p-part of also in this case.

Case 3: p|Ny. This is the “p-old” case, since f comes from a form whose
level does not contain p. Here equations and give

1+ eo(p) p"?2X
1 —ap(f1)X +pk-tX2’

while L(G¢, X), is given by (44)), but with €;(p) replaced by e2(p). As in
Case 1 we can write each of these Euler factors as a linear combination
of two geometric series, obtaining for their convolution a sum of four geo-
metric series that can be evaluated by an elementary, though quite tedious,
computation, or alternatively write L(G*®, X), in the form % +

L(faX)p =

lfpkcf’lX
and get L(f x G%,X), as 1 L(f, X), + c2L(f,p"*~1X),. The result of the
computation can be written in the form

L(f*GEvX)p = (1_pk+k172X2) L(f7X)pL(fapkrlX)p

el X (1= P X) QUX) L X)p LS, X,

where Q(X) = ay(f1) + e2(p)p> — ("1 + DpF 71X — ey(p)ph 5 72X
is an irrelevant quadratic polynomial. Since the second term vanishes at
X = p T+l this establishes the p-part of in this case as well and
completes the proof of the lemma. O

Now combining equations (35| . 37) with g = G¥, and the
formula G, (00) = (k2 — 1)I(( k2 (2mi)"2 gives equa‘mon , completing

the proof of Proposition [2] and hence also of Theorems [I] and @
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6. NUMERICAL EXAMPLES

In this section we give a number of examples illustrating both Theorem
and Theorem [2| postponing the proof of the latter to Section [7]] We look at
the five levels N = 2, 3, 5, 6 and 7, giving in the first four cases (without
proof) the structure of the ring M, y = M,(I'o(NN)) and using Theorem |I|to
compute the values of R¢(X,Y’) for a number of new forms (and for N = 2
also for a couple of old forms). We also give an example for N = 5 showing
how one can obtain the Hecke forms themselves, as well as their period poly-
nomials, from the generating function, as asserted in Theorem [2] and also an
example for N = 7 showing that in that case the corresponding assertion is
no longer true. To keep the numerology simple, we will mostly concentrate
on examples where dim Sgej‘\',v “ =1, so that the polynomial R¢(X,Y) for its
generator f has rational coefficients, but to illustrate the use of Theorem 2 in
a non-trivial example we also look at one case (N =5, k = 8, ¢ = +1) where
SEE‘\',V’e has dimension 2, and to show the failure of Theorem [2| for N = 7 we
also look at an example where this dimension equals 2. In the cases when
N = p is prime, the character ¢ € D(p)" is determined by e(p) € {£1}, so
we will write Sii,p simply as Séfp.

N =2. The ring M, of modular forms on I'g(2) is the free algebra on
Goo(7) and G 5(7) (or Ga(), or n(27)1¢/n(7)®), and the ideal S, 2 of cusp
forms is the free module generated by AZ(7) = n(7)%n(27)8. From this
information we can find the space Mj, 2, and its canonical Hecke form basis,
for any given weight k. In particular, in five cases the space ngwi is one-
dimensional, so that the corresponding newform (which we denote simply
by A,f rather than the more correct A;EQ) has coefficients in Z:

AF () = g —8¢% +12¢° + 64¢" — 210¢° — 96¢° + - - ,
AL(T) = g+ 16¢> — 156¢° + 256¢* 4 870¢° — 2496¢° + - - - ,

A(7) = q — 64q% — 1836¢% + 4096¢* + 3990¢° + 117504¢° + - - - |
ATL(T) = ¢+ 64¢> +1236¢° + 4096¢" — 57450¢° + 79104¢° + - - -
Al (r) = q— 128¢ + 6252¢° + 16384¢* + 90510¢° — 800256¢° + - - - .

We also have two oldforms coming from A(7) = ¢[](1 — ¢*)** € Si2,

AL (T) = A(T) 4+ 64A(27) = g+ 406 + 252¢° — 3008¢* + 4830¢° + - - - ,
AL(T) = A(T) — 64A(27) = q — 88¢® + 252¢° + 64¢" 4+ 4830¢° + - - - |

as well as similar oldforms (which we will omit) with rational Fourier co-
efficients in weights 16, 18, 20, 22 and 26. Computing the coefficients of
the generating function Cs of Theorem [l we find the following values of

Re(X)Y) = T?V(X)r;idd(Y)/(Qi)k_g(f, f) for these forms:
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f Ry (X,Y)
A [£(8X0—1) — (2X* — X?)] - [(4Y5 +Y) — 5Y3]
A | —2[216X83+1) —2(4X0+ X%) +7X4] - [8Y"—Y) = 7(2Y° — YV3)]
AL, £ [E2(32X10 — 1) — (8X® — X?) + 4(2X0 — X*)]
[17(16Y9 +Y) — 125(4Y 7 4+ Y3) 4 336Y7°]
AL L [2D(32X10 +1) — 7(8X8 + X?) + 12(2X6 4+ X1)]
[(16YY —Y) = 5(4Y 7 — Y3)]

A, — 1 [Z(64X12 — 1) — 4(16X 10 — X?) + 11(4X® — X1)]

(9321 +YV) — 55(8Y? + Y3) + 66(2Y 7 + Y)]
AL, — L[5 (64X12 + 1) — 4(16X 10 + X?) 4+ 15(4X8 + X*) — 32X°]

[(32yM —Y) — 7(8YY — V3) + 18(2Y7 — V)]
Afg | T35 (128X M — 1) — 8(32X 12 — X?) +26(8X 10 — X*) — 39(2X8 — X0)]
[2(64Y13 + V) — 13(16Y1 +Y3) + 26(4Y% 4+ Y5) — 39V 7]

In each case we independently computed the values of (f, f) and of the
coefficients of 7(X) as real numbers and found the same results (but now
only numerically, rather than exactly) in each case, the example of AF
already having been given in Section [2] As a further check, one can see that
the values of :¢(X,Y") for the oldforms AfQ are given by

Rar (X,Y) = 1355 (P2X) +32P(X)) (Q(2Y) +32Q(Y)) ,
Rp- (X,Y) = g0 (P(2X) = 32P(X)) (Q(2Y) - 32Q(Y)) ,

where

PX) = & (X1'-1)-X*(X?-1)%, Q) = Y(Y?-1)*(Y?-4)(4Y?-1)

are (up to constants) the even and odd parts of the period polynomial of A,
in accordance with and (13). (Up to a factor 2® the numbers 1152 and
1920 are equal to the numbers 2(2 + 2 %a(A) + 1) occurring in (13)).)

N = 3. The ring of modular forms on I'g(3) is the ring of even polynomials
in the two modular forms

O(r) = D " = 1469+ 6¢° +6¢" + 12+,
m,neZ

n(37)° n(r)° 2 3
H(r) = 27 - = —1+436¢+54¢% +252¢3 + - --
e G KT
(both of which can also be written as Eisenstein series) of weight 1 and 3
and character (g), and the ideal of cusp forms is again principal, generated
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this time by Ag = 17(1)8(66 — H?) = n(7)%n(37)%. The generators of the
one-dimensional spaces S,‘j‘}“v” * i this case are given by

Ag(r) = q—6q2+9q3+4q4+6q5—54q6_4()q7+... 7

A;(T) = q+6¢> —27¢° — 92¢* +390¢° — - - -,

Afy(T) = q— 36¢% — 81¢° + 784" — 1314¢° + - - - ,

Af(1) = g+ 18¢* + 81¢® — 188¢* — 1530¢° + - - - .

and from Theorem [I| we find that the corresponding two-variable period
polynomials (X, Y) are

f Ry (X,Y)
Ay —2[&09X*+1) - X?] - [3Y3 Y]
Af T [&TXC—1)— (3X1— X?)] - [3(9Y5 +Y) — 20V
Ay — o [ (81X8 —1) — (9X6 — X?)] - [22TY7 +Y) — 7(3Y° + V)]
Al | —32[£(81X8 +1) — 2(9X° + X?) +9X4] - [27Y7 — V) — 8(3Y° — YV?)]

N =5 . Here the ring M, y is generated by the three Eisenstein series Gy 5,
GIE) and G 5, with one quadratic relation in weight 8 that we do not write
down, and the ideal of cusp forms is the principal ideal generated by the
newform A} = n(7)*n(57)%. The newforms with rational Fourier coefficients
in this case are

AT (1) = ¢ —4¢° +2¢° +8¢" —5¢° —8¢° +6¢" +---,

Ag (1) = q+2¢° — 4¢° — 28¢" + 25¢° — 8¢° +192¢" + - - -,

Ag (1) = q—14¢* — 48¢° + 68¢* + 125¢° + 672¢° — 1644¢" + - - .
and using Theorem [I] just as before we find the corresponding period poly-
nomials

f Ry (X,Y)
Af g5 [5X* 1] - [Y]
Ay —S[& (25X +1) — X?] - [pY3 — Y]
Ay | 2[&(125X54+1) — 65X+ X?)] - [25Y° - Y]

Of course, we can also look at eigenspaces M\ ° that are not one-dimensional,
so that the corresponding Hecke eigenforms no longer have rational Fourier
coefficients. The first such forms here are the form

fs = q + (10+2V19)¢® + (10 — 16v19) ¢* + (48 + 40v19) ¢* + ---

in 5;5 and its Galois conjugate fJ, where 1 # o € Gal(Q(v/19)/Q). If
we expand the coefficient Cg5(X,Y, 7) of T6/6! in C5(X,Y,7,T) and write
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its cuspidal part in terms of the forms fg and fg, then we find that the

two-variable period polynomial R, (X,Y) is given by

1—17/y/19 [ 4
375 97 + V19

- [15(25Y° +Y) — (137 + V19)Y?] .

Ry (X,Y) = ! (125X°% — 1) — (5X* — X?)]

The value of My (X,Y) just given was derived assuming that the Hecke
eigenforms fg, f§ were already known. We now illustrate Theorem [2| by
showing how we can obtain these Hecke eigenforms as well as their period
polynomials directly from Cs5(X,Y, 7,T), without knowing them in advance.
(We chose to use this example rather than one for N = 2 or N = 3 to
illustrate the theorem both because it is the largest level occurring in the
theorem and because the first newforms with non-rational coefficients have
smaller weight and therefore also smaller Fourier coefficients in this case.) To
do this, we first use Theorem 1 to compute Cg 5(X, Y, 7) as the coefficient of
TC in B5(X,Y, 7,T), then subtract from this its Eisenstein part as computed
in Section (3| to get Cg5"(X,Y,7), and then symmetrize with respect to
X < —X to get the even-odd part €g'5"(X,Y, ), which is an element of

&% (X) © Vg4 (Y) ® Q[[g]]. We can then write this element with respect to
the bases

(ef (X),e5 (X),e] (X),e5 (X)) = (125X%—1,5X* - X2 125 X0+1,5X* 4 X?)

and
(fFY), (), [ (V) = (25Y° + Y,V 25Y° — V)
(

of VE%(X) and Vg§(Y) as
2 2 2

(XY 7) = ZZ X)) + D Bia(r) e (X) fi (V)
i=1 j=1 i=1

with explicit matrices A(7) and B(7) with coefficients in Q[[g]]. Writing out
these matrices, we find that the two entries of the 2 x 1 matrix B(7) are
proportional (as has to be the case), so that we obtain a factorization

3

6! B(t) = 3%

6
( )(q—14q —48¢° 4 68¢* + 125¢° + - - -)

and thus recover both the Hecke form Agy and the value of R Aps (X,Y) as

given above, without having had to assume the value of Ag to be known
in advance. Similarly, the four entries of the 2 x 2 matrix A(7) span a
2-dimensional space of power series. If we choose a normalized basis

Fi(r) = ¢+ 0¢% +90¢° — 152¢* — 125¢° + 192¢% + -+,
Fo(t) = 0+ ¢ —8¢° +20¢" + 0¢° — 704° + ---
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for this space, then we can write A(7) as
1432 _ 104 11952 _ 896
39125 313 39125 313
G'A(T) = (_22 8 ) FI(T) + (_192 79 ) FQ(T)a
25 25

Writing A(7) instead as a linear combination of the two as yet unknown
Hecke eigenforms fi(7) = ¢+ \ig®> + -+ = Fy + \;Fy, we find

S(179A—1494)  16(13A—112
61 A(r) — a(>\2)f1+a()\1)f27 a()) = ( e -1y )> '

A1 — A2 fw 16(A —9)

The fact that the coefficients of fi(7) and fa(7) in €g5(X,Y,7) have to
factor as the product of a polynomial in X and a polynomial in Y then tells
us that A\; and A9 have to be the roots of the quadratic equation det a(\) =
% ()\2—20)\+24) =0,80 A1, Ay = 10+2+v/19. We have thus obtained the
Hecke forms fg and f$ as well as their period polynomials from Theorem
without having to assume anything in advance.

This calculation is an example of the application of the lemma on page 461
of [15], which implies that all the Hecke forms f(7) are uniquely determined
by the expression »_, R ¢(X,Y)f(7) if we know that the maps f — r§" and
f— r]ecv are injective. We will show in §7] that this injectivity holds in all
weights if p = 2, 3 or 5, thus proving Theorem

N = 6. Here the ring M, y consists of the even polynomials in the two mod-
ular forms O(7) and ©(27) of weight 1, with the same ©(7) used for N = 3.
We illustrate Theorem [1| by looking at the case k = 6. The space Mgg is
7-dimensional, with a Hecke basis consisting of the four Eisenstein series
Géféi(T) € Mﬁjféi (where we indicate a character ¢ € ©(6)" by giving the
pair (£(2),£(3))), the two old forms L5, (Ag3) € Sécé_ coming from level 3,
and the unique newform 7 7 7

Apt(r) = q+4¢% — 93 + 16* — 66¢° — 36¢° + 17647 + - - - .

If we decompose the coefficient €g6(X,Y,7) of T#/4! in €4(X,Y,7,T) as
given by Theorem [I| as a linear combination of these seven functions with
coefficients in \Afe"(X ) ® Veod (Y'), then for the six oldforms we indeed get the
values related to those for G4 and Ag 4 in the way discussed in §2, while for
the newform we find

2
Ry-+(X,Y) = -5 [(36X* +1) —21X?] [6Y? - Y].

N=7. In this case the spaces S, ; and S(I - are 1-dimensional, generated
by the forms

A7(T) = q—¢® —2¢° —7¢" +16¢° +2¢° —7¢" + - -,
AL (1) = q—10¢° — 14¢> + 68¢" — 56¢° + 140¢° — 49¢" + - --
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with rational coefficients, and by calculations like the ones before we find
that the corresponding even-odd period polynomials Rf(X,Y’) are equal to
#(7X?—1)Y and — - 72 (49X4 —1)(7Y3 +Y), respectively. The space Ser
is 2-dimensional, generated by the form

fo = ¢+ 2550 @ —3(1+ VB¢ + BT ¢t 1. e Z[HY5T][[q]]

and its Galois conjugate f¢, where 1 # o € Gal(Q(+/57)/Q), and for this
form Theorem [I] gives

5—3+/3/19 | —174+4/3/19
Ry, (X,Y) = =3 [ VI (49 x4 4 1) +X2} . [7Y3 —Y} .

Thus in this case the eigenforms fs and f¢ have the same odd period poly-
nomial up to a constant (as was indeed clear a priori, since this polynomial
must be a multiple of 7Y — Y) and therefore one cannot find these two
forms separately just by decomposing €-"°P(X,Y,7,T) into a sum of two
products of the forms P(X)Q(Y)f(7), because this decomposition is now
not unique. This shows that Theorem [2| fails for p = 7, even when restricted
to newforms (which was not obvious a priori, because the dimension of }C‘EDW
is (p—1)k/124 O(1) for p prime, which for p = 7 is asymptotically the same
as the dimension of V§', or V%iw so that the theorem, which had to fail
for S 7, might have been true for new forms; for p > 7 the dimension even
of the space of new forms is too big, so that Theorem |2 cannot hold).

7. PROOF OF THEOREM 2 AND HABERLAND-TYPE FORMULAS

In this final section of the paper we treat the case of small prime levels,
proving Theorem [2] for the primes p = 2, 3 and 5 and also giving in each
case an expression for the scalar products (f, f) in terms of the periods of f
for any Hecke form f € S} ). For convenience we abbreviate w = k — 2.

As in Section [6] when the level N is a prime p, we 1dent1fy the elements
of D(p)" with their values on p, writing M as M L ife(p) = £1. We want

to prove the injectivity of the period map rev/°d . f — r]ecv/ °d from Skp tO

Vi}:l/fd for small values of p. (This is sufficient to prove Theorem [2| since

the Eisenstein part of the generating series can be computed in advance and
subtracted off by the results of Section ) Since the period polynomials
of cusp forms in S,:p and S, take values in vector spaces Vfg,p that have
trivial intersection, it is enough to prove the injectivity of the restriction
of rev/od to S,f:’p for ¢ = +1. We also note that S,';p can be identified
with Sk(I'G(p)) and S, , with Si(I'G(p), xp), where x; : TG(p) — {£1} is
the homomorphism sending I'g(p) to 1 and W), to —1. (Similar statements
would apply to any squarefree level N, with S y for any ¢ € D(N)Y being
identified with Si(I'§(IV), xc) for the homomorphism x. : I'o(N)* — {£1}
sending the coset Wy T'g(N) = Lo(IN)Whs to e(M) for all M € D(N).)
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By the general Eichler-Shimura theory of periods (see e.g. [11] or [5]), we
know that for any Fuchsian group I and any f € Si(I") the map v — ¢ €

Vy, where r¢.(X) = f’yofl(oo) f(T)(X — 7)"dr, is a cocycle (one can write

rr4(7) with 7 € H as f(r,7)|_,(1 — ), with f as in ([18), so v+ 7y is
a Hol(H)-valued coboundary and hence a V,,-valued cocycle), and that the

linear map from Sy (I')@Sk(T) to H'(T', V,,) sending (f,g) to the cocycle v
754(X) + rg~(X) is injective, with image H],.(T',V,,) (the first parabolic

ar
cohomology group of I" with coefficients in Vi, defined by cocycles sending
any parabolic element v of I' to an element of V,,|(1 —~)). This applies
not only to the trivial character, but also to the map from Sk(T,x) to
HYT,V, ) for any homomorphism x : I' — C*, where V,, ,, is the vector
space V., with the twisted action of I' given by P +— P|_,, v := x(7) P|_,7-
We use it for I' = I'§(p) and x = 1 or x,. The last remark is that the action

of the matrix § = (*01 (1)) on H by 7 +— —7 induces an anti-linear map from

Sk p to itself by sending f(7) to f%(r) := f(—7). Since § fixes the imaginary
axis pointwise, a one-line calculation shows that the period polynomials of
f and f9 are related by r8(X) = —rp(=X),s0if f € Skp 1s a cusp form for

which either r?" or r;’cd vanishes, then the cocycle attached to either (f, F)
or (f, —F) by the Eichler-Shimura theorem vanishes on both 7" and W),
The statement of Theorem [2| for p = 2 or 3 is now clear, since we see
from the fundamental domains F,, of the group I'jj(p) as shown below that
in both of these cases this group is generated by the two elements 7" and W,
(recall that we are always considering our matrices in PGLg (R), so that we
. o 0-1 1 (0-1
can write W), indiscriminately as (p o) or 7 (p o)), and hence a cocycle
is automatically determined by its values on these two elements. We can

Fo Fs
Py
/ﬁ\ PO
W2 (8]
U -1 Prgy m
r7 U-
b2 i R Py
53 Us
Tl T i Tl T i
—3 0 2 —3 0 2

use the form of the fundamental domains to give a more complete result
in these two cases, describing the images of the even and odd period maps
rather than merely proving their injectivity. The vertices of F» are oo, P11 =
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+1 —|—2andP0—fandthoseof}'gareoo Py =41 +\ﬁandPg—\/§,

where in each case oo is fixed by T', Py by W), P1 by U, :==TW,, = (g _01 ),

and P_1 by Up =T7W, = ( pp _01). In particular, the group I'{(p) is

generated by the two elements W), and U, with the relations W2 U2p =1
(once again, in PGLJ (R)). It follows that the period polynomlal of any
f €S, belongs to the subspace

2p—1

W, = {PeVs, : Y P|_,.Uj=0}
j=0
of Vg, , (here |y ¢ means |, with x4 =1, x— = X;), because

2p—1 2p—1

(Tf‘_w,gjzg > Z/U iy T)(r—=X)"dr = 0.

We can also consider the even and odd period maps f — r(;v/ od ¢ Wev/ od, <

and note that, as in Section [2] these maps extend in the even case to all of

,’;p, whereas for the odd period map we would have to replace W7, by a
one dimension larger space W5, , in order to be able to include the Eisenstein
series in M kpe BY the Eichler-Shimura theorem once again, we know that the

space H;ar(l“g(p), Vuw,x.) of parabolic cohomology classes on I'j(p) with val-
ues in V,, . is isomorphic to two copies of S| };p (or more correctly, of one copy
of this space and one copy of its complex conjugate), and from the presen-
tation of I'f(p) we see that this space is isomorphic to Wi,’p/(apw/QX“’ —1).

Putting everything together, we have:

Proposition 3. Forp € {2,3} and e € {£1} the maps f — r{’ and f — rf
give isomorphisms

€ ev,e € ~ od,e
M, = W Skp — Wyp -

w,p )
We mention in passing that the translation into generating functions of

the fact that the period polynomials belong to Ww,p, together with the
equality C, = B, of Theorem |1}, gives the 4-term theta relation

X
B XJC,T——B(————JC,l—QXIﬁ
2( 7,T) 2T o7 )

X —
B
+ 22X—1

and a similar 6-term relation for B3(X,Y,7,T).

To complete the above result, we also give a formula expressing the Pe-
tersson scalar product of two cusp forms f, g € Si (p =2 or 3) in terms
of the period polynomials 7y and r,. Formulas of this type were given by
Haberland [4] and in a slightly different form in [6], for the group SLo(Z) and
arbitrary weight, and for general Fuchsian groups in [I3] (only for weight 2,

YT@X—DT)—BAX—LKnT):O,
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but the corresponding formula holds in all weights). But of course for gen-
eral groups one needs the full cocycle v + 7 ,. Here we give the explicit
formulas for p = 2 and p = 3, and also for p = 5 below, giving only a
sketch in each case since the methods are by now standard and since an
equivalent result is also stated in the recent paper [9] by Pasol and Popa.
(But they do not give any proof or reference for the cases p = 3 and p = 5,
and also express everything in terms of the standard generators of SLs(Z)
and the inclusion I'g(p) C SL2(Z), while we work directly with I'j(p) and
its generators.) We recall the standard definition of a PG L3 (R)-invariant
scalar product on V,,, given by the formula (X", X*)y, = (—1)" 6450/ (%)
for 0 < r, s < w, or equivalently by the formula ((X —a)", P(X))v, = P(a)
for a € C and P € V,,.

Proposition 4. For p € {2,3} and € € {£1}, the Petersson scalar product
of two cusp forms f, g € Sy, is given by

(46) S 0) = = (e )y,

where A, =Y P21 (p — 5)(U5 — U}) € ZITy(p)] and r(X) :=ry(X).

We make several remarks about this proposition before giving its proof.
1. Equation is compatible with the equation (f,g) = (g, f), because
the operator |A, is anti-self-adjoint with respect to (, )v,,.

2. Since 7 (X) = —7r,6(—X), and since |A, also anti-commutes with the

matrix § = (') (because 6U,6 = U,), we can rewrite 2(rslAp, r4)

Vo as

(T?V’Ap, rgg)vw + (TSX]AP, r?d)vw, which is symmetric in f and ¢° and in-
volves only pairings between even and odd period polynomials, as it should.
This immediately implies the injectivity of r¢¥/°d : f — T;V/ od jf f has real
Fourier coefficients (because with f = fo = g it shows that (f, f) vanishes
if r§" or 794 vanishes), and this in turn implies the injectivity for all f. (If
f = fi+ify with fi and f5 real, then ¢ is the sum of g and ir§), one
of which has real coefficients and the other pure imaginary coefficients, so if
r¢" =0 then r§f =% = 0 and hence f1 = f2 = 0, and similarly for r;’pd.)

3. It also follows that ®[R(X,Y)] = 1 for all f € thl;p, where @ is

the map from V& (X) ® Vobe(Y) € C[X,Y] to C sending r1(X)ra(Y) to
i(rl\flp, r2). (One can check this numerically for each of the 11 cusp forms
in the tables for N =2 and N = 3 in §6|) This implies that ®[Cy(X,Y, )] is
the modular form whose nth Fourier coefficient is the trace of T}, on My, so
one could also use the proposition to compute the traces of Hecke operators
for I';(2) and I';(3), as was done in [I4] for the full modular group.

4. Finally, one could also use Proposition [4] to give an explicit description of
the codimension 1 subspace V(S ) C WZ‘;;E, as was done in [6] for SLy(Z),
by extending to the case when one of f or g is an Eisenstein series and
observing that (f, G;p> vanishes for f € Sj .
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Proof. Let f(X ,7) be the function defined in (18], and g(X, ) the corre-
sponding function for g. Then the function G(7) := g(7,7) transforms by
Gl_we(l =) =144(7) for all v € I'§(p). Also, 0G /0T = —(2iy)*“g(T), so

@) (f. g) = / /f (ar] = [ 1) G dr

OF,
1 (7

= f( )G(T)dr = 3 f(r)ry(r)dr,
Py P_y

where the second and third equalities follow from Stokes’s theorem and the
periodicity of f(7)G(7) and the last one because the lower edge of F, is
mapped orientation-reversingly onto itself by W), and f|,.W, = f. By the
above-mentioned property of (-, - )y, we have r (1) = ((X —7)",7,(X))v,,,
so this can be rewritten

@ = (3 ) o= )

( X, Py — f(X,PY), r;(X))Vw .

DO |

Since 4|, - 325 (mod 2p) Up = 0 and f(X, P)|we(1—Up) =7 sug for all j

(by the transformation law of ]7 and because U), fixes P;), we have

(Foc Py ), = (Fpl,.(1-5 3 Uh)or@),
w j (mod 2p) h
_ ;p ST (X, (X)),
j (mod 2p)

Also, the cocycle property gives 7, vi = =7l (1 +Up+ -+ U (and

similarly for ﬁp). The assertion of the proposition now follows after a short
calculation whose details are left to the reader. O

We now turn to the remaining case p = 5. Here the situation is more
complicated because the element T'Wj5 no longer has finite order and because
I'§(5) is no longer generated by W = W5 and T'. Instead, we have

(47) r5(5) = (A, B, W), A2=B*=W?=1, BAW =T,

where A = (2 71) B = (150 :g) One can see this from the fundamental
domain for I' shown below, which is a hyperbolic polygon whose vertices

Pl =2 p,— ngf h= e, Py = 25+iandp_2:#jgiandooarethe

fixed points of the five involutions A, B, W, Ay = WAW and By = T~'BT
of I'5(5) and of the parabolic element 7. What we have to prove is that for
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any f € S 5 = Sk(I'5(5), x<) the cocycle v — 7y is determined by just the
even or just the odd part of the basic period polynomial 7y =7 .

Fs

P

U

w

P Py
P P,

U 15 U
B, A, A B
T T T
_1 0 1

2 2

Asin the cases p = 2 and p = 3, the Eichler-Shimura theory of periods tells
us that the parabolic cohomology group HJ, (I't(5), Vu,y.) is isomorphic to
two copies of S,‘§75. Since I'§(5) has only one cusp, all of its parabolic elements
are conjugate to T', so parabolic cohomology classes can be represented by
cocycles v = r, with r = 0, these representative being unique up to the 1-
dimensional space of coboundaries given by v +— 1|(1—+). (Here and for the
rest of the section we write simply | for the twisted operation |_, ¢ = |—w,y.
of I'5(5) on V,,.) From the above presentation of I'§(5), a cohomology class
is determined by the three elements 74, rp and r = ry, with r4|(1+ A) =
rgl(1+ B) = r|(1 + W) = 0 (because A, B and W are involutions) and
r|AW + r4|W +r = rpaw = 0, so we can eliminate 74 and identify
the space Zéar(F6(5)’Vw,Xs) of parabolic cocycles with the space WE, 5 of
pairs of polynomials (r, rg) in (V, 5)? satisfying r|(1 4+ W) = rp|(1+ B) =
(r—rp)|(1+A) = 0. If it were true that such a pair is determined by its first
element r, then we would be done. However, this is not the case. Instead, if
r = 0we have rgp = —rp|A = rg|BA. Since BA is hyperbolic, its fixed-point
set in V,, is 1-dimensional, spanned by the polynomial (5X2 —5X + 1)w/ 2
and this polynomial is also anti-invariant (with respect to the twisted action
of T%(5)) under both A and B if ¢ = —(—=1)*/2 = (=1)¥/2. The map
(r,rp) — r from parabolic cocycles to polynomials is therefore not injective
in these cases, but has a 1-dimensional kernel. But this failure does not mean
that the map f + 7 is not injective, because the image of ( };5)2 under the
period map has codimension 1 in the space of all parabolic cocycles. and
the offending vector (r,r5) = (0, (5X2 —5X +1)*/?) luckily does not belong
to this image. This follows from a Haberland-type formula, which we now
state briefly, for the Petersson scalar products of cusp forms on I'g(5) in
terms of their periods.
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To state the formula, we need to use the decomposition of the space of
cocycles into an even and an odd part, corresponding to the (£1)-eigenspaces
of the action of the involution § of the space H},, induced by the involution
7 +— —7 of H/I'§(5). For this it is convenient to change our description of
the space W, 5, replacing 75(X) by 7*(X) := rp((X +1)/2), because then
the integral representation

riX) = rf,B(XH) = 21—k/0mf(7+1) (X —7)"dr

2 2

and the same one-line calculation as for r; show that r;‘cé (X) = =13 (=X).
We have isomorphisms

ot SEs WO, e Shs o WS /(1 - e5Y/2 XY, 1 — a5 X)),

w,5

given by f +— (r;V/Od, (r;)e"/"d), where

WOLY = {(r,r7) € (VL) | (r(X) = r*(2X —1))|(1 + A) = 0} .

w,d

We illustrate this with the examples k£ = 8, ¢ = +1. For ¢ = —1 we find that
a pair of polynomials (r,7*) = (ag(125X°+1)+az(5X*+X?)+a1(25X5—X),
ag(125X%+1)+a5(5X*+ X?) +a}(25X° — X)) belongs to Wy 5 if and only if
(ag,as,at) = (8ap+ %ag, —%ag, —6ay1), so that r* is completely determined
by r, while for € = 1 we find that (r,7*) = (ag(125X°% — 1) +az(5X* — X?) +
a1(25X5+ X)+a3X3,a5(125X6 —1)+a3(5X* - X2) +a}(25X° + X) + a3 X3)
belongs to Wz{ﬁ if and only if (ag, a3, aj,a3) = (—8ap + m, —8az — 15m,
%al + %(13, —%al — %7(13) for some m, so that in this case r* is determined
by 7 only up to the addition of a multiple of (5X2 —1)3, in accordance with

the assertions above. Both statements can be checked numerically for the

period polynomials of the cusp forms Ag € Sg 5, where ag = —%ao, and
fs € 5;5, where ay = _97+T V19,0 and a3 = —137‘1*'75 V19, as given in the

N = 5 tables in Section [6
The formula for the scalar product of two cusp forms f, g € S} ; with real
Fourier coeflicients can now be stated as

8) @) N{f g = (rp gl (T =Ty, + (rg, T} (T =T7h)y,

We omit the proof of this formula, which proceeds along exactly the same
lines as the proof of Proposition [4] above, but mention that it implies the
injectivity of the maps f — r%" and f — r‘]’cd by the same argument as in
the second remark following that proposition (now using that |(7 —7~1) is
anti-self-adjoint and anti-commutes with §). We can also check using the
data given in the tables for N = 5 in Section |§| that gives the correct
values of (f, f) for each of the cusp forms f listed there and also gives
the orthogonality of the Hecke form fg & S; 5 with its Galois conjugate
eigenform.
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