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Abstract. Generalizing a result of [15] for modular forms of level one,
we give a closed formula for the sum of all Hecke eigenforms on Γ0(N),
multiplied by their odd period polynomials in two variables, as a single
product of Jacobi theta series for any squarefree level N . We also show
that for N = 2, 3 and 5 this formula completely determines the Fourier
expansions of all Hecke eigenforms of all weights on Γ0(N).

1. Introduction and statement of theorems

It is well known that to any cusp form f on the full modular group
Γ1 = SL2(Z) one can associate the period polynomial

(1) rf (X) :=

∫ ∞
0

f(τ) (X − τ)k−2 dτ (k = weight of f)

and that the maps f 7→ rev
f and f 7→ rod

f assigning to f the even and odd
parts of rf are both injective, with known images. Furthermore, if f is
a Hecke form (= normalized Hecke eigenform), then the odd two-variable
polynomial

(2) Rf (X,Y ) :=
rev
f (X) rod

f (Y ) + rod
f (X) rev

f (Y )

(2i)k−3 〈f, f〉
∈ C[X,Y ]

transforms under σ ∈ Gal(C/Q) by Rσ(f) = σ(Rf ), so Rf has coefficients in
the number field Qf generated by the Fourier coefficients of f and, denoting
by Bcusp

k the basis of Hecke cusp forms f of weight k on Γ1, the sum

(3) Ccusp
k (X,Y, τ) :=

1

(k − 2)!

∑
f∈Bcuspk

Rf (X,Y ) f(τ)

belongs to Q[[q]][X,Y ] for each integer k > 0. (Here q = e2πiτ as usual.)
In [15], a surprising identity was proved showing that all of these func-

tions can be assembled into a single four-variable generating function that
has a very simple expression as a product of Jacobi theta functions. More
precisely, it was shown that if one defines Ck(X,Y, τ) for k > 0 by adding
to Ccusp

k (X,Y, τ) a term for the normalized Eisenstein series Gk of weight k
(with a suitable definition of RGk(X,Y ) that will be recalled below), then
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the generating function

(4) C(X,Y, τ, T ) :=
(X + Y )(XY − 1)

X2Y 2T 2
+

∞∑
k=2

Ck(X,Y, τ)T k−2

is given by the formula

(5) C(X,Y, τ, T ) = θ′τ (0)2 θτ
(
(XY − 1)T

)
θτ
(
(X + Y )T

)
θτ
(
XY T

)
θτ
(
XT

)
θτ
(
Y T
)
θτ
(
T
) ,

where θτ (u) denotes the classical Jacobi theta function

(6) θτ (u) = q1/8eu/2
∞∏
n=1

(1− qn)(1− qneu)(1− qn−1e−u) .

Until now, attempts to find an analogous result for higher levels were not
successful, and it was thought that the fact that the generating function for
all level one Hecke forms and their periods had a multiplicative expression
as a single product of theta functions was an accident, due to the special
structure of Γ1 as a group with two generators and of the algebra of modular
forms on Γ1 as a free algebra on two generators. In this paper, we will show
that this belief was wrong and that there is a statement of precisely the
same form for modular forms on Γ0(N) for every squarefree integer N .

Theorem 1. Let N > 0 be squarefree and for every integer k ≥ 2 define

(7) Ck,N (X,Y, τ) :=
1

(k − 2)!

∑
f∈Bk,N

Rf (X,Y ) f(τ) ,

where Bk,N is the basis of Hecke forms on Γ0(N) defined in §2 and where
Rf (X,Y ) is defined by (1) and (2) when f is a cusp form and in the way
explained in §2 when f is an Eisenstein series. Then the generating function

(8) CN (X,Y, τ, T ) :=
(X + Y )(NXY − 1)

NX2Y 2T 2
+
∞∑
k=2

Ck,N (X,Y, τ)T k−2

is given in terms of the level one theta function (6) by

(9) CN (X,Y, τ, T ) =
θ′τ (0) θτ

(
(X + Y )T

)
θτ (XT ) θτ (Y T )

·
θ′Nτ

(
0) θNτ

(
(NXY − 1)T

)
θNτ (NXY T ) θNτ (T )

.

This theorem gives a simple way to find the polynomial Rf (X,Y ) in

Q[X,Y ] for any Hecke cusp form f of weight k on Γ0(N) if the Hecke ba-
sis Bk,N is supposed known, just by decomposing the coefficient of T k−2

in the theta-product in (9) with respect to that basis and taking the co-
efficient of f . In [15] it was shown that for N = 1 a stronger statement
holds: even though the construction of the generating function involves
summing over all Hecke forms in each weight and therefore apparently has
destroyed information about the individual terms, an easy algebraic lemma
implies that the coefficient of T k−2 in the symmetrized generating func-
tion C(X,Y, τ, T ) +C(−X,Y, τ, T ) has a unique decomposition as a sum of
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dimMk(Γ1) terms of the form f(τ)r(X)s(Y ) with r(X) even and s(Y ) odd,
and therefore the formula uniquely determines the Hecke eigenforms on Γ1

themselves, as well as their period polynomials. The corresponding state-
ment cannot be true for the generating function of Theorem 1 in general, be-
cause for all but a few levels the space of modular forms of weight k on Γ0(N)
has a larger dimension than the space of polynomials of degree ≤ k−2. (We
plan to return to this question in a later paper, where Theorem 1 is general-
ized to include more period polynomials for each eigenform.) However, for
small N this obstruction is not present and one can in fact prove the exact
analogue of this second result also:

Theorem 2. For N ∈ {2, 3, 5} the identity in Theorem 1 completely deter-
mines the Fourier coefficients and periods of all Hecke forms on Γ0(N).

The paper is organized as follows. In Section 2 we give the precise defi-
nitions and main properties of all of the quantities occurring in Theorem 1
and 2, including the definitions of the Petersson scalar product 〈f, f〉 and
of the period polynomial rf (X) when f is an Eisenstein series. In the next
section we compute the Eisenstein part of the generating function (7) and
use this to show that the left- and right-hand sides of (9) agree at all cusps
of Γ0(N). This reduces the proof of Theorem 1 to the statement that the
scalar products of any f ∈ Bcusp

k,N with the two sides of (9) agree. In Section 4

we review the notion of Rankin-Cohen brackets and the formula expressing
the periods of a cusp form in terms of its scalar products with Rankin-
Cohen brackets of Eisenstein series, and give a simplified presentation of the
proof of (5) given in [15]. The generalizations of these results to all square-
free levels N are then given in the following section, completing the proof of
Theorem 1. Along the way we also obtain a formula for the eigencomponents
of Ck,N with respect to the action of the group of Atkin-Lehner operators
(Theorem 3, Section 3) In Section 6 we give numerical examples illustrating
Theorem 1 for small levels and also showing both how Theorem 2 works for
the levels stated and how it fails for modular forms of level 7. The proof of
Theorem 2, together with some further information about modular forms of
these small levels, is given in the final section.

This paper is based on an earlier paper by the first two authors alone,
completed in 2014, in which a result equivalent to Theorem 1 was proved
for prime levels. It was then found by the third author that after some
reorganization the same proof worked for arbitrary squarefree levels.

2. Modular forms on Γ0(N) and their periods

In this section we give the complete definitions of all of the quantities
appearing in the statements of the theorems given in the introduction, in-
cluding the canonical basis of Hecke forms for Γ0(N) and the definition of
the Eisenstein part of the generating series (4) and (8). None of the material
is new, but we have included full details for the reader’s convenience.
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Our notations for modular forms are standard. We write H for the upper
half-plane, q = e2πiτ for a generic variable τ ∈ H, and f(τ) =

∑
an(f) qn

for the Fourier expansion of a modular form f . For k ∈ 2Z we define the
“slash operator” |k by

(f |kγ)(τ) := (ad− bc)k/2(cτ + d)−kf(
aτ + b

cτ + d
) ,

for γ = ±
(
a b
c d

)
∈ PGL+

2 (R) and for any function f : H → C. Thus a

modular form of weight k on a subgroup Γ ⊂ PGL+
2 (R) satisfies f |kγ = f

for all γ ∈ Γ.
We denote by Mk and Sk the spaces of modular forms and cusp forms,

respectively, on the full modular group, and by Mk,N or Mk(Γ0(N)) and
Sk,N or Sk(Γ0(N)) the spaces of modular forms and cusp forms, respectively,
on the group Γ0(N), where N will always denote a squarefree number and
where Γ0(N) (and later its normalizer Γ∗0(N)) will always be considered as
subgroups of PGL+

2 (R). The space Mk,N has three main decompositions:
into Eisenstein series and cusp forms, into new forms and various types of
old forms, and into eigenspaces for the Atkin-Lehner involutions. Each of
them has a particularly simple form because N is squarefree.

We start with the decomposition Mk,N = MEis
k,N ⊕ Sk,N , where MEis

k,N is
the space spanned by the Eisenstein series of weight k and level N . The
group Γ0(N) has ν(N) = 2t cusps, where ν(N) denotes the number of
divisors of N and t its number of prime factors. For k ≥ 4 the space MEis

k,N

has the same dimension and a basis given by the functions Gk(dτ) with d|N ,

where Gk = −Bk
2k +

∑
n≥1 σk−1(n) qn is the normalized Eisenstein series of

level 1. If k = 2, then these functions still span MEis
k,N , but now this space

has dimension only ν(N)−1, since the form G2(τ) is only quasimodular and
the linear combination

∑
d|N cdG2(dτ) is modular only if

∑
cd/d = 0.

We next turn to old and new forms. By an old form on Γ0(N) we mean
any linear combination of functions f(dτ) where f is a modular form of
level N1 with N1 a strict divisor of N and d a divisor of N/N1. Thus all
Eisenstein series are old (and even “very old,” coming all the way from
level 1) if N > 1 and k ≥ 4. We will consider them to be old also if N > 1
and k = 2, since G2 is quasimodular of level 1 and they are therefore old
as quasimodular forms as well as being modular of level N . For N > 1 the
space of new forms of weight k on Γ0(N) is a subspace of Sk,N and is defined
there as the space of forms that are orthogonal with respect to the Petersson
scalar product to all old forms. (For N = 1 the new forms are simply the
whole space Mk.) We then have the decomposition

Sk,N =
⊕
N1|N

⊕
d|N/N1

Snew
k,N1

∣∣
k
Vd ,

where Vd =
(
d 0
0 1

)
, so that f |kVd(τ) = dk/2f(dτ). As in the introduction,

we define a Hecke form in Mk,N to be a simultaneous eigenform f of all
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Hecke operators Tn with (n,N) = 1, normalized by a1(f) = 1, in which
case f |kTn = an(f)f for all n prime to N . In particular, Gk is a Hecke
form for N = 1. The finite set Bnew

k,N of Hecke forms in Mnew
k,N (which are

sometimes called the newforms, written with no space) forms a basis of this
space. The set of all f(dτ) with f ∈ Bnew

k,N1
and dN1|N (with d = 1 omitted

and f(dτ) replaced by dG2(dτ) − G2(τ) if k = 2 and N1 = 1) then forms
a basis of Mk,N . But this is not a good choice, since its elements neither
have multiplicative Fourier coefficients nor are mutually orthogonal. To get
a better basis we must use the Atkin-Lehner operators.

Denote by D(N) the set of divisors of N , made into a group isomorphic
to (Z/2Z)t by the multiplication N1 ?N2 = N1N2/(N1, N2)2. If M ∈ D(N),
then since (M,N/M) = 1 we can find WM ∈

(
MZ Z
NZ MZ

)
with det(WM ) = M .

The WM is called the Atkin-Lehner involution. Any two such matrices differ
on the left (and also on the right) by an element of Γ0(N), so the function
f |kWM for f ∈Mk,N is independent of the choice of matrix WM and again
belongs to Mk,N . This defines an action of the group D(N) on Mk,N and an
eigenspace decomposition Mk,N =

⊕
ε∈D(N)∨M

ε
k,N , where the sum ranges

over the characters of D(N) (i.e., the homomorphisms ε : D(N) → {±1})
and where M ε

k,N is the space of f ∈ Mk,N with f |kWM = ε(M)f for all

M |N . This eigenspace decomposition is compatible with the splitting into
new and old forms in two different senses. On the one hand, since the Atkin-
Lehner involutions commute with the Hecke operators Tn for (n,N) = 1,
every newform is automatically an eigenfunction of the group D(N). This
means that the basis Bnew

k,N of Mnew
k,N is the union over all ε ∈ D(N)∨ of the

subset Bnew, ε
k,N of newforms belonging to M ε

k,N (all of which are cusp forms

except for f = Gk in the case N = 1, ε = 1, k ≥ 4). On the other hand, for
each decomposition N = N1N2 and each character ε2 ∈ D(N2)∨, we have a
linear map (cf. [1], Prop. 2)

Lε2
k,N2

: Mk,N1 → Mk,N , Lε2
k,N2

(
M ε1
k,N1

)
⊂ M ε1ε2

k,N

(
∀ε1 ∈ D(N1)∨

)
given by

(10) Lε2
k,N2

(f) = f
∣∣∣
k

(∑
d|N2

ε2(d)Vd

)
= f

∣∣∣
k

(∑
d|N2

ε2(d)Wd

)
,

where the second equality holds because WdV
−1
d ∈ Γ0(N1) if d|N2. It then

follows by induction on t, the number of prime factors of N , that

M ε
k,n =

⊕
N=N1N2

L
ρ2(ε)
k,N2

(
M

new, ρ1(ε)
k,N1

) (
ε ∈ D(N)∨, ρi(ε) := ε|D(Ni)

)
.

Together these two statements imply that M ε
k,N has a basis Bεk,N given by

Bεk,N =
∐

N=N1N2

{
L
ρ2(ε)
k,N2

(f)
∣∣∣ f ∈ Bnew, ρ1(ε)

k,N1

}
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for every ε ∈ D(N)∨. The union of these bases for all ε ∈ D(N)∨ is the
basis Bk,N of Mk,N occurring in Theorem 1. We have Bk,N = BEis

k,N
∐Bcusp

k,N

with BEis
k,N consisting of the functions Gεk,N := Lε

k,N (Gk) for all ε ∈ D(N)∨

except ε = 1 in the case k = 2. We also observe that the group of Atkin-
Lehner involutions WM permutes the 2t cusps of Γ0(N) simply transitively,
and that the group Γ∗0(N) generated by Γ0(N) and all of the WM , which is
the normalizer of Γ0(N) in PGL+

2 (R), has only one cusp. This will be used
later.

For each Hecke form f the L-series L(f, s) =
∑∞

n=1 an(f)n−s has an
Euler product expansion L(f, s) =

∏
p L(f, p−s)p, where the product is over

all primes and where each factor L(f,X)p is a rational function of X. If
f ∈M ε

k,N is a newform then these functions have the form

(11) L(f,X)p =

{(
1 − ap(f)X + pk−1X2

)−1
if p - N,(

1 + ε(p) pk/2−1X
)−1

if p | N,

while for an oldform f = Lε2
k,N2

(f1) with f1 ∈ Bnew, ε1
k,N1

we have

(12) L(f,X)p = L(f1, X)p ·

{
1 if p - N2,

1 + ε2(p) pk/2X if p | N2.

(This includes the case when N1 = 1 and f1 = Gk, in which case L(f1, X)p =

(1−X)−1(1− pk−1X)−1.) Combining these statements gives a description
of L(f,X)p for all f ∈ Bk,N and all primes p that will be used later.

Finally, we discuss, first in the case of cusp forms, the two quantities
〈f, f〉 and rf (X) appearing in the definition of Rf (X,Y ). The former, of
course, denotes the Petersson scalar product of f with itself, but we should
emphasize that in our normalization this scalar product is defined as the
integral of |f(x+iy)|2yk−2dx dy over a fundamental domain for the group Γ1

in the case of eq. (3) and for the group Γ0(N) in the case of eq. (7). When we
are discussing Γ0(N), we shall always use 〈 · , · 〉 to denote the scalar product
with respect to that group, so that if a form f ∈ Sk,N happens to be modular
on Γ0(N1) for some proper divisor N1 of N then 〈f, f〉 is [Γ0(N1) : Γ0(N)]
times the scalar product of f with itself with respect to Γ0(N1), which to
avoid confusion we then denote by 〈f, f〉N1 . If f ∈ Bεk,N has the form

Lε2
k,N2

(f1) for some f1 ∈ Bε1k,N1
, where N = N1N2 and ε = ε1ε2 as above,

then the two scalar products 〈f, f〉 = 〈f, f〉N and 〈f1, f1〉N1 are related by

(13) 〈f, f〉 = 〈f1, f1〉N1 ·
∏
p|N2

2
(
p + ε2(p) ap(f) p1−k/2 + 1

)
,

as one can show in several ways, e.g. by applying the Rankin-Selberg method
to express 〈f, f〉 as a multiple of the residue of the Rankin-Selberg zeta
function

∑
n an(f)2 n−s at s = k and then using the relationship (12) to

relate that zeta function to the corresponding one for f1.
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The period polynomial rf is defined for a cusp form f of weight k and any

level by (1) and belongs to the space Vk−2 := 〈1, X, . . . ,Xk−2〉 of C[X]. We

have rf (X) =
∑k−2

n=0(−1)n ( k−2
n ) rn(f)Xk−2−n with “periods” rn(f) defined

by

(14) rn(f) :=

∫ ∞
0

f(τ) τn dτ =
n! in+1

(2π)n+1
L(f, n+ 1) (0 ≤ n ≤ k−2) .

As in the introduction, we write rev
f (X) and rod

f (X) for the even and odd

parts of rf (X) and write “ev/od” for statements that apply to both parities,

e.g., r
ev/od
f ∈ Vev/od

k−2 with an obvious notation. The group PGL+
2 (R) acts

on Vk−2 by |2−k. In particular, for the Fricke involution WN =
(

0 −1
N 0

)
∈

PGL+
2 (R), a simple calculation shows that we have rf |kWN

= −rf |2−kWN

(the minus sign arises because WN interchanges 0 and ∞), so

(15) f ∈ Sεk,N ⇒ rf ∈ Vεk−2,N := Ker
(
1 + ε(N)WN ,Vk−2

)
.

Equivalently, rk−2−n(f) = (−1)n+1ε(N)Nk/2−1−n rn(f), corresponding to
the functional equation of the L-series of f . Another simple calculation
shows that rf |kVd = rf |2−kVd for all d|N (this time with a plus sign, because

the matrix Vd =
(
d 0
0 1

)
fixed the endpoints 0 and ∞ of the integral (1)).

Together with (10) this implies the relationship

(16) f = Lε2
k,N2

(f1) ⇒ rf (X) =
∑
d|N2

ε2(d) d1−k/2 rf1(dX)

between the period polynomial of an old form and the period polynomial
of the new form of lower level from which it is induced. Finally, for later
purposes we mention that rf (X) for f ∈ Sεk,N can also be given by

(17) rf (X) = f̃(X, τ) − ε(N)Nk/2−1Xk−2 f̃
(
− 1

NX
, − 1

Nτ

)
for any τ ∈ H, where f̃(X, τ) is the truncated version of (1) defined by

(18) f̃(X, τ) =

∫ ∞
τ

f(τ ′) (X − τ ′)k−2 dτ ′ (τ ∈ H) .

If f is a Hecke form, then it is known that there are non-zero numbers
ωev
f ∈ R, ωod

f ∈ iR such that the coefficients of rev
f (X)/ωod

f and rod
f (X)/ωev

f

and the number ωev
f ω

od
f /i〈f, f〉 belong to the number field Qf generated by

the Fourier coefficients of f , and transform by σ if f is replaced by fσ =∑
n≥1 σ

(
an(f)

)
qn with σ ∈ Gal(Q/Q). (See [8] and Chapter V of [7].) For

instance, for the unique newform f = q−8q2 +12q3 +64q4 + · · · in S8(Γ0(2))
we have rev

f (X)/ωod
f = 8X6−34X4+17X2−1, rod

f (X)/ωev
f = 4X5−5X3+X

and ωev
f ω

od
f /i〈f, f〉 = 32/17 with ωod

f = 0.001759 · · · i and ωev
f = 0.01049 · · · .

It follows just as in the level one case that the polynomials Rf (X,Y ) defined
by (2) have coefficients in Qf for f ∈ Bcusp

k,N and that the cuspidal part of

CN (X,Y, τ, T ) belongs to Q[X,Y ][[q, T ]].
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For the theorem, we also need to treat the case of non-cusp forms. Here
neither the integral defining rf (X) nor that defining 〈f, f〉 converges, but
in [15] extensions of both quantities were defined, the main differences with
the cuspidal case being that rf (X) no longer belongs to Vk−2 but to the
slightly bigger space

V̂k−2 = 〈X−1, 1, . . . , Xk−1〉 = Vk−2 ⊕ C ·X−1 ⊕ C ·Xk−1 .

and that 〈f, f〉 can be negative. The definitions in both cases are simple:
the Petersson product 〈f, f〉 is defined as the same multiple of the residue at
s = k of

∑
af (n)2 n−s as in the cuspidal case (it turns out that this L-series

has a simple pole at s = k whether f is cuspidal or not), and the period
“polynomial” rf (X) is defined by the same formula (17) as in the cuspidal

case, which is again independent of the choice of τ ∈ H, but with f̃(X, τ)
now defined by

f̃(X, τ) =

∫ ∞
τ

(
f(τ ′)− a0(f)

)
(X − τ ′)k−2 dτ ′ + a0(f)

(X − τ)k−1

k − 1

rather than by (18). The coefficients of the Laurent polynomial rf (X) are
related to the special values of the L-series of f essentially as before. Since
the L-series of Gk is just ζ(s)ζ(s−k+1), it is simple to use these definitions
to calculate the contribution CEis

k (X,Y, τ) = 1
(k−2)!RGk(X,Y )Gk(τ) of the

Eisenstein series Gk ∈ Bk,1 to Ck(X,Y, τ). The result, given in [15], is

(19) CEis
k (X,Y, τ) =

[
(1−Xk−2)Qk(Y ) + (1− Y k−2)Qk(X)

]
Ek(τ) ,

where Ek(τ) = Gk(τ)/Gk(∞) = 1 − 2k
Bk
q − · · · (Bk = the kth Bernoulli

number) is the Eisenstein series normalized to have the value 1 at∞, where

(20) Qk(X) =
∑

r, s≥0 even
r+s=k

Br
r!

Bs
s!
Xr−1 ∈ V̂odd

k−2 .

(Notice that the condition “r and s even” is not needed unless k = 2, in which
case the expression (19) is zero anyway.) From the definitions just given,
it is clear that both the results (13) and (16) relating the Petersson norm
and period polynomial of an oldform f = Lε2

k,N2
(f1) to the corresponding

invariants of f1 remain true in the non-cuspidal case, so taking f1 = Gk,
N2 = N and ε2 = ε one immediately gets the corresponding results for the
Eisenstein case. The result will be given in the next section, in which we
compute the total contribution of all of the Eisenstein series in M∗,N to the
generating function CN .

This completes our discussion of the definitions and main properties of
all of the quantities appearing in Theorem 1.

3. Eisenstein series on Γ0(N) and their periods

Before proceeding, we introduce a notational convention that will be use-
ful both for the proofs and for the discussions of the numerical examples.
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This is to decompose each odd function of X and Y as the sum of its “even-
odd” part and its “odd-even part” (obtained by interchanging X and Y ),
and to denote the first of these by the corresponding German (fraktur) let-
ters. Thus we write Rf (X,Y ) as Rf (X,Y ) + Rf (Y,X) with

(21) Rf (X,Y ) =
Rf (X,Y ) +Rf (−X,Y )

2
=

rev
f (X) rod

f (Y )

(2i)k−3 〈f, f〉
and similarly Ck(X,Y, τ) = Ck(X,Y, τ) + Ck(Y,X, τ), etc., for the corre-
sponding generating functions. Then we have, for example,

(22) CN (X,Y, τ, T ) =
NX2 − 1

NX2Y T 2
+

∞∑
k=2

Ck,N (X,Y, τ)T k−2 .

It is also convenient to introduce the notation BN (X,Y, τ, T ) for the
right-hand sides of (9), so that the statement of Theorem 1 can be writ-
ten simply as CN = BN . The object of this section is to show that at least
the Eisenstein parts of CN and BN agree, i.e., that the difference between
CN (X,Y, τ, T ) and BN (X,Y, τ, T ) vanishes in all of the cusps. Since these
cusps are all obtained from the cusp at infinity by applying Atkin-Lehner
involutions, as discussed in §2, it is enough for this to show that

(23) (CN |WM )(X,Y,∞, T ) = (BN |WM )(X,Y,∞, T ) ∀M ∈ D(N) ,

where |WM is the operator given by applying |kWM (with respect to the
variable τ) to the coefficient of T k−2 for each k ≥ 0. To prove (23), we will
calculate both generating series independently and show their equality.

To calculate the left-hand side of (23) we need only the contribution of the
Eisenstein series. As we have already discussed, the space MEis

k,N of Eisenstein

series of weight k on Γ0(N) has dimension ν(N) = 2t if k > 2 (and one less
if k = 2). It has three natural bases: the forms (Gk ◦d)(τ) := Gk(dτ) with d
ranging over D(N), the forms Gεk,N := Lε

k,N (Gk) with ε ranging over D(N)∨,

and the forms E
(P )
k,N with P ranging over the cusps of Γ0(N), where E

(P )
k,N

denotes the Eisenstein series that equals 1 (in a suitable sense) at P and 0 at
all of the other cusps of Γ0(N). Since the group of Atkin-Lehner involutions

acts simply transitively on the cusps of Γ0(N), the Eisenstein series E
(P )
k,N

for the cusp P = WM (∞) with M |N (which is the cusp represented by any
rational number whose denominator has g.c.d. N/M with N) can be taken

simply to be E
(∞)
k,N |kWM , where

(24) E
(∞)
k,N =

∑
γ ∈Γ0(N)∞\Γ0(N)

1
∣∣∣
k
γ =

1∏
p|N (pk − 1)

∑
d|N

µ
(N
d

)
dk Ek ◦ d

with µ(d) = Möbius function and Ek(τ) = Gk(τ)
Gk(∞) as before. In this section

we will need only the basis of Hecke forms Gεk,N , but the proof of Theorem 1
in §5 will use all three bases: the Eisenstein series associated to the cusps
of Γ0(N) are the ones needed to apply the Rankin-Selberg method, the
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Eisenstein series Gk ◦ d coming directly from level one are the ones that
will appear in the expansion of BN as a sum of Rankin-Cohen brackets,
and the Hecke forms Gεk,N are the convenient ones when we need to exploit
the orthogonality with respect to the Petersson product of modular forms
on Γ0(N) with different Atkin-Lehner eigenvalues.

We begin by computing the Eisenstein part of Ck,N (X,Y, τ), which we can

write with the convention introduced above as CEis
k,N (X,Y, τ)+CEis

k,N (Y,X, τ),
where

(25) CEis
k,N (X,Y, τ) =

1

(k − 2)!

∑
ε∈D(N)∨

RGεk,N
(X,Y )Gεk,N (τ) .

(In principle, we should add the condition “ε 6= 1 if k = 2” to the summa-
tion, but this is not necessary since the symmetry property of periods implies
that rev

f (X) = 0 and hence Rf (X,Y ) = 0 for all f ∈M ε
2,N if ε(N) = 1.) We

can compute each summand in this expression directly from the level one
formula (19) together with equations (13) and (16) applied to the case
N1 = 1, N2 = N , f1 = Gk. The first of these, together with the formula
ap(Gk) = pk−1 + 1 for p prime, gives

〈Gεk,N , Gεk,N 〉
〈Gk, Gk〉

= 2t
∏
p|N

(
1 + ε(p)pk/2

)(
1 + ε(p)p1−k/2) .

The second can be written symbolically as rGεk,N = Lε
2−k,N (rGk) with an

obvious notation, and since

Lε
2−k,N

(
1−Xk−2

)
=
(
1 − ε(N)Nk/2−1Xk−2

)
·
∏
p|N

(
1 + ε(p)p1−k/2)

by an easy calculation (consisting of interchanging the divisors d and N/d in
the sum defining the coefficient of Xk−2), we obtain from (19) the equation

RGεk,N
(X,Y )

(k − 2)!
Gεk,N (τ) =

1− ε(N)Nk/2−1Xk−2

2t
∏
p|N (1 + ε(p)pk/2)

Lε
2−k,N (Qk(Y ))

Gεk,N (τ)

Gk(∞)
.

If we now substitute into this the value

(Gεk,N |kWM )(∞) = (ε(M)Gεk,N )(∞) = ε(M)
∑
d|N

ε(d)dk/2Gk(∞) ,

then the denominator cancels and we obtain

RGεk,N
(X,Y )

(k − 2)!
(Gεk,N |kWM )(∞) = 2−t

(
ε(M) − ε(N/M)Nk/2−1Xk−2

)
×

( ∑
r, s≥0 even
r+s=k

Br
r!

Bs
s!

∑
d|N

ε(d) d(r−s)/2 Y r−1

)
.
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We now insert this formula into (25) and sum over all ε ∈ D(N)∨, using the
identity 2−t

∑
ε ε(d)ε(d′) = δd,d′ for d, d′ ∈ D(N), to find

(Ck,N |kWM )(X,Y,∞) =
∑

r, s≥0 even
r+s=k

Br
r!

Bs
s!

[
M

r−s
2 −N r−1M

s−r
2 Xk−2

]
Y r−1 .

Substituting this in turn into (22) and using the standard generating func-
tion identity 2

∑
r ≥ 0 evenBrt

r−1/r! = coth(t/2), we obtain

4 (CN |WM )(X,Y,∞, T ) = coth
√
MY T

2 coth T
2
√
M
− coth NXY T

2
√
M

coth
√
MXT

2 .

The symmetrization of this in X and Y is a product of two differences of hy-

perbolic cotangents, and using the identity coth a−coth b =
sinh(b− a)

sinh(a) sinh(b)
we obtain finally the following result describing the values of CN at all cusps:

Proposition 1. For any divisor M of N , we have

(CN |WM )(X,Y,∞, T ) =

sinh(
√
M(X + Y )T/2) sinh((1−NXY )T/2

√
M)

4 sinh(
√
MXT/2) sinh(

√
MY T/2) sinh(T/2

√
M) sinh(NXY T/2

√
M)

.

To complete the proof of CEis
N = BEis

N , we also have to compute the value
of BN at all cusps. But this is much easier. We can write the definition of
BN (X,Y, τ, T ), the right-hand side of (9), as

(26) BN (X,Y, τ, T ) = Fτ (XT, Y T )FNτ (T,−NXY T ) ,

where

(27) Fτ (u, v) =
θ′τ (0) θτ (u + v)

θτ (u) θτ (v)

with θτ as in (6). The function Fτ was defined and studied in [15] (but
in fact already by Kronecker, as the author learned later) and will be used
again in the next section. Here we need only its modular transformation
property

(28) Faτ+b
cτ+d

( u

cτ + d
,

v

cτ + d

)
= (cτ + d) exp

(cuv/2πi
cτ + d

)
Fτ (u, v)

for
(
a b
c d

)
∈ SL2(Z), which follows immediately from the definition and from

the standard transformation property of θτ with respect to the modular
group. From the definition of |WM we have

(29) (BN |WM )(X,Y, τ, T ) =
M

(cτ + d)2
BN

(
X, Y,

aτ + b

cτ + d
,

√
MT

cτ + d

)
,

where
(
a b
c d

)
is a matrix representing WM , i.e., an integer matrix satisfying

M |a, N |c, M |d and ad − bc = M . We have WM = αMVM and VNWM =

Mα∗MVN/M , where Vn =
(
n 0
0 1

)
as in §2 and where αM =

( a/M b
c/M d

)
and
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α∗M =
( a Nb/M
c/N d/M

)
both belong to SL2(Z). Inserting (26) into (29) and

using (28) for αM and α∗M we obtain

(BN |WM )(X,Y, τ, T ) = FMτ

(√
MXT,

√
MY T

)
F N
M
τ

( T√
M
, −NXY T√

M

)
after a short calculation. (The two exponential terms coming from (28)
cancel.) Now letting τ →∞ and observing that the limiting value at τ =∞
of θτ (z)/θ′τ (0) equals 2 sinh(z/2), we find the same limiting value as the one
given in Proposition 1. This completes the proof of equation (23).

The calculation just given also lets us refine Theorem 1 to a formula
for each eigencomponent of CN under the action of the group of Atkin-
Lehner involutions, which is useful both theoretically and for computational
purposes (as will be illustrated in Section 6). Indeed, once we have finished
the proof of Theorem 1 and shown that CN = BN , we can write the above
formula for (BN |WM )(X,Y, τ, T ) as a formula for (CN |WM )(X,Y, τ, T ), and
the average of these expressions over all divisors M of N , weighted with the
value of ε(M) for some ε ∈ D(N)∨, gives the ε-eigencomponent of CN . We
state the result in the following theorem, which will be proved as soon as
Theorem 1 is:

Theorem 3. For each even integer k ≥ 2 and for each homomorphism
ε ∈ D(N)∨ define Cεk,N by the same formula as in (7) but with the sum
restricted to f ∈ Bεk,N . Then the four-variable generating function

CεN (X,Y, τ, T ) := δε,1
(X + Y )(NXY − 1)

NX2Y 2T 2
+
∞∑
k=2

Cεk,N (X,Y, τ)T k−2

can be evaluated in terms of the theta function (6) as

1

2t

∑
M |N

ε(M)
θ′Mτ (0) θMτ

(√
M(X + Y )T

)
θMτ (

√
MXT ) θMτ (

√
MY T )

·
θ′N
M
τ

(
0) θ N

M
τ

( (NXY−1)T√
M

)
θ N
M
τ

(
NXY T√

M

)
θ N
M
τ

(
T√
M

) .
4. Rankin-Cohen brackets and periods of cusp forms of level 1

Write Bk,N (X,Y, τ) for the coefficient of T k−2 in BN (X,Y, τ, T ). Then
Theorem 1 says that Bk,N = Ck,N for all k. Since both Bk,N and Ck,N are
the sum of their Eisenstein and their cuspidal parts, and since we have just
proved the equality of the Eisenstein parts agree, it suffices to prove that
the cuspidal parts also agree. This in turn is equivalent to showing that
〈f,Bk,N 〉 = 〈f,Ck,N 〉 for every f in the basis Bcusp

k,N of Sk,N , and in view of

the definition (7) of Ck,N and the orthogonality of the elements of Bcusp
k,N this

is equivalent to the formula

(30)
〈
f, Bk,N (X,Y, · )

〉
=

rev
f (X) rod

f (Y ) + rod
f (X) rev

f (Y )

(2i)k−3(k − 2)!
.
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Our proof of this equality will be modelled on the proof given in [15] for
the level 1 case. The main ingredients of that proof were the Rankin-Cohen
brackets of two modular forms and their modifications when one or both
of the arguments is replaced by the quasimodular Eisenstein series G2, an
identity of Rankin and Zagier expressing the Petersson product of a Hecke
cusp form f with such a bracket as a product of periods of f , and the Laurent
expansion of the function Fτ (u, v) defined in (27). In this section we review
each of these things and present the proof of (30) for N = 1 given in [15]
in a form that is a little simpler than the one there and that makes the
generalization to the case of arbitrary squarefree level as simple as possible.
This generalization will then be carried out in the following section.

The Rankin-Cohen bracket of two holomorphic functions F and G in H
is the bilinear combination of derivatives

[F, G](k1,k2)
m =

∑
m1,m2≥0
m1+m2=m

(−1)m2

(
k1 +m− 1

m2

)(
k2 +m− 1

m1

)
Dm1(F )Dm2(G),

where k1, k2 > 0, m ≥ 0 are integers and D = Dτ = 1
2πi

d
dτ = q d

dq . This

definition was found by Cohen [2], who proved that [F |k1 g,G|k2 g]
(k1,k2)
m =

[F,G]
(k1,k2)
m |k1+k2+2m g for any g ∈ GL+

2 (R). In particular, if F and G are

modular of weights k1 and k2 on some Fuchsian group, then [F,G]
(k1,k2)
m is

modular of weight k = k1 + k2 + 2m on the same group. In the case when
F and G are Eisenstein series of level 1, one has the modified Rankin-Cohen
bracket [15]

(31)

[
Gk1 , Gk2

]
m

:=
[
Gk1 , Gk2

](k1,k2)

m

+
δk2,2

2

Dm+1(Gk1)

m+ k1
+

(−1)mδk1,2
2

Dm+1(Gk2)

m+ k2
,

which is still modular of the same weight k even if one or both of k1 or k2

equals 2, in which case the corresponding Eisenstein series Gk1 or Gk2 is
only quasimodular. If f ∈ Sk is a Hecke cusp form of weight k, then results
of Rankin [10] and Zagier [12, 15] say that the Petersson scalar product of f
with this modified Rankin-Cohen bracket is given in all cases by

(32) − (2i)k−1
〈
f, [Gk1 , Gk2 ]m

〉
=

(
k − 2

m

)
rm(f) rm+k1−1(f) .

This formula, whose proof is based on the Rankin-Selberg convolution method,
will be generalized to our case in the next section (Proposition 2).

The other ingredient of the proof of (5) in [15] was a formula expressing
the Laurent coefficients at the origin of the meromorphic function Fτ defined
by (27) as derivatives of Eisenstein series, namely

(33) Fτ (u, v) =
∑

k>0,m≥−1

gk,m(τ)
(
uk−1 + vk−1

)
(uv)m
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with gk,m (which is non-zero only for k even) defined by

(34) gk,m(τ) =


−2DmGk(τ)

m!(m+ k − 1)!
if m ≥ 0,

δk,2 if m = −1.

With these preparations, the proof of the identity (30) in the case N = 1
is quite easy. The basic observation is that the modified Rankin-Cohen
bracket of Eisenstein series defined above, rescaled by a convenient factor,
can be written uniformly in all cases as

gk1,k2,m :=
4 [Gk1 , Gk2 ]m

(k1 +m− 1)! (k2 +m− 1)!
=

∑
m1,m2≥−1
m+m2=m

(−1)m2gk1,m1 gk2,m2 ,

where the terms m1 = −1 and m2 = −1 correspond to the correction terms
needed in the definition (31) when k1 or k2 equals 2. Inserting (33) into (26)
and comparing the coefficients of T k−2 on both sides, we therefore find

Bk,1(X,Y, τ) =
∑

k1, k2>0, m≥0
k1+k2+2m=k

(Xk1−1+Y k1−1)(1−(XY )k2−1)(XY )m gk1,k2,m(τ) .

From this and (32) we find that the scalar product of a Hecke form f ∈ Bcusp
k

with Bk,1 is given by

(2i)k−3(k − 2)!
〈
f, Bk,1(X,Y, · )

〉
=

∑
k1, k2>0, m≥0
k1+k2+2m=k

(
k − 2

m

)(
k − 2

m+ k1 − 1

)

· rm(f) rm+k1−1(f) (Xk1−1 + Y k1−1)(1− (XY )k2−1)(XY )m

=
∑

0≤i, j≤k−2
i 6≡j (mod 2)

(
k − 2

i

)(
k − 2

j

)
ri(f) rj(f)Xi Y j

= rev
f (X) rod

f (Y ) + rod
f (X) rev

f (Y ) .

(Here the second equality follows by breaking up the set of pairs (i, j) with
i 6≡ j (mod 2) into four subsets according as i ≷ j and i+j ≷ k−2 and using
the symmetry property rk−2−i(f)rk−2−j(f) = −ri(f)rj(f).) This completes
the proof of (23) for N = 1 and hence of the equality B1 = C1 .

5. Proof of Theorem 1

To carry out the corresponding proof in the case of squarefree level N , we
must define the extended Rankin-Cohen brackets for all pairs of Eisenstein
series of the same weight k and compute their scalar products with both old
and new Hecke forms f in Sk,N in terms of the periods of f . We will need
to work with all three bases {Gk ◦ d | d ∈ D(N)}, {Gεk,N | ε ∈ D(N)∨} and

{G(∞)
k,N |kWM |M ∈ D(N)} discussed in §3. As we already said there, each of

these will be the best choice for some part of our calculation. In particular,
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the modified Rankin-Cohen bracket that we will need is [Gk1 , Gk2 ◦ N ]m,
which we define by exactly the same formula as in (31) but with Gk2 replaced
by Gk2 ◦N . The basic statement that we need is the formula for its scalar
product with Hecke cusp forms given by the following proposition.

Proposition 2. For k1, k2 > 0 even and m ≥ 0 the function

g
(N)
k1,k2,m

:=
4N−k2/2

(k1 +m− 1)! (k2 +m− 1)!

[
Gk1 , Gk2 ◦N

]
m

(35)

is a modular form of weight k = k1 + k2 + 2m on Γ0(N), and its Petersson
scalar product with any Hecke cusp form f ∈ Bcusp

k,N is given by

(36) 〈f, g(N)
k1,k2,m

〉 =

(
k − 2

m

)(
k − 2

m+ k1 − 1

)
rm(f) rm+k1−1(f)

(2i)k−3(k − 2)!
.

Given this proposition, the proof of (30) follows exactly as in the level 1

case. The definition of g
(N)
k1,k2,m

can be rewritten in the form

g
(N)
k1,k2,m

(τ) =
∑

m1,m2≥−1
m+m2=m

(−N)m2gk1,m1(τ) gk2,m2(Nτ) ,

so from (33) we see just as before that the coefficient Bk,N (X,Y, τ) of T k−2

in BN (X,Y, τ, T ) has the expansion∑
k1, k2>0, m≥0
k1+k2+2m=k

(Xk1−1 + Y k1−1)(1− (NXY )k2−1)(XY )m g
(N)
k1,k2,m

(τ) .

This already proves the first statement of the proposition above (which
can, of course, be established in several other ways), since the modularity
properties of θτ or Fτ imply that Bk,N (X,Y, τ) is modular of weight k and
level N in τ . In combination with (36) it gives

(2i)k−3(k − 2)!
〈
f, Bk,N (X,Y, · )

〉
=

∑
k1, k2>0, m≥0
k1+k2+2m=k

(
k − 2

m

)(
k − 2

m+ k1 − 1

)

· rm(f) rm+k1−1(f) (Xk1−1 + Y k1−1)(1− (NXY )k2−1)(XY )m

=
∑

0≤i, j
i 6≡j (mod 2)

(
k − 2

i

)(
k − 2

j

)
ri(f) rj(f)Xi Y j

= rev
f (X) rod

f (Y ) + rod
f (X) rev

f (Y )

for any f ∈ Bcusp
k,N by exactly the same computation as before except that

now the symmetry property of the periods used is rk−2−m(f)rm+k2−1(f) =
−Nk2−1rm(f)rm+k1−1(f). This completes the proof of Theorem 1 assuming
equation (36), so it remains only to prove this equation.

The main tool needed for this proof is the Rankin-Selberg method. In its

simplest form this gives the formula 〈f, gEk2〉 = (k−2)!
(4π)k−1 L(f ∗ g, k − 1) for
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any f ∈ Sk and any g ∈Mk1 with real Fourier coefficients, where k = k1 +k2

and L(f ∗ g, s) denotes the convolution L-series
∑∞

n=1 an(f) an(g)n−s (or
its meromorphic continuation). More generally, it was shown in [12] that

(37) 〈f,
[
g,E

(∞)
k2,N

]
m
〉 =

(k − 2)! (k2 +m− 1)!

(4π)k−1(k2 − 1)!
L(f ∗ g, k −m− 1) ,

for any N , any g ∈ Mk1,N with real coefficients, any f ∈ Sk,N and any
m ≥ 0, where now k = k1 + k2 + 2m. If N = 1, the cusp form f is
a Hecke eigenform, and the function g is the Eisenstein series Gk1 , then
a well-known elementary calculation (which we will repeat below) shows

that L(f ∗g, s) = L(f,s)L(f,s−k1+1)
ζ(2s−k−k1+2) , and this in conjunction with the relation

between the periods of f and the special values of its L-function at arguments
s ∈ {1, . . . , k−1} gives the equation (32) used for the proof of Theorem 1 in
the level 1 case. For the case of squarefree level N , a similar formula holds
in principle for any Hecke form f ∈ Bcusp

k,N and any g ∈MEis
k1,N

, but with two

new aspects: first of all, f can be an old- or newform and we must treat
both cases, and secondly, the formula for the convolution of f and g now
has the form

(38) L(f ∗ g, s) = A(s)
L(f, s)L(f, s− k1 + 1)

ζ(2s− k − k1 + 2)
,

where A(s) is a rational function of all ps with prime p dividing N that de-
pends on the particular Eisenstein series g chosen. Also, if we compare (37)
with the equation (36) that we want to prove, then we see that the Rankin-

Cohen bracket occurring in (35) does not have the form [g,E
(∞)
k2,N

]m that

we need. To complete the proof, we therefore must find a specific choice
of the Eisenstein series g such that on the one hand the Petersson scalar

products of the cusp form f with [Gk1 , Gk2 ◦N ]m and with [g,G
(∞)
k2,N

]m are

proportional, and on the other hand the value of the factor A(s) in (38) at
s = k −m− 1 is equal to 1. The lemma below says that such an Eisenstein
series exists and can be chosen independent of the integer m and of the
Hecke form f , but does depend on the eigenvalue ε of f with respect to the
group of Atkin-Lehner involutions (as well as of course on N , k1 and k2).

Lemma 1. For fixed even integers k1, k2 > 0 and for every ε ∈ D(N)∨,

define an Eisenstein series Gε,k2k1,N
in MEis

k1,N
by

(39) Gε,k2k1,N
:=

∑
d|N

ε(d) d
k1−k2

2 Gk1 ◦ d .

Then for m ≥ 0, k = k1 + k2 + 2m and any f ∈ Sεk,N , we have

(40)
〈
f,
[
Gk1 , Gk2 ◦N

]
m

〉
= Gk2(∞) ·

〈
f, [Gε,k2k1,N

, E
(∞)
k2,N

]
m

〉
and

(41) L
(
f ∗Gε,k2k1,N

, k −m− 1
)

=
L(f, k −m− 1)L(f, k2 +m)

ζ(k2)
.
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Proof. We write Gε for Gε,k2k1,N
for simplicity. Because of the orthogonality of

the different eigenspaces of the group of Atkin-Lehner involutions, to prove
(40) it suffices to show that

(42)
([
Gk1 , Gk2 ◦N

]
m

)(ε)
= Gk2(∞) ·

([
Gε, E

(∞)
k2,N

]
m

)(ε)
for any m ≥ 0, where k = k1 + k2 + 2m as before and where we denote by
F (ε) the ε-eigencomponent of a modular form F on Γ0(N). The proof of this
is an algebraic juggling game using the different bases of MEis

∗,N . First of all,

applying the orthogonality relation
∑

ε ε(d)ε(d′) = 2tδd,d′ to the definition

Gεk,N =
∑

d|N ε(d) dk/2Gk ◦ d, we get the expression

(43) Gk ◦ d =
1

2t dk/2

∑
ε∈D(N)∨

ε(d)Gεk,N (d ∈ D(N))

for the eigenfunction decomposition of each Gk ◦ d. Applying this with
(k, d) replaced by (k1, 1) and by (k2, N), and observing that the Rankin-
Cohen bracket of an ε1-eigenfunction and an ε2-eigenfunction is an ε1ε2-
eigenfunction (because of the basic modular equivariance property of the
bracket), we obtain([

Gk1 , Gk2 ◦N
]
m

)(ε)
=

4−t

Nk2/2

∑
ε1, ε2∈D(N)∨

ε1ε2=ε

ε2(N)
[
Gε1k1,N , G

ε2
k2,N

]
m
.

On the other hand, from equations (39) and (43) we obtain

Gε =
1

2t

∑
d|N

ε(d) d−k2/2
∑

ε1∈D(N)∨

ε1(d)Gε1k1,N

=
1

2t

∑
ε1∈D(N)∨

∏
p|N

(
1 + εε1(p)p−k2/2

)
Gε1k1,N

and from equations (24) and (43) we obtain

Gk2(∞) E
(∞)
k2,N

=
1

2t
∏
p|N (pk2 − 1)

∑
d|N

µ
(N
d

)
dk2/2

( ∑
ε2∈D(N)∨

ε2(d)Gε2k2,N

)

=
1

2t

∑
ε2∈D(N)∨

∏
p|N

( 1

ε2(p)pk2/2 + 1

)
Gε2k2,N ,

and combining these two equations gives

Gk2(∞)
([
Gε, E∞k2,N

]
m

)(ε)
=

4−t

Nk2/2

∑
ε1, ε2∈D(N)∨

ε1ε2=ε

ε2(N)
[
Gε1k1,N , G

ε2
k2,N

]
m
.

Comparing this with the previous result we obtain equation (42).

To establish (41), we will show first that (38) holds for g = Gε,k2k1,N
for

some function A(s) that is a product over all prime factors of N of functions
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Ap(p
−s) each of which has the value 1 at s = k−m−1. This works because

the L-series of both f and Gε have Euler products, and we can therefore
work one prime at a time. Explicitly, the L-series of Gε is given by

L(Gε, s) =
∑
d|N

ε(d) d
k1−k2

2
−s ζ(s) ζ(s− k1 + 1)

=
∏
p|N

(
1 + ε(p)p

k1−k2
2
−s) ·∏

all p

1

(1− p−s) (1− pk1−1−s)
.

We write any L-series L(s) with an Euler product as
∏
p Lp(p

−s) where

Lp(X) is a rational function of X. By the discussion in Section 2, we can
write any Hecke form f ∈ Bεk,N as f = Lε2

k,N2
(f1) with f1 ∈ Bnew,ε1

k,N1
for some

decomposition N = N1N2 and corresponding decomposition ε = ε1ε2, and
then L(f,X)p is given by equation (12) in terms of L(f1, X)p, which in turn
is given by equation (11) with N , ε and f replaced by N1, ε1 and f1. The
local calculation splits into three cases, according as p - N , p|N1 or p|N2.

Case 1 : p - N . In this case we have

L(Gε, X)p =
1

(1−X)(1− pk1−1X)
=

∞∑
i=0

p(k1−1)(i+1) − 1

pk1−1 − 1
Xi

and

L(f,X)p =
1

1− ap(f)X + pk−1X2
=

∞∑
i=0

αi+1 − βi+1

α− β
Xi

where α+ β = ap(f), αβ = pk−1. It follows that

L(f ∗Gε, X)p =

∞∑
i=0

p(k1−1)(i+1) − 1

pk1−1 − 1

αi+1 − βi+1

α− β
Xi

=
1

(α− β)(pk1−1 − 1)

[
αpk1−1

1− αpk1−1X
− βpk1−1

1− βpk1−1X
− α

1− αX
+

β

1− βX

]
=

1 − pk+k1−2X2

(1− αpk1−1X)(1− βpk1−1X)(1− αX)(1− βX)

=
L(f,X)p L(f, pk1−1X)p

ζ(pk+k1−2X2)p
,

establishing the prime-to-N part of equation (42). This is the standard
method of calculation, but in fact there is a simpler way that does not require
factoring the denominator of L(f,X)p into linear factors: one decomposes
L(Gε, X)p by partial fractions in the form c1

1−X + c2
1−pk1−1X

and then gets

L(f ∗Gε, X)p as c1L(f,X)p + c2L(f, pk1−1X)p.
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Case 2 : p|N1. This is the “p-new” case, since p - N2 and therefore f is a
newform as far as the prime p is concerned. Equations (12) and (11) give

L(f,X)p = L(f1, X)p =
1

1 + ε1(p) pk/2−1X
=

∞∑
i=0

(−pk/2−1ε1(p))i Xi

while the formula for L(Gε, s) given above (here with ε(p) = ε1(p)) gives

(44) L(Gε, X)p =
1 + ε1(p) p(k1−k2)/2X

(1−X)(1− pk1−1X)
.

The calculation here is easier than in the generic case p - N , because the
form of L(f,X)p as a geometric series means that its convolution with any

power series in X is obtained simply by replacing X by −ε1(p)pk/2−1X in
that power series. We therefore get after a short calculation

(45) L(f ∗Gε, X)p =
1− pk1+m−1X

1− pk+k1−2X2

L(f,X)p L(f, pk1−1X)p
ζ(pk+k1−2X2)p

and since the first factor takes the value 1 at X = p−k+m+1, we have estab-
lished the p-part of (41) also in this case.

Case 3 : p|N2. This is the “p-old” case, since f comes from a form whose
level does not contain p. Here equations (12) and (11) give

L(f,X)p =
1 + ε2(p) pk/2X

1− ap(f1)X + pk−1X2
,

while L(Gε, X)p is given by (44), but with ε1(p) replaced by ε2(p). As in
Case 1 we can write each of these Euler factors as a linear combination
of two geometric series, obtaining for their convolution a sum of four geo-
metric series that can be evaluated by an elementary, though quite tedious,
computation, or alternatively write L(Gε, X)p in the form c1

1−X + c2
1−pk1−1X

and get L(f ∗ Gε, X)p as c1L(f,X)p + c2L(f, pk1−1X)p. The result of the
computation can be written in the form

L(f ∗Gε, X)p = (1− pk+k1−2X2)L(f,X)p L(f, pk1−1X)p

+ ε2(p)p
k1−k2

2 X (1− pk−m−1X)Q(X)L(f1, X)p L(f1, p
k1−1X)p ,

where Q(X) = ap(f1) + ε2(p)p
k
2 − (pk1−1 + 1)pk−1X − ε2(p)pk1+ 3k

2
−2X2

is an irrelevant quadratic polynomial. Since the second term vanishes at
X = p−k+m+1, this establishes the p-part of (41) in this case as well and
completes the proof of the lemma. �

Now combining equations (35), (40), (37) with g = Gε, (41), (14) and the
formula Gk2(∞) = (k2 − 1)!ζ(k2)/(2πi)k2 gives equation (36), completing
the proof of Proposition 2 and hence also of Theorems 1 and 3.
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6. Numerical Examples

In this section we give a number of examples illustrating both Theorem 1
and Theorem 2, postponing the proof of the latter to Section 7. We look at
the five levels N = 2, 3, 5, 6 and 7, giving in the first four cases (without
proof) the structure of the ring M∗,N = M∗(Γ0(N)) and using Theorem 1 to
compute the values of Rf (X,Y ) for a number of new forms (and for N = 2
also for a couple of old forms). We also give an example for N = 5 showing
how one can obtain the Hecke forms themselves, as well as their period poly-
nomials, from the generating function, as asserted in Theorem 2, and also an
example for N = 7 showing that in that case the corresponding assertion is
no longer true. To keep the numerology simple, we will mostly concentrate
on examples where dimSnew,ε

k,N = 1, so that the polynomial Rf (X,Y ) for its

generator f has rational coefficients, but to illustrate the use of Theorem 2 in
a non-trivial example we also look at one case (N = 5, k = 8, ε = +1) where
Snew,ε
k,N has dimension 2, and to show the failure of Theorem 2 for N = 7 we

also look at an example where this dimension equals 2. In the cases when
N = p is prime, the character ε ∈ D(p)∨ is determined by ε(p) ∈ {±1}, so
we will write Sεk,p simply as S±k,p.

N=2 . The ring M∗,2 of modular forms on Γ0(2) is the free algebra on
G−2,2(τ) and G−4,2(τ) (or G4(τ), or η(2τ)16/η(τ)8), and the ideal S∗,2 of cusp

forms is the free module generated by ∆+
8 (τ) = η(τ)8η(2τ)8. From this

information we can find the space Mk,2, and its canonical Hecke form basis,

for any given weight k. In particular, in five cases the space Snew,±
k,2 is one-

dimensional, so that the corresponding newform (which we denote simply
by ∆±k rather than the more correct ∆±k,2) has coefficients in Z :

∆+
8 (τ) = q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 + · · · ,

∆−10(τ) = q + 16q2 − 156q3 + 256q4 + 870q5 − 2496q6 + · · · ,
∆+

14(τ) = q − 64q2 − 1836q3 + 4096q4 + 3990q5 + 117504q6 + · · · ,
∆−14(τ) = q + 64q2 + 1236q3 + 4096q4 − 57450q5 + 79104q6 + · · · ,
∆+

16(τ) = q − 128q2 + 6252q3 + 16384q4 + 90510q5 − 800256q6 + · · · .

We also have two oldforms coming from ∆(τ) = q
∏

(1− qn)24 ∈ S12,

∆+
12(τ) = ∆(τ) + 64∆(2τ) = q + 40q2 + 252q3 − 3008q4 + 4830q5 + · · · ,

∆−12(τ) = ∆(τ)− 64∆(2τ) = q − 88q2 + 252q3 + 64q4 + 4830q5 + · · · ,

as well as similar oldforms (which we will omit) with rational Fourier co-
efficients in weights 16, 18, 20, 22 and 26. Computing the coefficients of
the generating function C2 of Theorem 1, we find the following values of
Rf (X,Y ) = rev

f (X)rodd
f (Y )/(2i)k−3〈f, f〉 for these forms:
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f Rf (X,Y )

∆+
8

[
1
17(8X6 − 1)− (2X4 −X2)

]
·
[
(4Y 5 + Y )− 5Y 3

]
∆−10 −2

3

[
3
31(16X8 + 1)− 2(4X6 +X2) + 7X4

]
·
[
(8Y 7 − Y )− 7(2Y 5 − Y 3)

]
∆+

12
1
8

[
33
691(32X10 − 1)− (8X8 −X2) + 4(2X6 −X4)

]
·
[
17(16Y 9 + Y )− 125(4Y 7 + Y 3) + 336Y 5

]
∆−12

1
8

[
279
691(32X10 + 1)− 7(8X8 +X2) + 12(2X6 +X4)

]
·
[
(16Y 9 − Y )− 5(4Y 7 − Y 3)

]
∆+

14 −1
8

[
9
43(64X12 − 1)− 4(16X10 −X2) + 11(4X8 −X4)

]
·
[
9(32Y 11 + Y )− 55(8Y 9 + Y 3) + 66(2Y 7 + Y 5)

]
∆−14 −11

8

[
25
127(64X12 + 1)− 4(16X10 +X2) + 15(4X8 +X4)− 32X6

]
·
[
(32Y 11 − Y )− 7(8Y 9 − Y 3) + 18(2Y 7 − Y 5)

]
∆+

16
77
75

[
105
257(128X14 − 1)− 8(32X12 −X2) + 26(8X10 −X4)− 39(2X8 −X6)

]
·
[
2(64Y 13 + Y )− 13(16Y 11 + Y 3) + 26(4Y 9 + Y 5)− 39Y 7

]
In each case we independently computed the values of 〈f, f〉 and of the
coefficients of rf (X) as real numbers and found the same results (but now

only numerically, rather than exactly) in each case, the example of ∆+
8

already having been given in Section 2. As a further check, one can see that
the values of Rf (X,Y ) for the oldforms ∆±12 are given by

R∆+
12

(X,Y ) = 1
1152

(
P (2X) + 32P (X)

) (
Q(2Y ) + 32Q(Y )

)
,

R∆−12
(X,Y ) = 1

1920

(
P (2X)− 32P (X)

) (
Q(2Y )− 32Q(Y )

)
,

where

P (X) = 36
691

(
X10−1)−X2(X2−1)3, Q(Y ) = Y (Y 2−1)2(Y 2−4)(4Y 2−1)

are (up to constants) the even and odd parts of the period polynomial of ∆,
in accordance with (16) and (13). (Up to a factor 28 the numbers 1152 and
1920 are equal to the numbers 2(2± 2−5a2(∆) + 1) occurring in (13).)

N=3 . The ring of modular forms on Γ0(3) is the ring of even polynomials
in the two modular forms

Θ(τ) =
∑

m,n∈Z
qm

2+mn+n2
= 1 + 6q + 6q3 + 6q4 + 12q7 + · · · ,

H(τ) = 27
η(3τ)9

η(τ)3
− η(τ)9

η(3τ)3
= −1 + 36q + 54q2 + 252q3 + · · ·

(both of which can also be written as Eisenstein series) of weight 1 and 3
and character

( ·
3

)
, and the ideal of cusp forms is again principal, generated
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this time by ∆+
6 = 1

108(Θ6 − H2) = η(τ)6η(3τ)6. The generators of the

one-dimensional spaces Snew,±
k,N in this case are given by

∆−6 (τ) = q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + · · · ,
∆+

8 (τ) = q + 6q2 − 27q3 − 92q4 + 390q5 − · · · ,
∆+

10(τ) = q − 36q2 − 81q3 + 784q4 − 1314q5 + · · · ,
∆−10(τ) = q + 18q2 + 81q3 − 188q4 − 1530q5 + · · · .

and from Theorem 1 we find that the corresponding two-variable period
polynomials Rf (X,Y ) are

f Rf (X,Y )

∆−6 −2
3

[
1
13(9X4 + 1)−X2

]
·
[
3Y 3 − Y

]
∆+

8
1
3

[
2
41(27X6 − 1)− (3X4 −X2)

]
·
[
3(9Y 5 + Y )− 20Y 3

]
∆+

10 − 4
27

[
4
61(81X8 − 1)− (9X6 −X2)

]
·
[
2(27Y 7 + Y )− 7(3Y 5 + Y 3)

]
∆−10 −14

27

[
1
11(81X8 + 1)− 2(9X6 +X2) + 9X4

]
·
[
(27Y 7 − Y )− 8(3Y 5 − Y 3)

]
N=5 . Here the ring M∗,N is generated by the three Eisenstein series G−2,5,

G+
4,5 and G−4,5, with one quadratic relation in weight 8 that we do not write

down, and the ideal of cusp forms is the principal ideal generated by the
newform ∆+

4 = η(τ)4η(5τ)4. The newforms with rational Fourier coefficients
in this case are

∆+
4 (τ) = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7 + · · · ,

∆−6 (τ) = q + 2q2 − 4q3 − 28q4 + 25q5 − 8q6 + 192q7 + · · · ,
∆−8 (τ) = q − 14q2 − 48q3 + 68q4 + 125q5 + 672q6 − 1644q7 + · · · .

and using Theorem 1 just as before we find the corresponding period poly-
nomials

f Rf (X,Y )

∆+
4

4
65

[
5X2 − 1

]
·
[
Y
]

∆−6 −6
5

[
5
93(25X4 + 1)−X2

]
·
[
5Y 3 − Y

]
∆−8

3
25

[
6
65(125X6 + 1)− (5X4 +X2)

]
·
[
25Y 5 − Y

]
Of course, we can also look at eigenspacesMnew, ε

k,N that are not one-dimensional,

so that the corresponding Hecke eigenforms no longer have rational Fourier
coefficients. The first such forms here are the form

f8 = q + (10 + 2
√

19) q2 + (10− 16
√

19) q3 + (48 + 40
√

19) q4 + · · ·

in S+
8,5 and its Galois conjugate fσ8 , where 1 6= σ ∈ Gal(Q(

√
19)/Q). If

we expand the coefficient C8,5(X,Y, τ) of T 6/6! in C5(X,Y, τ, T ) and write
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its cuspidal part in terms of the forms f8 and fσ8 , then we find that the
two-variable period polynomial Rf8(X,Y ) is given by

Rf8(X,Y ) =
11− 7/

√
19

375

[ 4

97 +
√

19
(125X6 − 1)− (5X4 −X2)

]
·
[
15(25Y 5 + Y )− (137 +

√
19)Y 3

]
.

The value of Rf8(X,Y ) just given was derived assuming that the Hecke
eigenforms f8, fσ8 were already known. We now illustrate Theorem 2 by
showing how we can obtain these Hecke eigenforms as well as their period
polynomials directly from C5(X,Y, τ, T ), without knowing them in advance.
(We chose to use this example rather than one for N = 2 or N = 3 to
illustrate the theorem both because it is the largest level occurring in the
theorem and because the first newforms with non-rational coefficients have
smaller weight and therefore also smaller Fourier coefficients in this case.) To
do this, we first use Theorem 1 to compute C8,5(X,Y, τ) as the coefficient of
T 6 in B5(X,Y, τ, T ), then subtract from this its Eisenstein part as computed
in Section 3 to get Ccusp

8,5 (X,Y, τ), and then symmetrize with respect to

X ↔ −X to get the even-odd part Ccusp
8,5 (X,Y, τ), which is an element of

Vev
6,5(X)⊗Vod

6,5(Y )⊗Q[[q]]. We can then write this element with respect to
the bases

(e+
1 (X), e+

2 (X), e−1 (X), e−2 (X)) = (125X6−1, 5X4−X2, 125X6+1, 5X4+X2)

and

(f+
1 (Y ), f+

2 (Y ), f−1 (Y )) = (25Y 5 + Y, Y 3, 25Y 5 − Y )

of Vev
6,5(X) and Vod

6,5(Y ) as

Ccusp
8,5 (X,Y, τ) =

2∑
i=1

2∑
j=1

Ai,j(τ) e+
i (X) f+

j (Y ) +

2∑
i=1

Bi,1(τ) e−i (X) f−1 (Y )

with explicit matrices A(τ) and B(τ) with coefficients in Q[[q]]. Writing out
these matrices, we find that the two entries of the 2 × 1 matrix B(τ) are
proportional (as has to be the case), so that we obtain a factorization

6!B(τ) =
3

25

(
6
65
−1

)
(q − 14q2 − 48q3 + 68q4 + 125q5 + · · · )

and thus recover both the Hecke form ∆−8,5 and the value of R∆−8,5
(X,Y ) as

given above, without having had to assume the value of ∆−8,5 to be known

in advance. Similarly, the four entries of the 2 × 2 matrix A(τ) span a
2-dimensional space of power series. If we choose a normalized basis

F1(τ) = q + 0 q2 + 90 q3 − 152 q4 − 125 q5 + 192 q6 + · · · ,
F2(τ) = 0 q + q2 − 8 q3 + 20 q4 + 0 q5 − 70 q6 + · · ·
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for this space, then we can write A(τ) as

6!A(τ) =

(
1432
39125 − 104

313

−22
25 8

)
F1(τ) +

(
11952
39125 − 896

313

−192
25 72

)
F2(τ) ,

Writing A(τ) instead as a linear combination of the two as yet unknown
Hecke eigenforms fi(τ) = q + λiq

2 + · · · = F1 + λiF2, we find

6!A(τ) =
a(λ2)f1 + a(λ1)f2

λ1 − λ2
, a(λ) =

(
8(179λ−1494)

39125 −16(13λ−112)
313

−2(11λ−96)
25 16(λ− 9)

)
.

The fact that the coefficients of f1(τ) and f2(τ) in C8,5(X,Y, τ) have to
factor as the product of a polynomial in X and a polynomial in Y then tells
us that λ1 and λ2 have to be the roots of the quadratic equation det a(λ) =

16
39125 (λ2−20λ+24) = 0, so λ1, λ2 = 10±2

√
19. We have thus obtained the

Hecke forms f8 and fσ8 as well as their period polynomials from Theorem 1
without having to assume anything in advance.

This calculation is an example of the application of the lemma on page 461
of [15], which implies that all the Hecke forms f(τ) are uniquely determined
by the expression

∑
f Rf (X,Y )f(τ) if we know that the maps f 7→ rev

f and
f 7→ rev

f are injective. We will show in §7 that this injectivity holds in all
weights if p = 2, 3 or 5, thus proving Theorem 2.

N=6 . Here the ring M∗,N consists of the even polynomials in the two mod-
ular forms Θ(τ) and Θ(2τ) of weight 1, with the same Θ(τ) used for N = 3.
We illustrate Theorem 1 by looking at the case k = 6. The space M6,6 is
7-dimensional, with a Hecke basis consisting of the four Eisenstein series
G±,±6,6 (τ) ∈ M±,±6,6 (where we indicate a character ε ∈ D(6)∨ by giving the

pair (ε(2), ε(3))), the two old forms L±6,2(∆−6,3) ∈ S±,−6,6 coming from level 3,
and the unique newform

∆−,+6 (τ) = q + 4q2 − 9q3 + 16q4 − 66q5 − 36q6 + 176q7 + · · · .

If we decompose the coefficient C6,6(X,Y, τ) of T 4/4! in C6(X,Y, τ, T ) as
given by Theorem 1 as a linear combination of these seven functions with

coefficients in V̂ev(X)⊗ V̂od(Y ), then for the six oldforms we indeed get the
values related to those for G4 and ∆−6,3 in the way discussed in §2, while for
the newform we find

R∆−,+6
(X,Y ) = − 2

63

[
(36X4 + 1)− 21X2

] [
6Y 3 − Y

]
.

N=7 . In this case the spaces S−4,7 and S+
6,7 are 1-dimensional, generated

by the forms

∆−4 (τ) = q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + · · · ,
∆+

6 (τ) = q − 10q2 − 14q3 + 68q4 − 56q5 + 140q6 − 49q7 + · · ·
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with rational coefficients, and by calculations like the ones before we find
that the corresponding even-odd period polynomials Rf (X,Y ) are equal to
4
35(7X2− 1)Y and − 8

43·72 (49X4− 1)(7Y 3 +Y ), respectively. The space S−6,7
is 2-dimensional, generated by the form

f6 = q + 9+
√

57
2 q2 − 3(1 +

√
57)q3 + 5+9

√
57

2 q4 + · · · ∈ Z
[

1+
√

57
2

]
[[q]]

and its Galois conjugate fσ6 , where 1 6= σ ∈ Gal(Q(
√

57)/Q), and for this
form Theorem 1 gives

Rf6(X,Y ) =
5−3
√

3/19

7

[
−17+
√

3/19

392 (49X4 + 1) +X2
]
·
[
7Y 3 − Y

]
.

Thus in this case the eigenforms f6 and fσ6 have the same odd period poly-
nomial up to a constant (as was indeed clear a priori, since this polynomial
must be a multiple of 7Y 3 − Y ) and therefore one cannot find these two
forms separately just by decomposing Ccusp

7 (X,Y, τ, T ) into a sum of two
products of the forms P (X)Q(Y )f(τ), because this decomposition is now
not unique. This shows that Theorem 2 fails for p = 7, even when restricted
to newforms (which was not obvious a priori, because the dimension of Snew

k,p

is (p−1)k/12+O(1) for p prime, which for p = 7 is asymptotically the same
as the dimension of Vev

k−2 or Vod
k−2, so that the theorem, which had to fail

for Sk,7, might have been true for new forms; for p > 7 the dimension even
of the space of new forms is too big, so that Theorem 2 cannot hold).

7. Proof of Theorem 2 and Haberland-type formulas

In this final section of the paper we treat the case of small prime levels,
proving Theorem 2 for the primes p = 2, 3 and 5 and also giving in each
case an expression for the scalar products 〈f, f〉 in terms of the periods of f
for any Hecke form f ∈ Sk,p. For convenience we abbreviate w = k − 2.

As in Section 6, when the level N is a prime p, we identify the elements
of D(p)∨ with their values on p, writing M ε

k,p as M±k,p if ε(p) = ±1. We want

to prove the injectivity of the period map rev/od : f 7→ r
ev/od
f from Sk,p to

Vev/od
w,p for small values of p. (This is sufficient to prove Theorem 2 since

the Eisenstein part of the generating series can be computed in advance and
subtracted off by the results of Section 3.) Since the period polynomials
of cusp forms in S+

k,p and S−k,p take values in vector spaces V±w,p that have

trivial intersection, it is enough to prove the injectivity of the restriction
of rev/od to Sεk,p for ε = ±1. We also note that S+

k,p can be identified

with Sk(Γ
∗
0(p)) and S−k,p with Sk(Γ

∗
0(p), χp), where χp : Γ∗0(p) → {±1} is

the homomorphism sending Γ0(p) to 1 and Wp to −1. (Similar statements
would apply to any squarefree level N , with Sεk,N for any ε ∈ D(N)∨ being

identified with Sk(Γ
∗
0(N), χε) for the homomorphism χε : Γ0(N)∗ → {±1}

sending the coset WMΓ0(N) = Γ0(N)WM to ε(M) for all M ∈ D(N).)
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By the general Eichler-Shimura theory of periods (see e.g. [11] or [5]), we
know that for any Fuchsian group Γ and any f ∈ Sk(Γ) the map γ 7→ rf,γ ∈
Vw, where rf,γ(X) =

∫∞
γ−1(∞) f(τ)(X − τ)w dτ , is a cocycle (one can write

rf,γ(τ) with τ ∈ H as f̃(τ, τ)|−w(1 − γ), with f̃ as in (18), so γ 7→ rf,γ is
a Hol(H)-valued coboundary and hence a Vw-valued cocycle), and that the

linear map from Sk(Γ)⊕Sk(Γ) toH1(Γ,Vw) sending (f, g) to the cocycle γ 7→
rf,γ(X) + rg,γ(X) is injective, with image H1

par(Γ,Vw) (the first parabolic
cohomology group of Γ with coefficients in Vw, defined by cocycles sending
any parabolic element γ of Γ to an element of Vw|(1− γ)). This applies
not only to the trivial character, but also to the map from Sk(Γ, χ) to
H1(Γ,Vw,χ) for any homomorphism χ : Γ → C∗, where Vw,χ is the vector
space Vw with the twisted action of Γ given by P 7→ P |−w,χγ := χ(γ)P |−wγ.
We use it for Γ = Γ∗0(p) and χ = 1 or χp. The last remark is that the action
of the matrix δ =

(−1 0
0 1

)
on H by τ 7→ −τ̄ induces an anti-linear map from

Sεk,p to itself by sending f(τ) to f δ(τ) := f(−τ̄). Since δ fixes the imaginary
axis pointwise, a one-line calculation shows that the period polynomials of

f and f δ are related by rfδ(X) = −rf (−X), so if f ∈ Sεk,p is a cusp form for

which either rev
f or rod

f vanishes, then the cocycle attached to either (f, f δ)

or (f,−f δ) by the Eichler-Shimura theorem vanishes on both T and Wp.
The statement of Theorem 2 for p = 2 or 3 is now clear, since we see

from the fundamental domains Fp of the group Γ∗0(p) as shown below that
in both of these cases this group is generated by the two elements T and Wp

(recall that we are always considering our matrices in PGL+
2 (R), so that we

can write Wp indiscriminately as
(

0 −1
p 0

)
or 1√

p

(
0 −1
p 0

)
), and hence a cocycle

is automatically determined by its values on these two elements. We can

−1
2 0 1

2

P−1

P0

P1

F2

Ũ2

W2

U2

−1
2 0 1

2

P−1

P0

P1

F3

Ũ3

W3

U3

use the form of the fundamental domains to give a more complete result
in these two cases, describing the images of the even and odd period maps
rather than merely proving their injectivity. The vertices of F2 are∞, P±1 =
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±1
2 + i

2 and P0 = i√
2

and those of F3 are ∞, P±1 = ±1
2 + i√

12
and P0 = i√

3
,

where in each case ∞ is fixed by T , P0 by Wp, P1 by Up := TWp =
(
p −1
p 0

)
,

and P−1 by Ũp := T−1Wp =
(
−p −1
p 0

)
. In particular, the group Γ∗0(p) is

generated by the two elements Wp and Up with the relations W 2
p = U 2p

p = 1

(once again, in PGL+
2 (R)). It follows that the period polynomial of any

f ∈ Sεk,p belongs to the subspace

Wε
w,p :=

{
P ∈ Vεw,p :

2p−1∑
j=0

P
∣∣
−w,εU

j
p = 0

}
of Vεw,p (here |−w,ε means |−w,χε with χ+ = 1, χ− = χp), because(

rf

∣∣∣
−w,ε

2p−1∑
j=0

U jp

)
(X) =

2p−1∑
j=0

∫ U−jp (∞)

U−j−1
p (∞)

f(τ) (τ −X)w dτ = 0 .

We can also consider the even and odd period maps f 7→ r
ev/od
f ∈Wev/od,ε

w,p ,

and note that, as in Section 2, these maps extend in the even case to all of
M ε
k,p, whereas for the odd period map we would have to replace Wε

w,p by a

one dimension larger space Ŵε
w,p in order to be able to include the Eisenstein

series inM ε
k,p. By the Eichler-Shimura theorem once again, we know that the

space H1
par(Γ

∗
0(p),Vw,χε) of parabolic cohomology classes on Γ∗0(p) with val-

ues in Vw,χε is isomorphic to two copies of Sεk,p (or more correctly, of one copy

of this space and one copy of its complex conjugate), and from the presen-

tation of Γ∗0(p) we see that this space is isomorphic to Wε
w,p/〈εpw/2Xw − 1〉.

Putting everything together, we have:

Proposition 3. For p ∈ {2, 3} and ε ∈ {±1} the maps f 7→ rev
f and f 7→ rod

f

give isomorphisms

M ε
k,p

∼−→Wev,ε
w,p , Sεk,p

∼−→Wod,ε
w,p .

We mention in passing that the translation into generating functions of

the fact that the period polynomials belong to Ŵw,p, together with the
equality Cp = Bp of Theorem 1, gives the 4-term theta relation

B2(X,Y, τ, T ) − B2

( X

1− 2X
,Y, τ, (1− 2X)T

)
+ B2

( X − 1

2X − 1
, Y, τ, (2X − 1)T

)
− B2(X − 1, Y, τ, T ) = 0 ,

and a similar 6-term relation for B3(X,Y, τ, T ).
To complete the above result, we also give a formula expressing the Pe-

tersson scalar product of two cusp forms f, g ∈ Sεk,p (p = 2 or 3) in terms
of the period polynomials rf and rg. Formulas of this type were given by
Haberland [4] and in a slightly different form in [6], for the group SL2(Z) and
arbitrary weight, and for general Fuchsian groups in [13] (only for weight 2,
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but the corresponding formula holds in all weights). But of course for gen-
eral groups one needs the full cocycle γ 7→ rf,γ . Here we give the explicit
formulas for p = 2 and p = 3, and also for p = 5 below, giving only a
sketch in each case since the methods are by now standard and since an
equivalent result is also stated in the recent paper [9] by Pasol and Popa.
(But they do not give any proof or reference for the cases p = 3 and p = 5,
and also express everything in terms of the standard generators of SL2(Z)
and the inclusion Γ0(p) ⊂ SL2(Z), while we work directly with Γ∗0(p) and
its generators.) We recall the standard definition of a PGL+

2 (R)-invariant
scalar product on Vw, given by the formula (Xr, Xs)Vw = (−1)rδr+s,w/

(
w
r

)
for 0 ≤ r, s ≤ w, or equivalently by the formula ((X−a)w, P (X))Vw = P (a)
for a ∈ C and P ∈ Vw.

Proposition 4. For p ∈ {2, 3} and ε ∈ {±1}, the Petersson scalar product
of two cusp forms f, g ∈ Sεk,p is given by

(46) (2i)k−1 〈f, g〉 = −1

p

(
rf |−w,εAp, rιg

)
Vw ,

where Ap :=
∑p−1

j=1(p− j)(Ũ jp − U jp ) ∈ Z[Γ∗0(p)] and rιg(X) := rg
(
X
)
.

We make several remarks about this proposition before giving its proof.
1. Equation (46) is compatible with the equation 〈f, g〉 = 〈g, f〉, because
the operator |Ap is anti-self-adjoint with respect to ( , )Vw .
2. Since rιg(X) = −rgδ(−X), and since |Ap also anti-commutes with the

matrix δ =
(−1 0

0 1

)
(because δUpδ = Ũp), we can rewrite 2

(
rf |Ap, rιg

)
Vw as(

rev
f |Ap, rod

gδ

)
Vw +

(
rev
gδ
|Ap, rod

f

)
Vw , which is symmetric in f and gδ and in-

volves only pairings between even and odd period polynomials, as it should.

This immediately implies the injectivity of rev/od : f 7→ r
ev/od
f if f has real

Fourier coefficients (because with f = f δ = g it shows that (f, f) vanishes
if rev

f or rod
f vanishes), and this in turn implies the injectivity for all f . (If

f = f1 + if2 with f1 and f2 real, then rev
f is the sum of rev

f1
and irev

f2
, one

of which has real coefficients and the other pure imaginary coefficients, so if
rev
f = 0 then rev

f1
= rev

f2
= 0 and hence f1 = f2 = 0, and similarly for rod

f .)

3. It also follows that Φ[Rf (X,Y )] = 1 for all f ∈ Bcusp
k,p , where Φ is

the map from Vev,ε
w,p (X) ⊗ Vod,ε

w,p (Y ) ⊂ C[X,Y ] to C sending r1(X)r2(Y ) to
1
2p(r1|Ap, r2). (One can check this numerically for each of the 11 cusp forms

in the tables for N = 2 and N = 3 in §6.) This implies that Φ[Ck(X,Y, τ)] is
the modular form whose nth Fourier coefficient is the trace of Tn on Mk,p, so
one could also use the proposition to compute the traces of Hecke operators
for Γ∗0(2) and Γ∗0(3), as was done in [14] for the full modular group.
4. Finally, one could also use Proposition 4 to give an explicit description of
the codimension 1 subspace rev(Sεk,p) ⊂Wev,ε

k,p , as was done in [6] for SL2(Z),

by extending (46) to the case when one of f or g is an Eisenstein series and
observing that 〈f,Gεk,p〉 vanishes for f ∈ Sεk,p.
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Proof. Let f̃(X, τ) be the function defined in (18), and g̃(X, τ) the corre-

sponding function for g. Then the function G(τ) := g̃(τ̄ , τ) transforms by

G|−w,ε(1− γ) = rg,γ(τ̄) for all γ ∈ Γ∗0(p). Also, ∂G/∂τ̄ = −(2iy)wg(τ), so

(2i)k−1 〈f, g〉 =

∫∫
Fp
d
[
f(τ)G(τ)dτ

]
=

∫
∂Fp

f(τ)G(τ) dτ

=

∫ P1

P−1

f(τ)G(τ) dτ =
1

2

∫ P1

P−1

f(τ) rιg(τ) dτ ,

where the second and third equalities follow from Stokes’s theorem and the
periodicity of f(τ)G(τ) and the last one because the lower edge of Fp is
mapped orientation-reversingly onto itself by Wp and f |k,εWp = f . By the
above-mentioned property of ( · , · )Vw we have rιg(τ) = ((X−τ)w, rιg(X))Vw ,
so this can be rewritten

(2i)k−1 〈f, g〉 =

(
1

2

∫ P1

P−1

f(τ) (τ −X)w dτ , rιg(X)

)
Vw

=
1

2

(
f̃(X,P−1) − f̃(X,P1), rιg(X)

)
Vw

.

Since rιg
∣∣
−w,ε

∑
j (mod 2p) U

j
p = 0 and f̃(X,P1)|−w,ε(1− U jp ) = r

f,Ujp
for all j

(by the transformation law of f̃ and because Up fixes P1), we have(
f̃(X,P1), rιg(X)

)
Vw

=
(
f̃(X,P1)

∣∣
−w,ε

(
1− 1

2p

∑
j (mod 2p)

U jp

)
, rιg(X)

)
Vw

=
1

2p

∑
j (mod 2p)

(
r
f,Ujp

(X), rιg(X)
)
Vw .

Also, the cocycle property gives r
f,Ujp

= rf |−w,ε(1 + Up + · · · + U j−1
p ) (and

similarly for Ũp). The assertion of the proposition now follows after a short
calculation whose details are left to the reader. �

We now turn to the remaining case p = 5. Here the situation is more
complicated because the element TW5 no longer has finite order and because
Γ∗0(5) is no longer generated by W = W5 and T . Instead, we have

(47) Γ∗0(5) =
〈
A, B, W

〉
, A2 = B2 = W 2 = 1, BAW = T ,

where A =
(

2 −1
5 −2

)
, B =

(
5 −3
10 −5

)
. One can see this from the fundamental

domain for Γ shown below, which is a hyperbolic polygon whose vertices

P1 = 2+i
5 , P2 =

√
5+i

2
√

5
, P0 = i√

5
, P−1 = −2+i

5 and P−2 = −
√

5+i
2
√

5
and∞ are the

fixed points of the five involutions A, B, W , A1 = WAW and B1 = T−1BT
of Γ∗0(5) and of the parabolic element T . What we have to prove is that for
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any f ∈ Sεk,5 ∼= Sk(Γ
∗
0(5), χε) the cocycle γ 7→ rf,γ is determined by just the

even or just the odd part of the basic period polynomial rf = rf ,W .

−1
2 0 1

2

P−2

P−1

P0

P1

P2

F5

B1 A1

W

A B

As in the cases p = 2 and p = 3, the Eichler-Shimura theory of periods tells
us that the parabolic cohomology group H1

par(Γ
∗
0(5),Vw,χε) is isomorphic to

two copies of Sεk,5. Since Γ∗0(5) has only one cusp, all of its parabolic elements
are conjugate to T , so parabolic cohomology classes can be represented by
cocycles γ 7→ rγ with rT = 0, these representative being unique up to the 1-
dimensional space of coboundaries given by γ 7→ 1|(1−γ). (Here and for the
rest of the section we write simply | for the twisted operation |−w,ε = |−w,χε
of Γ∗0(5) on Vw.) From the above presentation of Γ∗0(5), a cohomology class
is determined by the three elements rA, rB and r = rW , with rA|(1 + A) =
rB|(1 + B) = r|(1 + W ) = 0 (because A, B and W are involutions) and
rB|AW + rA|W + r = rBAW = 0, so we can eliminate rA and identify
the space Z1

par(Γ
∗
0(5),Vw,χε) of parabolic cocycles with the space Wε

w,5 of

pairs of polynomials (r, rB) in (Vεw,5)2 satisfying r|(1 +W ) = rB|(1 +B) =

(r−rB)|(1+A) = 0. If it were true that such a pair is determined by its first
element r, then we would be done. However, this is not the case. Instead, if
r = 0 we have rB = −rB|A = rB|BA. Since BA is hyperbolic, its fixed-point

set in Vw is 1-dimensional, spanned by the polynomial (5X2 − 5X + 1)w/2,
and this polynomial is also anti-invariant (with respect to the twisted action

of Γ∗0(5)) under both A and B if ε = −(−1)w/2 = (−1)k/2. The map
(r, rB) 7→ r from parabolic cocycles to polynomials is therefore not injective
in these cases, but has a 1-dimensional kernel. But this failure does not mean
that the map f 7→ rf is not injective, because the image of (Sεk,5)2 under the
period map has codimension 1 in the space of all parabolic cocycles. and
the offending vector (r, rB) = (0, (5X2−5X+1)w/2) luckily does not belong
to this image. This follows from a Haberland-type formula, which we now
state briefly, for the Petersson scalar products of cusp forms on Γ0(5) in
terms of their periods.
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To state the formula, we need to use the decomposition of the space of
cocycles into an even and an odd part, corresponding to the (±1)-eigenspaces
of the action of the involution δ of the space H1

par induced by the involution
τ 7→ −τ̄ of H/Γ∗0(5). For this it is convenient to change our description of
the space Wε

w,5, replacing rB(X) by r∗(X) := rB((X + 1)/2), because then
the integral representation

r∗f (X) = rf,B

(X + 1

2

)
= 21−k

∫ ∞
0

f
(τ + 1

2

)
(X − τ)w dτ

and the same one-line calculation as for rf show that r∗
fδ

(X) = −r∗f (−X).

We have isomorphisms

rod : Sεk,5
∼−→Wod,ε

w,5 , rev : Sεk,5
∼−→Wev,ε

w,5 /〈(1− ε5
w/2Xw, 1− ε5w/2Xw)〉,

given by f 7→ (r
ev/od
f , (r∗f )ev/od), where

Wev/od,ε
w,5 =

{
(r, r∗) ∈ (Vev/od,ε

w,5 )2 | (r(X)− r∗(2X − 1))|(1 +A) = 0} .

We illustrate this with the examples k = 8, ε = ±1. For ε = −1 we find that
a pair of polynomials (r, r∗) = (a0(125X6+1)+a2(5X4+X2)+a1(25X5−X),
a∗0(125X6 +1)+a∗2(5X4 +X2)+a∗1(25X5−X)) belongs to W−6,5 if and only if

(a∗0, a
∗
2, a
∗
1) = (8a0 + 33

20a2,−17
4 a2,−6a1), so that r∗ is completely determined

by r, while for ε = 1 we find that (r, r∗) = (a0(125X6−1)+a2(5X4−X2)+
a1(25X5+X)+a3X

3, a∗0(125X6−1)+a∗2(5X4−X2)+a∗1(25X5+X)+a∗3X
3)

belongs to W+
6,5 if and only if (a∗0, a

∗
2, a
∗
1, a
∗
3) = (−8a0 + m,−8a2 − 15m,

149
4 a1+ 15

4 a3,−625
2 a1− 67

2 a3) for some m, so that in this case r∗ is determined

by r only up to the addition of a multiple of (5X2− 1)3, in accordance with
the assertions above. Both statements can be checked numerically for the
period polynomials of the cusp forms ∆−8 ∈ S−8,5, where a2 = −65

6 a0, and

f8 ∈ S+
8,5, where a2 = −97+

√
19

4 a0 and a3 = −137+
√

19
15 a1 as given in the

N = 5 tables in Section 6.
The formula for the scalar product of two cusp forms f, g ∈ Sεk,5 with real

Fourier coefficients can now be stated as

(48) (2i)k−1 〈f, g〉 =
(
rf , r

∗
g |(T − T−1)

)
Vw +

(
rg, r

∗
f |(T − T−1)

)
Vw .

We omit the proof of this formula, which proceeds along exactly the same
lines as the proof of Proposition 4 above, but mention that it implies the
injectivity of the maps f 7→ rev

f and f 7→ rod
f by the same argument as in

the second remark following that proposition (now using that |(T − T−1) is
anti-self-adjoint and anti-commutes with δ). We can also check using the
data given in the tables for N = 5 in Section 6 that (48) gives the correct
values of 〈f, f〉 for each of the cusp forms f listed there and also gives
the orthogonality of the Hecke form f8 ∈ S+

8,5 with its Galois conjugate
eigenform.
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