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Abstract. We analyse the possible ways of gluing twisted products of circles with asymp-
totically cylindrical Calabi-Yau manifolds to produce manifolds with holonomy G2, thus
generalising the twisted connected sum construction of Kovalev and Corti, Haskins, Nord-
ström, Pacini. We then express the extended ν-invariant of Crowley, Goette, and Nordström
in terms of fixpoint and gluing contributions, which include different types of (generalised)
Dedekind sums. Surprisingly, the calculations involve some non-trivial number-theoretical
arguments connected with special values of the Dedekind eta-function and the theory of
complex multiplication. One consequence of our computations is that there exist compact
G2-manifolds that are not G2-nullbordant.

Though compact Riemannian manifolds with holonomy G2, also known as compact manifolds
with a torsion-free G2-structure, have been constructed more than 25 years ago, we still do
not know very much about them. On one hand, only a few obstructions against G2-metrics on
a given compact 7-manifold are known (see Joyce [25, §10.2]). On the other hand, our current
supply of examples is much smaller than allowed by these obstructions. It is therefore still
interesting to explore new invariants of G2-manifolds in the hope to discover new obstructions,
and to find new examples on which these invariants can be tested.

The extended ν-invariant was introduced in [14] to exhibit 2-connected 7-manifolds with a
disconnected moduli space of G2-metrics. In the present paper, we apply it to a larger class of
examples to find the first examples of G2-manifolds whose G2-bordism class can be shown
to be nontrivial. We compute the η-invariants that appear in the definition of the extended
ν-invariant using gluing formulas as well as variation and adiabatic limit formulas for manifolds
with boundary. The details may be of interest to index theorists because in contrast to [14],
we cannot rely on spectral symmetry here.

Extra-twisted connected sums. There are currently two major sources of compact G2-
manifolds, that is, compact Riemannian manifolds whose holonomy group is isomorphic to G2.
The first is Joyce’s Kummer construction [25], based on resolution of singularities in flat
orbifolds. It has recently been generalised by Joyce and Karigiannis to more complicated
spaces [26]. The second is the twisted sum construction pioneered by Kovalev [28] and
systematically studied by Corti, Haskins, Nordström and Pacini [12, 13].

For the latter, one starts with two asymptotically cylindrical Calabi-Yau manifolds V±. The
cross-sections of their ends approach the products of a K3 surface Σ± and a circle S1

ζ±
that

we wish to call the interior circle. In the classical set up, one takes the products of V± and an
exterior circle S1

ξ±
of length ξ± = ζ∓. Then one glues truncated copies M± of V± × S1

ξ±
along

their ends, in a way that swaps the roles of interior and exterior circles.
Here, we assume in addition that some finite cyclic groups Γ± ∼= Z/k± act on V±, preserving

the Calabi-Yau structure. We also assume that the induced actions on the K3 factors Σ±
are trivial, and that the induced actions on the interior circles S1

ζ±
are free. We consider

twisted products M± ∼= (V± × S1
ξ±

)/Γ±, where Γ± acts diagonally, and freely on the exterior
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circle factors. The manifolds M+ and M− can now be glued with an “extra” twist. The cases
where k± ≤ 2 have already been considered in [14, 31].

The known supply of asymptotically cylindrical Calabi-Yau manifolds with nontrivial
symmetries that fix the K3 surface Σ is very limited. In the present paper, we use examples
constructed from Fano threefolds of higher index, and from hypersurfaces in weighted projective
spaces. We only consider examples of Picard rank 1 for simplicity. The possible groups obtained
this way are Γ ∼= Z/k with k ≤ 6; see Table 1.

But even though we use only a few asymptotically cylindrical Calabi-Yau manifolds with
nontrivial symmetry group, there are typically several different ways to glue two given twisted
products M± by changing the size of the exterior circles and the gluing angle between them.
Some of the G2-manifolds we construct this way will not be simply connected—we obtain
cyclic fundamental groups of order up to 21; see example 250 of Table 2—but the universal
covers of these examples will again be extra-twisted connected sums; see Proposition 3.5.

Apart from the choice of V+, V− and Γ+, Γ−, an extra-twisted connected sum is described
by two square matrices encoding the gluing of the tori and of the K3 surfaces, and two small
integers that fix the actions of Γ±. These data have to satisfy certain conditions, as described
below. There are typically several ways to describe the same extra-twisted connected sum up
to isometries and orientation reversal; see Proposition 3.7. In addition, passing to dual tori
often leads to non-isometric extra-twisted connected sums built from the same blocks with the
same K3-matching and the same gluing angle. We thus have a kind of partial t-duality for
extra-twisted connected sums; see Proposition 3.9 and Example 3.11.

Our combinatorial description of extra-twisted connected sums allows us to find all possible
combinations (among the asymptotically cylindrical Calabi-Yau 3-folds used in this paper)
by a small computer program. Table 2 lists 255 examples of extra-twisted considered sums,
192 of which are not contained in [31]. Of all the examples, 125 are simply connected,
representing at least 106 different G2-deformation types, that is, classes of G2-manifolds
related by diffeomorphisms and deformations through torsion-free G2-structures.

The ν-invariant and its analytic refinement. The ν-invariant of G2-structures on closed
7-manifolds was introduced in [16]. It takes values in Z/48, and its parity is determined by
the Betti numbers of the underlying manifold. The examples in this paper show that all
odd elements of Z/48 appear as ν-invariants of torsion-free G2-structures on extra-twisted
connected sums; see Table 2. To obtain more examples with even ν from our construction we
would need to use blocks with Picard rank higher than 1. As we explain below, such blocks
exist, and we expect that all even elements of Z/48 can be realised as well. The total number
of extra-twisted connected sums we can currently construct is much less than the number of
twisted connected sums constructed in [13]. Nevertheless, the present method is more efficient
at constructing different G2-deformation types that we can distinguish.

To date, only very few obstructions against the existence of a metric with full holonomy G2

on a seven-manifold M are known. It is clear that M must be spin and have a finite fundamental
group, and the de Rham class of the defining three-form ϕ must satisfy certain cohomological
inequalities. When Crowley and Nordström discovered the ν-invariant in [16], it was hoped
that the ν-invariant could be an obstruction against deforming a given topological G2-structure
into a G2-holonomy metric. While computations in [14] showed that G2-manifolds can have
non-zero ν-invariants, all examples considered there (and also in [31]) have a ν-invariant that
is divisible by 3. In particular, those examples are all G2-nullbordant, as a consequence of the
result of Schelling [35] that 3 | ν(M) if and only if M is G2-nullbordant. However, we now
find that G2-bordism does not present any obstruction to G2 holonomy metrics.
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Figure 1. The landscape of examples in Table 2

Observation 1. There exist compact G2-manifolds that are not G2-nullbordant.

To compute the ν-invariant, we use the method described in [14]. That is, we consider an
integer-valued invariant

ν̄(M) = 3η(B)− 24η(D) such that ν(M) ≡ ν̄(M)− 24(1 + b1(M)) mod 48 . (0.1)

Here, B is the signature operator and D the spin Dirac operator on M ; see Section 2. In
Example 2.15, we exhibit an extra-twisted connected sum M with ν̄(M) = −11; see also
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Example 4.16. Hence, ν(M) ≡ 13 mod 48. It follows from [35] that M is not G2-nullbordant,
and we have an example for Observation 1.

Our results are summarized in Table 2 and plotted in Figure 1, where crosses stand for
simply-connected (in fact, two-connected) examples and circles for examples with nontrivial
fundamental group. Because orientation reversal changes the sign of ν̄, we used the absolute
value of ν̄ here. To get all values of ν̄, the whole picture should thus be extended by reflexion
along the horizontal axis. In comparison with [14], we get some examples where the absolute
value of ν̄ is much larger, for example ν̄ = −151 in line 254 of Table 2 with fundamental
group Z/3, or example 240 with ν̄ = −111, which is simply connected. All this seems to
indicate that there could still be a wealth of unknown examples of G2-manifolds.

A gluing formula for ν̄. We still follow the route of computation for ν̄ that we laid out
in [14]. That is, we first write M = M+ ∪M− and use the gluing formula of Bunke [9] and
Kirk, Lesch [27] to write ν̄(M, g) as a sum of the contributions ν̄(M±, g) from the two pieces
and a gluing term; see Theorem 2.1.

The gluing term contains two pieces of information. The first is an integer contribu-
tion 3mρ(L;N+, N−) that depends on the relative positions of the images of H2(V±) in H2(Σ),
where Σ is the K3 surface that appears as a factor of the cross-section at infinity of M±.
If ϑ ∈ (0, π) denotes the oriented angle between the exterior circles, which we call the gluing
angle, then the second contribution is −72 ρπ , where ρ = π − 2ϑ. If the gluing angle is an
irrational multiple of π, then this term will be irrational, too.

In [14], restricting attention to the case when both #Γ± ≤ 2 ensured that both pieces
have spectral symmetry, so that ν̄(M±, g) = 0. Moreover, the gluing angle was forced to be a
rational multiple of π simply by the combinatorics of isometries of tori (see §3.1). However,
if M± is a twisted product (V± × S1)/Γ± and #Γ± ≥ 3, then the spectra of the relevant
Dirac operators on M± with respect to the appropriate boundary conditions are no longer
necessarily symmetric.

To compute the contribution ν̄(M±, g), we consider an adiabatic limit by scaling the exterior
circle factor to 0. By an adiabatic limit formula generalising both Dai’s theorem for manifolds
with boundary [19] and the formula for adiabatic limits of Seifert fibrations [22], we see that the
isolated fixpoints of the Γ±-action on V± contribute by generalised Dedekind sums Dγ(V ) ∈ Q
introduced in Definition 2.3 (Note that involutions on Calabi-Yau 3-folds cannot have isolated
fixed points, consistent with the claim that the η-invariants vanish when #Γ± ≤ 2).

When passing to the adiabatic limit, we also modify the metric on the boundary of M±.
Hence, we also have to consider the variational formula for η-invariants on manifolds with
boundary due to Cheeger [11], Bismut, Cheeger [4] and Dai, Freed [20]. The relevant boundary
contribution can be computed from a universal η-form η̃(A) for families of two-dimensional
tori; see Proposition 2.8. In the appendix, Don Zagier explains how to rewrite the relevant
η-form integrals in terms of the logarithm L of the Dedekind η-function. In the following and
throughout the paper, we represent the inverse of ε± in Z/k± by ε∗± ∈ Z. Also, the ratio of

the lengths of the exterior and the interior circle is denoted s± = ξ±
ζ±

.

Theorem 2. For all extra-twisted connected sums M , the extended ν-invariant is given by

ν̄(M) = ν̄(M+, g) + ν̄(M−, g)− 72
ρ

π
+ 3mρ(L;N+, N−) , (0.2a)

where ν̄(M±, g) = Dγ±(V±)− 288

π
ImL

(
s−1
± i− ε∗±
k±

)
− 24

ε∗±
k±

. (0.2b)

This is proved in Section 2.5 using Proposition A.1 from the appendix. The occurrence of
the Dedekind η-function can also be motivated by regarding η̃(A) as a connection form of
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the Chern connection on a holomorphic determinant line bundle; see Remark 2.14. From the
theory of complex multiplication one knows that the values of ImL in (0.2b) can be expressed
in terms of logarithms of algebraic numbers; for the values used in this paper, this is done
explicitly in A.2. The linear combinations that appear in (0.2a) can be figured out from the
functional equation (A.1) of L (see Proposition A.3), giving one proof of Theorem 3 below.

Computing ν̄ via elementary hyperbolic geometry. In Section 4, we follow a different
path to rewrite the right hand side of (0.2a) in terms of Dedekind sums. The universal
η-form η̃(A) for bundles of flat tori can be understood as a 1-form on the upper half plane,
whose exterior derivative turns out to be a constant multiple of the hyperbolic area form.
The relevant path of integration consists of two sides of some ideal hyperbolic polygon P ,
depending on the gluing data. The remaining sides can be chosen such that η̃(A) vanishes
along them. To apply Stokes’ Theorem, it remains to determine the contribution from the
cusps. At this point, we use a strict version of an adiabatic limit formula for η-forms that was
proved by Bunke, Ma [10] modulo exact forms; see also Liu [30].

Following a suggestion by Zagier, we determine the remaining corners of the polygon P
using continued fractions. Here, we also need the entries of the gluing matrix (m p

n q ) that
encodes the matching of the tori as described in (1.6). At this point, one can already finish the
computation of ν̄(M) for any particular example by hand. However, one can simplify these
computations by observing that the contributions from the cusps and the hyperbolic area
formula add up to a classical Dedekind sum S(k, n) given for integers n > 0 and k by

S(k, n) =

n−1∑
j=1

((
j

n

))((
jk

n

))
∈ 1

6n
Z , where ((x)) =

{
0 for x ∈ Z
x− bxc − 1

2 for x 6∈ Z
(0.3)

denotes a sawtooth function. For more background on the Dedekind η-function, Dedekind
sums, and their appearance in topology we refer the reader to [24]. We may use Proposition 3.7
to make sure that m ≥ 0 and n > 0.

Theorem 3. Assume that n > 0. Then A =
m−ε∗+n
k+

is an integer and

ν̄(M) = Dγ+(V+) +Dγ−(V−) + 3mρ(L;N+, N−) + 24
( q

k−n
− m

k+n
+ 12S(A,n)

)
. (0.4)

The proof outlined above can be found in Section 4.5. We see that the possibly irrational
term −72 ρπ from Theorem 2 has been subsumed into the hyperbolic area formula. Hence, this
presentation makes it easier to check that ν̄(M) is an integer; see also Remark 4.15.

All in all, our way to a tractable formula for the ν-invariant consists of many small steps,
but in each of our examples, the sum of the various contributions is an integer. This, together
with the fact that the two completely different approaches described above give the same
expression, could be seen as a sanity check for our results presented here.

Scope. To keep this article within reasonable size, we had to leave out some aspects of the
construction.

(i) We only consider examples built from blocks of Picard rank 1. These examples automat-
ically have matchings of pure angle in the sense of Remark 1.16. On the other hand,
by (5.2) most examples obtained this way have even b3(M), and hence odd ν̄(M).

There are building blocks of Picard rank 2 with automorphism group Z/k for k = 1,
. . . , 6. Thus we expect that there are examples of extra-twisted connected sums that
realise all 24 even values of ν(M) ∈ Z/48 as well.
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(ii) All examples constructed in Section 5 are either two-connected or have two connected
universal cover. We distinguish them only by their extended ν-invariants and their third
Betti number. See Figure 1 for a plot of all possible pairs of these invariants. We do not
attempt to compute the torsion part of their fourth cohomology or the divisibility of
their first Pontryagin classes. That would be needed in order to apply diffeomorphism
classification results [17] to exhibit examples of 7-manifolds where the moduli space of
G2-metrics is disconnected, but such examples have already been seen in [14].

(iii) We might consider asymptotic Calabi-Yau manifolds with arbitrary automorphisms,
so Σ is invariant under Γ only as a set. But first of all, it looks more difficult to construct
matchings in this situation. And worse, these examples would never be simply connected.
Instead, their universal covers would again be extra-twisted connected sums of the type
considered here. This has been explained in [15, Remark 1.12].

(iv) It is not clear how to define a ν-invariant for non-compact or singular G2-spaces.
Theorem 2.1 contains a possible definition for G2-manifolds with an asymptotically
cylindrical end. However, it is also not clear to us how to interpret the resulting numbers

in (0.2b). From Dai and Freed’s point of view in [20], the invariant e2πi
ν(M±,g)

6 should
take values in a certain determinant line associated to the cross-section at infinity. The
invariant ν̄(M) would therefore take values in a “logarithm” of this determinant line.

Organisation. In Section 1, we recall the extra-twisted connected sum construction. We
discuss the matching problem for tori in Subsection 1.3, and for K3 surfaces in Subsection 1.4.
Theorem 2 is proved in Section 2. The fixpoint contributions are computed in Subsection 2.3,
the variational formula is discussed in 2.4, and a direct computation of the η-form integrals
employing Zagier’s approach can be found in 2.5. We discuss the combinatorics of torus
matchings in Section 3. Theorem 3 is proved by elementary hyperbolic geometry in Section 4.
Adiabatic deformations of tori are identified with hyperbolic geodesics in Subsection 4.2, and
the contribution from the cusps is explained in 4.4. In Subsection 4.5, following another of
Zagier’s suggestions, we use continued fractions to construct ideal polygons, and in 4.6, we
rewrite the cusp contributions as a Dedekind sum. Section 5 contains more details about the
construction of examples, in particular we describe some building blocks with group actions in
Subsection 5.2, and possible K3 matchings in Subsection 5.3. Section 6 contains the proofs of
two adiabatic limit theorems used in Subsections 2.3 and 4.4. The appendix by Don Zagier
contains the evaluation of η-form integrals in terms of the Dedekind η-function, as well as
explicit formulas for the values that we use in this paper.
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1. Extra-twisted connected sums

We generalise the twisted connected sum construction of [28, 13] by allowing twisted
products of asymptotically cylindrical Calabi-Yau manifolds with circles. This approach was
already employed in [14], where we considered products twisted by an involution (on one or
both sides). Here, we allow twists by more general finite cyclic groups.

1.1. The gluing construction. Let V± be asymptotically cylindrical Calabi-Yau manifolds
of complex dimension 3, and assume that their ends are asymptotic to Σ± × S1

ζ±
× (0,∞),

where Σ± are K3 surfaces, and S1
ζ±

= R/ζ±Z. The Calabi-Yau structure on V± can be described

in terms of a pair (Ω±, ω±), where Ω± is a complex 3-form (holomorphic with respect to the
complex structure) and ω± is a Kähler form, normalised so that 8ω3 = 6Ω ∧ Ω. Along the
cylindrical end Σ± × S1

ζ±
× (0,∞), the asymptotic limits of Ω and ω are of the form

Ω := (du− idt) ∧ (ωJ± + iωK± ), ω := dt ∧ du+ ωI±

respectively, where t is the coordinate on the (0,∞) factor, u± is the coordinate on Sζ± =

R/ζ±Z, and the triple (ωI±, ω
J
±, ω

K
± ) defines a hyper-Kähler structure on Σ±. Such a Calabi-Yau

structure induces a metric gV± of holonomy SU(3) whose asymptotic limit is of the form

dt2 + du2
± + gΣ± , where gΣ± is a metric of holonomy SU(2) induced by the hyper-Kähler

structure. Note in particular that the circumference of the circle factor in the asymptotic
cylinder is ζ±.

Remark 1.1. The condition on the cylindrical ends forces V± to be simply-connected by
[23, Theorem A].

Letting S1
ξ±

= R/ξ±Z and denoting its coordinate by v± , we can define a product torsion-free

G2-structure on V± × S1
ξ±

by

ϕ± = Re Ω± + dv± ∧ ω±.
Then ϕ± defines the metric dv2

± + gV± , with holonomy contained in G2. Note that the circle
factor has circumference ξ±. The asymptotic limit of ϕ± has the form

dv± ∧ dt ∧ du± + dv± ∧ ωI± + du± ∧ ωJ± + dt ∧ ωK± . (1.1)

Now assume further that two groups Γ± ∼= Z/k± act isometrically on V±, preserving
the Calabi-Yau structures, such that the actions on the end are products of trivial actions
on Σ±×(0,∞) and free actions on S1

ζ±
. We extend the Γ±-action diagonally to M̃± = V±×S1

ξ±
,

such that Γ± acts freely on S1
ξ±

. Then the torsion-free G2-structure ϕ± descends to the quotient

M± = M̃±/Γ±, which we can thus regard as an asymptotically cylindrical G2-manifold. The
cross-section of the asymptotic cylinder is the product X± of Σ± with a torus (S1

ζ±
×S1

ξ±
)/Γ±.

We now suppose that we have a suitable isometry between the cross-sections. This isometry
will necessarily be a product of isometries

t : (S1
ζ+ × S

1
ξ+)/Γ+ → (S1

ζ− × S
1
ξ−)/Γ−

and

r : Σ+ → Σ−.

We require that the isometry

Σ+ × (S1
ξ+ × S

1
ζ+)/Γ+ × R → Σ− × (S1

ξ− × S
1
ζ−)/Γ− × R

(x, z, t) 7→ (r(x), t(z),−t)
(1.2)
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identifies the asymptotic limits (1.1). In particular, exactly one of t and r is orientation-
preserving. Our convention is to require t to be orientation-reversing. We will refer to t as a
torus matching and to r as a hyper-Kähler rotation.

A key feature of the construction is how the torus matching aligns the external circle
directions. As above, we denote by

u± ∈ R/ζ±Z, v± ∈ R/ξ±Z

the coordinates in the direction of the interior and exterior circles respectively. In [14, (10)],
the gluing angle ϑ was introduced as the directed angle between the exterior circles under t, so

∂v− = cosϑ∂v+ + sinϑ∂u+ ,

∂u− = sinϑ∂v+ − cosϑ∂u+ .
(1.3)

The condition that (1.2) preserves the asymptotic limits of the G2-structures is now equivalent
to the following condition; see [31, §1.2].

Definition 1.2. Let Σ± be K3 surfaces with hyper-Kähler structures (ωI±, ω
J
±, ω

K
± ). Call a

diffeomorphism r : Σ+ → Σ− a hyper-Kähler rotation with angle ϑ if

r∗ωK− = −ωK+
r∗(ωI− + iωJ−) = eiϑ(ωI+ − iωJ+).

(1.4)

Let V±,` = V± \ ((` + 2,∞) × S1
ζ × Σ), M̃±,` = V±,` × S1

ξ±
and M±,` = M̃±,`/Γ± denote

truncations of the manifolds above, and let X̃± ∼= Σ± × S1
ζ±
× S1

ξ±
and X± = X̃±/Γ± denote

their boundaries. For sufficiently large `, it is possible to obtain a new closed G2-manifold M`

by gluing M+.` and M−,` along a diffeomorphism X+
∼= X−. This procedure is described in

detail in [31] following the ideas in [28, 13]. Let us summarise.

Theorem 1.3. Given a pair of ACyl Calabi-Yau 3-folds V± with asymptotic cross-sections
Σ± × S1

ζ±
and automorphisms Γ±, a torus matching t : (S1

ζ+
× S1

ξ+
)/Γ+ → (S1

ζ−
× S1

ξ−
)/Γ−

and a hyper-Kähler rotation r : Σ+ → Σ− with angle ϑ equal to the gluing angle of t, the
manifold M` above admits torsion-free G2-structures.

On M̃± and M±, let t± ∈ (0,∞), be the coordinate in the cylindrical direction. On M`,
we will later consider the cylindrical coordinate t = t− − `− 2 that increases going from M−
to M+; see [14, (14)].

Note that after gluing, M+ and M− induce opposite orientations on the 2-torus. Note that ϑ
is invariant under swapping the roles of M+ and M−. The angle between the interior circles
is π − ϑ; see Figure 2.

For further discussion of how extra-twisted connected sums using different data can be
essentially the same see Remark 3.8.

Remark 1.4. The G2-structure on M defines a unique spin structure on M that we need for
the analytic description of the ν-invariant. Its restriction to M± is the spin structure induced
by the SU(3)-structure, and hence by the Calabi-Yau structure on V±.

Because Γ± preserves the Calabi-Yau structure on V±, it acts canonically on the associated
spinor bundle SV± ∼= Λ0,•T ∗V±. The spinor bundle on M± that is induced by the G2-structure
then satisfies SM± ∼= p∗SV±/Γ±. On the cylinder Σ±×(0,∞)×(S1

ζ±
×S1

ξ±
)/Γ±, it is isomorphic

to the pullback of the direct sum of two copies of SΣ±.
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1.2. Setting up the matching problem. Understanding the possible torus matchings
t : (S1

ζ+
× S1

ξ+
)/Γ+ → (S1

ζ−
× S1

ξ−
)/Γ− for given values of k± = |Γ±|—and in particular the

possible gluing angles ϑ—is essentially a combinatorial problem, which will be discussed in the
next subsection and in Subsection 3.1. Given a torus matching, Theorem 1.3 raises the question
of how to find pairs of ACyl Calabi-Yau 3-folds with automorphisms and a hyper-Kähler
rotation of the correct angle ϑ between the K3 surfaces in the asymptotic cross-section. We
now explain how this question can be reduced to complex algebraic geometry, as in [13, §6]
and [31, §6].

Definition 1.5. Let Z be a non-singular algebraic 3-fold and Σ ⊂ Z a non-singular K3 surface.
Let N be the image of H2(Z)→ H2(Σ). We call (Z,Σ) a building block if

(i) the class in H2(Z) of the anticanonical line bundle −KZ is indivisible,
(ii) Σ ∈ |−KZ | (i.e. Σ is an anticanonical divisor), and there is a projective morphism

f : Z → P1 with Σ = f?(∞),
(iii) The inclusion N ↪→ H2(Σ) is primitive, that is, H2(Σ)/N is torsion-free.
(iv) The group H3(Z)—and thus also H4(Z)—is torsion-free.

We call N , equipped with the restriction of the intersection form on H2(Σ), the polarising
lattice of the block.

If Γ is a group acting faithfully on Z by biholomorphisms that fix Σ pointwise then we call
(Z,Σ,Γ) a building block with automorphisms. (Γ is then necessarily cyclic.)

Given such a (Z,Σ), [23, Theorem D] gives the existence of ACyl Calabi-Yau structures on
V := Z \ Σ, and it is easy to see that Γ restricts to isomorphisms of these structures.

Rather than to look for a hyper-Kähler rotation given a pair of ACyl Calabi-Yau structures,
it is easier to first choose the diffeomorphism r : Σ+ → Σ− satisfying obvious necessary
conditions in terms of cohomology classes and then find Calabi-Yau structures that make r a
hyper-Kähler rotation. Recall that the period of a complex K3 surface Σ is the positive-definite
2-plane Π ⊂ H2(Σ;R) spanned by the real and imaginary parts of elements of H2,0(Σ;C).

Definition 1.6. Let (Z±,Σ±) be a pair of building blocks, and let Π± ⊂ H2(Σ±;R) be the
periods. Call a diffeomorphism r : Σ+ → Σ− a K3 matching with angle ϑ if there are Kähler
classes k± ∈ H2(Z±;R) such that the angle between r∗(k−) and Π+ is ϑ, the angle between
(r−1)∗(k+) and Π− is ϑ, and Π+ ∩ r∗Π− is non-trivial.

It is easy to see that the ACyl Calabi-Yau structures of [23, Theorem D] can be chosen
to ensure that a given K3 matching is a hyper-Kähler rotation; see [31, Theorem 1.1 and
Lemma 6.2].

Theorem 1.7. Given ζ± > 0, blocks (Z±,Σ±) and a K3 matching r : Σ+ → Σ− with angle ϑ,
there exist ACyl Calabi-Yau structures on V± := Z± \ Σ± with asymptotic limit(

du± − idt±) ∧ (ωJ± + iωK± ), dt± ∧ du± + ωI±
)
,

such that r is an angle ϑ hyper-Kähler rotation of the hyper-Kähler structures (ωI±, ω
J
±, ω

K
± ).

Thus given a K3 matching of two building blocks with automorphism and a torus matching
with the corresponding k+, k− and gluing angle ϑ, we can find ACyl Calabi-Yau structures so
that Theorem 1.3 can be applied to build a G2-manifold.

Given a pair of blocks, there is no reason to expect to be able to find any K3 matchings
at all. However, if we consider the sets of complex deformations of a pair of blocks, one can
in many cases guarantee that there exist some elements of each of the two sets that admit a
K3 matching, and moreover control the topology of the resulting G2-manifold. This will be
discussed further in §1.4.
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m

n

p

q

∂v+
∂v−

∂u+

∂u−
ϑ

λ−

µ+

ε+λ++µ+
k+

λ+

µ−

Figure 2. Fundamental domains of T and T̃±.

1.3. Isometries of quotients of rectangular tori. In this section, we analyse how to find
torus matchings in the sense of §1.1.

We consider M+ = M̃+/Γ+ with covering space M̃+ = V+ × S1
ξ+

and Γ+ = Z/k+. The

asymptotic cross-section of the covering space is isometric to a product

∂M̃+
∼= Σ+ × T̃+ with T̃+

∼= S1
ζ+ × S

1
ξ+ ,

where Σ+ is a K3 surface and ζ+, ξ+ are the lengths of the interior and exterior circle,
respectively.

By a torus matching we refer to the following data: numbers k± ≥ 1, actions of Γ± = Z/k±
on T̃± = S1

ζ±
× S1

ξ±
that are free on both factors, and an orientation-reversing isomor-

phism t : T̃+/Γ+ → T̃−/Γ− of flat tori, such that there exist lengths ζ+, ξ+, ζ−, ξ− > 0 for
which t becomes an isometry. We consider two torus matchings to be equivalent if there
exist (linear) isomorphisms of the respective tori that map exterior circles to exterior circles,
interior circles to interior circles, and that intertwine the actions of Γ± and t (we consider
other symmetries in Remark 3.8). It is clear that using torus matchings that are equivalent in
this sense in Theorem 1.3 yields G2 metrics related by deformation.

Equip R2 ∼= C with the standard Euclidean metric. We choose ζ+, ξ+, ζ−, ξ− > 0 as above
and represent the torus T̃+ isometrically as C/Λ̃+, where Λ̃+ ⊂ C is the lattice with orthogonal
basis (µ+, λ+) = (iξ+, ζ+).

We assume that Γ+
∼= Z/k+ acts on T̃+ = C/Λ̃+ such that the action on both circles is free.

(If the action on the exterior circle was not free, then the quotient M+ would be an orbifold.
If the action on the interior circle had a kernel Γ+0, we could reduce the exterior circle to
the quotient S1

ξ+
/Γ+0 without changing M+, so we do not have to consider this situation.)

We fix a generator that rotates the exterior circle by the angle 2π
k+

. If k+ ≥ 2, its action on

the interior circle is given by 2πε+
k+

for some ε+ ∈ Z. Really we only care about the residue

ε+ ∈ Z/k+, which is uniquely defined. The requirement that the action on the interior circle
is free means ε+ is coprime to k+, in other words gcd(ε+, k+) = 1.

We represent T = T̃+/Γ+ by the lattice Λ with basis

(ν+, λ+) = (µ+, λ+) ·

(
1
k+

0
ε+
k+

1

)
=

(
ε+ζ+ + iξ+

k+
, ζ+

)
. (1.5)

This is sketched in Figure 2 for k+ = 3 and ε+ = 1. A fundamental domain for Λ is shaded.
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Represent T− = T̃−/Γ− similarly, and define ε− ∈ Z/k− with gcd(ε−, k−) = 1 analogously.

The isometry T̃+/Γ+ → T̃−/Γ− determines a sublattice Λ̃− ⊂ Λ such that T̃− ∼= C/Λ̃−.

Let (µ−, λ−) denote a basis of Λ̃−, where λ− and µ− correspond to the interior and exterior
circle as above. We represent this basis as

(µ−, λ−) =
1

k+
· (µ+, λ+) ·

(
m p
n q

)
(1.6)

where (m p
n q ) ∈M2(Z), and call (m p

n q ) the gluing matrix. In Figure 2, we have k− = 3, ε− = 1,
and the gluing matrix is

(
1 2
4 −1

)
; see entry 209 in Table 2.

In summary, we can associate to a torus matching the following data that is clearly invariant
under our notion of equivalence

• k+ and k−
• the gluing matrix
• ε+ ∈ Z/k+ and ε− ∈ Z/k− with gcd(ε+, k+) = gcd(ε−, k−) = 1.

For the construction, we also need the more geometric data

• the angle ϑ between the exterior circle directions

• the ratios ξ+
ξ−

and s± = ξ±
ζ±

which are not obviously invariant. However, among the (selection of) compatibility conditions
that we now show, we see that the angle ϑ is in fact also determined by the equivalence class

of the torus matching, and that if ϑ /∈ π
2 Z, then the ratios ξ±

ζ±
and ξ+

ξ−
are as well.

Proposition 1.8. (i) The data of a torus matching satisfies the following relations.

det (m p
n q ) = −k−k+, (1.7)

ε+m− n ≡ ε+p− q ≡ 0 mod k+ (1.8a)

ε−p+m ≡ ε−q + n ≡ 0 mod k− (1.8b)

gcd
(n− ε+m

k+
,m
)

= gcd
(q − ε+p

k+
, p
)

= gcd(ε+, k+) = 1, (1.9a)

gcd
(m+ ε−p

k−
, p
)

= gcd
(n+ ε−q

k−
, q
)

= gcd(ε−, k−) = 1, (1.9b)

(ii) Either m = q = 0, or n = p = 0, or nq
mp < 0 and s+ = ξ+

ζ+
=
√
− nq
mp . In the latter case,

we also have ζ− =
√
− qk−
mk+

ζ+, ξ− =
√

nk−
pk+

ζ+, and s− = ξ−
ζ−

=
√
−mn

pq .

(iii) The gluing angle ϑ is given as

ϑ = arg
(
ms+ + in

)
∈ (−π, π] .

In particular, ϑ ∈ (0, π) if and only if n > 0, and cosϑ = sign(m)
√
− qm
k+k−

.

Proof. For (1.7), we note that the bases (µ−, λ−) and (µ+, λ+) induce opposite orientations,
and compute

− 1

k2
+

det

(
m p
n q

)
=

vol(T̃−)

vol(T̃+)
=
k− vol(T )

k+ vol(T )
=
k−
k+

.
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∂u+

∂u−

∂v−

∂v+

ϑ

Figure 3. G =
(

1 1
1 −1

)
, ϑ = π

4

∂u+

∂u−

∂v−

∂v+

ϑ

Figure 4. G =
(

1 1
1 −3

)
, ϑ = π

6

We represent λ− and µ− in the basis (1.5) of Λ. By (1.6), we get

(µ−, λ−) =
1

k+
· (µ+, λ+) ·

(
1
k+

0
ε+
k+

1

)
·
(
k+ 0
−ε+ 1

)
·
(
m p
n q

)
= (ν+, λ+) ·

(
m p

n−ε+m
k+

q−ε+p
k+

)
.

(1.10)

Because Λ̃− ⊂ Λ, the coefficients are integers, and (1.8a) follows.

The group Γ− ∼= Λ/Λ̃− again acts freely by rotations on both the interior and the exterior

circle of T̃−. Equivalently, the elements λ− and µ− corresponding to the factors S1
ζ−

and S1
ξ−

are primitive in Λ, which gives the first two gcd conditions in 1.9a. The last condition in 1.9a
holds if and only if Γ+ acts freely on T̃+.

Using (1.7), we can invert the gluing matrix. Then equation (1.6) is equivalent to

(µ+, λ+) =
1

k−
· (µ−, λ−) ·

(
−q p
n −m

)
. (1.11)

Now, the same arguments as above give (1.8b) and 1.9b.
The vectors λ−, µ− in (1.6) are perpendicular with respect to the standard metric on C ∼= R2

if and only if

0 =
mpξ2

+ + nqζ2
+

k2
+

=
(
mps2

+ + nq
)
·
ζ2

+

k2
+

,

and the condition on (m p
n q ) and s+ follows. The remaining claims in (ii) follow because

ζ− = |λ−| =
|q + ips+| ζ+

k+
=

√
q2 + p2s2

+

k+
ζ+ =

√
q(mq − np)

m

ζ+

k+
=

√
− qk−
mk+

ζ+ ,

ξ− = |µ−| =

√
n2 +m2s2

+

k+
ζ+ =

√
n(np−mq)

p

ζ+

k+
=

√
nk−
pk+

ζ+ .

In [14], the gluing angle ϑ ∈ (−π, π] has been defined as the directed angle between µ−
and µ+, see also (1.3). We have ϑ ∈ (0, π) if and only if the scalar product 〈µ−, λ+〉 = n

k+
|ζ+|2

is positive. Hence, we get (iii) by

ϑ = arg
µ+

µ−
= arg

ik+ξ+

nζ+ + imξ+
= arg

k+(mξ2
+ + inξ+ζ+)

n2ζ2
+ +m2ξ2

+

= arg
(
ms+ + in

)
. �

When k± ≤ 2, the only possibilities (up to swapping M+ and M−) with m, n, q ≥ 0 and p = 1
are the ones already studied in [31, 14], illustrated in Figures 3–5. If we allow p ≥ 1, there are
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∂u+

∂u−

∂v−

∂v+

ϑ

Figure 5. G =
(

1 1
3 −1

)
, ϑ = π

3

∂u+ = ∂v−

∂u− = ∂v+

ϑ

Figure 6. G =
(

0 2
2 0

)
, ϑ = π

2

∂u+

∂u−

∂v−

∂v+

ϑ

Figure 7. G =
(

1 1
2 −1

)
, ϑ = arc cos 1√

3

∂u+

∂u−

∂v−

∂v+

ϑ

Figure 8. G =
(

1 1
10 −5

)
, ϑ = arc cos 1√

3

two more with gluing matrices
(

1 3
1 −1

)
and

(
0 2
2 0

)
; the latter is depicted in Figure 6. Notice

that ϑ = π
2 in this example, so the radii ξ+ = ζ− and ξ− = ζ+ can be chosen independently.

Once we allow k+ or k− to be larger than 2, there are many more possibilities. Figure 7
illustrates a torus matching with k+ = 1 and k− = 3, where s+ =

√
2 and s− = 1√

2
(so the

tori have proportions of A4 paper). We consider this further in Sections 3. Let us for now give
a single more complicated example that we will refer to in the course of our calculations.

Example 1.9. For k+ = 3 and k− = 5, one valid gluing matrix is(
1 1
10 −5

)
with ε+ = 1 and ε− = −1. The torus matching is illustrated in Figure 8. The aspect ratios
are s+ = 5

√
2 and s− =

√
2, and the gluing angle is ϑ = arg(1 +

√
2 i) = arccos 1√

3
. One

example with this gluing matrix may be found in Table 2, no. 228.

Generalising the computations from [31, §1.3], the gluing matrix also determines the
fundamental group of the extra-twisted connected sum.

Proposition 1.10. An extra-twisted connected sum M with gluing matrix (m p
n q ) has funda-

mental group isomorphic to Z/p.

Proof. Let ι± : T 2 → M± denote the inclusion map and note that π1(T 2) ∼= π1(X) ∼= Z2.
Since π1V± = 1 by Remark 1.1, we also have π1(M±) ∼= Z, and the interior circle S1

ζ±
is

null-homotopic in M±, and we have a short exact sequence

0 −→ π1(S1
ζ±) −→ π1(T 2)

ι±∗−→ π1(M±) −→ 0 .

Because ι±∗ is surjective, it follows from the Seifert-van Kampen theorem that

π1(M) ∼= π1(T 2)/
(
ker(ι+∗) + ker(ι−∗)

)
.
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As basis of Λ = π1(T 2), we choose the vectors ν+ = µ++ε+λ+
k+

and λ+ as in (1.5). Dividing

out π1(S1
ζ+

) = ker(ι+), we are left with a cyclic group generated by ν+. Modulo π1(S1
ζ+

), the

group π1(S1
ζ−

) = ker ι− is generated by pν+, so π1(M) ∼= Z/p. �

We will discuss covering spaces in Proposition 3.5. Some examples of non-simply connected
extra-twisted connected sums will be given in Examples 3.1 (i) and 3.11.

1.4. Matchings and polarising lattices. In Theorem 1.3 we set up our gluing construction,
using a torus matching t and a hyper-Kähler rotation r. We studied the torus matchings
in §1.3, while Theorem 1.7 reduced the problem of finding hyper-Kähler rotations to the less
metric problem of finding K3 matchings. For the final piece of the machine, we review from [31,
§6] how to find K3 matchings between building blocks.

The properties of the G2-manifolds produced by Theorem 1.3 can clearly depend not just
on the choices of building blocks and torus matching but also on the choice of hyper-Kähler
rotation. However, the topological properties that we care about depend on the hyper-Kähler
rotation only via what we term its associated “configuration” of the polarising lattices of the
building blocks.

Recall from Definition 1.5 that the polarising lattice of a block (Z,Σ) refers to the image
N of H2(Z) in H2(Σ), equipped with the intersection form. We use L to denote a fixed even
unimodular lattice with signature (3, 19), so that H2(Σ) is isometric to L for any K3 surface Σ.

Definition 1.11 ([31, Definition 6.3]). A configuration of polarising lattices N+, N− is a pair
of primitive embeddings N± ↪→ L. Two configurations are equivalent if they are related by
the action of the isometry group O(L).

Given the claim that the topology depends mainly on the blocks and the configuration, it is
natural to phrase the matching problem as follows.

Question 1.12. Given ϑ ∈ R and a pair of sets of building blocks (Z±,Σ±) (each family with
fixed topology and in particular fixed polarising lattice N±), which configurations of N+ and
N− are realised by a ϑ-hyper-Kähler rotation of some elements of the families?

Given a configuration, let π± : L → N± denote the orthogonal projection, and let Nµ
±

denote the (cosµ)2-eigenspace of the self-adjoint endomorphism π±π∓ : N± → N±, and let

N 6=ϑ± denote the orthogonal complement to Nϑ
± (i.e. the direct sum of the eigenspaces with

eigenvalue other than ϑ).
The condition (1.4) implies that if there exists a ϑ-hyper-Kähler rotation compatible with a

given configuration then there are positive classes [ωI±], [ωJ±] ∈ N± and [ωK± ] ∈ N⊥± such that

[ωK− ] = −[ωK+ ]

([ωI−] + i[ωJ−]) = eiϑ([ωI+]− i[ωJ+]).

From this we can deduce the following necessary conditions for realising a given configuration
(see [31, §6.3] for explanation) by a ϑ-hyper-Kähler rotation of some (Z+,Σ−) and (Z−,Σ−).

(i) N+ +N− is non-degenerate of signature (2, rk−2).
(ii) Nϑ

± contains the restriction of some Kähler class from Z±; in particular Nϑ
± is non-trivial.

(iii) If we let Λ± be a primitive overlattice of N± +N 6=ϑ∓ in L, then Σ± is Λ±-polarised, i.e.
Pic Σ± contains Λ±.

On the other hand, it turns out to be possible to express a sufficient condition for being able
to match some elements from a pair of families in terms of those families containing suitably
generic Λ±-polarised K3 surfaces. Recall that marked K3 surfaces whose Picard lattice contains
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a fixed lattice Λ ⊂ L can be parametrised by their periods, which belong to the Griffiths
domain

DΛ = {positive-definite planes Π ⊂ Λ⊥(R)} ∼= {Π ∈ P(Λ⊥(C)) : Π2 = 0, Π Π > 0},
where the second description gives rise to a complex analytic structure.

Definition 1.13 ([31, Definition 2.12]). Let N ⊂ L be a primitive sublattice, Λ ⊂ L a
primitive overlattice of N , and AmpZ an open subcone of the positive cone in NR. We say
that a set of building blocks Z with polarising lattice N is (Λ,AmpZ)-generic if there is
a subset UZ of the Griffiths domain DΛ with complement a countable union of complex
analytic submanifolds of positive codimension with the property that: for any Π ∈ UZ and
k ∈ AmpZ there is a building block (Z,Σ) ∈ Z and a marking h : L → H2(Σ;Z) such that
h(Π) = H2,0(Σ), and h(k) is the image of the restriction to Σ of a Kähler class on Z.

Proposition 1.14 ([31, Theorem 6.8]). Let Z± be a pair of sets of building blocks with
polarising lattices N±, and ϑ ∈ R. Let N± ↪→ L be a configuration of the polarising lattices,
and define Λ± as in (iii) above. Suppose that the set Z± is (Λ±,AmpZ±)-generic. If

cosϑ 6= 0 and (sign cosϑ)π−(N+(R)ϑ ∩AmpZ+
) ∩AmpZ− 6= ∅. (1.12)

or
cosϑ = 0 and N+(R)

π
2 ∩AmpZ+

6= ∅ and N−(R)
π
2 ∩AmpZ− 6= ∅ (1.13)

then there exist (Z±,Σ±) ∈ Z± with an angle ϑ K3 matching r : Σ+ → Σ− with the prescribed
configuration.

In [14] we found that the following property of a configuration plays a key role in the
calculation of ν (see Theorem 2.1).

Definition 1.15. Given a configuration N+, N− ⊂ L, let A± : LR → LR denote the reflection
of LR := L⊗R in N± (with respect to the intersection form of LR; this is well-defined since N±
is non-degenerate). Suppose A+ ◦A− preserves some decomposition LR = L+ ⊕ L− as a sum
of positive and negative-definite subspaces. Then the configuration angles are the arguments
α+

1 , α
+
2 , α

+
3 and α−1 , . . . , α

−
19 of the eigenvalues of the restrictions A+ ◦ A− : L+ → L+ and

A+ ◦A− : L− → L− respectively.

Remark 1.16. Since Λ± is always at least as big as N±, the genericity results required to
apply Proposition 1.14 are the weakest possible when Λ± = N±. This happens in particular
if Nϑ

± = N±, that is, if π± ◦ π∓|N± = cos2 ϑ idN± . In that case we will say that N+ and N−
meet at pure angle ϑ.

Unless ϑ = ±π
2 , meeting at pure angle ϑ implies that rkN+ = rkN− = multiplicity of ±2ϑ

as configuration angles, while the remaining configuration angles are all 0.

Even with Proposition 1.14 in hand, the genericity hypothesis required makes it hard in
general to completely answer Question 1.12 concerning which configurations can be realised by
matching. However, all examples we know of building blocks do in fact have the property that
they come in families that are (N,Amp) generic, for N the polarising lattice, and Amp some
open cone in NR (in particular, Proposition 5.11 asserts this for the examples in this paper).
Therefore, finding all matchings of a pair of blocks where the configurations are at pure angle
ϑ is only a lattice-arithmetic problem. That can certainly be solved by a brute force algorithm,
though not very easily by hand if the ranks of the polarising lattices are greater than 1.

In this paper, we will restrict attention to blocks where the polarising lattices have rank 1,
which makes it possible to answer Question 1.12 decisively. Condition (ii) then automatically
requires the configurations to have pure angle. If the generators of the polarising lattices have
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square-norms n+ and n−, then the bilinear form on N+ +N− imposed by the configuration
will be defined by a matrix (

n+ h
h n−

)
,

and the gluing angle is determined by

(cosϑ)2 =
h2

n+n−
. (1.14)

Thus there exists a matching of the blocks with gluing angle ϑ if and only if cosϑ
√
n+n− is

an integer.
We give here one example that we will refer to while developing the calculations in Sections 2

and 4; see Subsection 5.3 for further examples of matchings.

Example 1.17. Consider two building blocks Z+, Z− of rank 1 with polarising lattices (6)
and (2), respectively. We consider the configuration(

6 2
2 2

)
,

which has pure angle ϑ = arccos 1√
3
. We will combine this configuration with the gluing data of

Example 1.9, using a Z/3-block from Example 5.5 as Z+ and a Z/5-block from Example 5.10
as Z−, see Table 2, no. 228. The configuration angles are

α+
1 = −α+

2 = 2 arccos
1√
3

and α+
3 = α−1 = · · · = α−19 = 0 .

2. Computing the ν-invariant

Using various results on η-invariants, including the gluing formula for η-invariants [9, 27], the
variational formula for η-invariants on manifolds with boundary [4, 11, 20], and a combination
of the adiabatic limit formula for manifolds with boundary in [19] with the one for Seifert
fibrations in [22], we rewrite the ν-invariant of an extra-twisted connected sum in more explicit
terms; see Theorem 2.13. For one of the contributions, we will give another description in the
next chapter.

2.1. A modification of the spin Dirac operator. The extended ν-invariant of a G2-
manifold is defined in (0.1) using the η-invariant of the signature operator B and the spin
Dirac operator D. For computations, it is much more comfortable to work with a Riemannian
metric that is of product type in the gluing region and sufficiently close to some G2-metric.
However, the η-invariant of the spin Dirac operator of such a gluing metric typically differs
from the one in the G2-case both by a small local contribution and by a Z-valued spectral
flow. To avoid the latter, we modified the spin Dirac operator in [14]. Because all our following
considerations rely on the modified metric and the modified Dirac operator, we take the time
to introduce them now.

2.1.1. We first recall some properties of the family of gluing metrics g` on M for ` � 1
from [14, Rem 4.1]. The Riemannian manifold (M`, g`) contains a cylindrical piece diffeomorphic
to Σ × T 2 × (−`, `). Let t : M → R be a smooth function that agrees with the cylindrical
coordinate on Σ× T 2 × (−`, `) and takes values outside (−`, `) otherwise.

(i) For ±t ≥ −1, the Riemannian manifold (M, g`) is isometric to a twisted product (V± ×
S1
ξ±

)/Γ± of (V±, g
V±
` ) and a circle S1

ξ±
of length ξ±.
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(ii) For ±t ≥ 2, the metric g
V±
` is isometric to the original asymptotically cylindrical

Calabi-Yau metric gV± .
(iii) The manifold (Σ× T 2 × (−1, 1)) is the Riemannian product of the K3 surface Σ, the

torus T 2 and the interval (−1, 1) of length 2.
(iv) There exists c > 0 such that

∥∥g`|X×(±[1,2]) − gX ⊕ dt2
∥∥
Ck

= O(e−c`) for all k.

(v) Among the G2-metrics provided by Theorem 1.3, there is one—called ḡ` below—such
that for some c > 0 and for each k, we have an estimate of the form

‖g` − ḡ`‖Ck = O
(
e−c`

)
.

It follows from (ii) and (iii) that g` has local holonomy in G2 except over the set Σ× T 2 ×
([−2,−1] ∪ [1, 2]), which is controlled by (i) and (iv).

Let s± = ξ±/ζ± as in Proposition 1.8 (ii). We now consider the two halves M± separately
and put

M±,`,a = (V± × S1
aζ±)/Γ± , (2.1)

where S1
aζ±

denotes an exterior circle of length ξ± = aζ±, and where V± carries the metric g
V±
`

considered in (i) above. Then the new metric g±,`,a on M±,`,a satisfies properties analogous
to (i)–(v) above. For a = s±, we recover the restriction of the metric g`. We will consider the
odd signature operator BM±,a,`, and we write BM±,` if a = s±.

2.1.2. By Remark 1.4 and property (i) of the metrics g±,`,a, we may describe the spinor

bundle on M±,`,a with Hermitian metric and Clifford connection ∇SM = ∇SM±,`,a as

SM±,`,a = p∗SV±,`/Γ± , (2.2)

where p : V±,`×S1
aζ±
→ V±,` is the projection. The glued manifold M` with G2-metric ḡ` carries

a parallel spinor s. Recall that ∂v± is the unit tangent vector to the exterior circle factor in the
twisted Riemannian product M±,`,a. We identify the spinor bundles for the metrics ḡ`|M±,`
and g±,`,a in such a way that

(i) the spinor s on M±,`,a is pulled back from a Γ±-invariant unit spinor on V±,`,

(ii) its derivative ∇SMs is supported on X × (±[1, 2]),
(iii) there exists c > 0 such that

∥∥∇SMs∥∥ = O(e−c`),

(iv) we have ∇SM∂v±s = 0.

2.1.3. Let D′M±,`,a denote the geometric spin Dirac operator of M±,`,a, and let cv± denote

Clifford multiplication by ∂v± . Decomposing D′M±,`,as using (2.2) and the properties of g±,`,a
and s above, we find functions f±, h± on V± and a spinor r± ∈ Γ(SM) that is pulled back
from a Γ±-invariant spinor on V±,`, all independent of a, such that

D′M±,`,as = f± · s+ h± · cv±s+ r± , (2.3)

and such that r± is perpendicular to s and cv±s everywhere. As in [14, (31), (32)], put

DM±,a,` = D′M±,`,a − 〈 · , s〉
(
f±s+ h±cv±s+ r±

)
− 〈 · , r±〉 s

− 〈 · , cv±s〉
(
h±s− f±cv±s− cv±r±

)
+ 〈 · , cv±r±〉 cv±s .

(2.4)

Then kerDM±,a,` contains the parallel spinors s and cv±s for all ` and all a > 0.
If we consider the special case a = s±, the operators above combine to an operator DM,`.

(i) On M` \
(
X × ([−2,−1] ∪ [1, 2])

)
, the operator DM,` agrees with the geometric spin

Dirac operator of the gluing metric g` described above.
(ii) By [14, Prop 5.7], the kernel of DM,` is spanned by a nowhere vanishing section s.
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(iii) We have DM,`|M±,`(cv±s) = 0 by [14, (34)].
(iv) Again by [14, Prop 5.7], there is a constant c > 0 such that for ` sufficiently large, there

exists a G2-metric ḡ` on M with geometric spin Dirac operator D(M,ḡ`) such that

η(D(M,ḡ`)) = η(DM,`) +O
(
e−c`

)
.

In particular, there is no spectral flow if we deform D(M,ḡ`) into DM,`.
From 2.1.1 (v) and 2.1.3 (iv), we conclude that

ν̄(M) = lim
`→∞

(
3η(BM,`)− 24η(DM,`)

)
. (2.5)

2.2. The gluing formula. In the following, we cut (M, g`) into two halves M±,`,s± with

common boundary Σ× T 2 × {0}. We identify Λ•T ∗(Σ× T 2) with the restriction of ΛevT ∗M ,
let the boundary operator A of the odd signature operator B act on Ω•(X) as in [14, (25)],
and put

LB± = im
(
H•(M±)→ H•(X)

)
⊂ H•(X) , (2.6)

then LB± are Lagrangian subspaces of H•(X) ∼= kerA. As in [14, sec 4.2], let η(BM±,a,`;LB±)
denote the η-invariant of BM±,a,` with respect to APS boundary conditions modified by LB± ;
in particular, the forms in the domain of BM±,a,` orthogonally project to 0 on the Lagrangian
in Ω•(X) given as the direct sum of LB± with the sum of all eigenspaces A of eigenvalues of
sign ±.

For the operator DM±,a`, we define similar boundary conditions as in [14, (37)]. We identify

the spinor bundle of Σ× T 2 with the restriction of the spinor bundle of M and write

DM±,a`|X×(−1,1) = γ

(
∂

∂t
+A±,a

)
,

where γ = ct denotes Clifford multiplication with ∂
∂t and A±,a now denotes the boundary

operator of the modified spin Dirac operator DM±,a`. We may write A as a shorthand

for A+,s+ = A−,s− . Note that kerA±,a ∼= H0,•(X) ∼= C4 independent of a.
Together with the L2-metric on spinors, γ introduces a symplectic structure on kerA±,a.

Let s span ker(DM,`) as in 2.1.3 (ii) above, then by 2.1.3 (iii),

LD− = span{s, cv−s} and LD+ = span{s, cv+s} (2.7)

are Lagrangian subspaces of kerA±,a, namely, the space of A±,a-harmonic spinors on X that
extend to DM±,a`-harmonic spinors on M±,`,a for each a. Define η(DM±,a`;LD±) as above. In
particular, the spinors in the domain of DM±,a,` project orthogonally to 0 on the Lagrangian
in Γ(SX) given as the direct sum of LD± with the sum of all eigenspaces of A±,a of eigenvalues
of sign ±.

Theorem 2.1 ([14, Thm 1]). Let M be an extra-twisted connected sum with gluing angle ϑ ∈
(0, π), and let ρ = π − 2ϑ. Let AN± denote the reflection in the subspace N± = Im(H2(V±)→
H2(Σ)) ⊂ L = H2(Σ), and assume that the orthogonal automorphism AN+AN− of H2,±(Σ)⊗C
has eigenvalues eiα

±
j with α+

1 , α+
2 , α+

3 , α−1 , . . . , α−19 ∈ (−π, π] ( i.e. α±i are configuration angles
in the sense of Definition 1.15). Put

ν̄(M±,a) = lim
`→∞

(
3η(BM±,a`;LB±)− 24η(DM±,a,`;LD±)

)
and mρ(L;N+, N−) = sign ρ

(
#
{
j
∣∣ α−j ∈ {π − |ρ| , π}}− 1

)
+ 2 sign ρ#

{
j
∣∣ α−j ∈ (π − |ρ| , π)

}
∈ Z ,
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then the extended ν-invariant of M is given by

ν̄(M, g) = ν̄(M+,s+) + ν̄(M−,s−)− 72
ρ

π
+ 3mρ(L;N+, N−) . (2.8)

Note that in the examples in [14], we had Γ± = Z/k± with k± ∈ {1, 2}. In these cases, one
could find orientation reversing isometries of M±,`,a that anticommute with BM±,a`, DM±,a`

and preserve the boundary conditions, leading to η(BM±,a,`;LB±) = η(DM±,a,`;LD±) = 0
independent of a. Here, we want to deal with examples where this is no longer the case. We
have examples where ϑ /∈ Qπ, so that ρ

π /∈ Q. In these cases at least some of the η-invariants
above must have irrational limits. In particular, they can no longer vanish.

Example 2.2. With the configuration angles of Example 1.17, we get ρ = π − 2 arccos 1√
3
> 0

and hence

−72
ρ

π
+ 3mρ(L;N+, N−) = −72 +

144

π
arccos

1√
3
− 3 .

2.3. The adiabatic limit of η-invariants. We still work on the manifolds M±,`,a, which
are twisted Riemannian products by property 2.1.1 (i) above. We also still consider the
modification DM±,a,` of the spin Dirac operator considered in (2.4).

We write

ν̄
(
M±

)
= ν̄

(
M±,s±

)
= lim

a→0
ν̄
(
M±,a

)
+

∫ s±

0

d

da
ν̄
(
M±,a

)
da . (2.9)

We consider W± = V±/Γ± as an orbifold with boundary, where the boundary itself is a

manifold by assumption. Let ΛW± denote its inertia orbifold. The orbifold Â-class on ΛW

is defined in [22, (1.6)]. We will also need the L̂-class; see [22, Cor 1.10]. Let A denote the
Bismut superconnection of the fibrewise spin Dirac operator for the map p : M±,`,a → W±
with respect to the fibrewise trivial spin structure; see Remark 1.4. Let η(A) ∈ Ω•(ΛW ) denote
the orbifold η-form as in [22, Def 1.7].

Then by Theorem 6.1, we find

lim
a→0

ν̄
(
M±,a

)
=

∫
ΛW±\W±

(
3L̂ΛW±

(
TW±,∇TW±

)
− 24ÂΛW±

(
TW±,∇TW±

))
2ηΛW±(A) .

(2.10)
Because W± is even-dimensional, there is no contribution from η-invariants on W±. Moreover,
there are no very small eigenvalues in our situation. We remark that the circle orbibundle M± →
W± is flat by construction, so the integral above localises at the orbifold singularities of W±,
and there is no contribution from the principal stratum. We are in a local product situation,
so the orbifold η-forms all reduce to equivariant η-invariants.

The action of Γ = Z/kZ on V is faithful because it is free on ∂V . At each fixpoint p ∈ V γ

of γ ∈ Γ, the tangent space TpV splits as a sum of complex eigenspaces of the differential of γ
with eigenvalues eiα` , with α1, α2, α3 ∈ 2π

k Z. Because γ preserves the holomorphic volume
form, the angles α` add up to a multiple of 2π. Hence, the complex codimension of the fixpoint
set has to be at least 2. If the fixpoints are not isolated, then V γ ⊂ V is totally geodesic, and
the eigenspaces locally form bundles over V γ . The tangent bundle TV γ corresponds to α` = 0.
Let νγ → V γ denote the normal bundle.

We assume that the coordinate v ∈ R/ξZ on the exterior circle has been chosen such that
inserting ∂v into the G2-form ϕ gives the Kähler form on V ; see [14, (8)]. Then let γ ∈ Γ be

the generator that acts on the exterior circle by sending v to v + ξ
k . We start by defining

a generalised Dedekind sum as in [22]. Note that it depends on the particular choice of
generator γ.
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Definition 2.3. Let γ ∈ Γ ∼= Z/kZ be a generator. For 0 < j < k, let V 0,j denote the set of
isolated fixpoints of γj , and for each p ∈ V 0,j , let αj,1(p), αj,2(p), αj,3(p) denote the angles of the
action of γj on the complex vector space (TpV ), chosen such that αj,1(p)+αj,2(p)+αj,3(p) ∈ 4πZ.
Then define

Dγ(V ) =
3

k

k−1∑
j=1

cot
πj

k

∑
p∈V 0,j

cos
αj,1(p)

2 cos
αj,2(p)

2 cos
αj,3(p)

2 − 1

sin
αj,1(p)

2 sin
αj,2(p)

2 sin
αj,3(p)

2

,

Theorem 2.4. Let γ± ∈ Γ± ∼= Z/k±Z be the generator that acts on the exterior circle R/ξ±Z
by sending v± to v± + ξ±

k . Define Dγ±(V±) as above, then

lim
a→0

ν̄(M±,a) = Dγ±(V±) .

Note that the theorem entails that non-isolated fixpoints do not contribute to the adiabatic
limit of the extended ν-invariant. We have shown in [14] that ν̄(M±) = 0 if k± = 1 or k± = 2.
This fits with our considerations above because involutions of odd-dimensional Calabi-Yau
manifolds cannot have isolated fixpoints.

Proof. As Calabi-Yau manifold, V has a preferred spin structure with spinor bundle Λ0,•T ∗V .
The Kähler metric identifies Λ0,1T ∗V with TV with its natural complex structure. Let γ ∈ Γ.
Because V γ is at most one-dimensional, we can split TpV into one-dimensional eigenspaces that
are also invariant under the curvature tensor F ∈ Λ1,1 End(TpV ). This allows us to decompose

the action of γe−
F
2πi on the spinor space Λ0,•T ∗V |V γ as

γe−
F
2πi |Λ0,•T ∗p V

∼=
3⊗
j=1

(
1

eiα`(1 + β`)

)
,

where β` ∈ Λ1,1T ∗V γ are real differential forms that represent the Chern roots of the subbundle
of TV |V γ corresponding to the eigenvalue eiα` . We assume that α1 + α2 + α3 = 0. Because V
is Ricci-flat, we know that β1 + β2 + β3 = 0. This allows us to twist each tensor factor above

with a line L` on which γe−
F
2πi acts as e−i

α`
2

(
1− β`

2

)
. This gives us the decomposition

γe−
F
2πi |Λ0,•T ∗p V

∼=
3⊗
`=1

e− iα`2 (1− β`
2

)
e
iα`
2

(
1 + β`

2

) . (2.11)

Finally, we note that the Seifert fibration M± → V±/Γ± is locally of product geometry.
Therefore, the equivariant η-form η̃γj (A) reduces to half the equivariant η-invariant. If γ ∈ Γ
denotes the preferred generator, then

ηγj (DS1) = ηγj (BS1) = −i cot
πj

k
∈ Ω0

(
V
)

(2.12)

with respect to the preferred orientations.

Complex one-dimensional fixpoint sets. Assume that C ⊂ V γj is a connected component of
the fixpoint set of γj with dimCC = 1, and with normal bundle νC → C in V . Along C, we
have α2 = −α1 and α3 = 0. To compute the orbifold Â-class following [22, (1.6), (1.7)] and [3,
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sect. 6.4], we need

ch
(
γj ,Λ0,evν∗C − Λ0,oddν∗C

)
|(C,γj) =

2∏
`=1

str

e− iα`2 (1− β`
2

)
e
iα`
2

(
1 + β`

2

)
= 4 sin2 α1

2
− 2i(β1 − β2) sin

α1

2
cos

α1

2
,

which follows from (2.11). For dimension reasons, Â(TC) = 1, so β3 cannot contribute. Then
by (2.12), the whole contribution of (C, γj) ∈ ΛV to the untwisted η-invariant is

(−1)rkC νC Â(TC)

k ch(γj ,Λ0,evν∗C − Λ0,oddν∗C)
[C] · ηγj (DS1)

=
1

4 sin2 α1
2 − 2i(β1 − β2) sin α1

2 cos α1
2

[C] ·
ηγj (DS1)

k

=
i cos α1

2

8k sin3 α1
2

· (β1 − β2)[C] · ηγj (DS1) .

(2.13)

For the signature η-invariant, we have to compute the equivariant twist Chern character
following [3, Def 6.15]. The spinor bundle Λ0,•T ∗pC of TpC ⊂ TpV contributes only by its rank.
By (2.11), we have

ch
(
γj ,Λ0,•T ∗p V

)
|(C,γj) = 2

2∏
`=1

tr

e− iα`2 (1− β`
2

)
e
iα`
2

(
1 + β`

2

)
= 8 cos2 α1

2
+ 4i(β1 − β2) cos

α1

2
sin

α1

2
.

By (2.12) and the above, the whole contribution of V γj to the signature η-invariant is

(−1)rkC νC Â(TC) ch
(
γj ,Λ0,•T ∗p V

)
k ch(γj ,Λ0,evν∗C − Λ0,oddν∗C)

[C] · ηγj (BS1)

=
8 cos2 α1

2 + 4i(β1 − β2) cos α1
2 sin α1

2

4 sin2 α1
2 − 2i(β1 − β2) cos α1

2 sin α1
2

[C] · ηγj (DS1)

=
i cos α1

2

k sin3 α1
2

· (β1 − β2)[C] · ηγj (DS1) .

(2.14)

From (2.10), (2.13) and (2.14), we see that (V γj , γj) does not contribute to lima→0 ν̄(Ma).

Isolated fixpoints. At an isolated fixpoint p of γ = γj , we have νp = TpV . The action of γ is
determined by three nonzero angles α` = αj,`(p) for ` = 1, 2, 3 that sum up to 0. If necessary,
we add a multiple of 2π to one of the angles.

The contribution to the orbifold Â-form is the number

ch
(
γ,Λ0,evT ∗p V − Λ0,oddT ∗p V

)
|(p,γ) =

3∏
`=1

str

(
e−

iα`
2

e
iα`
2

)
= 8i sin

α1

2
sin

α2

2
sin

α3

2
.

By (2.12), the contribution to the untwisted η-invariant is

(−1)rkC TpV

k ch(γ,Λ0,evT ∗p V − Λ0,oddT ∗p V )
[p] · ηγj (DS1) =

cot πjk
8k sin α1

2 sin α2
2 sin α3

2

. (2.15)
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For the signature η-invariant, we multiply the above with the equivariant Chern character

ch
(
γ,Λ0,•T ∗p V

)
=

3∏
`=1

tr

(
e−

iα`
2

e
iα`
2

)
= 8 cos

α1

2
cos

α2

2
cos

α3

2

and obtain the contribution to the signature η-invariant

(−1)rkC TpV ch
(
γ,Λ0,•T ∗p V

)
k ch(γ,Λ0,evT ∗p V − Λ0,oddT ∗p V )

[p] · ηγj (BS1) =
1

k
cot

α1

2
cot

α2

2
cot

α3

2
cot

πj

k
. (2.16)

From (2.10), (2.15) and (2.16), we obtain the Theorem. �

Remark 2.5. When considering examples, it is more convenient to fix the generator τ that acts
on the interior circle S1

ζ
∼= R/ζZ by u 7→ u+ ζ

k . If a unit ε ∈ Z/k is chosen as in equation (1.5),
then the generator chosen above is γ = τ ε, and the contribution of the isolated fixpoints to
the extended ν-invariant is given by Dτε(V ).

Now assume that Z is a building block with a Γ-action that fixes an anticanonical divisor Σ
of Z pointwise, and that V ∼= Z \ Σ. The orientation convention of [13, equation (3.2)] says
that the complex structure rotates the outward cylindrical direction into the positive direction
of the interior circle. If we identify the asymptotical cylinder with the normal bundle to Σ
in Z, the outward cylindrical direction becomes the inward normal direction. This means that
the interior circle through v ∈ νΣ is oriented by −iv ∈ TvνΣ. Hence τ ∈ Γ should act on νΣ

by e−
2πi
k .

Example 2.6. In Example 5.10, we describe a building block with Z/5-symmetry. It has

one isolated fixpoint p. Let ζ5 = e
2πi
5 , then there is a generator τ of Z/5 that acts on TpZ

as diag(ζ5, ζ5, ζ
−2
5 ) and on νΣ by ζ−1

5 = e−
2πi
5 . Hence, the generator γ in Theorem 2.4

corresponds to τ ε, for ε 6≡ 0 mod 5. Then γ acts on TpZ as diag(ζε5 , ζ
ε
5 , ζ
−2ε
5 ), so

αj,1(p) = αj,2(p) =
2επ

5
and αj,3(p) = −4επ

5
.

If we represent ε ∈ Z/5 \ {0} by an element of {−2,−1, 1, 2}, we get

Dγ(V ) = Dτε(V ) = lim
r→0

ν̄
(
(V × S1

r )/Γ
)

=
24

5ε
.

We can use this block as Z− in Example 1.9, with ε− = −1 and hence Dγ−(V −) = −24
5 .

2.4. The variation of η-invariants. In this section, we apply a variation formula for η-
invariants on manifolds with boundary by Dai and Freed [20, Thm 1.9]. Similar formulas
in the case where the boundary operator is invertible have been established by Cheeger [11,
Section 8] and Bismut-Cheeger [4, Thm 6.36]. Dai and Freed actually interpret the reduced
η-invariant in R/Z with respect to a certain class of possible boundary conditions as a section
of the dual of the determinant line bundle of the fibrewise boundary operators, equipped with
the Quillen metric and the Bismut-Freed connection. Because we have fixed the boundary
condition in Section 2.1, we recover the reduced η-invariant as an R/Z-valued function.

We now consider the family M± = M± × (0,∞)→ (0,∞) with fibre M±,a over a ∈ (0,∞).
We choose the trivial connection THM± ⊂ TM±, and the fibrewise metric is induced from

the metric gTV± ⊕ a2gS
1

on M̃±. Using these data, Bismut and Freed [6, (1.7)] construct a

connection ∇̃u on the infinite-dimensional vector bundle Ω•(M±/(0,∞))→ (0,∞) of fibrewise
exterior differential forms that is unitary with respect to the fibrewise L2-metrics. In our
situation, it is not hard to see that the subbundle of fibrewise harmonic forms and its subbundle
representing the subspaces LB± of (2.6) in each fibre are parallel with respect to ∇̃u. Dai and
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Freed regard LB± as graphs of isometries H+(X) → H−(X) whose determinants defines a
section of unit length of the determinant line bundle detH•(X) = ΛmaxH+(X)∗⊗ΛmaxH−(X).

This section is again parallel with respect to the connection induced by ∇̃u on detH•(X).
The variational formula is typically phrased in terms of the Bismut-Freed connection on

the determinant line bundle over (0,∞) (which preserves the Quillen metric). However, if the
kernels of the boundary operators form a bundle over the base, as in the case at hand, it is
easier to work with the L2-metric above. A simple fibrewise rescaling of the determinant line
bundle transforms one metric into the other, as in [20, Prop. 2.15]. It is shown in [20, (3.8)]
that the Bismut-Freed connection becomes a unitary connection with respect to the L2-metric
given by

∇̃u − 2πi η̃(B) , where η̃(B) = − 1

4πi

∫ ∞
0

str
(
AX

[
∇̃u, AX

]
e−tA

2
X

)
dt (2.17)

is the η-form of the family of boundary operators A, and Bt =
√
t A+ ∇̃u is the corresponding

Bismut superconnection. Note that we do not need to specify the degree 1 component of η̃(B)
explicitly because our base space is one-dimensional here.

The situation for the spin Dirac operators is completely analogous. Hence, fixing APS
boundary conditions modified by the Lagrangian of (2.6), (2.7) as before, the variational
formula in the version of [20, Thm 3.3] in our situation reads

dη(BM±,a) =

∫
M±/(0,∞)

2L̂
(
∇T (M±/(0,∞))

)
− 2η̃(B) ∈ Ω1((0,∞)) ,

dη(DM±,a) =

∫
M±/(0,∞)

2Â
(
∇T (M±/(0,∞))

)
− 2η̃(D) ∈ Ω1((0,∞)) ,

(2.18)

where
∫
M±/(0,∞) denotes integration along the fibres. The first term is the usual local variation

formula for η-invariants on closed manifolds. The second term is the boundary contribution.
Here D is the superconnection associated to the boundary operators CX±,a.

Proposition 2.7. The local variation terms vanish, that is∫
M±/(0,∞)

L̂
(
∇T (M±/(0,∞))

)
=

∫
M±/(0,∞)

Â
(
∇T (M±/(0,∞))

)
= 0 .

Proof. We split the vertical tangent bundle

T (M±/(0,∞)) ∼= p∗V±TV± ⊕ R ,

where pV± : M± → V± denotes obvious projection. This splitting is parallel with respect to
the Bismut connection on the vertical tangent bundle. Because the metric on V± is unchanged,
the Bismut connection on p∗V±TV± is pulled back from V±. The connection on R is Euclidean

and therefore flat. We conclude that

Â
(
∇TM±/(0,∞)

)
= Â

(
∇p
∗
V±

TV±) · Â(∇R) = p∗V±Â
(
∇TV±

)
.

Because this expression is of horizontal degree 0 and the fibres are odd-dimensional, the
integral in the proposition vanishes. The same holds for the L̂-form integral above. �

Proposition 2.8. Let A denote the superconnection associated to the fibrewise spin Dirac
operator for the family over (0,∞) with fibre (S1 × S1

a)/Γ± at a ∈ (0,∞), equipped with the
trivial spin structure. Then

dν̄(M±/(0,∞)) = 288η̃(A) . (2.19)
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Proof. By equation (2.18) and Proposition 2.7, we are left with

dν̄(M±/(0,∞)) = 48η̃(D)− 6η̃(B) .

By assumption X±,a ∼= Σ± × (S1 × S1
r )/Γ±. In particular, the geometry of Σ± is independent

of a. We may therefore split the index of the appropriate operator on Σ± off from the η-forms
above. For the spin Dirac operator, it remains to compute the η-form of a superconnection A
acting on the spinor bundle of a bundle E → (0,∞) of flat tori (S1 × S1

a)/Γ± as in the
proposition, which we can see as the quotient bundle of a vector bundle W → (0,∞) by a
bundle of lattices in W ; see Sections 2.5 and 4.1 below.

The fibrewise spinor bundle is the pullback of the virtual complex spinor bundle bundle S+	
S− → (0,∞) of W with connection ∇S = ∇S+⊕∇S− . Let η̃(A) denote the spinorial η-form. By
the following remark, the η-form associated with the fibrewise signature operator on E → (0,∞)
equals 2η̃(A), at least in degree 1. We know that ind(DΣ±) = 2 and sign(Σ±) = −16, so

dν̄(M±/(0,∞)) = 48 ind(DΣ±) η̃(A)− 6 sign(Σ±) 2η̃(A) = 288η̃(A) . �

Remark 2.9. We want to relate the η-forms for the spin Dirac operator and the signature
operator of a bundle p : E → (0,∞) of flat 2-tori. Let TT 2 denote the vertical tangent bundle
of this fibration. The signature operator acts on the spinor bundle twisted by the pullback
of S = S+ ⊕ S−. We therefore have

p∗Λ
•T ∗T 2 ∼= p∗p

∗S ⊗ S ,
and the corresponding superconnection is now given by At ⊗ id + id ⊗ ∇S . The two terms
above supercommute, so we have

strp∗Λ•T ∗T 2

(
∂(At ⊗ id + id⊗∇S)

∂t
e−(At⊗id+id⊗∇S)

2
)

= strp∗p∗S

(
∂At
∂t

e−A
2
t

)
· trS

(
e−(∇S)2

)
.

This implies that the signature η-form of the torus bundle is given as η(A) ch(∇S). In degree 1,
this equals twice the spinorial η-form because rkS = 2. Equivalently, the reader is invited to
compare Bismut and Cheeger’s results for the universal spinorial η-form and the signature
η-form of bundles of flat tori in [5, Thms 2.22, 2.25].

2.5. A direct computation of the η-form integral. We rewrite the η-form integral directly
in terms of the eigenvalues of the Dirac operator on the family of flat tori over H. Bismut
and Cheeger did similar computations in [5]. In the appendix, Don Zagier will exhibit a new
way to compute the contribution from the variational formula to the ν-invariant in terms of
logarithms of Dedekind η-functions.

We consider a family of tori (S1 × S1
a)/Γ for a ∈ (0,∞) as in Proposition 2.8. With ε

relatively prime to k as in Section 1.3, we have (S1 × S1
a)/Γ ∼= R2/Λa, where

Λa =

(
1

0

)
Z⊕

(
ε

a

)
1

k
Z ⊂ R2 .

Let us denote the total space of this family by E and the fibres by Z. Consider a flat connection
on R2 → (0,∞) given by

∇ = d−
(

0 0
0 1

)
da

a
,

then Λ is parallel with respect to ∇. This connection induces a splitting TE = TZ ⊕ THE. A
horizontal lift of V = ∂

∂a at a point (x, y, a) ∈ R2 × (0,∞) is given as

V̄(x,y,a) =
y

a

∂

∂y
+

∂

∂a
.
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We equip R2 → (0,∞) and E with the fibrewise metric gTZ induced from the standard
metric on R2. The Levi-Civita connection on E induces a Euclidean connection ∇TZ on TZ ∼=
π∗R2 → E that coincides with the pullback of the trivial connection d. The mean curvature of
the fibres is given as

h = −1

2
tr
(
(gTZ)−1 LV̄ gTZ

)
da = −da

a
.

We consider the fibrewise product spin structure, so S+ ∼= S− ∼= C→ E. Let c1, c2 denote
Clifford multiplication with the standard orthonormal basis vectors e1, e2 on S+ ⊕ S−, then
the complex Clifford volume element ic1c2 acts by ±1 on S±. The Levi-Civita connection
induces the trivial connection on S±. For the Bismut superconnection, we have to consider a
connection on π∗S

± of the form

∇̃u∂
∂a

f =

(
∇S± − h

2

)
V̄

f =

(
y

a

∂

∂y
+

∂

∂a
+

1

2a

)
f

under the natural identification Γ(π∗S
±) ∼= Γ(S±). Then the Bismut superconnection is given

by

At =
√
t AT 2 + ∇̃u =

√
t

(
c1

∂

∂x
+ c2

∂

∂y

)
+ da

(
y

a

∂

∂y
+

∂

∂a
+

1

2a

)
. (2.20)

Starting from (2.17), we compute

η̃(A) = − 1

4π

da

a

∫ ∞
0

trπ∗S

(
∂2

∂x ∂y
e
t
(
∂2

∂x2
+ ∂2

∂y2

))
dt , (2.21)

We have used the definition str( · ) = tr(ic1c2 · ) of the supertrace. Also str(1) = tr(ic1c2) = 0.
With respect to the standard Euclidean metric, the lattice dual to Λa is given by

Λ∗a =
{
µ ∈ C

∣∣ 〈λ, µ〉 ∈ Z for all λ ∈ Λ
}

=

{(
n

m/a

) ∣∣∣∣ εn+m ≡ 0 mod k
}
.

For m, n as above, we consider sections

ϕ±m,n(x, y, a) =
1√
a
e2πi(nx+my/a) ∈ Γ(S±) ∼= C∞(E;C)

of L2-norm 1. They are parallel under ∇̃u, and they are eigensections of the fibrewise Laplacian

for the eigenvalue 4π2
(
n2 + m2

a2

)
. Note that each admissible pair (m,n) appears twice (once

for S+ and once for S−), hence (2.21) becomes

η̃(A) = − 1

2π

da

a

∫ ∞
0

∑
m+εn≡0 mod k

(
−4π2 mn

a

)
e−4π2t

(
n2+

m2

a2

)
dt

=
da

2π

∫ ∞
0

∑
m+εn≡0 mod k

mne−t (m2+a2n2) dt .

In the definition below, we substitute −m for m.

Definition 2.10. For each ε relatively prime to k, we define a function Fk,ε : (0,∞)→ R by

Fk,ε(s) =

∫ ∞
0

∫ s

0

∑
m≡εn mod k

mne−t(m
2+n2a2) da dt . (2.22)

Proposition 2.11. Consider the family E → (0,∞) above. Then∫
[0,s]

η̃(A) = − 1

2π
Fk,ε(s) . �
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Theorem 2.12. The variation of ν̄(M±,a) is given by

ν̄
(
M±,s±

)
− lim
a→0

ν̄
(
M±,a

)
= −144

π
Fk±,ε±(s±) .

Proof. This follows from Propositions 2.8 and 2.11. �

We can now give a formula for the extended ν-invariant.

Theorem 2.13. The extended ν-invariant of an extra-twisted connected sum is given as

ν̄(M) = Dγ+(V+) +Dγ−(V−)

− 144

π

(
Fk+,ε+(s+) + Fk−,ε−(s−)

)
− 72

ρ

π
+ 3mρ(L;N+, N−) . (2.23)

Proof. This follows from Theorems 2.1, 2.4 and 2.12. �

Proof of Theorem 2. Combine Theorem 2.13 with Proposition A.1. �

Remark 2.14. Using ideas and results of Atiyah [1], Bismut-Freed [6] and Ray-Singer [32],
we can motivate the appearance of the Dedekind η-function. We consider the universal
family p : E → H of flat tori over the upper half plane that we will describe in more detail in
Section 4. There exists a Kähler structure on E whose restriction to each fibre p−1(τ) induces
the flat Riemannian metric of volume 1 with the conformal structure induced by τ ∈ H. The
fibrewise canonical bundle of p is holomorphically trivial, so we may regard the bundle of
fibrewise antiholomorphic forms as a model for the fibrewise spinor bundle on E.

Following [6], the η-form η̃(A) describes a natural connection on the determinant line bundle
of the fibrewise Dirac operator. Atiyah explains that this connection agrees with the Chern
connection on the determinant line bundle with respect to the Quillen metric. Using results
of Ray and Singer [32, Theorem 4.1], he shows that the determinant line bundle admits a
holomorphic section whose norm can be written in terms of the Dedekind η-function, see
the discussion before [1, (5.19)]. This implies that the η-form itself can be described by the
logarithmic derivative of η(τ).

Example 2.15. We consider the gluing data from Examples 1.9, then s− =
√

2, s+ = 5
√

2
and ϑ = arccos 1√

3
. From Theorem 2 and Examples 2.2, 2.6, we get

ν̄(M) = −24

5
+

144

π

(
arccos

1√
3
− 1

2

)
− 3

− 144

π

(
2 ImL

(√
2 i− 10

30

)
+

π

18
+ 2 ImL

(√
2 i+ 2

10

)
− π

30

)
.

The functional equation (A.1) for L allows us to conclude that

2 ImL
(√

2 i− 10

30

)
+

π

18
+ 2 ImL

(√
2 i+ 2

10

)
− π

30
+

1

2
− arccos

1√
3

=
π

6

(
1

30
+

1

10
− 12S(3, 10)

)
,

see Proposition A.3. Because 32 ≡ −1 mod 10, we have S(3, 10) = 0, and hence we confirm
entry 228 of Table 2 because

ν̄(M) = −24

5
− 3− 24

(
1

30
+

1

10

)
= −11 .

This is of course exactly the formula we would get from Theorem 3.
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λ+=µ−

µ+=λ−

λ+

µ+

λ− µ−

λ+=µ−

µ+λ−

λ+=µ−

µ+=λ−

Figure 9.

λ+

µ+

λ− µ−

Figure 10.

λ+=µ−

µ+λ−

Figure 11.

3. Torus matchings

In this section we collect some arguments concerning the combinatorics of gluing matrices
and torus isometries that are tangential to the main narrative of the paper, but which may
be relevant to a reader who wishes to understand in more detail how many different torus
isometries there are. We first discuss in detail which gluing matrices can be realised, and then
the various symmetries that relate torus isometries that are in some sense the same.

3.1. Combinatorics of torus isometries. We now pick up the thread from §1.3 to enumer-
ate torus matchings systematically.

Example 3.1. Let us give some examples and counterexamples of torus matchings.

(i) Let M be a twisted connected sum as in [13, 28]. Assume that the group Γ ∼= Z/k acts
by isomorphisms on the two ACyl Calabi-Yau manifolds V± used in the construction
of M such that the induced action on the cross-section acts trivially on the K3 factor
and freely on the interior circle S1

ζ±
. Then (Z/k)2 acts on M , where each factor Z/k

acts on the ACyl Calabi-Yau manifold Y± on one side and on the exterior circle on the
other. For each ε+ ∈ Z/k with gcd(ε+, k) = 1, we obtain a free Z/k-action on M where
a generator acts as (1, ε+) ∈ (Z/k)2, see Figure 9 for k = 5 and ε+ = 1, 3. The points of
the lattice Λ are indicated by dots.

The corresponding torus matching has k+ = k− = k, gluing matrix
(

0 k
k 0

)
, and ε+ε− ≡

1 mod k. The gluing angle is ϑ = ±π
2 , and we have ξ+ = ζ− and ζ+ = ξ−, but the

ratio s+ = s−1
− can be chosen arbitrarily.

(ii) There are also examples with gluing angle ϑ /∈ π
2Z where the gluing matrix together with

the numbers k+, k− does not determine the torus matching completely. As an example,
consider k+ = k− = 8 and the gluing matrix

(
4 4
12 −4

)
. This determines s+ = s− =

√
3

and ϑ = arctan
√

3. We can either pick ε+ = ε− = 1 or ε+ = ε− = −3, see Figure 10.
(iii) If we want to construct a torus matching from a gluing matrix (m p

n q ), numbers k± and ε±,
it is not quite enough to satisfy only the conditions listed in Proposition 1.8 (i). If we
set k+ = k− = 4 and pick the gluing matrix

(
0 4
4 −8

)
, we may choose ε+ = −ε− = ±1.

Then all conclusions in Proposition 1.8 (i) hold, but equation (3.2) is violated, which
is part of the conclusions in Proposition 1.8 (ii). Hence we cannot have a matching of
quotients of rectangular tori, see Figure 11.
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To search systematically for torus matchings with fixed k+ and k−, it is helpful to first note
the following formal consequences of (1.8) and Proposition 1.8 (ii).

gcd(m,n) = gcd(m, k+) = gcd(n, k+) and gcd(p, q) = gcd(p, k+) = gcd(q, k+) (3.1a)

gcd(m, p) = gcd(m, k−) = gcd(p, k−) and gcd(n, q) = gcd(n, k−) = gcd(q, k−) (3.1b)

np ·mq ≤ 0 , and if np ·mq = 0, then either n = p = 0 or m = q = 0 . (3.2)

Proposition 3.2. Let k+ > 0, ε+ ∈ (Z/k+)∗, and let (m p
n q ) be a gluing matrix with det (m p

n q )
negative and divisible by k+. Suppose that (1.8a), (1.9a) and (3.2) are satisfied. Then there
exists a unique torus matching with these data. If one chooses a, b ∈ Z such that

1 = bp− aq − ε+p

k+
, (3.3a)

then ε− ≡ a
n− ε+m

k+
− bm mod k− . (3.3b)

Proof. Let k+, (m p
n q ) and ε+ be given as above. Let Λ̃+ ⊂ C be a lattice with basis (µ+, λ+),

then we can construct a sublattice Λ ⊂ 1
k+

Λ̃+ of index k+ with basis (ν+, λ+) given by (1.5),

and Λ̃+ ⊂ Λ is also a sublattice of index k+. By assumption (1.8a), the gluing matrix then

determines a sublattice Λ̃− ⊂ Λ of index k− = −det (m p
n q ) /k+ with basis (µ−, λ−) determined

by (1.10).

We conclude that Λ ⊂ 1
k−

Λ̃− is again a sublattice of index k−, and let λ(c, d) = c
k−
µ− +

d
k−
λ− ∈ 1

k−
Λ̃− with c, d ∈ {0, . . . , k− − 1}. Assume that λ(c, d) ∈ Λ. The vectors λ− and µ−

are primitive in Λ by (1.9a) and (1.10), so c = 0 if and only if d = 0. Similarly, for each c
there can at most be one d in the given range such that λ(c, d) ∈ Λ and vice versa. Because
there are exactly k− elements of Λ with coordinates c, d in the given range, for each c there
is exactly one d such that λ(c, d) ∈ Λ, and vice versa. Specifying c = 1, we hence get a

unique ε− = d ∈ Z/k−. Moreover, gcd(ε−, k−) = 1, and Λ is an extension of Λ̃− by a cyclic
group Γ− ∼= Z/k−. This proves existence and uniqueness of the gluing data.

We set k− = − 1
k+

det (m p
n q ). To determine ε−, we fix the basis

(λ−
k−
, µ−k−

)
of R2. With respect

to this basis, we have λ+ =
(−m

p

)
and µ+ = ( n

−q ) by (1.11). The lattice Λ is spanned by the
vectors λ+ and

ν+ =
µ+ + ε+λ+

k+
=

1

k+

(
n− ε+m
ε+p− q

)
,

which has integer coordinates by (1.8a). By (1.9a), we can find a and b satisfying (3.3a). Then
the vector ν− = aν+ + bλ+ has second coordinate 1, hence together with λ−, it also spans Λ.
Its first coordinate is given by the right hand side of (3.3b), which therefore agrees with ε−
modulo k−. �

Remark 3.3. As a consequence of (3.3), we check that

n− ε+m+ ε−q − ε+ε−p = n− ε+m+
(
a
n− ε+m

k+
− bm

)
(q − ε+p) = bk+k− , (3.4)

in particular, the left hand side is always divisible by k+k−. If ε∗± is inverse to ε± modulo k±,
we can deduce from the above that similarly

k+k−
∣∣ p− ε∗+q + ε∗−m− ε∗+ε∗−n . (3.5)

We can now prove a claim used in Remark 4.14 below by computing

−
m− ε∗+n

k+
·
q + ε∗−
k−

=
np−mq − n

(
p− ε∗+q + ε∗−1m− ε∗+ε∗−n

)
k+k−

≡ 1 mod n . (3.6)
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For given positive integers k− and k+, there are only finitely many matrices (m p
n q ) ∈M2(Z)

that satisfy conditions (1.7) and (3.2). For

np−mq = k−k+ > 0

and (3.2) imply that

np ∈ {0, . . . , k−k+} and mq ∈ {−k−k+, . . . , 0} . (3.7)

By Remark 3.8 below, we may assume in addition ϑ ∈ (0, π). Then n > 0 by Proposi-
tion 1.8 (iii), and therefore also p > 0. In other words, (m p

n q ) can be chosen to be either
off-diagonal with non-negative entries, or with exactly three positive entries and one negative
entry, which can only be m or q.

For small k+ and k− it is now easy even by hand to enumerate all (m p
n q ) that satisfy (3.1)

in addition. Most of those have gcd (m p
n q ) = 1 and thus give rise to a unique torus matching,

while for the few remaining ones it is easy to enumerate any ε+ that satisfy (1.8a) and (1.9a).

Remark 3.4. Assume that we are given gluing data k± ∈ Z, ε± ∈ Z/k± and (m p
n q ) ∈M2(Z).

Then the lattice Λ is a sublattice of the lattice Λ̃+ + Λ̃− spanned by Λ̃+ and Λ̃−. Because we
have assumed the groups Γ± = Z/k± act freely on the interior and on the exterior circles, we

can compute the index of Λ in Λ̃+ + Λ̃− in four different ways:[
Λ̃+ + Λ̃− : Λ

]
= gcd(m, p, k+) = gcd(n, q, k+) = gcd(m,n, k−) = gcd(p, q, k−) .

For the first equation, we choose the vectors λ+
k+

and µ+
k+

as a basis for R2; see Figure 2. Then

the smallest positive second coordinate of an element of Λ is 1, because Γ+
∼= Z/k+ acts freely

on the exterior circle of M̃+. On the other hand, the smallest positive second coordinate of an
element of Λ̃+ + Λ̃− is gcd(m, p, k+). The other equations follow similarly.

We note that we have not used the numbers ε± in the argument above. Hence, if [Λ̃+ + Λ̃− :
Λ] = 1, then Λ is uniquely determined by k± and the gluing matrix, and so are ε±. This is the
case in most examples with ϑ 6= π

2 . in Table 2. If ϑ = π
2 and k+ = k− ≥ 3, then there are at

least two possible choices for ε+. On the other hand, in examples 237, 238, 254 and 255 in
Table 2, we have [Λ̃+ + Λ̃− : Λ] > 1, but nevertheless, Λ and ε± are uniquely determined.

3.2. New extra-twisted connected sums from old. Having discussed how to enumerate
torus matchings, we now move on to discuss relations between them. We will find several ways
to describe isometric extra-twisted connected sums, but we also discuss covering spaces and a
kind of “t-duality”.

Let us start with coverings. By Proposition 1.10, an extra-twisted connected sum with
gluing matrix (m p

n q ) is simply-connected if and only if p = 1. Let us enumerate its connected
covering spaces if p > 1.

Proposition 3.5. Assume that M is an extra-twisted connected sum with gluing data given
by k±, ε± ∈ Z/k± and gluing matrix (m p

n q ). Assume that p > 1 and that ` | p. Then there exists

a unique connected `-fold covering space M̃ . It is an extra-twisted connected sum constructed
from the same building blocks as M with the same gluing angle ϑ, and with gluing data

k̃± =
k±

gcd(`, k±)
, ε̃± =

`ε±
gcd(`, k±)

, (3.8a)(
m̃ p̃
ñ q̃

)
=

(
m

gcd(`,k−)
p
`

n`
gcd(`,k+) gcd(`,k−)

q
gcd(`,k+)

)
∈M2(Z) . (3.8b)
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Proof. Because π1(M) is cyclic, there is a unique connected `-fold covering π : M̃ → M .

Let M̃± →M± denote its restriction to the two halves of M . Because π∗ : π1(M±)→ π1(M)

is surjective, we see that M̃± →M± are also connected `-fold coverings, which are uniquely
determined by ` up to isomorphism since π1(M±) ∼= Z. It follows that M̃ is an extra-twisted

sum, glued from M̃+ and M̃−.
Let X̃ → X denote the restriction of π to X = M+∩M−. The corresponding sublattice Λ̃ ⊂

Λ = π1(X) is spanned by the vectors λ± corresponding to the interior circles, and by

ν̃± = `ν± =
`

k±
(µ± + ε±λ±) .

The smallest multiples of µ± inside Λ̃ are

µ̃± =
k+

gcd(`, k±)
· ν̃± −

`ε±
gcd(`, k±)

λ± =
`

gcd(`, k±)
µ± ,

and Λ̃ is an extension of the lattice spanned by λ± and µ̃± by a finite cyclic group Γ̃± ∼= Z/k̃±.

With respect to the new bases (µ̃±, λ±), k̃± and ε̃± are given by (3.8a), and the new gluing

matrix takes the form of (3.8b), which has determinant −k̃+k̃−. �

Remark 3.6. If k̃± = k±, then the covering is constructed using the same finite groups Γ±. On
the other hand, it is possible that one has to pass to a proper subgroup of one or both these
groups.

Conversely, an extra-twisted connected sum admits a quotient by Z/` if

(i) There exist multiples k̄± of k± such that k̄± = k± gcd(`, k̄±),
(ii) The action of Γ± ∼= Z/k± on V± extends to an action by Z/k̄± with respect to the

embedding Z/k± 3 [1] 7→ [k̄±/k±] ∈ Z/k̄±,
(iii) The number n

` gcd(`, k̄+) gcd(`, k̄−) is an integer.

Table 2 describes 255 deformation families of extra-twisted connected sums, 125 of which
are simply connected. Among the remaining examples, there are 64 where taking the universal
cover implies passing to subgroups of Γ+ or Γ−.

Among the examples in Table 2, the one with largest fundamental group π1(M) ∼= Z/21

is entry 250, which has k+ = 4 and k− = 6. The universal cover has k̃+ = 4 and k̃− = 2.
It can be found as entry 174 with M+ and M− swapped. Entries 175 and 248 are the two
intermediate covering spaces.

Proposition 3.7. Let M be an extra-twisted connected sum constructed from asymptotically
cylindrical Calabi-Yau manifolds V± with gluing data k± ∈ Z, ε± ∈ Z/k± and (m p

n q ) ∈M2(Z),
and with gluing angle ϑ. Then the following gluing data describe an isometric extra-twisted
connected sum M ′, possibly with opposite orientation:(

m′ p′

n′ q′

)
=

(
−q p
n −m

)
, k′+ = k− , k′− = k+ ,

ε′+ = ε− , ε′− = ε+ , and ϑ′ = ϑ ;

(3.9)

(
m′ p′

n′ q′

)
=

(
m −p
−n q

)
, k′+ = k+ , k′− = k− ,

ε′+ = −ε+ , ε′− = −ε− , and ϑ′ = −ϑ ;

(3.10)

(
m′ p′

n′ q′

)
=

(
−m −p
−n −q

)
, k′+ = k+ , k′− = k− ,

ε′+ = ε+ , ε′− = ε− , and ϑ′ = ϑ± π .
(3.11)
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In (3.9), we have to swap the roles of V+ and V−. In (3.10), we change the orientation of M .
In (3.11), we pass to the opposite Calabi-Yau structure on one side.

The three elements above generate a group H ∼= (Z/2)3 that acts on the set of gluing data
describing a given deformation family up to isomorphism.

Proof. We obtain (3.9) by exchanging the roles of V+ and V−, see equation (1.11). Because
the definition of the gluing angle is symmetric, it does not change.

For (3.10), we change the orientation of M by swapping the orientations of the two exterior
circles. This changes the sign of the gluing angle and of ε±. The new gluing matrix arises by
conjugating with

(−1 0
0 1

)
.

In (3.11), we rotate one of the two sides, say M+, by π, which leads to the new gluing angle.
This has the effect of changing the orientations of both V+ and the exterior circle, and hence
the gluing matrix is multiplied by − ( 1 0

0 1 ). If ω+ and Ω+ describe the old Calabi-Yau structure
on V+, the new one carries the opposite complex structure and is given by −ω+ and −Ω̄+. �

Remark 3.8. The subgroup spanned by (3.10) and (3.11) is rich enough to make sure that
we can always assume m, n, p ≥ 0 and q ≤ 0. Moreover, if we use the same building block
and the same finite group Γ ∼= Z/k for M+ and M−, we may apply (3.9) to get m+ q ≤ 0. In
Table 2, we only list gluing data satisfying these conventions.

Recall that Σ× T ∼= Σ± × T± denote the isometric cross-sections at infinity of the asymp-
totically cylindrical G2-manifolds M± used in Theorem 1.3 to construct M .

Proposition 3.9. Let M be an extra-twisted connected sum glued along Σ× T with gluing
data k± ∈ Z, ε± ∈ Z/k± and (m p

n q ) ∈ M2(Z) and with gluing angle ϑ. Then there exists a
deformation family of extra-twisted connected sums M ′ with isomorphic asymptotically flat
Calabi-Yau manifolds V±, glued along Σ× T ∗ with gluing data(

m′ p′

n′ q′

)
=

(
−q n
p −m

)
, k′+ = k+ , k′− = k− ,

ε′+ = −ε∗+ , ε′− = −ε∗− , and ϑ′ = ϑ .

(3.12)

Together with the group H, this transformation generates a group isomorphic to (Z/2)4 that
acts on the possible gluing data compatible with a given K3 matching.

Thus, the new extra-twisted connected sum is in a certain sense “t-dual” to the original
one, but can in general not be deformed into the original one.

Proof. We recall the generators for the involved lattices in C from Section 1.3:

Λ̃+ =
〈
ζ+, iξ+

〉
,

Λ =

〈
ζ+,

ε+ζ+ + iξ+

k+

〉
,

and Λ̃− =

〈
qζ+ + ipξ+

k+
,
nζ+ + imξ+

k+

〉
.

Because T is a k±-fold quotient of T±, the dual torus T ∗ is a k±-fold covering of T̃ ∗±, or

equivalently, a k±-fold quotient of k±T̃
∗
±. With respect to standard Euclidean metric on C ∼= R2,
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we have generators for the dual lattices, where we take ε∗+ in Z/k+ as above:

k+Λ̃∗+ =

〈
k+

ζ+
,
ik+

ξ+

〉
,

Λ∗ =

〈
k+

ζ+
,−

ε∗+
ζ+

+
i

ξ+

〉
,

and k−Λ̃∗− =

〈
−m
ζ+

+
in

ξ+
,
p

ζ+
− iq

ξ+

〉
.

The gluing data (3.12) can be read off from this description. And because the gluing angle
does not change, the K3 matching used to construct M also works for M ′. �

Alternatively, one can rotate both tori T̃± by a right angle, thus swapping the role of exterior
and interior circles. This leads to the same gluing data as above.

Remark 3.10. For the sake of completeness, let us add the following observations.

(i) Given gluing data k±, ε± and (m p
n q ) as above with gluing angle ϑ /∈ π

2 + πZ. Then we
can write valid gluing data of the form(

m′ p′

n′ q′

)
=

(
p m
−q −n

)
, k′+ = k+ , k′− = k− ,

ε′+ = −ε+ , ε′− = ε∗− , and ϑ′ = ±π
2
− ϑ .

(3.13)

One can check that this transformation together with those of Propositions 3.7 and 3.9
generates a group isomorphic to D4 n (Z/2)2 that acts on the set of valid gluing data.

However, to construct an extra-twisted connected sum, we need a K3 matching that is
compatible with the gluing angle. If both blocks have rank 1, the compatibility condition
is given by (1.14). The new gluing data above will in general not be compatible with
the K3 matching used for the original extra-twisted connected sum M . And it is not
hard to find examples in Table 2 where the new gluing angle is not compatible with any
possible K3 matching of rank 1 blocks.

(ii) Let us now consider matchings with gluing angle ϑ = ±π
2 as in Example 3.1 (i). Then

the transformation (3.13) above would lead to a gluing angle ϑ ∈ {0, π}, and hence to a
manifold with infinite fundamental group.

We also recall that k+ = k− = k, ε− = ε∗+ ∈ Z/k, and the gluing matrix takes

the form
(

0 k
k 0

)
by Example 3.1 (i). This implies that the transformation (3.12) of

Proposition 3.9 acts exactly as the composition of the three elements (3.9)–(3.11) of H.
Hence, we are reduced to an action of the group H in this special case. This is not
surprising because (3.12) mainly affects the ratio of circle lengths, which is not specified
by the gluing data if ϑ = π

2 , see the discussion before Proposition 1.8. Exploiting the
action of H, we may assume in Table 2 that p = n > 0 and that ε+ > 0.

One may note that in all our examples in Table 2 we have ε∗+ = ±ε+, so in none of
these examples the group H acts effectively.

Example 3.11. Consider the Example 1.9 (228), where numbers in parentheses refer to Table 2,
possibly up to the isometry (3.9). Applying the transformation (3.12), we get the gluing matrix(

5 10
1 −1

)
with ε+ = 1 , ε− = −1 , ν̄ = −43 (231) .

By Proposition 1.10, the corresponding extra-twisted connected sumM ′ is not simply connected.
By Proposition 3.5, its universal covering and some intermediate covering spaces have gluing
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data and ν̄-invariant(
1 1
2 −1

)
with

k+ = 3 , ε− = −1 ,
k− = 1 ,

ν̄ = −19 (21) ,(
1 2
1 −1

)
with

k+ = 3 , ε− = 1 ,
k− = 1 ,

ν̄ = −35 (23) ,(
5 5
2 −1

)
with

k+ = 3 , ε+ = 1 ,
k− = 5 , ε− = 2 ,

ν̄ = −23 (230) .

Note that the universal covering is different from the original manifold M from Example 1.9
(228). In particular, we have forgotten the Z/5-action on block 12 of Table 1, thus obtaining
block 9. The first two lines above are again related by (3.12). Applying (3.12) to the last line
gives an extra-twisted connected sum with fundamental group Z/2, whose universal cover is
the original manifold M , and which is described by(

1 2
5 −5

)
with

k+ = 3 , ε+ = −1 ,
k− = 5 , ε− = 2 ,

ν̄ = −7 (229) .

4. Hyperbolic geometry and η-forms

Because we do not have a closed formula for the function L in Theorem 2, we do not see
immediately that the right hand side of equation (0.2a) is an integer (or even rational). Here,
we will pursue a different approach to compute the integrals in Proposition 2.8. We will instead
regard the η-form of the tautological family of flat tori over the upper half plane H ⊂ C as a
primitive of the hyperbolic area form. We will then use elementary hyperbolic geometry and
an adiabatic limit formula for η-forms as in [10, 30] to complete the computation.

Throughout this section, we will assume that m ≥ 0, n, p > 0, whereas q ≤ 0. This is no
loss of generality by Remark 3.8. As a consequence, we always have ϑ ∈ (0, π2 ] and ρ ≥ 0.

4.1. Hyperbolic area and the η-form. We extend the η-form η̃(A) of (2.21) to H× (0,∞),
which we regard as the moduli space of flat tori. We then want to apply the so-called
transgression formula

dη̃(A) =

∫
E/H

Â(T (E/H))− ch(ind(AT 2)) , (4.1)

see [3, Thm 10.32], where A extends the Bismut superconnection (2.20). We will see that the

integral of the fibrewise Â-form over the fibres vanishes. The index bundle of the fibrewise
operators AT 2 consists of fibrewise parallel sections of the spinor bundle. This will allow us to
give a simple formula for its Chern character form, and hence for dη̃(A). We follow Bismut
and Cheeger [5], but consider tori of varying area.

Consider R2 ∼= C with the standard Euclidean metric. We represent flat tori T 2 by lattices
in C, for which we choose integral bases (z, w). In the gluing situation, w = 1 will correspond
to a generator of the fundamental group of the interior circle, and z will be the complementary
generator ε++s+

k+
of the fundamental group of T 2. With respect to the time parameter t = t−,

the basis (z, w) will be negatively oriented.
Because the adiabatic limit will produce degenerate lattices, we allow all pairs (z, w) ∈

C2 \ {0}. We let H ⊂ C denote the upper halfplane and H = H ∪ R ∪ {∞} its closure in CP 1.
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We write ∂∞H = H \H = R ∪∞. We get a map τ : C2 \ {0} → H by setting

τ

(
z
w

)
=


∞ if w = 0,

z/w if Im(z/w) ≥ 0, and

z̄/w̄ if Im(z/w) < 0.

The group GL(2,Z) acts on C2 \ {0} by matrix multiplication. It also acts on H by Möbius
transformations, more precisely,(

a b
c d

)
(z) =

{
az+b
cz+d if det

(
a b
c d

)
= 1 and

az̄+b
cz̄+d if det

(
a b
c d

)
= −1.

(4.2)

It is easy to check that the map τ intertwines these two GL(2,Z)-actions.
We construct a right inverse Φ : H → C2 \ {0} of τ by

Φ: z = x+ iy 7−→ 1
√
y

(
z
1

)
.

This way we obtain a tautological bundle p : E → H of flat tori with fibres p−1(z) = C/ im Φt(z)
of area 1, where we regard Φt(z) as a map Z2 → C. We fix the standard torus T 2 = R2/Z2 to
obtain a trivialisation E ∼= T 2 ×H → H of p as follows: At z = x+ iy ∈ H, we map R2/Z2

to C/ im Φt(z) by (
u
v

)
7−→ Φt(z) ·

(
u
v

)
=
zu+ v
√
y

.

Then the fibre R2/Z2 is equipped with the pullback metric

gz = Φt(z)∗g0 =
1

y

(
x2 + y2 x

x 1

)
.

We consider the diagonal GL(2,Z)-action on E ∼= T 2 ×H, with the usual action on T 2 and
the action (4.2) by Möbius transformations on H. Then GL(2,Z) acts by fibrewise isometries
with respect to the fibrewise metrics considered above.

We extend E trivially to a bundle over H × (0,∞) and let r be a coordinate on (0,∞).
Let GL(2,Z) act trivially on (0,∞). We extend the family of metrics above to gz,r = r2 gz.
Let W = R2 ×H × (0,∞)→ H× (0,∞) be the fibrewise universal covering of E, regarded
as an oriented Euclidean vector bundle with fibrewise metrics gz,r. The tangent bundle
of E = T 2 ×H× (0,∞) splits as TT 2 ⊕ TH⊕ T (0,∞), and GL(2,Z) preserves this splitting.
We use this splitting to define a GL(2,Z)-invariant connection THE = {0} ⊕ TH⊕ T (0,∞)
on p. Together with gz,r, it induces a metric connection

0∇ = d+
1

2
g−1 dg = d+

1

2y2

(
x dx+ y dy dx

(y2 − x2) dx− 2xy dy −x dx− y dy

)
+
dr

r

(
1 0
0 1

)
on W . As in [5, Prop 2.1], the vertical tangent bundle T (E/H) of E → H together with
its natural connection is just the pullback of (W, 0∇). In particular the integral of the

form Â(T (E/H)) over the fibres in (4.1) vanishes.
Because W is trivial, there is an associated spinor bundle S = S+ ⊕ S− → H × (0,∞).

Let G̃L(2,R) denote the double cover of GL(2,R) that is nontrivial over both connected

components, and let G̃L(2,Z) ⊂ G̃L(2,Z) denote the preimage of GL(2,Z). Then the induced
action on E and W lifts to S in a way that is compatible with Clifford multiplication.

Let S̃L(2,Z) denote the preimage of SL(2,Z) in G̃L(2,Z), then elements of G̃L(2,Z)\ S̃L(2,Z)
swap the bundles S+ and S−. Because the vertical tangent bundle is isomorphic to p∗W , the
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bundle p∗S becomes a fibrewise spinor bundle on E. Moreover, the kernel of the fibrewise
Dirac operator consists of fibrewise parallel spinors. Therefore, the index bundle ind(AT 2)

in (4.1) is isomorphic to S, and the L2-unitary connection ∇̃u and the connection 0∇ induce
the same connection on the index bundle.

The basis e1 =
√
y
r

(
0
1

)
, e2 = 1

r
√
y

(
1
−x
)

of R2 is oriented and gx+iy-orthonormal. In this

basis, we have

0∇ = d+
dx

2y

(
0 −1
1 0

)
and 0∇2 =

dx dy

2y2

(
0 −1
1 0

)
.

In particular, the additional coordinate r no longer appears. We can now compute

Pf

(
0∇2

2π

)
=
dx dy

4πy2
=

1

4π
dAhyp .

The data considered above suffice to define the Bismut superconnection A for the spinor
bundle S on E → H× (0,∞), which extends the superconnection A introduced in Proposi-
tion 2.8; see also (2.20). Following Bismut and Cheeger, we get an explicit expression for the
right hand side of (4.1) even if the area of the fibres is not constant.

Theorem 4.1 ([5, Thm 2.22]). The spinorial η-form of the tautological family E → H×(0,∞)
has the exterior derivative

dη̃(A) = −(−1)
rkW

2 Pf

(
0∇2

2π

)
Â−1

(
0∇2

2π

)
.

Hence, in our setting, we have

dη̃(A) =
1

4π
dAhyp . (4.3)

Note that the η-form itself might still see the additional coordinate r, but only through an
additional term of the form f(r) dr. Because we will integrate the η-form over closed contours
below, this term will not affect any of the following computations. In particular, we can from
now on ignore constant rescalings of the fibrewise metric and forget about the factor (0,∞)
entirely.

Remark 4.2. The η-form is not exact on H. This does not contradict Proposition 2.8. If we
were to leave the path in H given by the adiabatic limit construction in section 2.4, the vertical
tangent bundle of the family E± would no longer split as in the proof of Proposition 2.7, so
the local variation terms in (2.18) would no longer vanish and contribute to dν̄ as well.

4.2. Adiabatic limits and hyperbolic geodesics. We represent the isometric tori T± =
T̃±/Γ± by points in the upper halfplane H. In particular, we make use of the fact that we
may rescale all tori to area 1 without changing the contribution to the ν-invariant. When we
consider adiabatic limits of M±, the points corresponding to X±,r trace out geodesic arcs in H.
These arcs will be used to compute the sum of integrals of the η-form η̃(A) of Proposition 2.8.

We represent T = T̃+/Γ+ by the basis (1.5). In equation (2.1) we have considered families
of metrics on M±. These induce two families of metrics on T+. We write X+,a = ∂M+,a =

Σ+ × T+,a. For the second one, we consider the isomorphism T ∼= T̃−/Γ− and write X−,a =
∂M−,a = Σ− × T−,a. The map τ above represents both families by curves in H.

Lemma 4.3. Consider the families of flat tori T+,a and T−,a as above, with basis (1.5)
for a = s±.

(i) The family T+,a is represented in H by a vertical line γ+ with real part ε+
k+

. The adiabatic

limit a→ 0 corresponds to ε+
k+
∈ ∂∞H.
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ε+p−q
k+p

γ−

γ+
∂v−

ε+m−n
k+m

∂v+

∂u+

∂u−

c

2ϑ

2ϑϑ ϑ
ε+
k+

Figure 12. The hyperbolic angle between γ+ and γ−.

(ii) The family T−,a is represented in H by a hyperbolic geodesic γ− between ε+
k+
− n

k+m

and ε+
k+
− q

k+p
∈ ∂∞H. The adiabatic limit a→ 0 corresponds to ε+

k+
− n

k+m
.

(iii) The geodesics γ+ and γ− intersect at ε++is+
k+

with unoriented angle∣∣∣∣] ε++is+
k+

(
ε+

k+
,
ε+

k+
− n

k+m

)∣∣∣∣ = 2ϑ .

In the case of Example 3.1 (i), we have 2ϑ = π, so both γ− and γ+ agree with the vertical
line with real part ε+

k+
.

Proof. We write T+,a = C/Λ+,a, where the lattice Λ+,a is generated by ε++ia
k+

and 1 ∈ C, so its

complex structure is represented by the point ε++ia
k+
∈ H on the hyperbolic geodesic from ε+

k+
to ∞.

Analogously, the torus T−,a = C/Λ−,a can be represented by ε−+ia
k−

on the hyperbolic

geodesic from ε−
k−

to ∞. We now consider the matrix(
ε+p−q
k+

n−ε+m+ε−q−ε−ε+p
k−k+

p − ε−p+m
k−

)
∈ GL(2,Z) \ SL(2,Z) ,

where the integrality of the upper right corner follows from (3.4). Assertion (ii) follows because
under the action (4.2) by Möbius transformations, the matrix above maps

ε−
k−
7−→ ε+

k+
− n

k+m
, ∞ 7−→ ε+

k+
− q

k+p
, and

ε− + is−
k−

7−→ ε+ + is+

k+
.

We compute the angle in (iii) using Figure 12. We note that the hyperbolic upper half
plane is conformal to the Euclidean half plane, so we may compute the angle using Euclidean
geometry. Let c denote the Euclidean center of the circle through the points ε+

k+
− n
k+m

, ε+k+ −
q
k+p

and ε++is
k+

. The angle between the two hyperbolic geodesic arcs from ε+
k+

and ε+
k+
− n
k+m

to ε++is
k+

equals the central angle subtending the arc from ε+
k+
− n

k+m
to ε++is

k+
. It is therefore twice the

inscribed angle at ε+
k+
− q

k+p
, which we recognise as the gluing angle ϑ ∈

(
0, π2

]
as in Figure 12.

Here we have used our assumption that m, n ≥ 0. �

4.3. Some elementary hyperbolic geometry. Some elementary properties of η̃(A) are
linked to hyperbolic geometry and the group PGL(2,Z).
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Lemma 4.4. The spinorial η-form η̃(A) is PGL(2,Z)-equivariant, more precisely, for g ∈
PGL(2,Z) acting on H by Möbius transformations, we have

g∗η̃(A) = det g · η̃(A) .

Proof. The η-form is invariant under orientation preserving spin isometries. We know that
each g ∈ PGL(2,Z) has two possible lifts to GL(2,Z) that act fibrewise on E over the

given action on H. Each of these lifts has two lifts to G̃L(2,Z) that also act on the spinor
bundle S → H and therefore also on the fibrewise spinor bundle p∗S over E.

If g ∈ PSL(2,Z), all four lifts preserve the superconnection A and the subbundles S± ⊂
S → H. Therefore g∗η̃(A) = η̃(A) in this case.

If g ∈ PGL(2,Z) \ PSL(2,Z), then all four lifts of g to G̃L(2,Z) preserve the supercon-
nection A, but swap the bundles S+ and S−. This reverses the sign of the supertrace in the
definition of the η-form, so we now have g∗η̃(A) = −η̃(A). �

Remark 4.5. Each orientation reversing isometry g ∈ PGL(2,Z) \ PSL(2,Z) is a hyperbolic
glide reflection along a hyperbolic geodesic γg. If g is a reflection, then the restriction of η̃(A)
to γg vanishes. If g ∈ PGL(2,Z)\PSL(2,Z) is a reflection about γg, then hgh−1 is a reflection
about h(γg).

Elements g as above can be represented by matrices
(
a b
c d

)
∈ GL(2,Z) \ SL(2,Z) as in (4.2).

They represent reflections if and only if the trace a+d vanishes. The line of reflection is vertical
if and only if c = 0, so the corresponding reflections in PSL(2,Z) are of the form

(−1 k
0 1

)
, and

the fixed line has real part k
2 .

More generally, quotients of the standard rectangular lattice by a Z/kZ-action are represented
by points with real part in 1

kZ. The following Lemma helps us to recognise images of the
geodesics associated with their adiabatic limits.

Lemma 4.6. For any e
f ∈ Q, there exists τ ∈ PSL(2,Z) such that τ( ef ) =∞.

If e
f 6=

g
h ∈ Q are represented by reduced fractions and k := eh − fg > 0, then τ( gh) ≡ ε

k

mod Z, where ε is the unique elements of (Z/k)× such that g− εe and h− εf are both divisible
by k.

Proof. The first assertion is clear. For matrices
( e g
f h

)
where the entries in each column are

coprime, the determinant k and the ε ∈ (Z/k)× such that (g, h)− ε(e, f) is divisible by k are
clearly invariant under the action of SL(2,Z). Hence if τ(e, f) = (1, 0) then τ(g, h) = (ε, k). �

Corollary 4.7. The geodesic between two reduced fractions e
f and g

h ∈ Q in H is fixed by a

reflection in PGL(2,Z) if and only if eh− fg ∈ {±1,±2}.

4.4. The contribution from the cusps. Thanks to Theorem 4.1, we can in principle
evaluate integrals of η-forms over closed contours using hyperbolic area formulas. However, we
have to choose contours that touch the infinite boundary ∂∞H = R ∪ {∞} because in (2.10),
we consider adiabatic limits of tori. Moreover, Remark 4.5 and Corollary 4.7 only give a rather
limited supply of geodesics on which the η-form η̃(A) vanishes, and these connect rational
points on the boundary ∂∞H. In this section, we therefore compute the limit of the integral of
the η-form over certain horocyclic arcs.

Adiabatic limit formulas for η-forms have been proved by Bunke, Ma [10] and Liu [30].
However, their results typically hold only up to exact forms. Here, we have to integrate the
η-form over an interval, so we need an adiabatic limit formula that holds “on the nose”. We
will prove such a formula in Section 6.2, but only for the simple special case at hand.
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Recall that cusps are fixed by orientation preserving parabolic elements of PSL(2,Z). They
can be represented by matrices

(
a b
c d

)
∈ SL(2,Z) of trace a+ d = 2. It follows that the set of

cusp points is exactly Q ∪ {∞} ⊂ ∂∞H.
We want to define a distance between two hyperbolic geodesics ending in a cusp point e

f .

To move e
f to ∞ = 1

0 , assume that the fraction e
f is reduced and find a and b ∈ Z such that

ae+ bf = 1 . (4.4)

Then
(
a b
−f e

)
∈ SL(2,Z), and the Möbius transformation z 7→ az+b

−fz+e rotates the cusp e
f into∞.

Now consider hyperbolic geodesics starting at x, y ∈ R ∪ {∞} and ending in e
f . They get

rotated by the matrix above to vertical lines with real parts ax+b
−fx+e and ay+b

−fy+e . Because of (4.4),

the difference is
ax+ b

−fx+ e
− ay + b

−fy + e
=

x− y
(fy − e)(fx− e)

.

Definition 4.8. The cusp angle between two hyperbolic geodesics going from x, y ∈ R∪{∞} =
∂∞H to a cusp point represented by a reduced fraction e

f ∈ Q ∪ {∞}, with x 6= e
f 6= y, is

defined as

] e
f
(x, y) =

x− y
(fx− e)(fy − e)

∈ R

if x, y ∈ R, and by the obvious extension of this formula if one of the points is ∞.

Note that ] e
f

(x, y) is a geometric notion for the covering map H → H/SL(2,Z). If measures

how often a line joining the two geodesics above in the universal covering space H winds
around the cusp in H/SL(2,Z). The sign is chosen such that oriented ideal triangles have
positive cusp angles.

Proposition 4.9. Let e
f ∈ Q ∪ {∞} ⊂ ∂∞H be a cusp point, and let x, y ∈ ∂∞H. Assume

that αr is a family of horocyclic arcs centered at e
f from the geodesic from e

f to x to the geodesic

from e
f to y that converges to e

f as r →∞. Then

lim
r→∞

∫
αr

η̃(A) =
]e/f (x, y)

12
.

Proof. By the considerations above, we can rotate the cusp point e
f to ∞. Hence we consider

the horocycle x 7→ x+ iy for large fixed y and prove that

lim
y→∞

η̃(A)|R+iy = −dx
12

. (4.5)

Because η-forms are scale invariant, we can for the moment discard the Bismut-Cheeger
convention that all tori have area 1. We choose fibrewise metrics induced by

g̃x+iy =

(
x2 + y2 x

x 1

)
We consider a family of fibered manifolds

S1
1 −−−−→ Ex+iy −−−−→ Ey y

S1
y −−−−→ Fy

R 3 x .

(4.6)
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0 1

Ex+iy

x+ iy

0

S1
y

y

Figure 13. The torus Ex+iy as a bundle.

Here, the interior circles form the fibres of Ex+iy of length 1, and the base can be identified with

the exterior circles in T̃+. In particular, the orientation of Ex+iy agrees with the one in [10, 30].
The metric on Ex+iy defines a connection THEx+iy on Ex+iy → S1

y with holonomy −x ∈ R/Z.

In Figure 13, elements of THEx+iy correspond to vertical vectors. The dashed line is horizontal
with respect to THEx+iy.

Let L→ F denote a Hermitian line bundle with a fibrewise flat connection that contains E →
F as a circle bundle. Then over Fx ∼= S1

y , the bundle L has holonomy e−2πix. The bundle

carries a Hermitian connection ∇L that we can describe as

∇L = d+
2πix

y
dϕ

in a trivialisation over a neighbourhood of Fx in F . Here, ϕ is a coordinate on S1
y
∼= R/yZ.

We compute curvature and first Chern form of (L,∇L) on F as

(∇L)2 =
2πi

y
dx dϕ and c1(∇L) = −1

y
dx dϕ .

By Proposition 4.11 below, we have

lim
y→∞

η̃(A)|R+iy =

∫
F/R

η̃(A′) , (4.7)

where now A′ is the superconnection of the fibrewise spinor bundle over the circle bundle E → F .
The corresponding η-form of E → F has been computed by Zhang in [37, Thm 1.7]; see
also [21, Rem 3.5]. Here, it only has a component of degree 2, given by

η̃(A′) =
1

12
c1

(
∇L
)

= − 1

12y
dx dϕ .

Integration over the fibre of F → R of length y proves (4.5). �

Example 4.10. Consider the ideal triangle ∆ with corners 0, 1 and ∞ ∈ ∂∞H. By Remark 4.5,
the form η̃(A) vanishes on its sides. The cusp angles are ]0(∞, 1) = ]1(0,∞) = ]∞(1, 0) = 1.
Let ∆r denote truncations of ∆ by horocyclic arcs centered at the corners that converge to
the full triangle ∆ as r →∞; see Figure 14. Then by Theorem 4.1 and Proposition 4.9, we
check that

lim
r→∞

∫
∂∆r

η̃(A) =
]0(∞, 1) + ]1(0,∞) + ]∞(1, 0)

12
=

1

4
=
Ahyp(∆)

4π
=

∫
∆
dη̃(A) .
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0 1

∆r

Figure 14. An ideal triangle, truncated by horocyclic arcs.

The following Proposition is inspired by a result [10, Thm 5.11] of Bunke and Ma; see also
Liu in [30, Thm 1.3], where the following equality is proved up to exact forms. Moreover, Liu
assumes that the fibrewise Dirac operator of the fibration F → R is invertible [30, Ass 3.1],
which is not the case here.

Proposition 4.11. In the situation above, let A′ denote the superconnection associated with
the fibrewise spin Dirac operator on the bundle E → F . Then

lim
y→∞

η̃(A)|R+iy =

∫
F/R

η̃(A′) .

We postpone the proof to Section 6.2.

4.5. Continued Fractions and Hyperbolic Polygons. We can finally compute the varia-
tion of the ν̄(M±,r) in the adiabatic limit r → 0. We use the results of the last sections and
elementary hyperbolic geometry.

Let M± = M̃±/Γ± be Z/k±-blocks with boundary X± ∼= Σ± × T± and T± = T̃±/Γ± as
before. Define ε+, s± as in Section 1.3, and let γ± be the hyperbolic geodesics of Lemma 4.3.
For simplicity, we assume n > 0 and m ≥ 0. To evaluate the variational formula (2.19) for M+,

we integrate η̃(A) along the vertical line γ+ from ε+
k+

to ε++is+
k+

. For M−, we note that the

orientation of the boundary was reversed during gluing. Hence, we integrate η̃(A) along the

geodesic ray γ− from ε++is
k+

to ε+
k+
− n

k+m
∈ ∂∞H. Note that this last point is ∞ in case m = 0

and ϑ = π
2 .

We will now complete the two geodesic rays above to an ideal hyperbolic polygon P with

one finite corner ε++is+
k+

and further corners represented by reduced fractions ε+
k+
− n

k+m
= a0

b0
,

. . . , a`
b`

= ε+
k+
∈ Q ∪ {∞} ⊂ ∂∞H such that ajbj−1 − bjaj−1 = 1 for j = 1, . . . , `. Then η̃(A)

vanishes along the geodesics joining
aj−1

bj−1
and

aj
bj

by Lemma 4.4 and Corollary 4.7.

It turns out to be easier to construct the image P ′ of P under C, where C =
(

ε∗+ −r
−k+ ε+

)
∈

SL(2,Z) act as a Möbius transformation, with ε+ε
∗
+ = k+r + 1. Because the η-form η̃(A), the

hyperbolic area and the cusp angle are SL(2,Z)-invariant, all computations can be performed
on P ′. We note that

C
(ε+

k+

)
=∞ , C

(ε+m− n
k+m

)
=
m− ε∗+n
k+n

, and C
(ε+p− q

k+p

)
=
p− ε∗+q
k+q

. (4.8)
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ε+p−q
k+p

ε++is+
k+

a0
b0

a`
b`

P C

p−ε∗+q
k+q

is−1
+ −ε∗+
k+

−
ε∗+
k+

a′0
b′0

a′`−1

b′`−1

P ′

Figure 15. The hyperbolic polygons P and P ′

We follow Zagier’s suggestion and use continued fractions. We let a′0 =
m−ε∗+n
k+

, b′0 = n ∈ Z

and represent
a′0
b′0

as a continued fraction with minus signs,

a′0
b′0

=
m− ε∗+n
k+n

= c1 −
1

c2 − · · · 1
c`

.

This way, we obtain a sequence of integers c1, . . . , c` with c2, . . . , c` ≥ 2 and reduced fractions

a′0
b′0

<
a′1
b′1

= c1 −
1

c2 − · · · 1
c`−1

< · · · <
a′`−1

b′`−1

=
c1

1
and

a′`
b′`

=
1

0
.

As explained in [36, §V], the numbers a′j , b
′
j and cj are related by the formula(

a′j −a′j+1

b′j −b′j+1

)
=

(
c1 −1
1 0

)
· · ·
(
c`−j −1

1 0

)
∈ SL(2Z) (4.9)

for j = 0, . . . , `− 1, which also shows that a′j+1b
′
j − a′jb′j+1 = 1.

Remark 4.12. For later use, we note that

(i) because a′1b
′
0 − a′0b′1 = 1, the number −b′1 is inverse to a′0 =

m−ε∗+n
k+

modulo b′0 = n,

(ii) because − q+ε∗−n

k−
is also inverse to a′0 by equation (3.6), we have

b′1 ≡
q + ε∗−n

k−
mod n .

Let
aj
bj

denote the preimage of
a′j
b′j

under the Möbius transformation C for 0 < j < `, the

cases j = 0, ` being settled by (4.8). Then ajbj−1 − aj−1bj = 1. The finite corner at ε++is+
k+

gets mapped to
is−1

+ −ε∗+
k+

. Thus we have completed the construction of P and P ′; see Figure 15.

From (4.9), we see that
(
a′j
b′j

)
= Cj

( c`−j
1

)
,
(
a′j+1

b′j+1

)
= Cj ( 1

0 ) and
(
a′j+2

b′j+2

)
= Cj

(
0
−1

)
,

with Cj =
(
a′j+1 −a′j+2

b′j+1 −b′j+2

)
∈ SL(2,Z) . Because cusp angles are SL(2,Z)-invariant, we can now
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compute the cusp angles of P . For j = 0, . . . , `− 2, we obtain

]aj+1

bj+1

(
aj
bj
,
aj+2

bj+2

)
= ]a′j+1

b′j+1

(
a′j
b′j
,
a′j+2

b′j+2

)
= ]∞(c`−j , 0) = c`−j , (4.10a)

]a0
b0

(
ε+ + is+

k+
,
a1

b1

)
= ]a′0

b′0

(
p− ε∗+q
k+p

,∞
)

+ ]a′0
b′0

(
∞, a

′
1

b′1

)
=
−q
k−n

+
b′1
b′0
, (4.10b)

]a`
b`

(
a`−1

b`−1
,
ε+ + is+

k+

)
= ]∞

(
c1,−

ε∗+
k+

)
= c1 +

ε∗+
k+

. (4.10c)

For (4.10b), we have used Lemma 4.3 (ii) and equation (4.8).

4.6. Evaluation of the η-Form Integrals. With all preliminaries understood, we can now
prove Theorem 3. We start by integrating the η-form from Proposition 2.8 along the geodesic
rays γ+ and γ−.

Theorem 4.13. Assume that m ≥ 0, n > 0. Then we have

ν̄(M+,s+) + ν̄(M−,s−)− lim
r→0

(
ν̄(M+,r) + ν̄(M−,r)

)
= 72

ρ

π
+ 24

(
q

k−n
− m

k+n
+ 12S

(m− ε∗+n
k+

, n
))

. (4.11)

It will follow from the proof below that the first three terms on the right hand side stem
from the area of the triangle spanned by γ+ and γ−. The Dedekind sum comes from the
polygon we get by omitting the finite corner. Both areas are separated by the blue geodesic in
Figure 15.

Proof. By Propositions 2.8, 4.9 and the discussion at the beginning of subsection 4.5, we have

ν̄(M+,s+) + ν̄(M−,s−)− lim
r→0

(
ν̄(M+,r) + ν̄(M−,r)

)
= 288

∫
γ+∪γ−

η̃(A) = 288

∫
P
dη̃(A)

− 24]a0
b0

(
ε+ + is+

k+
,
a1

b1

)
− 24]a`

b`

(
a`−1

b`−1
,
ε+ + is+

k+

)
− 24

`−2∑
j=0

]aj+1

bj+1

(
aj
bj
,
aj+2

bj+2

)
. (4.12)

From (4.3), Lemma 4.3 (iii) and the hyperbolic area formula, we get

288

∫
P
dη̃(A) =

72

π
Ahyp(P ) = 72 `− 144

ϑ

π
= 72 (`− 1) + 72

ρ

π
. (4.13)

From Definition 4.8 and equations (4.10), we get

]a0
b0

(
ε+ + is+

k+
,
a1

b1

)
+ ]a`

b`

(
a`−1

b`−1
,
ε+ + is+

k+

)
+

`−2∑
j=0

]aj+1

bj+1

(
aj
bj
,
aj+2

bj+2

)

=

(
−q
k−n

+
b′1
b′0

)
+

(
ε∗+
k+

+ c1

)
+
∑̀
j=2

cj . (4.14)

This number can be interpreted along the lines of [36, §V]. The product of the matrices on
the right hand side of (4.9) for j = 0 is given by

A =

(
c1 −1
1 0

)
· · ·
(
c` −1
1 0

)
=

(
a′0 −a′1
b′0 −b′1

)
.
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Now it follows from a′0 =
m−ε∗+n
k+

, b′0 = n and [36, equations (6), (25), (26)] that

(
−q
k−n

+
b′1
b′0

)
+

(
ε∗+
k+

+ c1

)
+
∑̀
j=2

cj

=
−q
k−n

+
b′1
b′0

+
ε∗+
k+

+ 3(`− 1) +N(A)

=
−q
k−n

+
b′1
b′0

+
ε∗+
k+

+ 3(`− 1) +
m− ε∗+n
k+n

− b′1
b′0
− 12S(−b′1, b′0)

= 3(`− 1) +
m

k+n
− q

k−n
− 12S(−b′1, n) ,

(4.15)

where the Dedekind sum S(−b′1, n) is defined in (0.3), and N : SL(2,Z) → Z is introduced
in (A.1), see also [36, (3)].

The Dedekind sum S(k, n) is odd and n-periodic in k, and it does not change if k is replaced
by its inverse modulo n. Our claim (4.11) follows from Remark 4.12 (i) and (4.12)–(4.15). �

Proof of Theorem 3. We may assume that n > 0. If m ≥ 0, the theorem follows from The-
orems 2.1, 2.4 and 4.13. If m < 0, we additionally use Proposition 3.7, combining (3.10)
and (3.11) to reduce to the case m > 0, n > 0. �

Remark 4.14. The formula in Theorem 3 is indeed symmetric in the two halves of the twisted
connected sum. Swapping the two halves amounts to exchanging m and −q, and ε± and k±; see

Proposition 3.7, in particular (3.9). By equation (3.6), the number
m−ε∗+n
k+

is inverse to − q+ε∗−n

k−
modulo n, so the Dedekind sum above is the same in both cases.

Remark 4.15. We can evaluate 3n(P ) − `(P ) mod Z in a slightly different way. By Re-

mark 4.12 (ii), we have −q
k−n

+
b′1
b′0
≡ ε∗−

k−
mod Z, so instead of (4.15), we get(

−q
k−n

+
b′1
b′0

)
+

(
ε∗+
k+

+ c1

)
+
∑̀
j=2

cj ≡
ε∗+
k+

+
ε∗−
k−

mod Z .

Following the proofs of Theorems 4.13 and 3 above, we see that

ν(M, g) ≡ Dγ+(V+) +Dγ−(V−) + 3mρ(L;N+, N−)− 24

(
ε∗+
k+

+
ε∗−
k−

)
mod 24Z . (4.16)

The terms ε±
k±

and Dγ±(V±) depend on the Γ±-action on M̃± only, and one can check that

in all our examples

Dγ±(V±)− 24
ε∗±
k±
∈ Z , (4.17)

as one would expect from the formula above. In particular for k± = 5, we only found examples
where the Γ±-action on V± has isolated fixpoints, and (4.17) holds for all choices of ε±.

Example 4.16. Let us illustrate the remark above using our standard example. We start with
the Z/5-block from Example 5.10, whose fixpoint contribution was computed in Example 2.6.
We check that modulo 24,

24

5ε
− 24

ε∗

5
≡

{
0 if ε ≡ ±1, and

12 if ε ≡ ±2.
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The Z/3-block from Example 5.5 has no isolated fixpoints, so the contribution to ν mod 24
is simply −24 ε

∗

3 = −8ε. Together with mρ(L;N+, N−) = −1 from Example 2.2, we find
that ν(M) ≡ −11 mod 24, which confirms our computations in Example 2.15.

Remark 4.17. One can check that we recover the formula for ν̄(M) in [14] in the case where k+,
k− ∈ {1, 2}. Involutive isomorphisms of Calabi-Yau manifolds cannot have isolated fixpoints;
see Section 2.3, so the first two terms on the right side of (0.4) vanish.

We start with a rectangular twisted connected sum as in [28, 13], so k+ = k− = 1.
Because m = q = 0 = ρ = A, we have ν̄(M) = 0 by (0.4).

Next, consider examples with k− = 1, k+ = 2 and gluing matrix
(

1 1
1 −1

)
, so ϑ = π

4 . By (0.4),
we get

ν̄(M) = −3 + 24

(
−1− 1

2
+ 12S(0, 1)

)
= −39 ,

see entries 1–18 in Table 2.
In [14], we only consider simply connected examples with k− = k+ = 2, so either (m p

n q ) =(
1 1
3 −1

)
and ϑ = π

3 , or
(−1 1

1 3

)
and ϑ = π

6 . In the first case,

ν̄(M) = −3 + 24

(
−1

6
− 1

6
+ 12S(−1, 3)

)
= −27 ,

see entries 105, 113, 120–123, 135, 142, 146 in Table 2. In the second case,

ν̄(M) = −3 + 24

(
−3

2
− 1

2
+ 12S(0, 1)

)
= −51 ,

see entries 110, 111, 138, 139 in Table 2.

5. Examples

In this section, we generate examples of extra-twisted connected sums and compute their
ν̄-invariants. To do this we will define some building blocks whose polarising lattice has rank 1.
We will also describe the topology of those blocks, and compute some parts of the topology of
the resulting extra-twisted connected sums.

5.1. The cohomology of an extra-twisted connected sum. We have previously ex-
plained how to compute the fundamental group of an extra-twisted connected sum M from
the gluing matrix, in Proposition 1.10. We now compute some other basic topological features.
In particular we show that all our examples have H2(M) = 0 (so those that have π1M = 0
are in fact 2-connected), and give a formula (5.2) for b3(M).

Remark 5.1. The most important topological properties that we do not compute are the
torsion in H4(M), and the Pontryagin class p1(M) ∈ H4(M). In general, the torsion in H4(M)
can have contributions both from the action of Γ± on the two halves, as well as from the gluing.
In [31], attention was focussed on blocks with involution such that the former contribution
vanishes, and on certain matchings (namely ones with gluing matrix

(
1 1
1 −1

)
or
(

1 1
1 −3

)
) where

the torsion in H4(M) can then be determined in a simple way from the configuration N+ +N−.
We do not attempt here to generalise those arguments.

Topology of V±. Let us first recall from [12, §5] some relevant facts about the topology of
the ACyl Calabi-Yau manifold V := Z \ Σ constructed from a building block (Z,Σ), and
make some observations about the action on cohomology of an automorphism group Γ. Let us
assume that the kernel of the restriction map H2(Z)→ H2(Σ) is generated by [Σ]. Note that
this implies that the action of Γ on H2(Z) is trivial.
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We identify Σ ⊂ Z with a standard K3 surface and denote the image of H2(Z) in L = H2(Σ)
by N . Then N ⊂ L is primitive, but typically not unimodular. Let T = N⊥ ⊂ L, and let N∗

be the dual of N , such that we have a short exact sequence

0 −→ T −→ L −→ N∗ −→ 0 .

By [12, Lemma 5.2], Z and V are simply connected. Using excision and suspension, we have

Hk(Z, V ) ∼= Hk(Σ×D2,Σ× S1) ∼= Hk−2(Σ) .

The long exact sequence of the pair (Z, V ) becomes

· · · −→ Hk−2(Σ)
ι!−→ Hk(Z)

j∗−→ Hk(V )
δ−→ Hk−1(Σ) −→ · · · . (5.1)

According to [12, Lemma 5.4], we have H1(V ) = 0 = H5(V ), and the exact sequence (5.1)
gives rise to split short exact sequences

0 −→ Z −→ H2(Z) −→ H2(V ) −→ 0 ,

0 −→ H3(Z) −→ H3(V ) −→ T −→ 0 ,

0 −→ N∗ −→ H4(Z) −→ H4(V ) −→ 0 .

It follows that H•(V ) is torsion free if H•(Z) is torsion free. The inclusion Z ↪→ H2(Z) maps 1
to the cohomology class ι!1 induced by ι : Σ→ Z. It is easy to see that the sequences above
are Γ-equivariant. In particular, Γ acts trivially on H2(V ), while the Γ-invariant part of H3(V )
is the direct sum of T and H3(Z)Γ.

The map δ in (5.1) involves restriction to Σ× S1
ζ followed by integration over S1

ζ . Write

Hk(Σ× S1
ζ ) = Hk(Σ)⊕Hk−1(Σ)u ,

where u ∈ H1(S1
ζ ) is the generator. The restriction map ι∗ : H•(V )→ H•(Σ×S1

ζ ) is described

in [12, Cor 5.5]. We have in particular that H2(V ) maps isomorphically to N ⊂ H2(Σ), while
the image of H3(V ) is Tu ⊂ H2(Σ)u.

Topology of M±. We may regard M± = (V±×S1
ξ±

)/Γ± as the mapping torus of a generator γ0 ∈
Γ± ∼= Z/k±. Generalising the discussion of blocks with involution from [31, §2.2], we can use
excision and the Thom isomorphism to see that

H•(M±, V±) ∼= H•−1(V±) .

From the long exact sequence of the pair (M±, V±), we get

· · · −→ H`−1(V±) −→ H`(M±)
ι∗V−→ H`(V±)

γ∗0−id
−→ H`(V±) −→ · · · ,

where ιV : V± →M± is the inclusion of V as fibre of the obvious projection M± → S1
ξ±/k±

.

Since H1(V ) = 0 while H2(V ) is Γ-invariant, it is immediate that H2(M±) ∼= H2(V±). Since
H3(V±)Γ is torsion-free, we also have a splitting H3(M±) ∼= H2(V±)⊕H3(V±)Γ, and H3(M±)
is torsion-free too. While the splitting is not natural with Z coefficients, it is natural with Q
coefficients.

We can treat the cross-section Σ× T 2 similarly. Now H2(Σ× T 2) = H2(Σ)⊕H2(T 2), and
H2(M±)→ H2(Σ× T 2) maps isomorphically to N±.

Meanwhile, the pull-back H1(T 2)→ H1(S1
ξ×S1

ζ ) of the quotient map is injective (with image

of index k±). We abuse notation slightly to use u±,v± to denote not only the generators of
H1(S1

ζ±
×S1

ξ±
) obtained by pulling back the generators of the two factors, but also their unique

pre-images in H1(T 2;Q). (In terms of de Rham cohomology, these classes are represented by
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the 1-forms 1
ζ+
du+ and 1

ξ±
dv±.) Switching to rational coefficients, we then have the splitting

H3(Σ× T 2;Q) = H2(Σ;Q)u± ⊕H2(Σ;Q)v±. In the splitting

H3(M±;Q) = H2(V±)v± ⊕H3(V±;Q)Γ,

the first term has image exactly N±v±, the second term has image exactly T±u±, and the
kernel of H3(M±;Q)→ H3(Σ× T 2;Q) is the H3(Z±;Q)Γ component in H3(V±;Q)Γ.

The topology of M . Generalising the discussion from [31, §7.1] of extra-twisted connected
sums that involve only involutions, we can now apply the Mayer-Vietoris sequence to compute
some basic features of the topology of an extra-twisted connected sum.

Proposition 5.2. Let M be an extra-twisted connected sum of building blocks (Z,Σ) such that
H2(Z) → H2(Σ) is generated by [Σ], with configuration of polarising lattices N+, N− ↪→ L.
Let ρ± be the ranks of the polarising lattices (so ρ± = b2(Z±)− 1). If cosϑ 6= 0 let dϑ be the

rank of Nϑ
+
∼= Nϑ

− defined in §1.4, otherwise let dϑ = rkN
π
2

+ + rkN
π
2
− .

(i) The free part of H2(M) is isomorphic to N+ ∩N− ⊂ L,
(ii) The torsion in H3(M) is isomorphic to the cotorsion of N+ +N− in L.
(iii) b3(M) = b2(M) + 23− ρ+ − ρ− + dϑ + b3(Z+)Γ+ + b3(Z−)Γ−.

The examples considered in this paper use configurations where N+ is transverse to N−, and
N+ +N− is embedded primitively in L. Thus the proposition implies that our examples have
H2(M) = 0, and those examples that are simply-connected are in fact 2-connected. Moreover,
all our examples have ρ+ = ρ− = 1, and hence rkNϑ

+ = rkNϑ
− = 1. Thus if ϑ /∈ π

2 Z we have
dϑ = 1 and

b3(M) = 22 + bΓ3 (Z+) + bΓ3 (Z−) , (5.2)

while if ϑ ∈ π
2 Z \ πZ then dϑ = 2 and

b3(M) = 23 + bΓ3 (Z+) + bΓ3 (Z−) . (5.3)

Proof. We have a Mayer-Vietoris sequence

· · · −→ Hk(M) −→ Hk(M+)⊕Hk(M−) −→ Hk(Σ× T 2) −→ Hk+1(M) −→ · · · .
The image of H1(M+) ⊕H1(M−) in H1(Σ × T 2) has finite index, and indeed it is dual to
the fundamental group computed in Proposition 1.10. Since H2(M±) maps isomorphically to
N± ⊂ H2(Σ×T 2), the image of H2(M) in H2(M+)⊕H2(M−) is isomorphic to N+ ∩N− ⊂ L
(as determined by the configuration).

For H3(M) we get a short exact sequence

0 −→ L/(N+ +N−)⊕ Z −→ H3(M) −→ ker
(
H3(M+)⊕H3(M−)→ H3(Σ× T 2)

)
−→ 0

Since the last term is torsion-free, the sequence splits, and the torsion of H3(M) equals the
torsion of L/(N+ +N−).

Finally we want to determine b3(M). The contribution from L/(N+ + N−) ⊕ Z equals
23− ρ+ − ρ− + b2(M). The other term we describe as the sum of the kernels of H3(M±)→
H3(Σ × T 2), which by the above have rank b3(Z±)Γ, and the intersection of the images in
H3(Σ× T 2). Points in the intersection of the images are those that can be written as both
n+v+ + t+u+ and n−v− + t−u−, with n± ∈ N± and t± ∈ T±. Now, the gluing identifies the
tori in such a way that

ξ+v+ = cosϑ ξ−v− + sinϑ ζ−u−, ζ+u+ = sinϑ ξ−v− − cosϑ ζ−u− .

If cosϑ 6= 0 then n+ and n− determine each other, because the orthogonal projection of 1
ζ−
n−

to N+ must be cosϑ
ζ+

n+ and vice versa. Thus, in the notation of §1.4, in fact n± ∈ Nϑ
±, so the
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intersection of the images is isomorphic to Nϑ
+
∼= Nϑ

−. On the other hand, if cosϑ = 0 then we

can simply take each n± freely in N
π
2
± (i.e. in the orthogonal complement to N∓ in N±).

Either way, the contribution to b3(M) of the intersection of the images in H3(Σ× T 2) is
what we denoted as dϑ. Adding that to the other contributions proves (iii). �

5.2. Examples of building blocks. We now give examples of building blocks. For simplicity,
we restrict attention to blocks whose polarising lattice N has rank 1. We list the relevant data
for the examples in Table 1.

Each family of blocks Z is obtained by blowing up Fano 3-folds Y of Picard rank 1.
We list the index r of Y , the anticanonical degree −K3

Y , the norm-square of the generator
of the Picard lattice N of Y (which is isometric to the polarising lattice of Z), the third
Betti number b3(Y ), and the result of evaluating c2(Z) on the pull-back H ∈ H2(Z) of the
generator −1

rKY ∈ H2(Y ) (the latter number is needed to compute the Pontryagin class of
the extra-twisted connected sums built from the block, although we do not do that in this
paper).

Recall that the Picard lattice of a Fano 3-fold Y is H2(Y ) equipped with the bilinear form
(A,B) 7→ A.B.(−KY ). For rank 1 Fanos, the norm-square of the generator −1

rKY is thus

simply computed as 1
r2

(−KY )3.

Example 5.3. If we ignore the desire for automorphisms, then we can simply take the list of
rank 1 blocks from [12, Table 1]. These are obtained by blowing up a Fano 3-fold Y of Picard
rank 1 along the transverse intersection C of two smooth anticanonical divisors. As explained
in [12, §5.2], the resulting building block Z has b3(Z) = b3(Y ) + b1(C) = b3(Y ) + (−KY )3 + 2.

For the final piece of data we wish to include in Table 1, [18, (4.4)] gives c2(Z)H =
24−K3

Y
r .

All other examples we consider will in fact be subfamilies of the families from Example 5.3
that admit automorphisms. For each suitable automorphism that we have found on some
elements of the family, we list in Table 1 its order k and the rank bΓ3 (Z) of the invariant part
of H3(Z) (so the number against k = 1 is b3(Z)), and the number of isolated fixed points
(among all elements of Γ). The formula (5.2) for the third Betti number of an extra-twisted
connected sum involves bΓ3 (Z), while the computation of the ν̄-invariant in Theorem 2.4 relies
on some further details about the fixed points that is not included in the table, but only in
the descriptions of the individual examples.

The pattern is that we consider special elements Y of the given family of Fano 3-folds that
admit a group of automorphisms Γ, whose fixed set is a union of a K3 divisor Σ and (possibly)
some isolated fixed points. After blowing up a curve C ⊂ Σ like in Example 5.3, one obtains a
building block Z with automorphisms whose fixed sets are the proper transforms of the union

of the fixed set of the corresponding automorphism on Y and a copy C̃ ⊂ V ⊂ Z of C; it is a
section of the exceptional set, which is a trivial P1-bundle over C.

In all but one of our examples (Example 5.9), the fixed set Zγ is the same for all non-identity
elements γ ∈ Γ. Because the cohomology of Z is Γ-invariant except in degree 3 (so that e.g.
b2(Z/Γ) = b2(Z) = 2) we can in those cases easily compute bΓ3 (Z) from

χ(Z/Γ) =
1

k
χ(Z) +

k − 1

k
χ(Zγ).

Example 5.4. Blocks with involutions were already considered in [31]. In some sense, the
simplest way to obtain examples is to start from a Fano 3-fold X with even anti-canonical
class −KX (i.e. P3 or a del Pezzo 3-fold), and consider a double cover Y of X branched
over an anticanonical divisor; see [31, Example 3.22]. Blowing up the double cover Y along a
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Y r −K3
Y N b3(Y ) c2(Z)H Ex k bΓ3 (Z) #fix

1 P3 4 64 4 0 22 5.3 1 66
2 Q 3 54 6 0 26 5.3 1 56
3 V1 2 8 2 42 16 5.3 1 52
4 V2 2 16 4 20 20 5.3 1 38
5 5.4 2 18
6 V3 2 24 6 10 24 5.3 1 36
7 V4 2 32 8 4 28 5.3 1 38
8 V5 2 40 10 0 32 5.3 1 42
9 1 2 2 104 26 5.3 1 108

10 5.4 2 46
11 5.9 3 24 2
12 5.10 5 8 1
13 5.9 6 4 2
14 1 4 4 60 28 5.3 1 66
15 5.4 2 26
16 5.8 3 12 1
17 5.6 4 6
18 1 6 6 40 30 5.3 1 48
19 5.4 2 18
20 5.5 3 8
21 1 8 8 28 32 5.3 1 38
22 5.4 2 14
23 1 10 10 20 34 5.3 1 32
24 5.4 2 12
25 1 12 12 14 36 5.3 1 28
26 1 14 14 10 38 5.3 1 26
27 1 16 16 6 40 5.3 1 24
28 1 18 18 4 42 5.3 1 24
29 1 22 22 0 46 5.3 1 24

Table 1. Rank 1 building blocks

transverse intersection C of the ramification divisor and another anticanonical divisor yields a
block Z with involution.

Similarly to Example 5.4, we could take X to be one of the two Fano 3-folds with index
r > 2. Then the r-fold branched cover Y of X branched over an anticanonical divisor can be
blown up along the intersection of the ramification locus with another anticanonical divisor of
Y to give a building block Z with an automorphism of order r.

Example 5.5. For X = Q ⊂ P4 the quadric 3-fold (which has r = 3), Y is isomorphic to
a complete intersection of a quadric and a cubic in P5 of the forms X2

1 + · · · + X2
5 and

X3
0 + F (X1, . . . , X5), and the branch switching automorphisms correspond to multiplying

the homogeneous coordinate X0 by cube roots of unity. The fixed set is the anticanonical
divisor {X0 = 0}, which is smooth for a generic F . Blowing up a transverse intersection C
with another anticanonical divisor yields a block Z with an automorphism group of order 3
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(number 20 in Table 1); these building blocks are then special elements of the family 18 in the
table obtained in Example 5.3.

If we let τ ∈ Γ be the generator that multiplies X0 by ζ−1 = e−
2πi
3 , then the fixed set Zτ ⊂ Z

consists of the proper transform Σ of the ramification locus and a section C̃ of the exceptional
set. Clearly τ acts on the normal bundle of Σ as multiplication by ζ−1.

Example 5.6. For X = P3 (which has r = 4), Y is isomorphic to a quartic in P4 with defining
equation of the form X4

0 + F (X1, X2, X3, X4), giving entry 17 in Table 1. These are special
elements of the family 14 of blocks obtained in Example 5.3.

Further, we can of course also consider this as a family of blocks with involution; then we
recover a subfamily of family 15, which already came up in Example 5.4.

Before producing some examples with isolated fixpoints, let us recall that we need to find a

generator τ of Γ that acts on the normal bundle νΣ by ζ−1 = e−
2πi
k . Then by Remark 2.5, the

contribution of the fixpoint set to the extended ν-invariant is given by Dτε(Z) with ε as in
equation (1.5), where for brevity, we write Dγ(Z) instead of Dγ(V ) as in Definition 2.3.

Remark 5.7. While the action of Γ on the normal bundle of the fixed curve C̃ does not affect
the ν̄-invariant by Theorem 2.4, it is easy to describe in a uniform way in all our examples.

The exceptional divisor E in Z is biholomorphic to C×P1. We can choose the identification
so that C × {(1 : 0)} is the intersection E ∩ Σ, while C × {(0 : 1)} is the 1-dimensional

component C̃ of the fixed set of Γ in Z. The action of τ ∈ Γ on E is trivial on the C factor,
and can be identified with (Y0 : Y1) 7→ (ζY0 : Y1) on the P1 factor, for ζ such that τ acts on νΣ

by ζ−1.
Then τ acts on the normal bundle of C̃ in E (which is trivial) as multiplication by ζ. If

we write the normal bundle of C̃ in Z as a direct sum of this trivial bundle and another line
bundle, then (because C̃ is contained in V which has a Calabi-Yau structure preserved by Γ)

the second summand must be isomorphic to T ∗C̃, and τ must act on it as multiplication
by ζ−1.

Example 5.8. Consider a smooth quartic of the form X3
0X1 + F (X1, X2, X3, X4). Multiplying

X0 by a primitive third root of unity, say ζ−1 = e−
2πi
3 , defines an automorphism τ of order 3.

Its fixed set is the union of the K3 surface Σ = {X0 = 0} and the isolated point (1 : 0 : 0 : 0 : 0).
Blowing up Y along the intersection C (a quartic plane curve) of Σ with another anticanonical

divisor yields a building block Z with automorphism group Γ ∼= Z/3, number 16 in Table 1. It
is a different subfamily of family 14 than the one considered in Example 5.6.

The block Z has χ(Z) = −60. The fixed set Zτ of τ is the union of the proper transform of Σ,

a section C̃ of the exceptional divisor and the isolated fixed point, so its Euler characteristic
is 21. Thus χ(Z/Γ) = −1

360 + 2
321 = −6, and hence bΓ3 (Z) = 12.

Clearly, τ acts on the normal bundle of Σ as multiplication by ζ−1. Meanwhile, in the affine
chart (z1, . . . , z4) 7→ (1 : z1 : · · · : z4), the action of τ is represented by multiplication with ζ.
Hence, the action of τ on the tangent space at (1 : 0 : 0 : 0 : 0) is diagonal with eigenvalue ζ.
We can now compute Dτε(Z) = 2ε for ε = ±1.

Example 5.9. Consider a smooth sextic Y in the weighted projective space P4(14, 3) of the form

X6
0 + F (X1, X2, X3) +X2

4 . Multiplying X0 by a primitive 6th root of unity, say ζ−1 = e−
πi
3 ,

defines an automorphism τ of order 6. Its fixed set is the K3 surface Σ = {X0 = 0}. In addition,
τ2 has two isolated fixed points, at x± = (1 : 0 : 0 : 0 : ±i), which are swapped by τ .

Blowing up Y along the intersection C of Σ with another anticanonical divisor that is stable
under τ as a set yields a building block Z with automorphism group Γ ∼= Z/6, line 13 in
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Table 1. It can be considered as a more special subfamily of family 9 appearing in Example 5.3
or of family 10 of involution blocks from Example 5.4. But if we consider it as a block with
automorphism group of order 3 (number 11 in the table), then that is distinct from the
previous examples.

Clearly, τ acts on the normal bundle of Σ as multiplication by ζ−1. Meanwhile, in the
affine chart (z1, . . . , z4) 7→ (1 : z1 : · · · : z4), the action of τ is represented by (z1, . . . , z4) 7→
(ζz1, ζz2, ζz3, ζ

3z4). The isolated fixed points correspond to (0, 0, 0,±i), and have tangent
space z4 = 0. Thus the action of τ2 on the tangent spaces is diagonal with eigenvalue ζ2.
Again, we find Dτε(Z) = 2ε for the automorphism group Z/6, and Dτε = 4ε if we restrict to
the automorphism group Z/3.

We have χ(Z) = −102, while the fixed set Zτ
2

of τ2 is the union of the proper transform

of Σ, a copy C̃ of C and the two isolated fixed points, so has Euler characteristic 24. In the
case where we consider the automorphism group Γ′ ∼= Z/3 generated by τ2, we thus find

χ(Z/Γ′) = −1
3102 + 2

324 = −18, so bΓ
′

3 (Z) = 24.
In turn, we can consider Z/Γ as a Z/2 quotient of Z/Γ′ with fixed set of Euler characteristic

χ(Σ) + χ(C̃) = 22. Thus χ(Z/Γ) = −1
218 + 1

222 = 2, and bΓ3 (Z) = 4.

Example 5.10. Consider again a smooth sextic Y in the weighted projective space P4(14, 3),
but now of the form X5

0X1 + F (X1, . . . , X3) +X2
4 . Multiplying X0 by a primitive 5th root of

unity, say ζ−1 = e−
2πi
5 , defines an automorphism τ of order 5. Its fixed set is the union of the

K3 surface Σ = {X0 = 0} and the isolated point (1 : 0 : 0 : 0 : 0).
Blowing up Y along the intersection C of Σ with another anticanonical divisor yields

a building block Z with automorphism group Γ ∼= Z/5. It can be considered as another
more special subfamily (entry 12 in Table 1) of the family 9 that we already considered in
Example 5.9.

Clearly, τ acts on the normal bundle of Σ as multiplication by ζ−1. Meanwhile, in the
affine chart (z1, . . . , z4) 7→ (1 : z1 : · · · : z4), the action of τ is represented by (z1, . . . , z4) 7→
(ζz1, ζz2, ζz3, ζ

3z4). The tangent space at the fixed point is z1 = 0, so the eigenvalues of τ
on the tangent space are ζ, ζ and ζ3. In Example 2.6, we have computed Dτε(Z) = −24

5ε
for ε ∈ {±1,±2}.

We have χ(Z) = −102, while the fixed set Zτ of τ is the union of the proper transform

of Σ, a copy C̃ of C, and the isolated fixed point so has Euler characteristic 23. We thus find
χ(Z/Γ) = −1

5102 + 4
523 = −2, so bΓ3 (Z) = 8.

In order to construct extra-twisted connected sums from our examples of blocks, we need
to note that they have a genericity property described in Definition 1.13.

Proposition 5.11. Each family Z of blocks above is (N,Amp)-polarised, where N is the
polarising lattice of the family, and Amp ⊂ NR is one of the two open half-lines.

Proof. For the families of blocks without automorphism in Example 5.3, this is just an instance
of [12, Proposition 6.9], which is a consequence of the results of Beauville [2] on anticanonical
divisors in Fano 3-folds. The same argument applies to the families of blocks with involution
that are obtained in Examples 5.4, 5.5 or 5.6 from a cover of a Fano 3-fold X branched over
an anticanonical divisor Σ, since Σ can be any smooth anticanonical divisor in X.

In Example 5.8, the K3 divisor Σ is a hypersurface in P3 defined by the quartic polynomial F .
Clearly F can be chosen to be any smooth quartic, so a generic K3 surface with Picard lattice
containing an ample primitive class of norm-square 4 will appear this way. Indeed, in particular
any K3 surface with Picard lattice exactly 〈4〉 can embedded as a quartic in P3 (see Saint-
Donat [34, Theorem 6.1]).
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Similarly, we see directly that any K3 that is a double cover of P2 branched over a smooth
sextic curve can appear as the K3 divisor in blocks of the classes from Examples 5.9 and 5.10,
and a generic K3 surfaces whose Picard lattice contains an ample class of norm-square 2 can
be presented that way (see Reid [33, Theorem 3.8(d)]). �

5.3. Examples of matchings. We now study the matchings that can be produced from
the blocks in the previous section. Table 2 lists all extra-twisted connected sums that can be
made from the blocks in Table 1, except those where both blocks have trivial automorphism
group, which were studied in [13, 28]. Note that some examples with k± ≤ 2 were already
considered in [13, 14, 31], in particular tables 4 and 5 in [31] contain some of the examples
with k+ ≤ 2, k− = 2 with additional information on p1(TM) and the torsion in H4(M).
Table 2 contains 192 examples where k− ≥ 3; these are genuinely new.

We explained in §3.1 one way to find all gluing matrices for a given pair of orders (k+, k−)
of automorphism groups. The gluing matrix determines the gluing angle ϑ, and for each pair
of rank 1 blocks one can then determine whether there is a corresponding configuration as
explained in §1.4. However, we find it convenient here to do these steps in the opposite order,
and first enumerate all possible configurations involving the blocks from Table 1.

Given k+ and k− and a configuration, there may be several different gluing matrices G that
have the right gluing angle and detG = −k+k−, and several different choices of blocks Z+, Z−
with the right polarising lattices and automorphism groups of order k±. Each such choice
yields a family of extra-twisted connected sums M by application of Proposition 1.14. The
fundamental group π1(M) depends only on the gluing matrix, while b3(M) depends on the
choices of Z+ and Z−. The invariant ν̄(M) depends on the gluing matrix together with data
for the isolated fixed points of the automorphisms on Z±. It turns out that for those pairs
of configuration and gluing matrix where there is more than one choice of (Z+, Z−), there is
never any ambiguity in the isolated fixed point data, so in practice, ν̄(M) only depends on
the gluing matrix.

We therefore organise Table 2 with the data about the extra-twisted connected sums from
blocks with polarising lattices of rank 1 as follows. For each extra-twisted connected sum we
first list the orders k± of Γ±, the even lattice describing the configuration of the K3 matching
and cos2 ϑ of the gluing angle ϑ as determined by (1.14). Then follow the building blocks
Z+ and Z− (the numbers referring to the entries in Table 1) and the third Betti number of
the extra-twisted connected sum, the gluing matrix G = (m p

n q ), and the parameters ε± (see
Proposition 1.8). By Remark 3.8, we always assume that m, n, p > 0 and q < 0. Moreover,
if k+ = k− we may swap the blocks if necessary to make sure that m+ q ≤ 0. Finally, we list
the value of the ν̄-invariant. Where there are several different choices of Z+ with the same
k+, k− and configuration they are separated by commas, as are the corresponding values of
b3(M), while the different choices of the gluing matrix G (and the corresponding ε+, ε− and
ν̄(M)) are listed on separate rows. The number at the very left is the running number of the
first example in the line, for example, the third line contains examples 5, 6 and 7.

Remark 5.12. If a non simply-connected extra-twisted connected sum has a nontrivial covering
constructed with the same groups Γ+, Γ−, see Remark 3.6, then it is listed a few lines above,
e.g. entry 20 is the universal cover of entry 22. If one needs to pass to a subgroup of at least
one of the groups Γ+, Γ−, then one should determine k̃+, k̃− and the gluing matrix by (3.8b)
and find the covering in a different section of the table, possibly with the roles of Z+ and Z−
swapped, except if ϑ = π

2 . In the latter case, the universal cover is an ordinary twisted sum of
the type discussed in [13, 28], and therefore not listed here.
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k+ k− N++N− cos2 ϑ Z+ Z− b3(M) G ε+ ε− ν̄(M)

1 1 2
(

2 2
2 4

)
1/2 3, 9 5

15
92, 148
100, 156

(
1 1
1 −1

)
1 −39

5
(

4 2
2 2

)
1/2 1, 4, 14 10 134, 106, 134

(
1 1
1 −1

)
1 −39

8
(

4 4
4 8

)
1/2 1, 4, 14 22 102, 74, 102

(
1 1
1 −1

)
1 −39

11
(

8 4
4 4

)
1/2 7, 21 5

15
78, 78
86, 86

(
1 1
1 −1

)
1 −39

15
(

12 6
6 6

)
1/2 25 19 68

(
1 1
1 −1

)
1 −39

16
(

16 4
4 2

)
1/2 27 10 92

(
1 1
1 −1

)
1 −39

17
(

16 8
8 8

)
1/2 27 22 60

(
1 1
1 −1

)
1 −39

18
(

18 6
6 4

)
1/2 28 5, 15 64, 72

(
1 1
1 −1

)
1 −39

20 1 3
(

2 2
2 6

)
1/3 3, 9 20 82, 138

(
1 1
2 −1

)
−1 −19

22
(

1 2
1 −1

)
1 −35

24
(

4 4
4 6

)
2/3 1, 4, 14 20 96, 68, 96

(
1 1
1 −2

)
−1 −43

27
(

2 1
1 −1

)
1 −59

30
(

6 2
2 2

)
1/3 2, 6, 18 11 102, 82, 94

(
1 1
2 −1

)
−1 −23

33
(

1 2
1 −1

)
1 −31

36
(

6 4
4 4

)
2/3 2, 6, 18 16 90, 70, 82

(
1 1
1 −2

)
−1 −45

39
(

2 1
1 −1

)
1 −57

42
(

8 4
4 6

)
1/3 7, 21 20 68, 68

(
1 1
2 −1

)
−1 −19

44
(

1 2
1 −1

)
1 −35

46
(

12 4
4 2

)
2/3 25 11 74

(
1 1
1 −2

)
−1 −47

47
(

2 1
1 −1

)
1 −55

48
(

12 4
4 4

)
1/3 25 16 62

(
1 1
2 −1

)
−1 −21

49
(

1 2
1 −1

)
1 −33

50
(

16 8
8 6

)
2/3 27 20 54

(
1 1
1 −2

)
−1 −43

51
(

2 1
1 −1

)
1 −59

52
(

18 6
6 6

)
1/3 28 20 54

(
1 1
2 −1

)
−1 −19

53
(

1 2
1 −1

)
1 −35

54 1 4
(

2 2
2 4

)
1/2 3, 9 17 80, 136

(
1 1
2 −2

)
−1 −21

56
(

2 2
1 −1

)
1 −57

58
(

4 2
2 4

)
1/4 1, 4, 14 17 94, 66, 94

(
1 1
3 −1

)
−1 3

61
(

1 3
1 −1

)
1 −33

64
(

8 4
4 4

)
1/2 7, 21 17 66, 66

(
1 1
2 −2

)
−1 −21

66
(

2 2
1 −1

)
1 −57

68
(

12 6
6 4

)
3/4 25 17 56

(
1 1
1 −3

)
−1 −45

69
(

3 1
1 −1

)
1 −81

70
(

16 4
4 4

)
1/4 27 17 52

(
1 1
3 −1

)
−1 3

71
(

1 3
1 −1

)
1 −33

72
(

18 6
6 4

)
1/2 28 17 52

(
1 1
2 −2

)
−1 −21

Table 2: Examples of extra-twisted connected sums



NU-INVARIANTS OF EXTRA-TWISTED CONNECTED SUMS 53

k+ k− N++N− cos2 ϑ Z+ Z− b3(M) G ε+ ε− ν̄(M)

73
(

2 2
1 −1

)
1 −57

74 1 5
(

10 2
2 2

)
1/5 8, 23 12 72, 62

(
1 1
4 −1

)
−1 21

76
(

1 2
2 −1

)
2 −15

78
(

1 4
1 −1

)
1 −27

80
(

10 4
4 2

)
4/5 8, 23 12 72, 62

(
1 1
1 −4

)
−1 −51

82
(

2 1
1 −2

)
−2 −63

84
(

4 1
1 −1

)
1 −99

86 1 6
(

4 2
2 2

)
1/2 1, 4, 14 13 92, 64, 92

(
1 1
3 −3

)
−1 −1

89
(

3 3
1 −1

)
1 −77

92
(

6 2
2 2

)
1/3 2, 6, 18 13 82, 62, 74

(
1 1
4 −2

)
−1 23

95
(

2 4
1 −1

)
1 −53

98
(

12 2
2 2

)
1/6 25 13 54

(
1 1
5 −1

)
−1 47

99
(

1 5
1 −1

)
1 −29

100
(

12 4
4 2

)
2/3 25 13 54

(
1 1
2 −4

)
−1 −25

101
(

4 2
1 −1

)
1 −101

102
(

16 4
4 2

)
1/2 27 13 50

(
1 1
3 −3

)
−1 −1

103
(

3 3
1 −1

)
1 −77

104 2 2
(

2 0
0 2

)
0 10 10 115

(
0 2
2 0

)
1 1 0

105
(

2 1
1 2

)
1/4 10 10 114

(
1 1
3 −1

)
1 1 −27

106
(

1 3
1 −1

)
1 1 −27

107
(

2 0
0 4

)
0 10 5, 15 87, 95

(
0 2
2 0

)
1 1 0

109
(

2 0
0 6

)
0 10 19 87

(
0 2
2 0

)
1 1 0

110
(

2 3
3 6

)
3/4 10 19 86

(
1 1
1 −3

)
1 1 −51

111
(

3 1
1 −1

)
1 1 −51

112
(

2 0
0 8

)
0 10 22 83

(
0 2
2 0

)
1 1 0

113
(

2 2
2 8

)
1/4 10 22 82

(
1 1
3 −1

)
1 1 −27

114
(

1 3
1 −1

)
1 1 −27

115
(

2 0
0 10

)
0 10 24 81

(
0 2
2 0

)
1 1 0

116
(

4 0
0 4

)
0 5, 15 5

15
59, 67
67, 75

(
0 2
2 0

)
1 1 0

120
(

4 2
2 4

)
1/4 5, 15 5

15
58, 66
66, 74

(
1 1
3 −1

)
1 1 −27

124
(

1 3
1 −1

)
1 1 −27

128
(

4 0
0 6

)
0 5, 15 19 59, 67

(
0 2
2 0

)
1 1 0

130
(

4 0
0 8

)
0 5, 15 22 55, 63

(
0 2
2 0

)
1 1 0

132
(

4 0
0 10

)
0 5, 15 24 53, 61

(
0 2
2 0

)
1 1 0

134
(

6 0
0 6

)
0 19 19 59

(
0 2
2 0

)
1 1 0

135
(

6 3
3 6

)
1/4 19 19 58

(
1 1
3 −1

)
1 1 −27

136
(

1 3
1 −1

)
1 1 −27

Table 2: Examples of extra-twisted connected sums
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137
(

6 0
0 8

)
0 19 22 55

(
0 2
2 0

)
1 1 0

138
(

6 6
6 8

)
3/4 19 22 54

(
1 1
1 −3

)
1 1 −51

139
(

3 1
1 −1

)
1 1 −51

140
(

6 0
0 10

)
0 19 24 53

(
0 2
2 0

)
1 1 0

141
(

8 0
0 8

)
0 22 22 51

(
0 2
2 0

)
1 1 0

142
(

8 4
4 8

)
1/4 22 22 50

(
1 1
3 −1

)
1 1 −27

143
(

1 3
1 −1

)
1 1 −27

144
(

8 0
0 10

)
0 22 24 49

(
0 2
2 0

)
1 1 0

145
(

10 0
0 10

)
0 24 24 47

(
0 2
2 0

)
1 1 0

146
(

10 5
5 10

)
1/4 24 24 46

(
1 1
3 −1

)
1 1 −27

147
(

1 3
1 −1

)
1 1 −27

148 2 3
(

2 2
2 4

)
1/2 10 16 80

(
1 1
3 −3

)
1 −1 −33

149
(

3 3
1 −1

)
1 1 −45

150
(

2 2
2 6

)
1/3 10 20 76

(
2 1
4 −1

)
1 1 −47

151
(

1 4
1 −2

)
1 −1 −31

152
(

4 2
2 2

)
1/2 5, 15 11 64, 72

(
1 1
3 −3

)
1 −1 −35

154
(

3 3
1 −1

)
1 1 −43

156
(

4 2
2 6

)
1/6 5, 15 20 48, 56

(
1 1
5 −1

)
1 −1 −7

158
(

1 5
1 −1

)
1 1 −23

160
(

4 4
4 6

)
2/3 5, 15 20 48, 56

(
4 1
2 −1

)
1 −1 −31

162
(

1 2
1 −4

)
1 1 −47

164
(

6 2
2 2

)
1/3 19 11 64

(
2 1
4 −1

)
1 1 −43

165
(

1 4
1 −2

)
1 −1 −35

166
(

6 2
2 4

)
1/6 19 16 52

(
1 1
5 −1

)
1 −1 −9

167
(

1 5
1 −1

)
1 1 −21

168
(

6 4
4 4

)
2/3 19 16 52

(
4 1
2 −1

)
1 −1 −33

169
(

1 2
1 −4

)
1 1 −45

170
(

8 4
4 4

)
1/2 22 16 48

(
1 1
3 −3

)
1 −1 −33

171
(

3 3
1 −1

)
1 1 −45

172
(

8 4
4 6

)
1/3 22 20 44

(
2 1
4 −1

)
1 1 −47

173
(

1 4
1 −2

)
1 −1 −31

174 2 4
(

2 1
1 4

)
1/8 10 17 74

(
1 1
7 −1

)
1 −1 15

175
(

1 7
1 −1

)
1 1 −21

176
(

6 3
3 4

)
3/8 19 17 46

(
1 1
5 −3

)
1 −1 −9

177
(

3 1
5 −1

)
1 1 −69

178
(

1 5
1 −3

)
1 −1 −33

179
(

3 5
1 −1

)
1 1 −45

180
(

8 2
2 4

)
1/8 22 17 42

(
1 1
7 −1

)
1 −1 15

Table 2: Examples of extra-twisted connected sums
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181
(

1 7
1 −1

)
1 1 −21

182
(

10 5
5 4

)
5/8 24 17 40

(
1 1
3 −5

)
1 −1 −33

183
(

5 1
3 −1

)
1 −1 −9

184
(

1 3
1 −5

)
1 1 −45

185
(

5 3
1 −1

)
1 1 −69

186 2 5
(

4 2
2 2

)
1/2 5, 15 12 48, 56

(
1 1
5 −5

)
1 −1 −15

188
(

5 5
1 −1

)
1 1 −63

190
(

10 2
2 2

)
1/5 24 12 42

(
2 1
8 −1

)
1 −2 −27

191
(

1 8
1 −2

)
1 −2 −27

192
(

10 4
4 2

)
4/5 24 12 42

(
8 1
2 −1

)
1 2 −51

193
(

1 2
1 −8

)
1 2 −51

194 2 6
(

2 1
1 2

)
1/4 10 13 72

(
1 1
9 −3

)
1 −1 35

195
(

3 9
1 −1

)
1 1 −41

196
(

6 1
1 2

)
1/12 19 13 44

(
1 1
11 −1

)
1 −1 59

197
(

1 11
1 −1

)
1 1 −17

198
(

6 3
3 2

)
3/4 19 13 44

(
1 1
3 −9

)
1 −1 −37

199
(

9 3
1 −1

)
1 1 −113

200
(

8 2
2 2

)
1/4 22 13 40

(
1 1
9 −3

)
1 −1 35

201
(

3 9
1 −1

)
1 1 −41

202 3 3
(

2 0
0 2

)
0 11 11 71

(
0 3
3 0

)
1 1 −8

203
(

2 0
0 4

)
0 11 16 59

(
0 3
3 0

)
1 1 −10

204
(

2 0
0 6

)
0 11 20 55

(
0 3
3 0

)
1 1 −12

205
(

4 0
0 4

)
0 16 16 47

(
0 3
3 0

)
1 1 −12

206
(

4 0
0 6

)
0 16 20 43

(
0 3
3 0

)
1 1 −14

207
(

6 0
0 6

)
0 20 20 39

(
0 3
3 0

)
1 1 −16

208
(

6 2
2 6

)
1/9 20 20 38

(
1 1
8 −1

)
−1 −1 13

209
(

1 2
4 −1

)
1 1 −43

210
(

1 4
2 −1

)
−1 −1 −11

211
(

1 8
1 −1

)
1 1 −19

212
(

6 4
4 6

)
4/9 20 20 38

(
1 1
5 −4

)
−1 −1 −11

213
(

2 1
5 −2

)
1 1 −67

214
(

1 5
1 −4

)
1 1 −43

215
(

2 5
1 −2

)
−1 −1 −35

216 3 4
(

2 2
2 4

)
1/2 11 17 52

(
3 1
6 −2

)
1 1 −85

217
(

6 2
3 −1

)
1 −1 −1

218
(

1 3
2 −6

)
−1 1 −29

219
(

2 6
1 −3

)
−1 −1 −41

220
(

4 2
2 4

)
1/4 16 17 40

(
3 1
9 −1

)
−1 1 −51

Table 2: Examples of extra-twisted connected sums
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221
(

1 9
1 −3

)
1 −1 −27

222
(

6 2
2 4

)
1/6 20 17 36

(
1 1
10 −2

)
1 −1 −5

223
(

2 2
5 −1

)
1 1 −65

224
(

1 5
2 −2

)
−1 −1 −13

225
(

2 10
1 −1

)
−1 1 −25

226
(

6 4
4 4

)
2/3 20 17 36

(
1 1
4 −8

)
1 −1 −53

227
(

8 4
1 −1

)
−1 1 −73

228 3 5
(

6 2
2 2

)
1/3 20 12 38

(
1 1
10 −5

)
1 −1 −11

229
(

1 2
5 −5

)
−1 2 −7

230
(

5 5
2 −1

)
1 2 −23

231
(

5 10
1 −1

)
−1 1 −43

232 4 4
(

4 0
0 4

)
0 17 17 35

(
0 4
4 0

)
1 1 −36

233
(

4 1
1 4

)
1/16 17 17 34

(
1 1
15 −1

)
−1 −1 57

234
(

1 3
5 −1

)
1 1 −63

235
(

1 5
3 −1

)
−1 −1 9

236
(

1 15
1 −1

)
1 1 −15

237
(

4 2
2 4

)
1/4 17 17 34

(
2 2
6 −2

)
1 1 −87

238
(

2 6
2 −2

)
−1 −1 −15

239
(

4 3
3 4

)
9/16 17 17 34

(
1 1
7 −9

)
−1 −1 9

240
(

3 1
7 −3

)
1 1 −111

241
(

1 7
1 −9

)
1 1 −63

242
(

3 7
1 −3

)
−1 −1 −39

243 4 5
(

4 2
2 2

)
1/2 17 12 36

(
2 1
10 −5

)
−1 −2 −9

244
(

1 2
5 −10

)
1 2 −69

245
(

10 5
2 −1

)
−1 2 −33

246
(

5 10
1 −2

)
1 −2 −45

247 4 6
(

4 1
1 2

)
1/8 17 13 32

(
1 1
21 −3

)
1 −1 17

248
(

3 3
7 −1

)
1 1 −107

249
(

1 7
3 −3

)
−1 −1 5

250
(

3 21
1 −1

)
−1 1 −23

251 5 5
(

2 0
0 2

)
0 12 12 39

(
0 5
5 0

)
1 1 −48

252
(

0 5
5 0

)
2 −2 0

253 6 6
(

2 0
0 2

)
0 13 13 31

(
0 6
6 0

)
1 1 −76

254
(

2 1
1 2

)
1/4 13 13 30

(
3 3
9 −3

)
1 1 −151

255
(

3 9
3 −3

)
−1 −1 1

Table 2: Examples of extra-twisted connected sums
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6. Proofs of the adiabatic limit theorems

For completeness, we give short proofs of the claims (2.10) and (4.7). This section does not
attempt to be self-contained. Instead, we will state the analogue of statements in existing
proofs, and add explanations only where we deviate from those.

6.1. Adiabatic limits of twisted products. Let Γ ∼= Z/k be a finite group that acts
effectively and isometrically on an even-dimensional manifold V with boundary ∂V . We
assume that V has product geometry near ∂V . We consider W = V/Γ as an orbifold with
inertia orbifold ΛW .

Consider S1 ∼= R/Z and let a generator γ0 ∈ Γ act by sending [v] ∈ R/ξZ to
[
v + ξ

k

]
. Then

we will consider the Seifert fibration

p : M =
(
V × S1

)
/Γ −→W , (6.1)

where Γ acts diagonally on V × S1. We split TM = TW ⊕ TS1 by abuse of notation and
consider a family of metrics

gTMε = ε−2 gTW ⊕ gTS1

for ε > 0. The example we have in mind is of course M = M±,` with metric gTMε = 1
εζ±

g±,`,ε;

see paragraph 2.1.1.
By a Dirac bundle we mean a Hermitian vector bundle with Hermitian connection and a

compatible Clifford multiplication; see [29, def II.5.2]. We assume that V is equipped with a
fixed Dirac bundle EV → V , on which Γ acts, preserving its structure. On M , we consider the
Dirac bundle

E = p∗EV /Γ −→M . (6.2)

We let (e1, . . . , em) denote a local orthonormal frame of TM for gTM1 such that e1 is vertical
and e2, . . . , em are horizontal. Clifford multiplication with ei will be denoted ci. Here, we assume

that c1 acts as −i
m+1

2 c2 · · · cm on p∗EV , so that the Clifford volume element i
m+1

2 c1 · · · cm acts
as 1. The examples we have in mind are the spinor bundle SV and the bundle of exterior
forms Λ•T ∗V on V , leading to the spinor bundle and the bundle of even forms on M .

We consider a Dirac-type operator on E of the form

DM,ε = DS1 + εDW (6.3)

as in [22, (2.3)], where DS1 = c1∇Ee1 is the fibrewise Dirac operator. In the case of the odd
signature operator on M , DW = BW is the signature operator on the orbifold W .

In the case of the modified spin Dirac operator on M , we assume that SV admits a Γ-
invariant spinor s such that ∇SV is supported away from ∂V . If D′M,ε and D′W denote the
geometric Dirac operators on M and on the orbifold W with respect to the metrics above,
equation (2.3) becomes

D′M,ε(p
∗s) = p∗(εD′W s) = ε p∗(f s+ h c1s+ r) ,

with f , h and r as before. We now consider the operator

DW = D′W − 〈 · , s〉 (f s+ h c1s+ r)− 〈 · , r〉 s
− 〈 · , c1s〉 (h s− f c1s− c1r) + 〈 · , c1r〉 c1s .

(6.4)

Then (6.3) and (6.4) are equivalent to (2.4). We also recall that DW −D′W is supported away
from ∂W by Property 2.1.3 (i).

The situation here is simpler than in [22] because DW is independent of ε and

DS1DW +DWDS1 = 0 . (6.5)
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In the case of the modified spin Dirac operator, this follows from (6.4) because f , h, s and r
all have vanishing vertical derivative.

Because we are in a local product situation, the space L2(E) splits into eigenspaces of DS1

which we may regard as spaces of L2-sections of orbibundles over W . These spaces are invariant
under DW by (6.5). In particular, H = kerDS1 ⊂ p∗E is isomorphic to the original EV , and

the connection ∇E induces a unitary connection ∇p∗E = ∇H ⊕∇H⊥ .
To avoid a clash of notation later, we write u for the inward normal coordinate on M and W

near their respective boundary. Then let e2 = ∂
∂u be the inward normal unit vector to ∂M

with respect to g1, extended parallelly over the cylindrical neighbourhood u ∈ [0, 1] of ∂M .
The boundary operator D∂M,ε splits in the same manner as DM,ε, and in that cylindrical
neighbourhood of ∂M , we have

DM,ε = c2

(
ε
∂

∂u
+D∂

S1 + εD∂W

)
,

where D∂
S1 = −c2DS1 denotes the fibrewise boundary operator. By (6.5), the operators D∂

S1

and D∂W anticommute as well. Both respect the splitting of (p|∂M )∗E into H|∂W and H⊥|∂W .
Let Π+,ε denote the spectral projection onto the subspace of L2(∂M ;E) spanned by the

eigenspinors of D∂
S1 + εD∂W with positive eigenvalues. Then Π+,ε respects the splitting

into H|∂W and its orthogonal complement, so

Π+,ε = ΠH
+ ⊕Π⊥+,ε .

Moreover, ker(D∂
S1 + εD∂W ) in the sections of H|∂W and equals the kernel of the restriction

of D∂W to H|∂W . The relevant symplectic structure on ker(D∂
S1 + εD∂W ) is induced by c2.

We denote the restriction of DW to H by DW,1 in analogy with [22]. It is a Dirac operator
in the case of the odd signature operator, and a modified Dirac operator in the case of the
modified spin Dirac operator. Clifford multiplication with the global vertical tangent vector
field e1 still acts on H and anticommutes with DW,1. Because c1 and c2 anticommute, c1

commutes with the boundary operator D∂W , so the projection ΠH
+ commutes with c1 as well.

The Lagrangian subspaces L = LD and L = LB of (2.6) and (2.7) are also invariant under c1.
We immediately conclude that

ηAPS(DW,1;L) = 0 . (6.6)

Recall that η(A) ∈ Ω•(ΛW ) denotes the orbifold η-form of the Bismut superconnection of
the fibrewise spin Dirac operator with respect to the fibrewise trivial spin structure. We may
regard the signature operator as a Dirac operator twisted by the pullback of the spinor bundle
on the base; for this reason, the η-form η(A) occurs in both formulas in the theorem below.

Theorem 6.1 (Compare Dai [19, Thm 1.1], see also [22, Thm 0.1]). With the assumptions
and notations above,

lim
ε→0

η
(
DM,ε;LD

)
=

∫
ΛW\W

ÂΛW

(
TW,∇TW

)
2ηΛW (A) , (1)

lim
ε→0

η
(
BM,ε;LB

)
=

∫
ΛW\W

L̂ΛW

(
TW,∇TW

)
2ηΛW (A) . (2)

This result is not covered by [19] because the fibrewise operator is allowed to have a kernel,
and because p : M → V is a Seifert fibration. It is not covered by [22] because the base orbifold
is allowed to have a boundary. But of course, the Seifert fibration is locally a twisted product,
and hence the situation here is more specialised than in the two references above. A little
extra complication comes from the construction (2.4) of the modified spin Dirac operator.
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Our proof below relies crucially on the fact that the operators DM,ε and D∂M,ε both respect
the splitting of the bundle p∗E → B of fibrewise sections into the fibrewise harmonic spinors,
which form a bundle H → B by assumption, and its orthogonal complement H⊥. We believe
that with a little extra work, this proof extends to totally geodesic Seifert fibrations. Probably
Dai’s proof also extends to totally geodesic fibre bundles because [19, Prop 5.2] then holds for
sections of H⊥.

Proof. We follow the proof in [22] as far as possible. We will view DW as a differential operator
on p∗E and DS1 as an endomorphism of p∗E. We consider the restriction of DM,ε to H⊥. In
accordance with [22, sect 2.c], we denote it by DM,ε,4 = DS1 +εDW,4, where DW,4 describes the
action of DW on sections of p∗E. Note that in our setting, DW,2 = DW,3 = 0. Let 〈 · , · 〉M/W

denote the fibrewise L2-product, let divW denote the divergence of a vector field or a one-form

on W , let ∆H⊥ denote the horizontal Laplacian on H⊥ → W , and let cW denote Clifford
multiplication by horizontal vectors. Then

divW
〈
∇H⊥σ, τ

〉
M/W

= −
〈
∆H⊥σ, τ

〉
M/W

+
〈
∇H⊥σ,∇H⊥τ

〉
M/W

,

divW
〈
cWσ, τ

〉
M/W

=
〈
DWσ, τ

〉
M/W

−
〈
σ,DW τ

〉
M/W

.

Because DW has been modified to DW by a self-adjoint operator of order 0 supported away
from the boundary, and because ∂

∂r is the inward normal direction, we conclude that∥∥(i− ε−1DM,ε,4

)
σ
∥∥2

L2(W ;H⊥)
−
∥∥∇H⊥σ∥∥2

L2(W ;H⊥)

=
〈(

1 + ε−2D2
S1 +D2

W,4 −∆H⊥
)
σ, σ

〉
M
− 〈ic2σ, σ〉∂M − ε−1〈D∂M,ε,4σ, σ〉∂M . (6.7)

Let H1(W,H⊥; Π⊥+,ε) denote the subspace of the first Sobolev space generated by sections

that satisfy the APS boundary condition. If σ ∈ H1(W,H⊥; Π⊥+,ε), then 〈c2σ, σ〉 = 0 because c2

anticommutes with D∂M,ε,4, and 〈D∂M,ε,4σ, σ〉 ≤ 0, so∥∥(i− ε−1DM,ε,4

)
σ
∥∥2

L2(W ;H⊥)
≥
∥∥∇H⊥σ∥∥2

L2(W ;H⊥)
+
〈(

1 + ε−2D2
S1 +D2

W,4 −∆H⊥
)
σ, σ

〉
M
.

(6.8)
Let λB denote the smallest absolute value of a nonzero eigenvalue of the effective horizontal

operator DW,1 with respect to the given boundary conditions, and let 0 < c < λB
2 . Let Γ =

Γ+ ∪̇Γ0 ∪̇Γ− denote a contour in C, where Γ± goes around ±[λB,+∞] with distance c, and Γ0

is a circle around 0 with radius c.

−λB λB
c

Γ0Γ− Γ+

Assume that λ is not in the spectrum of DM,ε,4 with APS boundary conditions given by Π⊥+,ε.
Using parametrices on ∂W × [0,∞) and on the double of W , one can construct a resolvent

Rε(λ) : L2(W ;H⊥)→ H1(W,H⊥; Π⊥+,ε)

of DM,ε,4. We define the family of Schatten norms of operators A acting on L2(M ;E) ∼=
L2(W ; p∗E) by

‖A‖p = tr
(

(A∗A)
p
2

)



60 SEBASTIAN GOETTE AND JOHANNES NORDSTRÖM

for 1 ≤ p < ∞, and let A∞ denote the operator norm. Because D′2W − ∆p∗E is a bundle
endomorphism on E → M , we can use the inequality (6.8) above to prove the analogue
of [22, Prop 2.7]. In particular, there exists a constant ε0 > 0 such that for all p > dimM ,
all ε ∈ (0, ε0) and all λ ∈ Γ, one has

‖Rε(λ)‖ = O(1, ε |λ|) and ‖Rε(λ)‖ = O(|λ|) . (6.9)

Let H1(W,H; ΠH
+,Λ) denote the subspace of the first Sobolev space spanned by sections

satisfying the Lagrangian APS boundary condition fixed above. Then we consider the resolvent

(λ−DW,1)−1 : L2(W ;H) −→ H1(W,H; ΠH
+,Λ) .

Obviously (λ − DM,ε)
−1 = (λ − DW,1)−1 ⊕ Rε(λ). Because DW,1 is the effective horizontal

operator, Proposition 2.8 in [22] reduces to∥∥(λ−DW,1)−1
∥∥
∞ = O(1) and

∥∥(λ−DW,1)−1
∥∥
p

= O(|λ|) (6.10)

for all λ ∈ Γ, which can be proved in the same way as (6.7). As an analogue of [22, Prop 2.9],
we get ∥∥(λ− ε−1DM,ε)

−1 − (λ−DW,1)−1
∥∥
∞ = O(ε |λ|) (6.11)

for all λ ∈ Γ.
Because DM,ε = εDW,1 ⊕DM,ε,4, the spectral projection Pε in [22, sect 2.f] coincides with

the spectral projection onto ker(DW,1) = ker(DM,ε) independent of ε. Using (6.6), (6.9–6.11),
we can adapt the proof of [22, Prop 2.10] to show that there exists a small α > 0 such that

lim
ε→0

∫ ∞
εα−2

1√
πt

tr
(
DM,εe

−tD2
M,ε

)
dt

= lim
ε→0

∫ ∞
εα−2

1√
πt

tr

(
(1− Pε)

(
DM,εe

−tD2
M,ε

)
(1− Pε)

)
dt = η(DW,1) = 0 . (6.12)

Note that the orbifold η-form ηΛW (A) vanishes on the principal stratum W ⊂ ΛW because
the Seifert fibration M → V is a twisted product and the fibrewise operator DS1 has sym-
metric spectrum. The additional divergent terms in the heat asymptotics of the supertrace
of e−tDW caused by the non-geometric terms introduced in (2.4) and (6.4) do not cause extra
complications here because they are supported on the regular stratum (and away from the
boundary). Because the singular stratum does not extend to the boundary ∂W , the right hand
side of the expression in the theorem vanishes near the boundary.

We can now use finite propagation speed to obtain the analogue of [22, Prop 2.12], which
says that

lim
ε→0

∫ εα−2

0

1√
πt

tr
(
DM,εe

−tD2
M,ε

)
dt

equals the right hand side of the expression in the theorem. Together with (6.12), this finishes
the proof. �

6.2. Adiabatic limits of families of flat tori. We consider a family of fibred manifolds E →
F → R as in Section 4.4, diagram (4.6). We will prove Proposition 4.11, which is a special
case of the adiabatic limit formula for η-forms of Bunke, Ma [10] and Liu [30], but as an
equation of forms, not as an equation of forms up to exact forms. To this end, we will simply
compute both sides of the equation. We believe that under suitable conditions, the adiabatic
limit formula for η-forms holds in this strict sense for much for general iterated fibre bundles.

We fix y ∈ R; later we will consider the limit y →∞. For x ∈ R, we identify

Ex = C/(Z + (x+ iy)Z) and Fx = R/yZ .
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The fibration E → F is formed by taking the imaginary part. The standard Euclidean metric
on C induces a fibrewise metric on E → R. The group S1 acts isometrically by translation in
the real direction in C.

On the total space of E, we consider the fibrewise orthonormal base induced by e1 = 1
and e2 = i ∈ C. We choose a horizontal subspace THE ⊂ TE for the fibration E → R spanned
by the vector field e3 induced from the vector field

C× R −→ C× R with (u+ iv, x) 7−→ (v/y; 1) ,

which is invariant under the x-dependent action of Z2 on C. Obviously,

[e1, e2] = [e1, e3] = 0 and [e2, e3] =
1

y
e1 . (6.13)

Hence, the vertical connection ∇T (E/R) is given by

∇T (E/R)e1 =
1

2y
e2 dx and ∇T (E/R)e2 = − 1

2y
e1 dx .

Because y ∈ R is constant, this connection is flat.
We identify the fibrewise spinor bundles S(E/R) = S+(E/R)⊕ S−(E/R)→ E with C⊕C.

If ∇0 denotes the trivial connection on the spinor bundle, then ∇T (E/R) induces the connection

∇S(E/R) = ∇0 +
1

4y
c1c2 dx .

Let W = p∗S(E/R) denote the infinite-dimensional vector bundle over R with fibres the
sections of S(E/R)|Ex . We can identify sections of W with sections of S(E/R). Because the
fibres of p have vanishing mean curvature, the induced connection takes the form

∇W s = ∇S(E/R)
e3 s dx .

Let Dx denote the fibrewise Dirac operator over x ∈ R. Then the Bismut superconnection
for the fibration E → R takes the form

Bt =
√
tDx +∇W .

Because

[∇W , Dx] = −c1[∇0
e3 ,∇

0
e1 ] dx− c2[∇0

e3 ,∇
0
e2 ] dx− [c1c2, c1]∇0

e1

dx

4y
− [c1c2, c2]∇0

e2

dx

4y

= c2∇0
e1

dx

y
− c2∇0

e1

dx

2y
+ c1∇0

e2

dx

2y
= c2∇Se1

dx

2y
+ c1∇Se2

dx

2y
,

the curvature of the Bismut superconnection is given by

B2
t = tD2

x +
√
t [∇W , Dx] = tD2

x +

√
t

2y

(
c1∇Se2 + c2∇Se1

)
dx .

The η-form for bundles with even-dimensional fibres is given by

η̃(B) =
1

2πi

∫ ∞
0

str

(
∂Bt
∂t

e−B
2
t

)
dt

= − 1

8yπi

∫ ∞
0

tr
(
ic1c2

(
c1∇Se1 + c2∇Se2

)(
c1∇Se2 + c2∇Se1

)
dx e−tD

2
x

)
dt

=
1

8yπ

∫ ∞
0

tr
((

(∇Se1)2 − (∇Se2)2
)
e−tD

2
x

)
dt dx .

(6.14)
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The space of vertical sections is spanned by sections of the form ϕm,ns±, where

ϕm,n(u, v) = e
2πi
(
m(u−x

y
v)+n v

y

)
for m, n ∈ Z and s± is a fibrewise parallel section of S±(E/R). The vertical Laplacian takes
the form −∂2

u, and its kernel is spanned by the functions ϕ0,ns
±. Because S(E/R) has rank 2,

we can therefore rewrite the η-form as

η̃(B) =
dx

4πy

∫ ∞
0

∑
m,n∈Z

4π2

((n−mx
y

)2
−m2

)
e
−4π2t

((
n−mx
y

)2
+m2

)
dt . (6.15)

For fixed m, the sum over n describes the spectrum of a Dirac operator on a circle S1
y of

length y with coefficients in a flat vector bundle. Approximating the heat kernel on S1
y by the

Euclidean heat kernel gives∑
n

4π2

((n−mx
y

)2
−m2

)
e
−4π2t

(
n−mx
y

)2
= −

(
4π2m2 +

∂

∂t

)∑
n∈Z

e
−4π2t

(
n−mx
y

)2
= −

(
4π2m2 − 1

2t

)
y√
4πt

+O
(

(1 +m2)e−
y2−c
4t

)
for each small c > 0, uniformly in m. For α > 0 small, we compute

dx

4πy

∫ y2−α

0

∑
m,n∈Z

4π2

((n−mx
y

)2
−m2

)
e
−4π2t

((
n−mx
y

)2
+m2

)
dt

= −dx
4π

∫ y2−α

0

∑
m∈Z

(
4π2m2 − 1

2t

)
1√
4πt

e−4π2m2t dt (6.16)

For t ≥ y2−α, we only need to study the contribution from kerDE/F , which can be written
as

1

2πi

∫ ∞
y2−a

str

(
P kerDE/F ∂Bt

∂t
e−B

2
t

)
dt =

dx

2yπ

∫ ∞
y2−α

∑
n

4π2n2

y2
e
− 4π2n2t

y2 dt

=
dx

4yπ

∑
n

e−4π2y−αn2
dx .

This sum converges to 0 as y →∞ for α < 1 because

1

y

∑
n

e−4π2y−αn2 ≤ 2

y

∞∑
n=0

e−4π2y−αn =
2

y
· 1

1− e−4π2y−α
=

2

4π2y1−α + o
(
4π2y−α

)
.

In general, one would expect here the η-form of the effective fibrewise operator on F → R,
acting on sections of kerDE/F , and some extra terms in the case that there are very small
eigenvalues. Because the kernel bundle is trivial here, it is not surprising that this form vanishes
in our situation. Combining this with the computations above, we finally see that

lim
y→∞

η̃(B) =
dx

4π

∫ ∞
0

∑
m∈Z

(
1

2t
− 4π2m2

)
e−4π2m2t dt√

4πt
(6.17)

We now consider the fibration E → F . We choose the horizontal bundle spanned by
the vectors e2 and e3 above. We identify the spinor bundle S(E/F ) → E with C. From
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equation (6.13), we get the superconnection At for the family E → F as

At =
√
t c1∇Se1 +∇W +

1

4y
√
t
c1 dv dx .

Its curvature is given by

A2
t = −t(∇0

e1)2 +
1

2y
dv dx .

Assuming that the Clifford volume element ic1 acts as 1, the η-form of the bundle E → F
with odd-dimensional fibres takes the form

η̃(A) = (2πi)−
NF

2

∫ ∞
0

tr

(
∂At
∂t

e−A
2
t

)
dt√
π

=

∫ ∞
0

tr

(
c1

(
∇Se1 −

1

8πiyt
dv dx

)(
1− 1

4πiy
dv dx∇Se1

)
et(∇

S
e1

)2

)
dt√
4πt

=

∫ ∞
0

tr

((
−i∇Se1 +

dv dx

8πyt

(
1 + 2t(∇Se1)2

))
et(∇

S
e1

)2

)
dt√
4πt

=

∫ ∞
0

tr

((
−i∇Se1 +

dv dx

8πyt

(
1 + 2t

∂

∂t

))
et(∇

S
e1

)2

)
dt√
4πt

.

(6.18)

The space of vertical sections is spanned by sections of the form ϕm for m ∈ Z, where

ϕm(u) = e2πimu .

We can now compute the integral of η̃(A) over the fibres of F → R as∫
F/R

Ã(A) =
dx

4π

∫ ∞
0

∑
m∈Z

(
1

2t
+
∂

∂t

)
e−4π2m2t dt√

4πt

=
dx

4π

∫ ∞
0

∑
m∈Z

(
1

2t
− 4π2m2

)
e−4π2m2t dt√

4πt
.

(6.19)

Proof of Proposition 4.11. The Proposition follows by comparing (6.17) and (6.19). �

Appendix by Don Zagier: On the values of the function Fk,ε(s)

In Section 2 of this paper (Proposition 2.11, Theorem 2.12, Theorem 2.13) it was shown
that the ν-invariants of extra twisted connected sums can be computed in terms of values of
the analytic function Fk,ε : (0,∞)→ R defined for each k ∈ N and integer ε prime to k by

Fk,ε(s) =

∫ ∞
0

∫ s

0

∑
m≡ εn (mod k)

mne−t(m
2+n2a2) da dt

(Definition 2.10). In this appendix we will give a closed formula for Fk,ε(s) in terms of the
Dedekind eta-function, show that it is equal to the arccosine (or arcsine, or arctangent) of a
computable algebraic number whenever s2 is rational, and show that the specific combinations
of Fk,ε-values occurring in Theorems 2 and 3 can be evaluated in terms of Dedekind sums.
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A.1. Evaluation of Fk,ε(s) in terms of the Dedekind eta-function. For τ in the upper
half-plane H we denote by η(τ) and L(τ) the Dedekind η-function and the principal branch
(real on the positive imaginary axis) of its logarithm, given explicitly by

η(τ) = eπiτ/12
∞∏
n=1

(
1− e2πinτ

)
, L(τ) =

πiτ

12
−
∞∑
n=1

σ(n)

n
e2πinτ ,

where σ(n) denotes the sum of the positive divisors of n. The fact that η(τ)24 is a modular
form of weight 12 on SL2(Z) implies that L satisfies the transformation equation

L
(
aτ + b

cτ + d

)
= L(τ) +

1

4
Log

(
−(cτ + d)2

)
+
πi

12
N(a, b, c, d) , (A.1)

for all
(
a b
c d

)
∈ SL2(Z), where Log denotes the principal branch (real on the positive real axis)

of the logarithm on C r (−∞, 0] and N(a, b, c, d) is an integer given by N(a, b, c, d) = b/d
(= ±b) if c = 0 and by N(a, b, c, d) = a+d

c − 12S(d, c) if c 6= 0, where the Dedekind sum S(d, c)
is defined in (0.3). Our first result is:

Proposition A.1. The value of Fk,ε(s) for any k ∈ N, integer ε prime to k, and positive real
number s is given by

Fk,ε(s) = 2 ImL
(−ε∗ + is−1

k

)
+
πε∗

6k
, (A.2)

where ε∗ ∈ Z is any solution of εε∗ ≡ 1 (mod k).

Proof. We first rewrite the definition of Fk,ε as

s
d

ds
Fk,ε(s) =

π

k

∫ ∞
0

Θk,ε(s, t) dt and Fk,ε(0) = 0 , (A.3)

where Θk,ε(s, t) is defined for s, t > 0 by

Θk,ε(s, t) =
∑

m≡ εn (mod k)

mne−πt(m
2/s+n2s)/k .

This theta series satisfies the functional equations

Θk,ε(s, t) = −Θk,−ε(s, t) = Θk,ε∗(s
−1, t) = t−3 Θk,ε(s, t

−1) , (A.4)

(where ε∗ ≡ ε−1 (mod k) as above), as we see by changing the sign of m, interchanging m
and n, or applying the Poisson summation formula with respect to both m and n. If instead
we apply Poisson summation with respect to m only, we obtain the stronger identity

Θk,ε(s, t) =
(s/t)3/2

i
√
k

∑
m,n∈Z

mnζmnεk e−πs(m
2/t+n2t)/k

(
ζk := e2πi/k

)
, (A.5)

which also makes it clear that the integral in (A.3) converges, since it shows that Θk,ε(s, t) is
exponentially small as t tends to either 0 or ∞. Inserting (A.5) into (A.3) and applying the
elementary formula∫ ∞

0
e−c1t−c2/t t−3/2 dt = =

√
π

c2
e−2
√
c1c2 (c1, c2 > 0)

with c1 = πsn2/k, c2 = πsm2/k, we find

ik

2π
F ′k,ε(s) =

∑
m,n>0

n
(
ζεmnk − ζ−εmnk

)
e−2πmns/k =

∞∑
n=1

σ(n)
(
ζεnk − ζ−εnk

)
e−2πns/k ,
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and this can be integrated immediately using the definition of L to give the formula

Fk,ε(s) = 2 ImL
(ε+ is

k

)
+ ck,ε (A.6)

for some constant ck,ε depending only on k and ε. We then use the modularity property (A.1)

and the fact that ±ε+isk = γ
(∓ε∗+is−1

k

)
with γ =

(±ε ∗
k ±ε∗

)
∈ SL2(Z) to deduce (A.2) from (A.6)

up to a constant whose value then follows immediately from the property Fk,ε(0) = 0, because
L(τ) = πiτ/12 + o(1) for Im(τ)→∞ . �

Using the transformation law (A.1) again, we can evaluate the constant ck,ε in (A.6) to get

Fk,ε(s) = 2 ImL
(ε+ is

k

)
+ 2πS(ε, k)− πε

6k
. (A.7)

giving an alternative formula for the function Fk,ε(s). In some cases this same transformation
law can be used to give a complete formula for Fk,ε(s) in terms of Dedekind sums. This

happens whenever one (and hence both) of the two SL2(Z)-equivalent numbers ±ε+isk and
∓ε∗+is

k is SL2(Z)-equivalent to its negative conjugate. An easy calculation shows that the

equation γτ = −τ for γ =
(
a b
c d

)
∈ SL2(Z) and τ in the upper half-plane holds if and only

if a = d and |cτ + a| = 1, which in our situation says that s2 = 1
c2
−
(
ε
k + a

c

)2
for some integers

a and c with a2 ≡ 1 (mod c). In all such cases, the number Fk,ε(s) is the sum of a rational
multiple of π and the arctangent of the square-root of a positive rational number. Concrete
examples where this happens and where the Dedekind sum occurring can be evaluated in
closed form are the special values

Fk,1

(
1√

k2 − 1

)
= −Fk,1

(√
k2 − 1

)
− (k − 1)(k − 2)

6k
π = arctan

√
k + 1

k − 1
− 3k + 2

12k
π

for integers k > 1 and

Fk,1

(√
m

n

)
= arctan

√
m

n
− km+ 2

12k
π

for positive integers m and n with m+ n = 2k. We omit the details.

A.2. Algebraic values. Except in the cases just mentioned, there is in general no simple
closed formula for the values of Fk,ε(s). However, if the square of the argument s is a rational
number, as is the case for all of the special values needed in this paper, one has the following
general result.

Proposition A.2. If s > 0 is the square-root of a rational number, then the value of Fk,ε(s)
for any k and ε is i times the logarithm of a computable algebraic number.

Proof. It is known from the theory of complex multiplication that the ratio of the values of
the Dedekind eta-function at any two arguments belonging to the same imaginary quadratic
field is a computable algebraic number. (More precisely, the value of η(τ) for τ belonging to
any imaginary quadratic field is an algebraic multiple of a certain product of gamma-values,
the so-called Chowla-Selberg number, that depends only on the field. For more details, see [8,

Part 1, Section 6].) Since both ε∗+i/s
k and −ε

∗+i/s
k belong to the imaginary quadratic field Q(is)

when s2 is rational, this proposition is an immediate corollary of Proposition A.1. �

We do not describe here the algorithm for computing special eta-values at CM points, since
it is standard in principle but is quite complicated. We limit ourselves instead to giving the
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k ε s S(ε, k) b σ c

3 1 1 1/18 0 ±1 1
4 1 1 1/8 0 ±1 1

4 1
√

3 1/8 1/12 ±1 1
5 1 1 1/5 0 ±1 1
6 1 1 5/18 0 ±1 1

6 1
√

3 5/18 1/6 ±1 1

3 1
√

2 1/18 −1/6 1 1/3

3 1
√

5 1/18 −1/12 1 2/3

3 1 2
√

2 1/18 1/4 −1 1/3

4 1
√

7 1/8 0 1 3/4

4 1
√

15 1/8 −1/6 1 −1/4

4 1
√

5/3 1/8 −1/6 1 1/4
5 1 2 1/5 0 1 3/5
5 2 1 0 1/10 −1 3/5
5 2 4 0 1/10 −1 4/5

6 1
√

2 5/18 −1/12 1 1/3

6 1
√

5 5/18 1/12 1 2/3

6 1
√

11 5/18 1/6 1 5/6

3 1 2 1/18 1/6 −1
√

3− 1

4 1
√

2 1/8 −1/8 1
√

2− 1

4 1
√

5 1/8 −1/4 1 1
2

(
1−
√

5
)

4 1 3 1/8 0 1
√

3− 1

4 1 5 1/8 0 1 3
√

5− 6

5 2 2 0 1/10 −1 3
√

5− 6

6 1
√

7 5/18 2/3 −1 1
4

(
1−
√

21
)

3 1
√

3 1/18 −1/6 1 3
√

2− 1

4 1 3
√

3 1/8 −1/12 1 3
√

2− 1

3 1 2
√

5 1/18 −1/6 1 1
3

(
1−
√

5 +
√

5(
√

5− 1)/2
)

3 1 4
√

2 1/18 −1/12 1 1
6

(
6− 5

√
2 + (4

√
2 + 2)

√√
2− 1

)
3 1

√
5/2 1/18 0 1 1

3

(√
5− 1 +

√
5(
√

5− 1)/2
)

4 1 3
√

7 1/8 0 1 1
16

(
9 +
√

21−
√

26
√

21− 114
)

4 1 3/
√

7 1/8 0 1 1
16

(
9 +
√

21 +
√

26
√

21− 114
)

3 1 5
√

2 1/18 1/6 −1 c = 0.766 · · · , P (3c) = 0

3 1 5/
√

2 1/18 0 1 c = 0.940 · · · , P (−3c) = 0

5 1
√

2 1/5 0 1 c = 0.861 · · · , Q(c) = 0

5 2
√

2 0 1/10 −1 c = 0.634 · · · , Q(−c) = 0

Table 3. Data needed to compute Fk,ε
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values of Fk,ε(s) for the specific triples (k, ε, s) that are used in this paper. These values are
given by

Fk,ε(s) = π
(
S(ε, k) + b

)
+ σ

2 arccos(c) ,

Fk,ε∗(1/s) = π
(
S(ε, k)− b

)
− σ

2 arccos(c) .

with b ∈ Q, σ ∈ {±1} and c ∈ Q as in Table 3. The functions P and Q appearing in the last
four lines of the table are the two sextic polynomials

P (X) = 16X6 − 416X5 + 2440X4 + 4880X3 − 12615X2 − 1826X − 32159 ,

Q(X) = 16X6 − 32X5 + 200X4 + 560X3 + 105X2 − 402X − 191 .

A.3. Evaluation of A(k+, ε+; k−, ε−;G) in terms of the Dedekind sums. In this final
subsection we place ourselves in the situation of Theorem 3. Specifically, this means that we
have two pairs or coprime numbers (k±, ε±) with k± positive and a 2 × 2 “gluing matrix”
G =

(m p
n q

)
∈ M2(Z) satisfying conditions (1.7)–(1.9). Equivalently, detG = −k+k− and

m− ε∗+n = Ak+, p− ε∗+q = Bk+, p+ ε∗−m = Ck−, q + ε∗−n = Dk− (A.8)

for some integers A, B, C, D with (A,n) = (B, q) = (C,m) = (D,n) = 1. We further assume

that n > 0, mnpq < 0 and set s+ =
√
−nq/mp, s− =

√
−mn/pq, and ρ = π−2 arg(ms+ +in).

Then the invariant we want to compute is the combination of Fk,ε-values defined by

F(k+, ε+; k−, ε−;G) :=
1

π

(
Fk+,ε+(s+) + Fk−,ε−(s−) +

ρ

2

)
.

Proposition A.3. The number F(k+, ε+; k−, ε−;G) is always rational and is given by

F(k+, ε+; k−, ε−;G) =
1

6

( m

k+n
− q

k−n
− 12S(A,n)

)
,

where S(A,n) is the Dedekind sum as defined in (0.3).

Proof. Set λ =
ε∗−A+B

k−
=

C−ε∗+D
k+

, which is an integer by (3.5). The equations (A.8) can be

rewritten as ( q p
−n −m

)
=
( k− ε∗−

0 1

)
γ
( 1 ε∗+

0 k+

)
with γ =

(
D λ
−n −A

)
∈ SL2(Z) .

It is easily checked that γ maps τ+ =
ε∗++is−1

+

k+
to τ− =

−ε∗−+is−1
−

k−
. From the transformation

law (A.1) of L, we get

L(τ−)− L(τ+) =
1

4
Log

(
−
(m+ ins−1

+

k+

)2
)

+
πi

12

(
A−D
n

− 12S(A,n)

)
.

Because L(−z̄) = L(z), Proposition A.1 gives

F(K+, ε+; k−, ε−;G) =
2

π

(
ImL(τ−)− ImL(τ+)

)
+

ρ

2π
+

ε∗+
6k+

+
ε∗−
6k−

=
1

6

(
m

k+n
− q

k−n
− 12S(A,n)

)
. �

We observe that (0.2) and Proposition A.3 give an alternative proof of Theorem 3.
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