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1. Introduction

In [7, 10], a non-abelian zeta function ζX,n(s) = ζX/Fq ,n(s) was defined for
any smooth projective curve X over a finite field Fq and any integer n ≥ 1 by

ζX,n(s) =
∑
[V ]

|H0(X,V )r{0}|
|Aut(V )|

q−deg(V )s (<(s) > 1) , (1)

where the sum is over the moduli stack of Fq-rational semi-stable vector
bundles V of rank n on X with degree divisible by n. Using the Riemann-
Roch, duality and vanishing theorems for semi-stable bundles, it was shown
that ζX,n(s) agrees with the usual Artin zeta function ζX(s) of X/Fq if n = 1,
that it has the form PX,n(T )/(1−T )(1− qnT ) for some polynomial PX,n(T )
of degree 2g in T , where g is the genus of X and T = q−ns, and that it
satisfies the functional equation

ζ̂X,n(1− s) = ζ̂X,n(s) , where ζ̂X,n(s) := qn(g−1)s · ζX,n(s) .

It was also conjectured that ζX,n(s) satisfies the Riemann hypothesis (i.e.,
that all of its zeros have real part 1/2). In [12], Part I of this series, ex-
plicit formulas for ζX,n(s) and a proof of the Riemann hypothesis were given
when g = 1.

On the other hand, in [9, 10], a different approach to zeta functions for

curves led to the so-called group zeta function ζ̂ G,PX (s) of X/Fq, associated
to a connected split algebraic reductive group G and its maximal parabolic
subgroup P . The precise definition, which is based on the theory of periods,
will be recalled in §2. In this paper, we will be interested in the special
case when G = SLn and P = Pn−1,1, the subgroup of SLn consisting of
matrices whose final row vanishes except for its last entry, and will then write

simply ζ̂ SLnX (s) for ζ̂ G,PX (s). Our main result will be a proof of the following
theorem, which was conjectured in [10] (“special uniformity conjecture”).

Theorem 1. The zeta functions ζ̂X,n(s) and ζ̂ SLnX (s) coincide for all n ≥ 1.

This theorem should be seen (and cited) as a joint result of the present
authors and of Sergey Mozgovoy and Markus Reineke, because it is proved
by comparing a formula established here with a (harder) formula given in
their paper [6]. Specifically, the proof of Theorem 1 consists of three steps:

(1) By analyzing the definition of ζ̂ G,PX (s) for G = SLn, P = Pn−1,1, we

will prove an explicit formula, giving ζ̂ SLnX (s) as a linear combination

of the functions ζ̂X(ns − k) for 0 ≤ k < n with rational functions
of T as coefficients. The calculation is given in §§3–5.
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(2) In [6], as recalled in §6, using the theory of Hall algebras and wall-

crossing techniques, a formula for ζ̂X,n(s) of the same general shape
is proved.

(3) A short calculation, given in §7, shows that the two formulas agree.

The explicit formula is not very complicated, and we can state it here.
Motivated by the Siegel-Weil formula for the total mass of vector bundles
V of rank n and degree 0 on X (i.e., the number of such V ’s, weighted by
the inverse of the number of their automorphisms), and in order to make a
proper normalization, we define numbers v̂k (k ≥ 1) inductively by

v̂k =

{
lims→1(1− q1−s) ζ̂X(s) if k = 1 ,

ζ̂X(k) v̂k−1 if k ≥ 2 ,
(2)

where ζ̂X(s) = qs(g−1)ζX(s). Furthermore, as in [12]—where these functions
were introduced for the purpose of writing down in a more structural way
the non-abelian rank n zeta functions for elliptic curves over finite fields—we
define rational functions Bk(x) (k ≥ 0) either inductively by the formulas

Bk(x) =


1 if k = 0 ,

k∑
m=1

v̂m
Bk−m(qm)

1− qmx
if k ≥ 1 ,

(3)

or in closed form (if k ≥ 1) by

Bk(x) =
k∑
p=1

∑
k1,...,kp>0
k1+···+kp=k

v̂k1 . . . v̂kp
(1− qk1+k2) . . . (1− qkp−1+kp)

· 1

1− qkpx
. (4)

Then the formula that we will establish for ζ̂ SLnX (s) can be stated as follows:

Theorem 2. With the above notations, we have

ζ̂ SLnX (s) = q(
n
2)(g−1)

n−1∑
k=0

Bk(q
ns−k)Bn−k−1(qk+1−ns) ζ̂X(ns− k) . (5)

Remarks. 1. In the definition (1) of the non-abelian zeta function ζX,n(s),
vector bundles used are assumed to be of degrees divisible by the rank n.
This definition is motivated by a work of Drinfeld [2] on counting super-
cuspidal representations in rank two, and also because if we summed over
all degrees as was originally done in [7], then the functional equation would
still hold but the Riemann hypothesis would not.
2. The analogue of Theorem 1 for the case of number fields rather than
function fields was proved by the first author several years ago by totally
different techniques, using the theory of Eisenstein series and Arthur trace
formulas (combine the “Global Bridge” on p. 295 and the discussion on
p. 305 of [8] with the formulas on p. 284 of [11] and on p. 197 of [9]).
3. A proof of Theorem 1 for the cases n = 2 and n = 3 was given in [6], at
a time when this paper was still in the preprint stage.
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2. Zeta functions for (G,P )

Let G be a connected split reductive algebraic group of rank r with a
fixed Borel subgroup B and associated maximal split torus T (over a base
field). Denote by(

V, 〈·, ·〉,Φ = Φ+ ∪ Φ−,∆ = {α1, . . . , αr}, $ := {$1, . . . , $r},W
)

the associated root system. That is, V is the real vector space defined as the
R-span of rational characters of T , and as usual, is equipped with a natural
inner product 〈·, ·〉, with which we identify V with its dual V ∗, Φ+ ⊂ V
is the set of positive roots, Φ− := −Φ+ the set of negative roots, ∆ ⊂ V
the set of simple roots, $ ⊂ V the set of fundamental weights, and W
the Weyl group. By definition, the fundamental weights are characterized
by the formula 〈$i, α

∨
j 〉 = δij for i, j = 1, 2, . . . , r, where α∨ := 2

〈α,α〉 α

denotes the coroot of a root α ∈ Φ. We also define the Weyl vector ρ by
ρ = 1

2

∑
α∈Φ+ α, and introduce a coordinate system on V (with respect to

the base {$1, . . . , $r} of V and the vector ρ) by writing an element λ ∈ V
in the form

λ =
r∑
j=1

(1− sj)$j = ρ−
r∑
j=1

sj$j ,

thus fixing identifications of V and VC = V ⊗R C with Rr and Cr. In
addition, for each Weyl element w ∈ W , we set Φw := Φ+ ∩ w−1Φ−, i.e.,
the collection of positive roots whose w-images are negative.

As usual, by a standard parabolic subgroup, we mean a parabolic subgroup
of G that contains the Borel subgroup B. From Lie theory (see e.g., [3]),
there is an one-to-one correspondence between standard parabolic subgroups
P of G and subsets ∆P of ∆. In particular, if P is maximal, we may and
will write ∆P = ∆ r {αp} for a certain unique p = p(P ) ∈ {1, . . . , r}. For
such a standard parabolic subgroup P , denote by VP the R-span of rational
characters of the maximal split torus TP contained in P , by V ∗P its dual space,
and by ΦP ⊂ VP the set of non-trivial characters of TP occurring in the space
V . Then, by standard theory of reductive groups (see e.g., [1]), VP admits
a canonical embedding in V (and V ∗P admits a canonical embedding in V ∗),
which is known to be orthogonal to the fundamental weight $p, and hence
ΦP can be viewed as a subset of Φ. Set Φ+

P = Φ+ ∩ ΦP , ρP = 1
2

∑
α∈Φ+

P
α,

and cP = 2〈$p − ρP , α∨p 〉.
Now, let X be an integral regular projective curve of genus g over a finite

field Fq. In [10], motivated by the study of zeta functions for number fields,1

for a connected split reductive algebraic group G, and its standard parabolic
subgroup P as above (defined over the function field of X), the first author
defined the period of G for X by

ωGX(λ) :=
∑
w∈W

1∏
α∈∆(1− q−〈wλ−ρ,α∨〉)

∏
α∈Φw

ζ̂X(〈λ, α∨〉)
ζ̂X(〈λ, α∨〉+ 1)

1For number fields, the analogue of the two functions to be introduced below are special
kinds of Eisenstein periods, defined as integrals of Eisenstein series over moduli spaces of
semi-stable lattices. For details, see [9].
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and the period of (G,P ) for X by

ωG,PX (s) := Res〈λ−ρ, α∨〉=0, α∈∆P
ωGX(λ)

∣∣
sp=s

= Ressr=0 · · ·Ressp+1=0Ressp−1=0 · · ·Ress1=0 ω
G
X(λ)

∣∣
sp=s

,

where s is a complex variable2 s and 1 − s rather than s and −n − s. and
where for the last equality we used the fact that 〈ρ, α∨〉 = 1 for all α ∈ ∆ and
the relation that 〈$i, α

∨
j 〉 = δij for all i, j ∈ {1, . . . , r}. As proved in [4, 10],

the ordering of taking residues along singular hyperplanes 〈λ−ρ, α∨〉 = 0 for
α ∈ ∆P does not affect the outcome, so that the definition is independent
of the numbering of the simple roots.

To get the zeta function associated to (G,P ) for X, certain normalizations

should be made. For this purpose, write ωGX(λ) =
∑

w∈W
Tw(λ), where, for

each w ∈W ,

Tw(λ) :=
1∏

α∈∆(1− q−〈wλ−ρ,α∨〉)
∏
α∈Φw

ζ̂X(〈λ, α∨〉)
ζ̂X(〈λ, α∨〉+ 1)

.

We must study the residue Res〈λ−ρ, α∨〉=0, α∈∆P
Tw(λ).

We care only about those elements w ∈ W (we will call them special)
that give non-trivial residues, namely, those satisfying the condition that
Res〈λ−ρ, α∨〉=0, α∈∆P

Tw(λ) 6≡ 0. This can happen only if all singular hyper-
planes are of one of the following two forms:

(1) 〈wλ−ρ, α∨〉 = 0 for some α ∈ ∆, giving a simple pole of the rational
factor 1∏

α∈∆(1−q−〈wλ−ρ,α∨〉) ;

(2) 〈λ, α∨〉 = 1 for some α ∈ Φw, giving a simple pole of the zeta factor

ζ̂X(〈λ, α∨〉).
For special w ∈W , and (k, h) ∈ Z2, following [4] (see also [10]) we define

NP,w(k, h) := #{α ∈ w−1Φ− : 〈$p, α
∨〉 = k, 〈ρ, α∨〉 = h}

MP (k, h) := max
w special

(
NP,w(k, h− 1)−NP,w(k, h)

)
.

=NP,w0(k, h− 1)−NP,w0(k, h) , (6)

where w0 is the longest element of the Weyl group and where the last equality
is Corollary 8.7 of [5]. Note that MP (k, h) = 0 for almost all but finitely
many pairs of integers (k, h), so it makes sense to introduce the product

DG,P
X (s) :=

∞∏
k=0

∞∏
h=2

ζ̂X(kn(s− 1) + h)MP (k,h). (7)

Following [9, 10], we define the zeta function of X associated to (G,P ) by

ζ̂G,PX (s) := q(g−1) dimNu(B) ·DG,P (s) · ωG,PX (s) . (8)

Here Nu(B) denote the nilpotent radical of the Borel subgroup B of G.

2We should warn the reader that in [8], [9] and [11] a different normalization is used,

with the argument of ωG,PX (and later of ζG,PX ) being given by s = cp(sp− 1) ( = n(sp− 1)
in the special case (G,P ) = (SLn, Pn−1,1)) rather than s = sp as chosen here. With the
normalization used here the functional equation relates
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Remark. For special w ∈W , even after taking residues, there are some zeta

factors ζ̂X(ks+h) left in the denominator of Res〈λ−ρ, α∨〉=0, α∈∆P
Tw(λ). The

reason for introducing the factor DG,P
X (s) in our normalization of the zeta

functions, based on formulas in [4] and [10], is to clear up all of the zeta
factors appearing in the denominators associated to special Weyl elements.

3. Specializing to SLn

From now on, we will specialize to the case when G is the special linear
group SLn and P is the maximal parabolic subgroup Pn−1,1 consisting of
matrices whose final row vanishes except for its last entry, corresponding to
the ordered partition (n − 1) + 1 of n. Our purpose is to study the zeta
function of X associated to SLn

ζ̂SLnX (s) := ζ̂
SLn, Pn−1,1

X (s) . (9)

As usual, we realize the root system An−1 associated to SLn as follows.
Denote by {e1, . . . , en} the standard orthonormal basis of the Euclidean
space Rn. The positive roots are given by Φ+ := {ei − ej | 1 ≤ i < j ≤ n},
the simple roots by ∆ = {α1 := e1 − e2, . . . , αn−1 := en−1 − en}, and

the Weyl vector by ρ =
∑n

j=1
n+1−2j

2 ej . We identify the Weyl group W
with Sn, the symmetric group on n letters, by the assignment w 7→ σw,
where w(ei − ej) = eσw(i) − eσw(j). For convenience, we will also write the

corresponding ∆P , Φ+
P , ρP , $P and cP simply as ∆′, Φ′+, ρ′, $′ and c′

respectively. We have

∆′ = {α1, . . . , αn−2}, Φ′
+

= {ei − ej : 1 ≤ i < j ≤ n− 1} ,

ρ′ =
n−1∑
j=1

n− 2j

2
ej , $′ = $n−1 =

1

n

n∑
j=1

ej − en .

In addition, 〈ρ, α〉 = 1 for all α ∈ ∆, and α∨ = α, 〈ρ, α〉 = 1 for all α ∈ Φ+.
Hence

ρ′ = ρ − n

2
$′ , c′ = 2〈$′ − ρ′, αn−1〉 = n .

Accordingly, for positive roots αij := ei − ej ∈ Φ+, we have

〈ρ, αij〉 = j − i, 〈$′, αij〉 = δjn − δin, (10)

and, for λs := (ns− n)$′ + ρ,

〈λs, αij〉 =


j − i if i, j 6= n,

ns− i if j = n,

−ns+ j if i = n.

(11)

To write down the zeta function ζ̂SLnX (s) explicitly, we will express the
multiple residues in the periods of (SLn, Pn−1,1) as a single limit, after mul-
tiplying by suitable vanishing factors (to the period of SLn). Indeed, since
〈λs − ρ, αn−1〉 = ns− n, and

lim
λ→λs

(
1− q−〈λ−ρ,α〉

)
≡ 0 (∀ α ∈ ∆′) , (12)
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we have

ω
SLn, Pn−1,1

X (s) = lim
λ→λs

( ∏
α∈∆′

(1− q−〈λ−ρ,α〉) · ωSLnX (λ)

)
. (13)

Recall that ωSLnX (λ) =
∑

w∈W Tw(λ). Accordingly, to pin down the non-
zero contributions for the terms appearing in the limit, we should consider,
for a fixed w ∈ W , the limit limλ→λs

(∏
α∈∆′(1 − q−〈λ−ρ,α〉) · Tw(λ)

)
, or

equivalently, for a fixed σ ∈ Sn('W ), the function

Lσ(s) = lim
λ→λs

(∏
α∈∆′(1− q−〈λ−ρ,α〉)∏
β∈∆(1− q−〈σλ−ρ,β〉)

∏
α∈Φ+, σ(α)<0

ζ̂X(〈λ, α〉)
ζ̂X(〈λ, α〉+ 1)

)
. (14)

In order for this limit Lσ(s) to be non-zero, by (12), there should be a

complete cancellation of all of the factors (1 − q−〈λ−ρ,α〉) in the numerator
of the first term in (14) that vanish at λ = λs with either

(i) factors
(
1 − q−〈σλs−ρ,β〉

)
appearing in the denominator of the first

term in (14), or else

(ii) the poles at λ = λs of factors ζ̂X
(
〈λ, α〉

)
appearing in the numerator

of the second term in (14) for which 〈λs, α〉 = 1.

Since 〈· , ·〉 is σ-invariant, for α ∈ ∆′, by (10), 〈σλs−ρ, α〉 = 〈λs, σ−1α〉−1.

Hence, for Lσ(s) to have a non-zero contribution to ω
(SLn, Pn−1,1)
X (s), the

union of

Aσ :=
{
α ∈ ∆′ : σα ∈ ∆

}
and Bσ :=

{
α ∈ ∆′ : σα < 0

}
(15)

must be of cardinality n − 2. Call such σ ∈ Sn special and denote the
collection of special permutations by S0

n. Clearly, for σ ∈ Sn, we have
Aσ ∪Bσ ⊂ ∆′, and Aσ ∪Bσ = ∆′ if and only if σ ∈ S0

n. That is to say, the
limit Lσ(s) corresponding to the permutation σ ∈ Sn can only be non-zero
if σ is special, and in this case, we have ∆′ = AσtBσ. This then completes
the proof of the following

Lemma 3. With the notations above,

ω
SLn, Pn−1,1

X (s) =
∑
σ∈S0

n

Lσ(s) . (16)

Here σ ∈ S0
n if and only if Aσ ∪Bσ = ∆′.

The next lemma describes Lσ(s) for special permutations σ.

Lemma 4. For σ ∈ S0
n, set

Rσ(s) =
∏

1≤k≤n−1
σ−1αk 6∈∆′

(
1− q−〈σλs−ρ,αk〉

)
, ζ̂ [n]

σ (s) =
∏

1≤i≤n−1
σ(i)>σ(n)

ζ̂X(〈λs, αin〉)
ζ̂X(〈λs, αin〉+ 1)

,

ζ̂ [<n]
σ (s) :=

( ∏
1≤k≤n−2

σ(k)>σ(k+1)

(
1−q−〈λ−ρ,αk〉

)
·

∏
1≤i<j≤n−1
σ(i)>σ(j)

ζ̂X(〈λ, αij〉)
ζ̂X(〈λ, αij〉+ 1)

)∣∣∣∣∣
λ=λs

.

Then

Lσ(s) =
1

Rσ(s)
· ζ̂ [n]
σ (s) · ζ̂ [<n]

σ (s) . (17)
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Proof. This is obtained by regrouping the terms of (14) for special permuta-
tion σ ∈ S0

n, following the discussions above. We first cancel the terms in the
numerator of the first factor in (14) for α ∈ Aσ with the corresponding terms
in the denominator for β = σα. The first factor 1/Rσ(s) in (17) is the value
at λ = λσ of the product of the remaining terms β ∈ ∆rσAσ in this denom-

inator. The second factor ζ̂
[n]
σ (s) in (17) is the value at λ = λσ of the product

of the terms in the second factor in (14) for α /∈ Φ′+, i.e. α = ei − en > 0.

The third factor ζ̂
[<n]
σ (s) in (17), which can also be written

ζ̂ [<n]
σ (s) =

( ∏
α∈Bσ

(1− q−〈λ−ρ,α〉) ·
∏

α∈Φ′+

σ(α)<0

ζ̂X(〈λ, α〉)
ζ̂X(〈λ, α〉+ 1)

)∣∣∣∣∣
λ=λs

,

is obtained by collecting all the remaining zeta factors and rational factors
appearing in the numerator. �

The terms occurring in ζ̂
[<n]
σ (s) are of two types: for α ∈ Bσ we must

combine the quantities (1 − q−〈λ−ρ,αk〉) and
ζ̂X(〈λ,αij〉)
ζ̂X(〈λ,αij〉+1)

before taking the

limit as λ→ λs because the first has a zero and the second has a pole, while
in the remaining zeta-quotients from the second term in (17), corresponding

to α ∈ Φ′+rBσ, we could simply substitute λ = λs instead of taking a limit.
We can say this differently as follows. By abuse of notation we write simply

ζ̂X(1) for the limit as s → 1 of (1 − q1−s)ζ̂X(s). (It should be written v̂1,

as defined in (2), but the “ζ̂X(1)” notation will let us write more uniform

formulas.) Then the definition of ζ̂
[<n]
σ (s) can be rewritten using the first

equation in (11) as

ζ̂ [<n]
σ (s) =

∏
k≥1

(
ζ̂X(k)

ζ̂X(k + 1)

)mσ(k)

=
∏
k≥1

ζ̂X(k)nσ(k) (18)

where

mσ(k) =
∑

1≤i<j≤n−1
σ(i)>σ(j), j−i=k

1 = #{α ∈ Φ′
+

: σα < 0, 〈ρ, α〉 = k} (19)

and

nσ(k) = mσ(k)−mσ(k − 1) , nσ(1) = mσ(1) = #Bσ . (20)

Equation (18) gives an explicit formula for the third factor in (17), which, as
one sees, does not depend on s at all. The other two factors in (17), which
do depend on s, will be computed later, in Section 5.

Lemmas 3 and 4 calculate the third factor ωG,PX (s) in the definition (8)

of ζ̂G,PX (s) in the special case G = SLn, P = Pn−1,1, but since some of the
numbers nσ(k) in (18) may be negative, the expression for this factor may
still contain some zeta values in its denominator. These zeta values in the
denominator will be cancelled when we include the second factor DG,P (s)
in (8). Our next task is therefore to evaluate this expression explicitly in the

case (G,P ) = (SLn, Pn−1,1). Then the formulas for DG,P (s) and ζ̂G,PX (s)
can be written down explicitly as follows.
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Lemma 5. We have

DSLn,Pn−1,1(s) =
n−1∏
k=2

ζ̂X(k) · ζ̂X(ns). (21)

and

ζ̂SLnX (s) = q
n(n−1)

2
(g−1) · DSLn,Pn−1,1(s) · ω(SLn,Pn−1,1)

X (s) . (22)

Proof. In view of the definitions (7) and (8), we must show that MP (k, h)
equals 1 if k = 0 and 2 ≤ h < n or k = 1 and h = n and vanishes otherwise,

which follows easily from (6) since here w0 =

(
1 2 · · · n
n n− 1 · · · 1

)
. �

4. Special Permutations

In this section we describe special permutations explicitly. Recall from §3
that σ is special if and only if Aσ tBσ = ∆′, where Aσ and Bσ are defined
as in (15). This implies that σ is special if and only if σ(i+ 1) = σ(i) + 1 or
σ(i+1) < σ(i) for all 1 ≤ i ≤ n−2 (or equivalently, since σ is a permutation,
if and only σ(i+1) ≤ σ(i)+1 for all 1 ≤ i ≤ n−2). Denote by t1 > · · · > tm
the distinct values of σ(i) − i for 1 ≤ i ≤ n − 2, and by Iν (1 ≤ ν ≤ m)
the set of i ∈ {1, . . . , n − 2} with σ(i) − i = tν . Then σ maps Iν onto its
image I ′ν = σ(Iν) by translation by tν , and we have

⋃
Iν = {1, . . . , n − 1}

and
⋃
I ′ν = {1, . . . , n} r {a}, where a = σ(n) ∈ {1, . . . , n}. It is easy to

check3 that I1 < · · · < Im (in the sense that all elements of Iν are less than
all elements of Iν+1 if 1 ≤ ν ≤ m−1) and I ′1 > · · · > I ′m (in the same sense).
These properties characterize special permutations and are illustrated in the
figure at the end of the section, in which the lengths of the intervals Iν with
I ′ν above (respectively below) a are denoted by k1, . . . , kp (resp. by `1, . . . , `r),
so that

∑p
i=1 ki = n − a,

∑r
j=1 `j = a − 1, and p + r = m. We will denote

the corresponding special permutation by σ(k1, . . . , kp; a; l1, . . . , lr) and also
define two sequences of numbers 0 = K0 < K1 < · · · < Kp = n − a and
0 = L0 < L1 < · · · < Lr = a− 1 by

Ki = k1 + · · ·+ ki (1 ≤ i ≤ p), Lj = l1 + · · ·+ lj (1 ≤ j ≤ r). (23)

Remark. Denote by Sn,a (a = 1, . . . , n) the set of special permutations
in Sn with σ(n) = a. From the above description we find that Sn,a

∼=
Xn−a × Xa−1 where XK for K ≥ 0 is the set of ordered partitions of K
(decompositions K = k1 + · · ·+ kp with all ki ≥ 1). Clearly the cardinality
of XK equals 1 if K = 0 (in which case only p = 0 can occur) and 2K−1

if K ≥ 1 (the ordered partitions of K are in 1:1 correspondence with the
subsets of {1, . . . ,K − 1}, each such subset dividing the interval [0,K] ⊂ R

3Indeed, let A denote the set of indices i ∈ {1, . . . , n − 2} with σ(i + 1) = σ(i) + 1.
Then σ(i) − i is constant when we pass from any i ∈ A to i + 1, so each set Iν is a
connected interval that is contained in A except for its right end-point i0, which satisfies
σ(i0 + 1) < σ(i0), so that i0 + 1 belongs to an Iµ satisfying tµ < tν and hence µ > ν.
But then Iµ contains a point that is bigger than one of the points of Iν and that has an
image under σ that is smaller than the image of that point, and since all of these sets are
connected intervals this means that all of Iµ lies to the right of all of Iν and that all of I ′µ
lies to the left of all of I ′ν , proving the assertion.
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i

σ(i)

n

a

k1 k2 · · · kp l1 · · · lr

k1

k2

...

kp

l1

...

lr

n− a a− 1

Figure 1. The special permutation σ(k1, . . . , kp; a; l1, . . . , lr)

into intervals of positive integral length), so |Sn,a| equals 2n−2 for a ∈ {1, n}
and 2n−3 for 1 < a < n, and the whole set S0

n has cardinality 2n−3(n+ 2).

5. Proof of Theorem 2

In this section, we use the characterization of special permutations given

in §4 to calculate the rational factor Rσ(s) and the zeta factors ζ̂
[n]
σ (s) and

ζ̂
[<n]
σ (s) appearing in Lemma 4 explicitly for special permutations σ. We

begin with Rσ(s).

Lemma 6. For the special permutation σ = σ(k1, . . . , kp; a; l1, . . . , lr), the
quantity Rσ(s) defined in Lemma 4 is given by

Rσ(s) = (1− qk1+k2) · · · (1− qkp−1+kp) · (1− qns−n+a+kp)

× (1− q−ns+n−a+l1+1) · (1− ql1+l2) · · · (1− qlr−1+lr) .

Proof. By definition,

Rσ(s) =
∏

1≤k≤n−1
σ−1(αk)6∈∆′

(
1− q−〈σλs−ρ,αk〉

)
=

∏
1≤k≤n−1
σ−1(αk) 6∈∆′

(
1− q1−〈λs,σ−1αk〉

)

For each k occurring in this product, write σ−1(αk) = ei − ej =: αij . Then
the condition αij /∈ ∆′ says that the points (i, σ(i) = k) and (j, σ(j) = k+1)
do not belong to the same square block in the picture of the graph of σ given
in the last section. From that picture, we see that the k’s occurring in the
product, in decreasing order, together with the corresponding values of i
and j, are given by the first three columns of the following table
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k i = σ−1(k) j = σ−1(k + 1) 1− 〈λs, αij〉
n−Kµ (1 ≤ µ < p) Kµ+1 Kµ−1 + 1 kµ + kµ+1

a n Kp−1 + 1 ns− n+ a+ kp
a− 1 n− a+ l1 n −ns+ n− a+ l1 + 1

n− Lν (1 ≤ ν < r) Lν+1 Lν−1 + 1 lν + lν+1

while the fourth column follows from equation (11). The lemma follows. �

We next consider the zeta factor ζ̂
[n]
σ (s).

Lemma 7. For the special permutation σ = σ(k1, . . . , kp; a; l1, . . . , lr), the

zeta factor ζ̂
[n]
σ (s) of Lσ(s) is given by

ζ̂ [n]
σ (s) =

ζ̂X(ns− n+ a)

ζ̂X(ns)
.

This lemma implies in particular that to normalize ζ̂
[n]
σ (s) we at least need

to clear the denominator by multiplying by the zeta factor ζ̂X(ns).

Proof. This is much easier. From λs = (ns − n)$ + ρ, we get 〈λs, ei − en〉
= ns − i. Moreover, by the graph in §4, for the special permutation σ =
σ(k1, . . . , kp; a; l1, . . . , lr), we have

{ei − en : 1 ≤ i < n, σ(i) > σ(n)} = {e1 − en, e2 − en, . . . , en−a − en} .

Therefore, by the definition of ζ̂
[n]
σ (s) given in Corollary 4, we have

ζ̂ [n]
σ (s) =

∏
α=ei−en, i≤n−1

σ(i)>σ(n)

ζ̂X(〈λ, α〉)
ζ̂X(〈λ, α〉+ 1)

∣∣∣
λ=λs

=

n−a∏
i=1

ζ̂X(ns− i)
ζ̂X(ns− i+ 1)

=
ζ̂X(ns− n+ a)

ζ̂X(ns)

as asserted. �

Finally, we treat the zeta factor ζ̂
[<n]
σ (s). However, with the normalization

stated in Lemma 5, to obtain the group zeta function ζ̂SLnX (s), it suffices to

investigate the product ζ̂
[<n]
σ (s) ·

∏
i≥2 ζ̂X(i)−n(i), or equivalently, by (18),

the product ζ̂X(1)#Bσ
∏
i≥2 ζ̂X(i)nσ(i)−n(i), which we write as

∏
i≥1 ζ̂X(i)rσ(i)

with

rσ(k) =

{
#Bσ if k = 1,

nσ(k)− n(k) if k ≥ 2,

where the numbers n(k) are defined, in analogy with the numbers nσ(k) in
Section 3 (equations (19) and (20)), by

m(k) = #{α > 0 : 〈ρ, α〉 = k} , n(k) = m(k)−m(k − 1) .

Clearly m(k) = n− k for 1 ≤ k ≤ n and n(k) = −1 for 2 ≤ k ≤ n.
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Lemma 8. For the special permutation σ = σ(k1, . . . , kp; a; l1, . . . , lr), we
have ∏

i≥1

ζ̂X(i)rσ(i) =

p∏
i=1

v̂ki ·
r∏
j=1

v̂lj . (24)

In particular, rσ(k) ≥ 0.

Proof. This is based on a detailed analysis of rσ(k). Obviously,

rσ(1) = #{α ∈ ∆′ : σα < 0} = #{(i, i+ 1) : 1 ≤ i ≤ n− 2, σ(i) > σ(i+ 1)}.

If k ≥ 2, by definition,

m(k)−mσ(k) = #{α > 0 : 〈ρ, α〉 = k} −#{α ∈ Φ′
+

: σα < 0, 〈ρ, α〉 = k}

= #{ei − en : 〈ρ, α〉 = k}+ #{α ∈ Φ′
+

: σα > 0, 〈ρ, α〉 = k}

= 1 + #{α ∈ Φ′
+

: σα > 0, 〈ρ, α〉 = k},

since, by (10), {ei − en : 〈ρ, α〉 = k} = {en−k − en}. Thus, by applying the
characterization graph in §4 for special permutation σ(k1, . . . , kp; a; l1, . . . , lr),

we conclude that α = αij ∈ Φ′+ satisfying σα > 0 (or equivalently α = αij
satisfying i < j ≤ n− 1 and σ(i) < σ(j)) if and only if i and j belong to the
same block, say Iµ for some µ, associated to σ(k1, . . . , kp; a; l1, . . . , lr), and
also σ(j) ∈ Iµ (or equivalently j + 1 ∈ Iµ), since otherwise σ(αij) < 0.

Denote by (m(k) − mσ(k))µ (resp. rσ,µ(k)) the contribution to m(k) −
mσ(k) (resp. to rσ(k)) of the block Iµ. With the discussion above, we have

m(k)−mσ(k) =
∑

µ
(m(k)−mσ(k))µ and rσ(k) =

∑
µ
rσ,µ(k).

Fix some µ and let Iµ := {a+1, a+2, . . . , a+b} with a, b ∈ Z>0. Clearly,
when k = 1, rσ,µ(1) = #{(a+ b− 1, a+ b)} = 1, since, for other (i, i+ 1)’s,
σ(i) < σ(i+ 1). Moreover, when k ≥ 2, by (10) and the characterization of
the graph again, we have

(m(k)−mσ(k))µ = #
{

(i, j) : i, j + 1 ∈ Iµ, i < j, j = i+ k
}

= #
{

(i, j) : a+ 1 ≤ i < j < a+ b, j = i+ k
}
.

Note that, for each fixed i (with a+ 1 ≤ i < a+ b),

#
{

(i, j) : a+ 1 ≤ i < j < a+ b, j = i+ k
}

=

{
1 i+ k < a+ b

0 i+ k ≥ a+ b
.

Hence, (m(k) − mσ(k))µ = b − (k + 1). This implies that, for all k ≥ 1
rσ,µ(k) = (m(k − 1)−mσ(k − 1))µ − (m(k)−mσ(k))µ = 1. Consequently,∏

i≥1

ζ̂X(k)rσ,µ(k) = ζ̂X(1) ζ̂X(2) · · · ζ̂X(b) .

Equation (24) follows. �
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Combining Lemmas 5, 6, 7, and 8, we get

ζ̂SLnX (s)

q
n(n−1)

2
(g−1)

=
∏
i≥2

ζ̂X(i)−n(i) · lim
λ→λs

( ∏
α∈∆P

(1− q−〈λ−ρ,α∨〉) · ωSLnX (λ)
)

=

n∑
a=1

∑
k1,...,kp>0

k1+···+kp=n−a

v̂k1 . . . v̂kp
(1− qk1+k2) . . . (1− qkp−1+kp)

· 1

1− qns−n+a+kp

× ζ̂(ns− n+ a)

×
∑

l1,...,lr>0
l1+···+lr=a−1

1

1− q−ns+n−a+1+l1
· v̂l1 . . . v̂lr

(1− ql1+l2) . . . (1− qlr−1+lr)
.

This completes the proof of Theorem 2.

6. The theorem of Mozgovoy and Reineke

In the previous three sections we have given an explicit formula for the
group zeta function associated to a curve over a finite field in the case
(G,P ) = (SLn, Pn−1,1). As explained in the introduction, our main result
(Theorem 1) will follow by comparing this formula with the explicit formula

for the rank n non-abelian zeta function ζ̂X,n(s) found by Mozgovoy and
Reineke, namely:

Theorem (Theorem 7.2 of [6]). The function ζ̂X,n(s) is given by

ζ̂X,n(s) = q(
n
2)(g−1)

n−1∑
h=1

∑
n1,...,nh>0

n1+···+nh=n−1

v̂n1 · · · v̂nh∏h−1
j=1 (1− qnj+nj+1)

×
( ζ̂X(ns)

1− q−ns+n1+1

+
h−1∑
i=1

(1− qni+ni+1) · ζ̂X(ns− (n1 + · · ·+ ni))

(1− qns−(n1+···+ni−1))(1− q−ns+n1+···+ni+1+1)

+
ζ̂X(ns− n+ 1)

1− qns−(n1+···+nk−1)

)
. (25)

This already looks very similar to Theorem 2, and the precise equality of
the two formulas will be verified in §7. But since the ideas leading to the
expressions for the group zeta function and for the non-abelian zeta function
are very different, and since the ideas of the proof in [6] are very interesting,
we include a brief account of their calculation for the benefit of the interested
reader. A reader who is interested only in the proof of the main result, or
who is already familiar with the paper [6], can skip immediately to Section 7.

The first ingredient is that of semi-stable pairs and triples. Fix an integral
regular projective curve X over a finite field Fq. By a pair (E, s) over X we
mean a vector bundle E on X together with a global section s of E on X.
Such pairs form an Fq-linear category, a morphism (E, s) → (E′, s′) being
an element (λ, f) ∈ Fq × HomX(E,E′) such that f ◦ s = λ s′. A pair (E, s)
is called τ -semistable (τ ∈ R) if µ(F ) ≤ τ for any sub-bundle F of E and
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µ(E/F ) ≥ τ for any subbundle F of E with s ∈ H0(X,F ). Here, as usual,
µ(E) denotes the Mumford slope of E. For (r, d) ∈ Z>0 × Z we denote
by Mτ

X(r, d) the moduli stack of τ -semistable pairs (E, s) of rank r and
degree d. If τ = d/r, then this is the same as the usual slope semistability
of E, so if we write MX(r, d) for the moduli space of semistable bundles of
rank r and degree d, then (cf. Corollary 3.7 of [6])∑

(E,s)∈Md/r
X (r,d)

1

#Aut(E, s)
=

1

q − 1

∑
E∈MX(r,d)

qh
0(X,E) − 1

#AutE
.

Next, we consider triples E = (E0, E1, s) consisting of two coherent sheaves
E0, E1 on X and a morphism s : E1 → E0. These triples form an abelian
category which we denote by A. The triple E = (E0, E1, s) is called µτ -
semistable if µτ (F) ≤ µτ (E) for any sub-object F of E , where

µτ (E) :=
degE0 + degE1 + τ · rankE1

rankE0 + rankE1
.

We also introduce χ(E ,F) :=
∑2

k=0(−1)k dim ExtkA(E ,F). It is known that
χ(E ,F) = χ(E0, F0) + χ(E1, F1) − χ(E1, F0), where as usual, χ(E,F ) :=
dim Hom(E.F )− dim Ext1(E,F ). For α = (r, d), β = (r′, d′) ∈ Z>0 × Z, set
χ(α) = d− (g−1)r and 〈α, β〉 := 2(rd′− r′d). Similarly, for α = (α, v), β =
(β,w) with v, w ∈ Z≥0 we set 〈α, β〉 := 〈α, β〉 − v χ(β) + wχ(α).

The next ingredients are Hall algebras and integration maps. LetK0( StFq)
be the Grothendieck ring of finite type stacks over Fq with affine stabi-
lizers and L be the Lefschetz motive. We introduce the coefficient ring
R = K0( StFq)[L±1/2] and define the quantum affine plane A0 to be the

completion of the algebra R[x1, x
±1
2 ] with the multiplication

xα ◦ xβ := (−L1/2)〈α,β〉xα+β .

(Here the completion is defined by requiring that for f =
∑

α∈N×Z fαx
α ∈ A0

and any t ∈ R there are only finitely many (r, d) with fr,d 6= 0 and d
r+1 < t.)

If we further denote by A0 the category of coherent sheaves on X and by
H(A0) its associated Hall algebra, whose multiplication [E] ◦ [F ] counts
extensions from Ext1(F,E), then we have a morphism of algebras

I : H(A0) −→ A0

E 7→ (−L1/2)χ(E,E) · xch(E)

[AutE] ,

which we call the integration map. Here ch(E) := (rankE,degE). Similarly,
if we introduce a second quantum affine plane A as the completion of the
algebra R[x1, x

±1
2 , x3] with the multiplication

xα ◦ xβ := (−L1/2)〈α,β〉xα+β ,

then we have an integration map on the Hall algebra H(A)

I : H(A) −→ A
E 7→ (−L1/2)χ(E,E) · xcl(E)

[AutE] ,

where cl(E) := (rankE0,degE0, rankE1). We have I|H(A0) = I. The map I

is not an algebra morphism in general, but if Ext2(F , E) = 0, then I(E◦F) =
I(E)I(F).
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The last and most important ingredient of the proof in [6] is a wall-crossing
formula. For α = (r, d) ∈ Z>0 × Z and τ ∈ R, let

u(α) := (−L−1/2)χ(α,α)+d [MX(α)]

be the motivic class of MX(α) counting semi-stable bundles E on X with
chE = α, and similarly set

fτ (α) = (L− 1)(−L−1/2)χ(α,α)+d[Mτ
X(α)] .

We introduce the two generating series

uτ = 1 +
∑

µ(α)=τ

u(α)xα ∈ A0 , fτ =
∑
α

fτ (α)x(α,1) ∈ A .

Then the rank n non-abelian zeta function for X can be expressed as

ζX,n(s) = (q − 1)
∑
k≥0

[MX(n, kn)]q−sk = q
n(n−1)

2
(g−1)

∑
k≥0

fk(n, kn)q−ks .

We can also identify the moduli stack M∞X (1, d) with the Hilbert scheme

HilbdX or with SymdX, the d-th symmetric product of X. Consequently,

f∞ := x1x3

∑
d≥0

[SymdX]xd2 = x1x3 ZX(x2)

where ZX(t) is the Artin zeta function with ζX(s) = ZX(q−s). (This can be
interpreted as the limiting special case of fτ as τ → ∞, since the condition
of semistability with respect to τ of a pair (E, s) in the limit τ → ∞ is
equivalent to the requirement that coker(s) is finite.) Finally, set

u≥τ :=
→∏
τ ′≥τ

uτ ′ ,

where the product is taken in the decreasing slope order, and, for an element
g =

∑
α gαx

(α,1) ∈ A, set

g
∣∣
µ≤τ :=

∑
µ(α)<τ

gαx
(α,1) .

Then, using the theory of Hall algebras and wall-crossing techniques, the
main result (Theorem 5.4) of [6] is the identity

fτ =
(
u−1
>τ ◦ f∞ ◦ u≥τ

)∣∣∣
µ≤τ

(τ ∈ R) .

Equation (25) is obtained from this basic formula by a somewhat involved
combinatorial discussion, using a “Zagier-type formula” (i.e., one based on
the combinatorics in [13]) for the motivic classes of moduli spaces of semi-
stable bundles.

7. Proof of Theorem 1 and structure of the function ζX,n(s)

To complete the proof of Theorem 1, we verify the term-by-term equality

of the sums appearing in (5) and (25). Clearly, the factor q(
n
2)(g−1) is the

same in both cases. Both sums have the form of a linear combination of
ζ̂X(ns− k) with 0 ≤ k ≤ n− 1, so we only have to check the equality of the
coefficients. The case k = 0 is immediate: since B0(x) is identically 1, the
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coefficient of ζ̂X(ns) in the sum in (5) is Bn−1(q1−ns), which by formula (4)

is identical with the coefficient of ζ̂X(ns) in the sum in (25). (Set p = h,
ki = nh+1−i.) The case k = n− 1 is exactly similar, or can be deduced from
the case k = 0 by noticing that (5) is invariant under k → n−1−k, s→ 1−s
and (25) under nj → nh+1−j , i → h − i, and s → 1 − s. If 0 < k < n − 1

then the coefficient of ζ̂X(ns− k) in the sum in (25) can be rewritten∑
0<i<h<n

∑
n1+···ni=k

ni+1+···+nh=n−1−k

(
v̂n1 · · · v̂ni∏i−1

j=1(1− qnj+nj+1)
· 1

1− qns−k+ni

×
v̂ni+1 · · · v̂nh∏h−1

j=i+1(1− qnj+nj+1)
· 1

1− q−ns+k+ni+1+1

)
,

and since the tuples (n1, . . . , ni) with sum k and the tuples (ni+1, . . . , nh)
with sum n− k− 1 are independent, this equals Bk(q

ns−k)Bn−k−1(qk+1−ns)
as required. This completes the comparison of formulas (5) and (25) and
hence the proof of Theorem 1.

We end the paper by looking briefly at the structure of the explicit formula
for the higher rank zeta function ζX,n(s), and in particular check that it
implies the known properties of this zeta function as listed in the opening

paragraph. One of these properties was the functional equation ζ̂X,n(1−s) =

ζ̂X,n(s), which, as we have already said, follows immediately from (5) by
interchanging k and n − k − 1 and using the known functional equation

ζ̂X(1 − s) = ζ̂X(s). The other concerned the form of ζX,n(s). Here it is
more convenient to work with the variables t = q−s and T = q−ns = tn,
writing ζX(s) and ζX,n(s) as ZX(t) and ZX,n(T ), respectively, and similarly

ζ̂X(s) = ẐX(t) and ζ̂X,n(s) = ẐX,n(T ) with ẐX(t) = t1−gZX(t), ẐX,n(T ) =
T 1−gZX,n(T ). It is well known that ZX(t) has the form P (t)/(1− t)(1− qt)
where P (t) = PX(t) is a polynomial of degree 2g, and the assertion is that
ZX,n(T ), which from the definition (1) is just a power series in T , has the
corresponding form Pn(T )/(1−T )(1−qnT ) where Pn(T ) = PX,n(T ) is again
a polynomial of degree 2g. In these terms, the formula for the rank n zeta
function becomes

q−(n2)(g−1) ẐX,n(T ) =

n−1∑
k=0

Bk(q
−kT−1) ẐX(qkT )Bn−k−1(qk+1T ) . (26)

From this it is clear that ẐX,n(T ) is a rational function of T and grows
at most like O(T g−1) as T → ∞ and like O(T 1−g) as T → 0, since the
definition of the function Bk(x) shows that it is bounded at both 0 and ∞,

so the only non-trivial assertion is that ẐX,n(T ) has at most simple poles at
T = 1 and T = q−n and no other poles. From the definition of Bk(x) and

the properties of ẐX(t) we see that every term in (26) has simple poles at
T = 1, q−1, . . . , q−n (the first factor has simple poles at q−i with 0 ≤ i < k,
the second at i = k and i = k + 1, and the third at k + 1 < i ≤ n), so the
only thing that needs to be checked is that the residues at q−i for 0 < i < n
sum to 0. Denote by Ri (0 ≤ i ≤ n) the limiting value as T → q−i of the
right-hand side of (26) multiplied by 1− qiT , and by Ri,k the corresponding
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contribution from the kth term, so that Ri =
∑n−1

k=0 Ri,k. Suppose that
0 < i < n. Then for 0 ≤ k ≤ i− 2 we find

Ri,k = Bk(q
i−k) ẐX(qk−i) v̂i−k−1Bn−i(q

i−k−1)

and for k = i− 1 we find

Ri,i−1 = Bi−1(q) v̂1Bn−i(1) .

Since ẐX(qk−i)v̂i−k−1 = v̂i−k, these formulas can be written uniformly as

Ri,k = Bk(q
i−k) v̂i−k Bn−i(q

i−k−1) (0 ≤ k ≤ i− 1).

The formulas in the other two cases can be computed similarly, but this
is not necessary since the above-mentioned symmetry of the terms in (26)
under (k, T ) 7→ (n − 1 − k, q−nT−1) implies that Ri,k = −Rn−i,n−k−1 and

hence Ri = Si− Sn−i with Si =
∑i−1

k=0Ri,k. But the formula just proved for
Ri,k for 0 ≤ k ≤ i− 1 can be rewritten as

Ri,k =
∑

1≤s<r≤n

∑
n1,...,nr≥1
n1+···+nr=n

n1+···+ns−1=k, ns=i−k

v̂n1 · · · v̂nr
(1− qn1+n2) · · · (1− qnr−1+nr)

,

so

Si =
∑

1≤s<r≤n

∑
n1,...,nr≥1
n1+···+nr=n
n1+···+ns=i

v̂n1 · · · v̂nr
(1− qn1+n2) · · · (1− qnr−1+nr)

,

which is visibly symmetric under i 7→ n− i by replacing nj by nr+1−j and s
by r+ 1− s. This completes the proof of vanishing of Ri for 0 < i < n, and
by essentially the same calculation we also get the corresponding formulas

Rn = −R0 =

n∑
r=1

∑
n1,...,nr≥1
n1+···+nr=n

v̂n1 · · · v̂nr
(1− qn1+n2) · · · (1− qnr−1+nr)

for the two remaining coefficients Ri describing the poles of ζX,n(s).
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