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Abstract. In [8], a non-abelian zeta function was defined for any smooth
curve X over a finite field Fq and any integer n ≥ 1 by

ζX/Fq,n(s) =
∑
[V ]

|H0(X,V )r{0}|
|Aut(V )| q−deg(V )s (<(s) > 1) ,

where the sum is over isomorphism classes of Fq-rational semi-stable
vector bundles V of rank n on X with degree divisible by n. This func-
tion, which agrees with the usual Artin zeta function of X/Fq if n = 1,
is a rational function of q−s with denominator (1 − q−ns)(1 − qn−ns)
and conjecturally satisfies the Riemann hypothesis. In this paper we
study the case of genus 1 curves in detail. We show that in that case
the Dirichlet series

ZX/Fq (s) =
∑
[V ]

1

|Aut(V )| q
−rank(V )s (<(s) > 0) ,

where the sum is now over isomorphism classes of Fq-rational semi-stable
vector bundles V of degree 0 on X, is equal to

∏∞
k=1 ζX/Fq (s+ k) , and

use this fact to prove the Riemann hypothesis for ζX,n(s) for all n.

Introduction

Let X be a smooth projective curve of genus g over a finite field Fq. For
all positive integers n, a “non-abelian rank n zeta function” of X/Fq was
defined (in [8]) by

ζX,n(s) = ζX/Fq ,n(s) =
∑

d≡0 (mod n)

∑
[V ]∈MX,n(d)

qh
0(X,V ) − 1

|Aut(V )|
q−ds , (1)

where MX,n(d) denotes the moduli stack of Fq-rational semi-stable vector
bundles of rank n and degree d on X, and Aut(V ) and h0(X,V ) denote the
automorphism group of V and the dimension of its space of global sections.
In other words, if we define, for any d, the α and β invariants of X/Fq by

αX,n(d) =
∑

[V ]∈MX,n(d)

qh
0(X,V ) − 1

|Aut(V )|
, βX,n(d) =

∑
[V ]∈MX,n(d)

1

|Aut(V )|
,

(2)
then ζX,n(s) is the generating function of the numbers αX,n(mn) :

ζX,n(s) =
∑

d≡0 (mod n)

αX,n(d) td =

∞∑
m=0

αX,n(mn)Tm , (3)

1
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where t = q−s, T = tn = Q−s with Q = qn. Note that qh
0(X,V ) − 1 =

|Hom(OX , V )r{0}|, so αX,n(d) counts the number of isomorphism classes
of pairs consisting of a semi-stable vector bundle V of rank n and degree d
together with an embeddingOX ↪→ V , while the beta invariants were studied
in the case (d, n) = 1 (when semi-stability coincides with stability) by Harder
and Narasimhan in their famous work on moduli spaces of vector bundles [9].
For the zeta function, on the other hand, it is crucial (for reasons indicated
briefly in [9], Remark 1) to restrict to the opposite case n|d.

The following properties of ζX,n(s) were shown in [8], using Riemann-
Roch, duality and vanishing for semi-stable bundles:

Theorem. Define ζX,n(s) for all n ≥ 1 by (3). Then

(i) The function ζX,1(s) equals ζX(s), the Artin zeta function of X/Fq .
(ii) There exists a degree 2g polynomial PX,n(T ) ∈ Q[T ] such that

ζX,n(s) =
PX,n(T )

(1− T )(1−QT )
. (4)

(iii) The function ζX,n satisfies the functional equation

ζX,n(1− s) = Q(g−1)(2s−1) · ζX,n(s) . (5)

The following conjecture, verified in many examples, was also proposed in [8].

Conjecture (Riemann Hypothesis). If ζX,n(s) = 0, then <(s) = 1
2 .

Of course in the classical case n = 1 this is a famous theorem of Weil.

A further indication that the higher zeta functions defined by equation (3)
are natural objects is that they turn out to coincide with the special case

G = SLn, P = Pn−1,1 of the zeta functions ζG,PX (s) defined in [8] for suitable
reductive algebraic groups G and parabolic subgroups P . This equality,
which was conjectured in [8], is proved in the second paper of this series [9],
while a planned third paper will discuss the Riemann hypothesis for curves
of arbitrary genus. In this paper, the first of the series, we concentrate on
the case of elliptic curves X = E, i.e., g = 1. Here αE,n(d) = (qd−1)βE,n(d)
for d > 0 (because h0(V ) − h1(V ) = d by the Riemann-Roch theorem and
h1(V ) vanishes) and βE,n(mn) = βE,n(0) for all m (because tensoring with
a line bundle of degree 1 gives an isomorphism between the sets of rank n
semi-stable vector bundles of degree d and degree d + n for any d ∈ Z), so
the zeta function (3) reduces simply to

ζE,n(s) = αE,n(0) + βE,n(0)
(Q− 1)T

(1− T )(1−QT )
. (6)

We will give explicit formulas and generating functions for αE,n(0) and
βE,n(0) and prove the Riemann Hypothesis for ζE,n(s). The key fact is
Theorem 5, which gives an elegant expression for the generating function∑
βE,n(0)q−ns as a product of translates of the zeta function of E.

1. Statement of main results

From now on E will denote an elliptic curve over Fq. By an “Atiyah
bundle” over E we mean any direct sum of the vector bundles I1, I2, . . .
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over E defined by Atiyah in [1]: I1 = OE is the trivial line bundle and Ik for
k ≥ 2 the unique (up to isomorphism) non-trivial extension of Ik−1 by I1.
For n ≥ 1 let αAt

E,n(0) and βAt
E,n(0) be the numbers defined as in (1), but with

the summations now ranging only over Atiyah bundles. We will show:

Theorem 1. For n ≥ 1 we have

αAt
E,n(0) =

∑
m

(
qm1+m2+··· − 1

) ε(m1) ε(m2) · · ·
qN(m1,m2,... )

, (7)

βAt
E,n(0) =

∑
m

ε(m1) ε(m2) · · ·
qN(m1,m2,... )

, (8)

where the sum is over all partitions n = m1 + 2m2 + 3m3 + · · · of n and

ε(m) =
qm

2

|GLm(Fq)|
=

qm(m+1)/2

(qm − 1)(qm−1 − 1) · · · (q − 1)
, (9)

N(m1,m2, . . . ) =
∑
k, `≥ 1

mkm` min(k, `) . (10)

From this we will deduce the following simple formulas for αAt
E,n(0) and

βAt
E,n(0) (“special counting miracle”) by a direct combinatorial argument:

Theorem 2. For n ≥ 0 we have

αAt
E,n+1(0) = βAt

E,n(0) = q−nε(n) . (11)

This in turn will be used together with considerations of algebraic struc-
tures of semi-stable bundles of degree 0 to obtain the following intrinsic
relation between α and β invariants (“general counting miracle”):

Theorem 3. For all n ≥ 0 we have

αE,n+1(0) = βE,n(0) . (12)

We mention that Theorem 3 has been generalized to curves of arbitrary
genus by Sugahara [6].

The above results, whose proofs are given in §2, show that the higher
rank zeta functions for elliptic curves are completely determined by their
beta invariants. To understand the latter, we first use results of Harder-
Narasimhan [5], Desale-Ramanan [4] and Zagier [10] to get an explicit for-
mula for βE,n(0) in terms of special values of the Artin zeta function of E/Fq :

Theorem 4. For n ≥ 1 we have

βE,n(0) =
n∑
k=1

(−1)k−1
∑

n1+···+nk=n
n1, ..., nk>0

vE,n1
· · · vE,nk

(qn1+n2 − 1) · · · (qnk−1+nk − 1)
, (13)

where the numbers vE,n (n > 0) are defined by

vE,n = ζ∗E(1)ζE(2) · · · ζE(n) , ζ∗E(1) = lim
s→1

(1− q1−s) ζE(s) . (14)

In §3, we will use (13) and a fairly complicated combinatorial calculation
to establish the following simple formula for the generating Dirichlet series
of the invariants βE,n(0) :
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Theorem 5. Define a Dirichlet series ZE(s) = ZE/Fq
(s) for <(s) > 0 by

ZE/Fq
(s) =

∞∑
n=0

βE,n(0) q−ns =
∑
[V ]

1

|Aut(V )|
q−rank(V ) s , (15)

where the second sum is over isomorphism classes of Fq-rational semi-stable
vector bundles V of degree 0 on E. Then

ZE/Fq
(s) =

∞∏
k=1

ζE/Fq
(s+ k) . (16)

This formula will then be used in §4 to prove the following estimate:

Proposition 6. For n ≥ 2 we have the inequalities

1 <
βE,n(0)

βE,n−1(0)
<

qn/2 + 1

qn/2 − 1
. (17)

(In fact, we prove a stronger estimate; see (52).) Combining these bounds
with equations (6) and (12), we will deduce:

Theorem 7. The Riemann Hypothesis is true for elliptic curves.

2. Calculation of the α and β invariants of elliptic curves

In this section we will give explicit formulas for αE,n(mn) and βE,n(mn)
for an elliptic curve E/Fq. By what was already explained in the introduc-
tion, it suffices to do this for m = 0. We will prove Theorems 1–4 as stated
in §1.

2.1. Automorphisms of Atiyah bundles. Let V be an Atiyah bundle of
rank n over E as defined in §1. Then V can be uniquely written in the form

V ∼=
⊕
k≥1

I⊕mk
k (18)

for integers mk ≥ 0 with
∑

k≥1 kmk = n, so Theorem 1 follows from:

Proposition 8. For V/E as in (18), we have h0(V ) =
∑

k≥1mk and

|Aut(V )| = qN(m1,m2,... )
∏
k≥1

q−m
2
k |GLmk

(Fq)| , (19)

where N(m1,m2, . . . ) is defined as in equation (10).

Proof. By Theorem 8 of [1], for any integers k, ` ≥ 1 we have

Ik ⊗ I` ∼=
⊕

|k−`|<m<k+`
m≡k+`−1 (mod 2)

Im

and consequently, since Ik is self-dual,

dim Hom(Ik, I`) = h0(I∨k ⊗ I`) = h0(Ik ⊗ I`) = min(k, `) . (20)

This can be seen explicitly as follows. The bundle Ik has a realization given
locally away from 0 ∈ E by k-tuples of regular functions and near 0 by
k-tuples (f1, . . . , fk) where f1 and each zfi − fi−1 (2 ≤ i ≤ k) is regular,
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where z is a local parameter at 0. (In other words, fi is allowed to have a
pole of order i− 1 at 0 and, for instance, the residue of f2 equals the value
of f1 at 0.) The space Hom(Ik, I`) is then spanned by the maps

(f1, . . . , fk) 7→ (0, . . . , 0︸ ︷︷ ︸
`−s

, f1, . . . , fs) ( 1 ≤ s ≤ min(k, `) ) .

As a special case of (20) we have h0(Ik) = 1 for all k, making the first
statement of Proposition 8 obvious. We prove the second in several steps.

1. In the special case V = Ik, we have

|Aut(Ik)| = qk−1(q − 1) .

Indeed, from the above description, any endomorphism of Ik has the form

ϕ =


a1 a2 · · · ak−1 ak
0 a1 · · · ak−2 ak−1
...

...
. . .

...
...

0 0 · · · a1 a2

0 0 · · · 0 a1

 (21)

for some ai ∈ Fq, and ϕ is an isomorphism if and only if a1 6= 0.

2. More generally, for any positive integers k and m we have

|Aut(I⊕mk )| = q(k−1)m2 |GLm(Fq)| , (22)

because the automorphisms of I⊕mk have the same form as (21), but with
each ai now being an m×m matrix over Fq and with a1 invertible.

3. Finally, if V is a general Atiyah bundle as in (18), then

|Aut(V )| =
∏
k 6= `

|Hom(Ik, I`)|mkm` ·
∏
k

|Aut(I⊕mk
k )| ,

and equation (19) then follows from (20) and (22). �

2.2. Proof of Theorem 2. Introduce the three generating functions

A(x) =
∞∑
n=1

αAt
E,n(0)xn−1 , B(x) =

∞∑
n=0

βAt
E,n(0)xn , C(x) =

∞∑
n=0

q−n ε(n)xn ,

where the notations are as in Theorem 2. We must show that they coincide.

There is a bijection between terminating sequences (m1,m2, . . . ) of non-
negative integers and monotone decreasing terminating sequences (p1, p2, . . . )
of non-negative integers, given by setting pk =

∑
`≥km`, mk = pk − pk+1.

Under this correspondence, we have

N(m1,m2, . . . ) =
∞∑
k=1

kmk (mk + 2mk+1 + 2mk+2 + · · · )

=
∞∑
k=1

k (pk − pk+1)(pk + pk+1) =
∞∑
k=1

p2
k .

Hence Theorem 1 shows that A(x) and B(x) can be given as

A(x) =
1

x

∞∑
p=1

(qp − 1)Bp(x) , B(x) =
∞∑
p=0

Bp(x) , (23)
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with Bp(x) ∈ Q(q)[[x]] defined by

Bp(x) =
∑

p=p1≥p2≥...≥0

∞∏
k=1

(
ε(pk − pk+1) q−p

2
k xpk

)
or, equivalently (set h = p2 on the right-hand side), by the recursive formulas

B0(x) = 1 , qp
2
x−p Bp(x) =

p∑
h=0

ε(p− h)Bh(x) . (24)

We claim that the solution of this recursion is given by

Bp(x) =

p∏
j=1

qx

(qj − 1)(qj − x)
(p ≥ 0) . (25)

To prove this, we denote the right-hand side of (25) by Bp(x) and show that
Bp(x) satisfies the same recursion (24) as Bp(x), i.e., that we have

B̂(x, t) =
( ∞∑
n=0

ε(n) tn
)
B(x, t) = C(qt)B(x, t) , (26)

where B(x, t) and B̂(x, t) are the two generating series defined by

B(x, t) =
∞∑
p=0

Bp(x) tp , B̂(x, t) =
∞∑
p=0

qp
2
x−pBp(x) tp .

But this is now fairly easy. The definition of Bp(x) gives the formulas

(1− x)Bp(qx) = (qp − x)Bp(x) , (1− x)(qp − 1)Bp(qx) = qxBp−1(x) ,

which translate into the four generating series identities

(1− x)B(qx, t) = B(x, qt) − xB(x, t) ,

(1− x)
(
B(qx, qt) − B(qx, t)

)
= qxtB(x, t) ,

(27)

and

(1− x) B̂(qx, qt) = B̂(x, qt) − x B̂(x, t) ,

(1− x)
(
B̂(qx, qt) − B̂(qx, t)

)
= qt B̂(x, qt) .

(28)

Now using the identity C(t) = (1− t)C(qt), which follows from

C(qt)− C(t) =
∑
n≥1

qn(n−1)/2 tn

(q − 1) · · · (qn−1 − 1)
= t C(qt) ,

we find from (27) that C(qt)B(x, t) satisfies the same two recursions (28) as

B̂(x, t), and hence that these two power series are equal. This proves (26)
and hence also (25) and lets us rewrite (23) as

A(x) =
1

x

(
B(x, q) − B(x, 1)

)
, B(x) = B(x, 1) .

Substituting t = q−1 into the sum of the two equations (27) now gives
(1 − x)B(qx) = B(x) and hence B(x) = C(x), and then substituting t = 1
into the first of equations (27) gives A(x) = B(x). This completes the proof.
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2.3. Proof of Theorem 3. Let V be a semi-stable vector bundle of rank n
and degree 0 over E/Fq. By the classification of indecomposable bundles
on elliptic curves defined over algebraic closed fields given by Atiyah [1],
we know that there are no stable bundles of rank ≥ 2 and degree 0 over
E := E ⊗Fq Fq. Consequently, over E, the graded bundle G(V ) associated
to a Jordan-Hölder filtration of V decomposes as

G(V ) = L1 ⊕ L2 ⊕ · · · ⊕ Ln
for some line bundles Li of degree 0 on E. (For basics of Jordan-Hölder
filtrations and their associated graded bundles for semi-stable bundles, see
e.g. [7].) Since Li need not be defined over Fq, usually it is a bit complicated
to classify V over E. (This classification problem depends on the arithmetic
of the curve E, and specifically, on the number of Fq-rational torsion points
of order ≤ n on E.) Instead of doing this, we first note that in order to get
a non-trivial contribution to α invariants, we must have h0(V ) 6= 0. Guided
by this, we regroup the bundles appearing in the summation defining the
α-invariant in the following way. Assume (after renumbering) that Lj ∼= OE
for 1 ≤ j ≤ i and Lj 6∼= OE for i < j ≤ n. Since there are non non-trivial
extensions of OE by Lj for Lj 6∼= OE , we can uniquely decompose V as U⊕W
where U and W are Fq-rational semi-stable bundles of degree 0 over E with

G(U) ∼= O⊕iE , G(W ) ∼= Li+1 ⊕ · · · ⊕ Ln , Lj 6∼= OE .

Then h0(E, V ) = h0(E,U) and Aut(V ) ∼= Aut(U)×Aut(W ) (because there
are no non-trivial homomorphisms among OE and Lj), and U and W range
independently over bundles with the properties listed above. Hence

αE,n(0) =
n∑
i=1

α∗E,i β
∗
E,n−i ,

where α∗E,i and β∗E,k are the modified α and β invariants defined by

α∗E,i =
∑

U semi-stable
G(U)∼=O⊕i

E

qh
0(E,U) − 1

|Aut(U)|
, β∗E,k =

∑
W semi-stable

G(W )∼=L1⊕···⊕Lk

deg(Lj)=0, Lj 6∼=OE

1

|Aut(W )|
.

But, by using Atiyah’s classification of indecomposable bundles on elliptic
curves defined over algebraic closed fields again, we know that the bundles U
in the sum defining α∗E,i are precisely the Atiyah bundles U =

⊕
k I
⊕mk
k with∑

kmk = i. Hence α∗E,i = αAt
E,i(0). By the same argument, of course, we

have βE,n(0) =
∑n

i=0 β
At
E,i(0)β∗E,n−i. (Note that this time the summation

starts at i = 0, whereas for αE,n(0) we started at i = 1 because α∗E,0 = 0.)
Theorem 3 now follows immediately from Theorem 2.

2.4. Proof of Theorem 4. In this subsection, in which X is again a curve
of arbitrary genus g ≥ 1, we combine results of [5], [4] and [10] to give a
closed formula for βX,n(0) for all n ≥ 1.

The invariant βX,n(d) is periodic in d of period n by the same argument
as given for g = 1 in the introduction. We renormalize slightly by setting

β̂X,n(d) = q−(g−1)n(n−1)/2 βX,n(d) , ζ̂X(s) = q(g−1)s ζX(s) , (29)
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(notice that these agree with βX,n(d) and ζX(s) in the case when g = 1),

because this gives a simpler functional equation ζ̂X(1− s) = ζ̂X(s) and will
also lead to a formula in Theorem 9 that has no explicit dependence on g.
We also define

v̂X,n = ζ̂∗X(1)ζ̂X(2) · · · ζ̂X(n) , ζ̂∗X(1) = lim
s→1

(1− q1−s) ζ̂X(s) (30)

instead of (14). Then the work of Harder-Narasimhan and Desale-Ramanan
implies the following relation, involving an infinite summation:

Theorem. For n ≥ 1 and any d ∈ Z we have∑
k≥1

∑
n1+···+nk=n
n1,...,nk>0

( ∑
d1
n1

> ···> dk
nk

d1+···+dk=d

∏k
j=1 β̂X,nj (dj)

q
∑

i<j(dinj−djni)

)
= v̂X,n . (31)

This theorem is stated at page 236 of [4] (lines −9 to −4), except that there

the authors use β and ζ instead of β̂ and ζ̂ and write the equation in the

slightly different form β̂X,n(d) = v̂X,n− (sum over terms with k ≥ 2 in (31))
to make it clear that this equation gives a recursive determination of all

β̂X,n(d). This recursion relation was inverted in [10]. We state the result
here in detail since in that paper only a corollary (namely, the application
to the calculation of the Betti numbers of the moduli space MX,n(d)) was
written out explicitly. The following theorem, however, is an immediate
consequence of equation (31) and Theorem 2 of [10]. Note that here the
sum is finite!

Theorem 9. For n ≥ 1 and any d ∈ Z we have

β̂X,n(d) =
∑
k≥1

(−1)k−1
∑

n1+···+nk=n
n1, ..., nk>0

k∏
j=1

v̂X,nj
·
k−1∏
j=1

q(nj+nj+1) {d(n1+···+nj)/n}

q(nj+nj+1) − 1
,

where {t} for t ∈ R denotes the fractional part of t.

Theorem 4 is just the special case d = 0 and X = E, since β̂E,n = βE,n.

3. The generating series of the beta invariants

3.1. Explicit formulas. We keep all notations as in the Introduction and §1.
Recall that the Artin zeta function of E and its renormalized special value
at s = 1 as defined by (14) are given by

ζE/Fq
(s) =

1 − aq−s + q1−2s

(1− q−s)(1− q1−s)
, ζ∗E/Fq

(1) =
|E(Fq)|
q − 1

,

where a ∈ Z is defined by |E(Fq)| = q − a + 1 and satisfies |a| ≤ 2
√
q. For

convenience, from now on we write simply βn instead of βE,n(0). Note that
βn depends only on q and a and belongs to Q(q)[a].

The closed formula for βn given in Theorem 4 has O(2n) terms. In this
subsection we will give several alternative expressions, including closed for-
mulas with p(n) = O(ec

√
n) terms and with O(n3) terms, the generating

series formula (16), and a recursion permitting the calculation of β1, . . . , βn
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in O(n) steps. The proofs of these relations will be given in the rest of the
section.

We begin by calculating the first few values of βn from (13). Here we
notice that there is considerable cancellation and that we always have

βn ∈
1

(qn − 1) · · · (q − 1)
Z[a, q] , (32)

even though the least common denominator of the denominators of the terms
in (13) is much greater, e.g., the first few values of βn are given by

β0 = 1 , β1 = v1 =
q − a+ 1

q − 1
,

β2 = v2 −
v2

1

q2 − 1
=

(q3 − aq + 1)(q − a+ 1)

(q2 − 1)(q − 1)2
− (q − a+ 1)2

(q2 − 1)(q − 1)2

=
(q − a+ 1)(q2 + q − a)

(q2 − 1)(q − 1)
,

β3 = v3 − 2
v1v2

q3 − 1
+

v3
1

(q2 − 1)2

=
(q − a+ 1)(q5 + q4 − (a− 2)q3 − (2a− 1)q2 − (a+ 1)q + a2)

(q3 − 1)(q2 − 1)(q − 1)
.

Some more experimentation shows that in fact much more is true, namely

β1 = w1 , β2 =
w2

1 + w2

2
, β3 =

w3
1 + 3w1w2 + 2w3

6
,

β4 =
w4

1 + 6w2
1w2 + 8w1w3 + 3w2

2 + 6w4

24
, . . . ,

where the numbers wm = wm,E = wm(a, q) (m ≥ 1) are defined by

wm = ζ∗E/Fqm
(1) =

(αm − 1)(αm − 1)

qm − 1
(α+ α = a, αα = q) . (33)

These special cases suggest that the following theorem should hold:

Theorem 10. The numbers βn = βE,n(0) are given by

βn =
∑

n1,n2,···≥0,
n1+2n2+···=n

wn1
1 wn2

2 · · ·
1n12n2 · · · n1!n2! · · ·

(n ≥ 0), (34)

where the numbers wm = wE,m (m ≥ 1) are defined by eq. (33).

Equation (34) is the promised formula expressing βn as a sum of p(n) =

O(eπ
√

2n/3) rather than O(2n) terms.

To proceed further, we introduce the generating funtion

B(x) = BE/Fq
(x) = B(x; a, q) =

∞∑
n=0

βn x
n . (35)

Then formula (34) is equivalent to the formula

B(x) = exp

( ∞∑
m=1

wm
xm

m

)
,
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and substituting for wm from (33) we find

B(qx)

B(x)
= exp

( ∞∑
m=1

(qm − 1)wm
xm

m

)
= exp

( ∞∑
m=1

qm − αm − αm + 1

m
xm
)

=
(1− αx)(1− αx)

(1− qx)(1− x)
=

1− ax+ qx2

(1− x)(1− qx)
. (36)

This in turn can be rewritten in three different ways, each of which is equiv-
alent to Theorem 10. The first is obtained by replacing x by x/qk in (36)
and taking the product over all k ≥ 1 to get the following multiplicative
formua for the generating function B(x; a, q) :

Theorem 11. The generating function B(x; a, q) defined in (35) has the
product expansion

B(x; a, q) =
∞∏
k=1

1 − aq−kx + q1−2kx2

(1 − q−kx)(1 − q1−kx)
. (37)

Theorem 11 is clearly equivalent to Theorem 5 of §1, by setting x = q−s.

For the second, we recall the “q-Pochhammer symbol” (x; q)n, defined for

x, q ∈ C as
∏n−1
m=0(1 − qmx). This also makes sense for n = ∞ if |q| < 1.

Since our q has absolute value greater rather than less than 1, we replace it
by its inverse. Then the calculation in (36) is just a version of the “quantum
dilogarithm identity”

∞∑
m=1

xm

m (qm − 1)
=

∑
m, r≥1

q−rmxm

m
= log

1

(q−1x; q−1)∞
( |q| > 1 )

(we refer to [11], pp. 28–31, for a review of the quantum dilogarithm), and
equation (37) says simply

B(x; a, q) =
(q−1αx; q−1)∞ (q−1αx; q−1)∞

(q−1x; q−1)∞ (x; q−1)∞
. (38)

Together with the standard power series expansions of (x; q)∞ and 1/(x; q)∞
as given in the survey paper just quoted, this implies the following result,
which is the above-mentioned closed formula for βn with O(n3) terms.

Theorem 12. The numbers βn = βE,n(0) are given by the sum

βn(E/Fq) =
∑

n1, n2, n3, n4≥0
n1+n2+n3+n4=n

(−1)n1+n2 q(
n1+1

2 )+(n2
2 ) αn3 αn4

(q; q)n1 (q; q)n2 (q; q)n3 (q; q)n4

(n ≥ 0) ,

where α and α are defined as in eq. (33).

Finally, multiplying both sides of (36) by their common denominator and
comparing coefficients of xn, we obtain:

Theorem 13. The numbers βn satisfy, and are uniquely determined by, the
recursion relation

(qn − 1)βn = (qn + qn−1 − a)βn−1 − (qn−1 − q)βn−2 (39)

together with the initial conditions β0 = 1 and β−1 = 0.
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Theorem 13 gives the simplest algorithm for computing βn of all the formulas
we have given, since, as already mentioned, it calculates each βn in time O(1)
from its predecessors and hence requires time only O(n) to calculate all the
numbers β1, . . . , βn. We also remark that equation (39) immediately implies
the assertion (32) by induction on n.

3.2. Proof of Theorem 5: First part. In the previous subsection we for-
mulated four theorems, found experimentally, each of which was equivalent
to the others and to Theorem 5. Of these, the simplest by far is the recursion
relation (39). Unfortunately, we were not able to find a direct proof that the
numbers defined by (13) satisfy this recursion, and the proof of Theorem 5
that we give will be indirect and fairly complicated.

There are two main ideas. The first is to replace the “closed formula” (13)
for βn by a recursive formula (thus in some sense undoing the calculation
in [10] that led to that formula, which began with the recursion (31) and then
inverted it). To do this, we break up the sum (13) into n pieces according
to the value of the last ni, i.e., we decompose βn as

β0 = b
(0)
0 , βn =

n∑
m=1

β(m)
n (n ≥ 1) , (40)

where β
(m)
n = β

(m)
n (E/Fq) = β

(m)
n (a, q) is the partial sum defined by

β(m)
n =

∞∑
k=1

∑
n1,...,nk−1≥1, nk=m

n1+···+nk=n

(−1)k−1 vn1 · · · vnk

(qn1+n2 − 1) · · · (qnk−1+nk − 1)
(n ≥ m ≥ 1) .

Denoting the last-but-one variable nk−1 in this sum by p whenever k is at
least 2, we find

β(m)
n = vm ·


1 if m = n,

−
n−m∑
p=1

β
(p)
n−m

qm+p − 1
if 1 ≤ m ≤ n− 1,

which defines all the numbers β
(m)
n (and hence also all the numbers βn) by

recursion. Multiplying this formula by xn and summing over all n ≥ 0, we
find that the generating functions

B(m)(x) = B(m)
E/Fq

(x) = B(m)(x; a, q) =

∞∑
n=0

β(m)
n xn (41)

of the β
(m)
n (observe that the sum here actually starts at n = m, so that

B(m)(x) = O(xm), and also that B(0)(x) ≡ 1) satisfy the identity

B(m)(x) = vm x
m

(
1 −

∞∑
p=1

B(p)(x)

qm+p − 1

)
(m ≥ 1) . (42)

A natural strategy of proof would therefore be to guess a closed formula
for the individual series B(m)(x) that satisfies the same recursion and that
gives (37) when summed over m ≥ 0. Unfortunately, we were not able to do
this here, so that we have to argue indirectly. The second idea is therefore
to prove the identity for special values of the parameter a. Since the desired
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formula (37) is equivalent to the recursion (39), which is an identity among
polynomials in a and therefore is true if it can be verified for infinitely many
values of the argument a for each n, it is enough to prove the identity (37)
only for the special values

a = ak := qk+1 + q−k (k ∈ Z, k ≥ 0) . (43)

We denote by βn,k and β
(m)
n,k the specializations of βn and β

(m)
n to this

value of a, and by Bk(x) and B(m)
k (x) the corresponding generating series.

Then (42) specializes to the identity

B(m)
k (x) = vm,k x

m

(
1 −

∞∑
p=1

B(p)
k (x)

qm+p − 1

)
(m ≥ 1, k ≥ 0) , (44)

where vm,k denotes the specialization of vm = vm(a, q) to a = ak, so that

if we can guess some other collection of numbers β̃
(m)
n,k whose generating

functions satisfy the same identity, then we automatically have β
(m)
n,k = β̃

(m)
n,k .

The reason for looking at the special value (43) is that equation (37) for this
value of a says that the generating function Bk(x) (k ≥ 0) is given by

Bk(x) =
∞∏
r=1

(
1− q−k−rx

)(
1− qk+1−rx

)(
1− q−rx

)(
1− q1−rx

) =
k∏
j=1

1 − qjx

1 − q−jx
(45)

(in particular, it is a rational function of x), and also that the numbers vm,k
are given by

vm,k =

(−1)m−1 q(
m
2 )−km (q)k+m

(q)m (q)m−1 (q)k−m
if 1 ≤ m ≤ k,

0 if m > k,
(46)

as one checks easily. (Here and for the rest of the section we use the notation
(x)n for the q-Pochhammer symbol (1 − x)(1 − qx) · · · (1 − qn−1x), with
(x)0 = 1.) After a considerable amount of computer experimentation, we

found that the generating function B(m)
k (x) is given by the following closed

formula.

Proposition 14. For k ≥ 0 and m ≥ 1 the generating function B(m)
k (x) =

B(m)(x; ak, q) is a rational function of x, equal to 0 if m > k and otherwise
given by

B(m)
k (x) = (−1)m−1 (q)m+k

(q)k(q)m−1

xm Y
(m)
k (x)

Dk(x)
, (47)

where Dk(x) ∈ Z[q, x] is defined by the product expansion

Dk(x) =

k∏
j=1

(
qj − x

)
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and where Y
(m)
k (x) ∈ Z[q, x] is the polynomial of degree k −m defined by

Y
(m)
k (x) =

k−m∑
r=0

q(
r+1
2 )+(k−m−r+1

2 )
[
k

r

] [
k

k −m− r

]
xr

= Coefficient of T k−m in
k∏
j=1

(
1 + qjT

)(
1 + qjTx

)
.

(48)

The symbol
[k
r

]
used in (48) is the q-binomial coefficient

(q)k
(q)r(q)k−r

, which

occurs in the following two well-known q-versions of the binomial theorem

k∑
r=0

(−1)rq(
r
2)
[k
r

]
xr = (x)k ,

∞∑
r=0

[k + r − 1

r

]
xr =

1

(x)k
, (49)

where k denotes an integer ≥ 0. The equality of the two expressions in (48)
follows from the first of these formulas.

The proof of Proposition 14 will be given in the next subsection. Here
we show that it implies our main identity (37). For this, as we have already
explained, it suffices to show that the sum over m ≥ 1 of the rational
functions (47) coincides with the right-hand side of (45). Combining (47)
with the second of equations (48) and the second of equations (49), we find

1

x

Dk(x)

1− qk+1

∞∑
m=1

B(m)
k (x) =

k∑
m=1

(−x)m−1
[k +m

k + 1

]
Y

(m)
k (x)

= Coefficient of T k−1 in

∏k
j=1

(
1 + qjT

)(
1 + xT

)(
1 + qk+1xT

) .
But by comparing poles and residues (partial fractions decomposition), we
see that∏k

j=1

(
1 + qjT

)(
1 + xT

)(
1 + qk+1xT

)
=

∏k
j=1

(
1− qjx−1

)(
1− qk+1

)(
1 + xT

) +

∏k
j=1

(
1− qj−k−1x−1

)(
1− q−k−1

)(
1 + qk+1xT

) + Pk−2(T ) ,

where Pk−2(T ) is a polynomial of degree ≤ k − 2 in T . It follows that

∞∑
m=1

B(m)
k (x) =

(−x)k

Dk(x)

(
−

k∏
j=1

(1− qjx−1
)

+ qk(k+1)
k∏
j=1

(1− qj−k−1x−1
))

= −1 +
k∏
j=1

1 − qjx

1 − q−jx
= −1 + Bk(x) ,

where the final equality is equation (45). Since B(0)
k (x) = 1, this completes

the proof that the sum of the functions B(m)(x) defined recursively by (42)
coincides with the right-hand side of equation (37) and hence, by what has
already been said, completes the proof of Theorem 11.
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3.3. Completion of the proof. It remains to prove Proposition 14. For
this purpose we reverse the order of the logic, taking equation (47) (with

Y
(m)
k (x) defined as 0 if m > k) as the definition of the power series B(m)

k (x)
for all m ≥ 1 and k ≥ 0 and then proving that these power series satisfy the
identity (44). Inserting equations (45), (47) and (48) into (44), we see after
multiplying both sides by a common factor that the identity to be proved is

qkm−(m2 ) Y
(m)
k (x) =

[ k
m

]
Dk(x) +

(q)k+1

(q)m(q)k−m

k∑
p=1

[k + p

k + 1

]
Y

(p)
k (x)

(−x)p

qm+p − 1
.

(50)
But a simpler version of the same partial fraction argument as the one used

above shows that Dk(x) is the coefficient of T k in (1+xT )−1
∏k
j=1(1+qjT ),

and one also sees without difficulty that Y
(m)
k (x) equals (qk+1x)−m times

the coefficient of T k+m in the same product
∏k
j=1(1− qjT )(1− qjTx) as the

one used in the orginal definition (48), so that the left-hand side of (50) can
be written, using the first equation in (49), as

qkm−(m2 ) Y
(m)
k (x) = Coefficient of T k in

k∏
j=1

(
1 + qjT

)
·
k−m∑
s=0

q(
s+1
2 )+ms

[ k

m+ s

]
(xT )s .

The identity (50) then follows immediately from the lemma below by re-

placing x by xT , multiplying both sides by
∏k
j=1(1 + qjT ), and comparing

the coefficients of T k on both sides.

Lemma 15. For fixed k ≥ 0 and m ≥ 1, define two power series F1(x) and
F2(x) by

F1(x) = (−qx)k

∞∑
p=1

[k + p

k + 1

] (−x)p

qm+p − 1
,

F2(x) =
[ k
m

]
(1 + x)−1 −

k−m∑
s=0

q(
s+1
2 )+ms

[ k

m+ s

]
xs .

Then

F2(x) = − (q)k+1

(q)m(q)k−m
F1(x) . (51)

Proof. The power series F1 and F2 satisfy the functional equations

(1 + qx) qmF1(qx) − (1 + qk+1x)F1(x)

= (−qx)k+1

∞∑
p=1

[k + p

p− 1

]
(−x)p =

−x
1 + x
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(here we have used the second of equations (49)) and

(1 + qx) qmF2(qx) − (1 + qk+1x)F2(x)

=
[ k
m

] (
qm − 1 + qk+1x

1 + x

)
−

k−m∑
s=0

q(
s+1
2 )+ms

[ k

m+ s

]{(
qm+s − 1

)
−
(
qk−m−s − 1

)
qs+1+mx

}
xs

=
[ k
m

] ((
1− qk+1

) x

1 + x
−
(
1− qm

))
+
(
1− qk

) k+m∑
s=0

[ k − 1

m+ s− 1

]
q(

s+1
2 )+msxs

−
(
1− qk

) k+m−1∑
s=0

[ k − 1

m+ s

]
q(

s+2
2 )+m(s+1)xs+1

=
(q)k+1

(q)m(q)k−m

x

1 + x
(telescoping series) .

Together these imply (51), since it is easily seen that a power series F(x)
satisfyng (1 + qx)qmF(qx) = (1 + qk+1x)F(x) for some integers k ≥ 0 and
m ≥ 1 must vanish identically.

This completes the proof of the lemma, the proposition and hence also of
Theorem 5.

4. The Riemann Hypothesis

4.1. Proof of Proposition 6. We can use the recursion relation (39) to
give an easy inductive proof of the inequality (17), which, as we will see in
a moment, implies the Riemann hypothesis for our zeta functions. Indeed,
(17) holds for n = 2 since

β2

β1
=

q2 + q − a
q2 − 1

= 1 +
N

q2 − 1
,

where N = q − a + 1 = |E(Fq)| satisfies 0 < N < 2q + 2, and if n ≥ 3 and
we assume by induction on n that (17) holds for n− 1, then (39) gives

βn
βn−1

>
qn + qn−1 − a − (qn−1 − q)

qn − 1
= 1 +

N

qn − 1
> 1

and

(qn − 1)

(
qn/2 + 1

qn/2 − 1
− βn
βn−1

)
=
(
qn/2 + 1

)2 − (qn + qn−1 − a
)

+
(
qn−1 − q

) βn−2

βn−1

> 2qn/2 + 1− qn−1 − (q + 1) +
(
qn−1 − q

) q(n−1)/2 − 1

q(n−1)/2 + 1

=
2(qn−1 − qn/2)(q1/2 − 1)

q(n−1)/2 + 1
> 0
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(where we have again used only |a| < q + 1, and not the stronger estimate
|a| ≤ 2

√
q given by the usual Riemann hypothesis of E/Fq), completing the

proof of (17) by induction.

In fact the estimates (17) are quite wasteful, and by a more careful analysis
one finds that

βn
βn−1

= 1 +
(n− 1)(q − a+ 1) − c(q)

qn
+ O

( n2

q2n−2

)
(52)

uniformly as qn →∞, where c(q) = 2+3(a−2)/q + · · · is independent of n.
(Recall that a = O(

√
q).) We also remark that the bounds (17) together

with the initial value β0 = 1 give upper and lower estimates for each βn. In
particular, we have the uniform estimate

βn = 1 + O
(
1/
√
q
)
, (53)

where the implicit constant is universal and can be taken, e.g., to be 3.

4.2. Proof of the Riemann Hypothesis. By equations (6) and (12), the
polynomial PE,n(T ) appearing in (4) is given by

1

αE,n(0)
PE,n(T ) = 1−

(
(Q+ 1)− (Q− 1)

βE,n(0)

βE,n−1(0)

)
T +QT 2 , (54)

and by the inequalities (17) the coefficient of T in the second factor lies
between −2 and 2

√
Q. Theorem 7 follows immediately.

Notice that this argument gives much more than just the Riemann hy-
pothesis, for which we would only need that the coefficient of T is between
−2
√
Q and 2

√
Q. In fact, inserting (52) into (54), we see that the reciprocal

roots of PE,n(T ), divided by qn/2, are not uniformly distributed on the unit
circle, but are actually very near to i and −i for n large. In a related di-
rection, we mention that, since each βE,n(a) is completely determined by n,
q and a, the usual Sato-Tate distribution property for the roots of the lo-
cal zeta functions of the reductions Ē/Fp at varying primes p of an elliptic
curve E defined over Q implies a corresponding explicit Sato-Tate distri-
bution for the roots of the higher zeta-functions ζĒ/Fp, n as p varies with n
fixed, and also, after a suitable renormalization, as n→∞.

5. Complements

The most important consequence of Theorem 5, of course, is the Riemann
hypothesis for the higher rank zeta functions ζE,n(s), but the theorem has
several other corollaries that seem to be of independent interest. We end
the paper by listing some of these.

The first statement concerns the analytic continuation and functional
equation of the Dirichlet series ZE/Fq

(s) defined by equation (15).

Corollary 16. The function ZE/Fq
(s) continues meromorphically to the en-

tire complex plane and satisfies the functional equation

ZE(s− 1) = ζE(s)ZE(s) . (55)
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Proof. The meromorphic continuation is obvious from equation (16), since
ζE(s) is meromorphic and tends rapidly to 1 as <(s)→ +∞. The functional
equation (55) then follows tautologically from equation (16). �

Corollary 17. The meromorphic function defined by

Z±E/Fq
(s) = ZE/Fq

(s)ZE/Fq
(−s) (56)

is invariant under s 7→ s+ 1.

Proof. This follows from (55) and the functional equation of ζE/Fq
(s) :

Z±E/Fq
(s− 1)

Z±E/Fq
(s)

=
ZE/Fq

(s− 1)

ZE/Fq
(s)

ZE/Fq
(1− s)

ZE/Fq
(−s)

=
ζE/Fq

(s)

ζE/Fq
(1− s)

= 1 .

Alternatively, we could apply the functional equation of ζE/Fq
(s) to each

factor of the infinite product defining ZE/Fq
(−s) to write Z±E/Fq

(s) as the

absolutely convergent doubly infinite product
∏
n∈Z ζE/Fq

(s+n), from which
the periodicity is obvious. �

There is a curious relation between Corollary 17 and the theory of elliptic
curves over C. Denote by θ(x; q−1) the Jacobi theta function

θ(x; q−1) =
∑

n∈Z+ 1
2

(−1)[n] q−n
2/2 xn (q, x ∈ C∗, |q| > 1) .

It has the well-known elliptic transformation property

θ(qx; q−1) = − q1/2 x θ(x; q−1) (57)

saying that the function θ(e2πiz; e2πiτ ) is doubly periodic, up to simple non-
vanishing factors, with respect to translation of z ∈ C by the lattice Zτ +Z.
The Jacobi triple product formula is the formula

θ(x; q−1) = q−1/8x1/2 (q−1; q−1)∞ (q−1x; q−1)∞ (x−1; q−1)∞

expressing θ(x; q−1) as a product of three infinite q-Pochhammer symbols.
Combining this with equation (38), we find that the symmetrized zeta func-
tion (56) is related to the Jacobi theta function by

Z±E/Fq
(s) =

1

α

θ(αq−s; q−1) θ(αqs; q−1)

θ(q−s; q−1) θ(qs; q−1)
, (58)

so that the periodicity statement of Corollary 17 can also be seen as a
consequence of the elliptic transformation property (57) of θ(x; q−1). This
gives some kind of connection between the zeta function of an elliptic curve E
over Fq and the theory of elliptic functions for the elliptic curve C∗/qZ over C.

In the next statement, our result for elliptic curves over finite fields is used
to motivate the definition of a new zeta function for elliptic curves defined
over Q, and to prove a factorization result for this function.
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Corollary 18. Let E be an elliptic curve over Q, and define {bm(E/Q)}m∈N
as the multiplicative function with bpn(E/Q) = βn(E/Fp). Then the Dirich-
let series ZE/Q(s) defined for s ∈ C with <(s) > 1 by

ZE/Q(s) =
∞∑
m=1

bm(E/Q)

ms
=

∏
p prime

ZE/Fp
(s)

continues meromorphically to all s and has the product expansion

ZE/Q(s) =
∞∏
k=1

ζE/Q(s+ k) .

We do not know whether these higher global zeta functions have other
interesting properties.

The final corollary of Theorem 5 that we will give concerns the limiting
values of the invariants we have been studying. To explain it properly, we
must first recall the geometric meaning of the numbers vE,n occurring in
Theorem 4. In (14) these numbers were simply defined as the products of
the values of ζE/Fq

(s) at s = 1, . . . , n (with the value at the pole s = 1
being replaced by a suitable limit), because this was all that was necessary
for our purposes. But that formula is actually a theorem, due to Desale
and Ramanan in the paper [4] already quoted, rather than a definition. In
fact, vE,n is vE,n(0), where vX,n(d) is defined, for all curves X/Fq and for
all integers n > 0 and d, by

vX,n(d) =
∑

all [V ]

1

|Aut(V )|
,

i.e., by the same summation as βX,n(d) in (2), but with the summation
now ranging over all isomorphism classes of Fq-rational vector bundles of
rank n and degree d rather than just the semi-stable ones. Using the fact
that the Tamagawa number of SL(n) equals 1, one shows (Proposition 1

of [4], summed over all |Pic0(X)(Fq)| = (q − 1)ζ̂∗X(1) possible values of the

determinant) that vX,n(d) = q(g−1)n(n−1)/2 v̂X,n (independent of d !) with
v̂X,n defined as in (30), i.e., vX,n(d) is related to v̂X,n in the same way as

βX,n(d) and β̂X,n(d) are related in (29). Note that this formula includes as
a special case the formula vE/Fq

(n, 0) = vE,n mentioned above. Also, since
semi-stable bundles form a subset of all bundles, it is clear from the geo-

metric definition that βX,n(d) ≤ vX,n(d) and β̂X,n(d) ≤ v̂X,n for all n, with

equality if n = 1.1 (This is also visible in the Harder-Narasimhan-Desale-

Ramanan recursion (31), in which the k = 1 term on the left equals β̂X,n(d).)
Therefore the following result can be interpreted as saying that, at least in
the case of elliptic curves, “almost all bundles of large rank are semi-stable.”

Corollary 19. The limiting values βE,∞ := limn βE,n and vE,∞ := limn vE,n
of the sequences {βE,n(0)} and {vE,n} exist and coincide, with the value

βE,∞ = vE,∞ = ζ∗E(1) ζE(2) ζE(3) · · · . (59)

1From (14) and Proposition 6 we also have the inequalities vE,1 < vE,2 < · · · and
βE,1 < βE,2 < · · · , for which there does not seem to be an obvious geometric explanation.
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Of course the uniform bound for the numbers βn that we gave in (53) also
holds for the limiting value β∞.

Just for fun, we mention that the analogue of the product appearing on
the right-hand side of (59) when the function field Fq(E) is replaced by the
number field Q is the number

∏∞
n=2 ζ(n) = 2.2948565916733 · · · , which

has a well-known interpretation as the average number of abelian groups of
given order. It would be interesting to know whether the product occurring
in (59), or its global analogue

Ress=0

(
ZE/Q(s)

)
= Ress=1

(
ζE/Q(s)

)
·
∞∏
m=2

ζE/Q(m) ,

has any similar geometrical or arithmetical interpretation. In particular, as
was suggested to us by Christopher Deninger, one can ask whether there
is any connection with the famous Cohen-Lenstra class number heuristics.
(Compare equation (16) with Theorem 3.2 (ii) of [2], or Corollary 17 with
Theorem 7.1 of [3].)

6. Acknowledgments

The first author would like to thank the JSPS, which partially supported
this work. The authors also thank the Max Planck Institute for Mathematics
and Kyushu University for providing excellent research environments.

References

[1] M.F. Atiyah, Vector bundles over an elliptic curve. Proc. London Math Soc (3) 7
(1957), 414–452.

[2] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups. In Number Theory, New
York, 1982, Lecture Notes in Math. 1052, Springer, Berlin (1984) 26–36.

[3] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields. In
Number Theory Noordwijkerhout 1983, Lecture Notes in Math. 1068, Springer, Berlin
(1984) 33–62.

[4] U.V. Desale and S. Ramanan, Poincaré polynomials of the variety of stable bundles.
Math. Annalen 26 (1975), 233–244.

[5] G. Harder and M.S. Narasimhan, On the cohomology groups of moduli spaces of
vector bundles on curves. Math. Annalen 212 (1975), 215-248.

[6] K. Sugahara, A relation for bundle counting. In preparation.
[7] L. Weng, Non-abelian zeta function for function fields. Amer. J. Math. 127 (2005),

973–1017.
[8] L. Weng, Zeta functions for curves over finite fields. Preprint, arXiv:1202.3183.
[9] L. Weng and D. Zagier, Higher rank zeta functions of curves. II. Equality with SLn-

zeta functions. Preprint.
[10] D. Zagier, Elementary aspects of the Verlinde formula and the Harder-Narasimhan-

Atiyah-Bott formula. Israel Mathematical Conference Proceedings 9 (1996), 445–462.
[11] D. Zagier, The dilogarithm function. In Frontiers in Number Theory, Physics and

Geometry II, P. Cartier, B. Julia, P. Moussa, P. Vanhove (eds.), Springer-Verlag,
Berlin-Heidelberg-New York (2006), 3–65.

Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
E-Mail: weng@math.kyushu-u.ac.jp

Max-Planck Institute für Mathematik, Bonn, Germany
E-Mail: dbz@mpim-bonn.mpg.de


