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Abstract. In this paper, we study combinatorial and asymptotic properties of some
interesting rational numbers called the Brézin–Gross–Witten (BGW) numbers, which
can be represented as the intersection numbers of psi and Theta classes on the moduli
space of stable algebraic curves. In particular, we discover and prove the uniform large
genus asymptotics of certain normalized BGW numbers, and give a new proof of the
polynomiality phenomenon for the large genus. We also propose several new conjec-
tures including monotonicity and integrality on the BGW numbers. Applications to
the Painlevé II hierarchy and to the BGW-kappa numbers are given.
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1. Introduction

In this paper, we study some interesting and important rational numbers called
the Brézin–Gross–Witten (BGW) numbers [2, 5, 6, 14, 17, 23]. Originally, the BGW
numbers were defined via matrix models [6, 23], and specifically are proportional to the
Taylor coefficients with respect to the so-called Miwa variables (cf. [3, 6, 22, 23, 31]) of
the logarithm of the integral ∫

Un

e
1
β
tr(J†U+JU†)

dU , (1)

where dU denotes the normalized Haar measure on the unitary group Un, and J and J†

are arbitrary n× n matrices. Later, alternative definitions and properties of the BGW
numbers were given in a number of further papers (cf. [2, 5, 7, 14, 17, 30, 37, 38, 43]).
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As customary in the literature, denote by ⟨τd1 . . . τdn⟩Θg the BGW numbers, where g ≥ 1
(genus), n ≥ 1 and d1, . . . , dn ≥ 0 satisfy

d1 + . . . + dn = g − 1 (2)

(see e.g. [2, 14, 43]).

For a long time, no topological or combinatorial meaning for the BGW numbers was
known, but recently, two ways were found to define these numbers topologically. First
of all, they are equal to the following integrals on the moduli space of stable curves:

⟨τd1 . . . τdn⟩Θg =

∫
Mg,n

ψd1
1 · · ·ψdn

n Θg,n , (3)

as it was conjectured in [38] with later a complete proof given in [7]. Here Mg,n denotes
the Deligne–Mumford moduli space of stable algebraic curves of genus g with n distinct
marked points, ψj denotes the first Chern class of the jth cotangent line bundle, and
Θg,n denotes the Theta-class introduced by the second author of the present paper [38]
(cf. [7, 30, 42]). This definition, which is the reason for the notation we use, is in
exact analogy with Witten’s notation for his intersection numbers [41] and elucidate (2)
simply as the degree-dimension counting. Secondly, it was proved in [43] that the BGW
numbers can be given by an ELSV-like formula

⟨τd1 . . . τdn⟩Θg =
(−1)g−1+n 22g−2+n∏n

i=1 di!

∫
Mg,n

Λ(−1)2 Λ(12) exp
(∑∞

d=1
(−1)d−1 κd

2dd

)∏n
i=1

(
1 + 2di+1

2 ψi

) , (4)

where Λ(z) denotes the Chern polynomial of the Hodge bundle and κd := f∗(ψ
d+1
n+1)

are the kappa classes with f : Mg,n+1 → Mg,n being the forgetful map. Two efficient
algorithms of computing the BGW numbers will be reviewed in Section 2.

The first few BGW numbers are given by

⟨τ0⟩Θ1 =
1

8
, ⟨τ1⟩Θ2 =

3

128
, ⟨τ21 ⟩Θ3 =

63

512
, ⟨τ2⟩Θ3 =

15

1024
,

⟨τ31 ⟩Θ4 =
7221

2048
, ⟨τ1τ2⟩Θ4 =

8625

32768
, ⟨τ3⟩Θ4 =

525

32768
.

(5)

(Here we have omitted the numbers containing τ0 except for ⟨τ0⟩Θ1 because of equa-
tion (8) below.) From these and many further examples, we observe that the BGW
numbers ⟨τd1 · · · τdn⟩Θg , d1, . . . , dn ≥ 0, are integral away from the prime 2, and we
conjecture that this is true in general. We call this the Integrality Conjecture. Further-
more, they seem to have many small factors, e.g., ⟨τ2τ3⟩Θ6 equals 2−213252731031, and
⟨τ32 τ23 τ4τ5⟩Θ22 is divisible by 2−713115272112. A precise conjecture that at least partially
explains these factorizations will be given in Section 4 (see Conjecture 3).

To proceed, let us introduce the normalized BGW numbers C(d) by

C(d) :=
22g(d)−1

∏n
j=1(2dj + 1)!!

(X(d)− 1)!
⟨τd1 · · · τdn⟩Θg(d) , (6)

where d = (d1, . . . , dn) ∈ (Z≥0)
n, g(d) = |d|+ 1 with |d| := d1 + · · ·+ dn, and

X(d) :=

n∑
j=1

(2dj + 1) = 2 g(d)− 2 + n . (7)
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Obviously, C(0) = 1/4. Using a relation given in Section 2.1 (see (45)), we know that

C(d) = C(0,d) . (8)

This property would of course also be true without the factor 22g(d)−1 in (6), but the
normalization given here will make the asymptotic properties of the numbers nicer.

Because of (8), in the study of C(d), it is sufficient to consider the case when
d1, . . . , dn are all positive, in other words, when d is a partition. From now on, we
will usually restrict to this case. In particular, we do this in the following table, which
gives the values of the normalized BGW numbers for g = 2, . . . , 7.

From Table 1 we observe that the normalized BGW numbers C(d) for partitions of
g − 1 with 2 ≤ g ≤ 7 all lie between the values for the crudest and finest partitions
(g−1) and (1g−1) of g−1. (Here we use the standard convention of writing dm to mean
that the argument d is repeated m times.) By a computer program using an algorithm
given in Section 2.1, we also checked that this is true up to g = 40. For example, for
g = 40, all values lie between the two numbers

C(39) = 0.316326705 · · · , C(139) = 0.316963758 · · · . (9)

The following conjecture states that this nesting property holds for all g.

Conjecture 1. We have C(g − 1) ≤ C(d) ≤ C(1g−1) for any partition d of g − 1.

But in fact much more is true. We denote by ℓ(d) the length of a partition d and
for any fixed g ≥ 1 we define an ordering for all partitions of g − 1 first by increasing
length and then lexicographically for a given length, i.e., d ≺ d′ if either ℓ(d) < ℓ(d′)
or ℓ(d) = ℓ(d′) and di < d′

i, where the non-zero entries of both d and d′ are arranged
in increasing order and i is the first index for which di ̸= d′

i. Purely by chance—simply
because the calculations of tables of C(d) up to g = 40 using the recursion (46) were
done using the software package GP-PARI, which happens to order partitions in the
way just described—we noticed empirically the following

Conjecture 2. The function d 7→ C(d) from partitions of g−1 to Q is strictly monotone
increasing with respect to the above ordering for every g.

To make this property more visible, we have given the numbers C(d) in Table 1 both
as rational numbers and as real numbers to 6 significant digits. For ease of reading, we
have also listed the smallest common denominator D = Dg of these numbers for each g
and then tabulated the integers DC(d) in the last column.

From the numerical tables we see a different property: the values of the normalized
BGW numbers for a fixed g are very close to each other, e.g. the minimum and maximum
values for g = 40 given in (9) differ by less than a third of a percent. In view of the
nesting property, we can concentrate on only the two values C(g− 1) and C(1g−1), and
indeed we can verify that these two numbers are close to each other for all g. On one
hand, the value of C(g − 1) is given by the explicit formula [17, 5]

C(g − 1) =
g

42g−1

(
2g − 1

g

)2

=
(2g − 1)!!3

2g+1 (2g − 1)! g!
, g ≥ 1 , (10)

which by Stirling’s formula has the asymptotics

C(g − 1) ∼ 1

π

(
1 − 1

4g
+

1

32g2
+

1

128g3
− 5

2048g4
+ · · ·

)
, g → ∞ . (11)
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g = 2, D = 32

(1) 9
32 0.281250 9

g = 3, D = 1280

(2) 75
256 0.292969 375

(1, 1) 189
640 0.295313 378

g = 4, D = 143360

(3) 1225
4096 0.299072 42875

(1, 2) 8625
28672 0.300816 43125

(1, 1, 1) 21663
71680 0.302218 43326

g = 5, D = 378470400

(4) 19845
65536 0.302811 114604875

(1, 3) 14945
49152 0.304057 115076500

(2, 2) 209275
688128 0.304122 115101250

(1, 1, 2) 34995
114688 0.305132 115483500

(1, 1, 1, 1) 4825971
15769600 0.306030 115823304

g = 6, D = 91842150400

(5) 160083
524288 0.305334 28042539525

(1, 4) 1766205
5767168 0.306252 28126814625

(2, 3) 883225
2883584 0.306294 28130716250

(1, 1, 3) 442715
1441792 0.307059 28200945500

(1, 2, 2) 6198625
20185088 0.307089 28203743750

(1, 1, 1, 2) 5768625
18743296 0.307770 28266262500

(1, 1, 1, 1, 1) 3540311739
11480268800 0.308382 28322493912

g = 7, D = 37471597363200

(6) 1288287
4194304 0.307152 11509459436475

(1, 5) 8392923
27262976 0.307851 11535653017350

(2, 4) 184659615
599785472 0.307876 11536609447125

(3, 3) 138495805
449839104 0.307879 11536700556500

(1, 1, 4) 92508885
299892736 0.308473 11558985180750

(1, 2, 3) 46257505
149946368 0.308494 11559750499500

(2, 2, 2) 4533499725
14694744064 0.308512 11560424298750

(1, 1, 1, 3) 23168971
74973184 0.309030 11579851705800

(1, 1, 2, 2) 2270671055
7347372032 0.309045 11580422380500

(1, 1, 1, 1, 2) 1137113661
3673686016 0.309529 11598559342200

(1, 1, 1, 1, 1, 1) 34568613873
111522611200 0.309970 11615054261328

Table 1. Numerical data for C(d) with g ≤ 7
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On the other hand, as we will see in Section 9, the value of C(1g−1) is given by

C(1g−1) =
3g−1 (g − 1)!

(3g − 2)!
yg , (12)

where the yg are defined by requiring that the generating series

Y :=
∑
g≥1

ygX
1−3g =

1

4X2
+

9

4X5
+

1323

16X8
+

108315

16X11
+

62737623

64X14
+ · · · (13)

satisfies the following third-order nonlinear ODE:

Y ′′′ + 6Y Y ′ − 2Y − X Y ′ = 0 , ′ =
d

dX
. (14)

This equation can be referred to as the Painlevé XXXIV equation (cf. [5, 9, 20, 26]).
From (13) and (14) we know that the coefficients yg satisfy the recursion

yg = (3g − 2)(3g − 4) yg−1 +
2

g − 1

g−1∑
h=1

(3h− 1)yh yg−h (g ≥ 2) (15)

with the initial value y1 = 1/4, and from this one can obtain the large g asymptotics

yg ∼ A
(3g − 2)!

3g−1 (g − 1)!

(
1 − 1

6g
− 7

72g2
− 41

432g3
− 1789

10368g4
+ · · ·

)
, (16)

where A is some positive constant, which by a numerical computation can be guessed out
as 1/π. The theoretical determination of this constant is difficult. With the help of the
relationship between the Painlevé XXXIV equation and the Painlevé II equation [9, 20]
and a method given in [8], one can obtain, by employing a limit of a deep result of
Its–Kapaev ([27]1 and Chapter 11 of [21]), that A = 1/π. Now using (12) we get

C(1g−1) ∼ 1

π

(
1 − 1

6 g
− 7

72 g2
− 41

432 g3
− 1789

10368 g4
+ · · ·

)
, g → ∞ . (17)

We now note that Conjecture 1 together with formulas (11) and (17) implies that

1

π
− 1

4πg(d)
+ O

( 1

g(d)2

)
≤ C(d) ≤ 1

π
− 1

6πg(d)
+ O

( 1

g(d)2

)
(18)

as g(d) tends to infinity. The following theorem, which will be proved in Section 5,
gives a slight weakening of this, with an unspecified (though effective) O-constant.

Theorem 1. For d ∈ (Z≥0)
n, we have

C(d) =
1

π
+ O

( 1

g(d)

)
(19)

uniformly as the genus g(d) = |d|+ 1 goes to ∞.

Explicitly, this theorem says that there exists an absolute constant K such that∣∣∣C(d)− 1

π

∣∣∣ ≤ K

g(d)
for all d ∈ (Z≥0)

n . (20)

We note that the proof of Theorem 1 does not use the fact that the constant A in (16)
equals 1/π and therefore provides a new proof of this fact, independent of [27] and [21].

1We thank Lun Zhang for pointing out the reference [27].
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The monotonicity conjecture (Conjecture 2) says in particular that the normalized
numbers C(d) with partitions d of a fixed length are smaller than those of greater
length, so if Ig,n denotes the smallest interval containing the normalized BGW numbers
of length n for a given g, then Ig,n lies strictly to the left of Ig,n+1. The numerical data
(up to g = 40) shows that much more is true. The following picture shows all 31185
normalized BGW numbers with g = 40. At this resolution, what one sees are just 39

0.3163 0.317

intervals that look like points, meaning that the normalized BGW numbers of length n
are much closer to each other than to those of length n − 1 or n + 1. More precisely,
we find that each interval Ig,n has length O(g−3), even though the gaps between the
intervals have an average length of the order O(g−2) (because these g − 1 intervals lie
in an interval of total length O(1/g) by Theorem 1). A conjectural statement giving a
much more precise result is stated at the end of Section 6.

From the numerical data we observe for some small values of n that C(d)/C(g(d)−1)
is a rational function of dn if d1, . . . , dn−1 ≥ 1 are fixed. In fact this is always true, as
we will prove in Section 4. Equation (11) and Theorem 1 then imply that C(d) for
d = (d′, dn) with d′ = (d1, . . . , dn−1) fixed has an asymptotic expansion of the form

C(d) ∼ 1

π

∞∑
k=0

Ak(d
′)

g(d)k
, dn → ∞ , (21)

where the Ak(d
′) are rational numbers with A0(d

′) = 1. Now looking at the explicit
formulas for small n (see Section 4), we find that as d1, . . . , dn−1 grow, the asymptotic
expansion of C(d) stabilizes to a well-defined power series in 1/g(d) depending on n.
And then we discover that if we rewrite them as power series in 1/X(d), where X(d) =
2g − 2 + n as usual, we get a power series independent of n and beginning

1

π

(
1− 1

2X
+

5

8X2
− 11

16X3
+

83

128X4
− 143

256X5
+ · · ·

)
. (22)

We can recognize this power series as the large-X expansion of the function

γ(X) =
Γ
(
X
2 + 1

)2
π Γ
(
X+1
2

)
Γ
(
X+3
2

) . (23)

We now find that the difference of C(d) and γ(X(d)) is of the order O(X(d)−2min{di}−2),
and also that C(d) ≤ γ(X(d)) in all cases, with strict inequality unless n = 1.

We also find that sometimes two normalized BGW numbers with the same g and n
are extremely close to each other, a numerical example being given the two numbers

C(1, 18, 20) ≈ 0.3163749000332518760707893046 ,

C(1, 19, 19) ≈ 0.3163749000332518760707893073 ,
(24)

which agree to 26 significant digits. These phenomena and many others of the same
kind will be discussed in Sections 4,6, 7 and 8.

We now turn to the second main theme of this paper, which will shed light on all
aspects of the discussion so far.

In the study of Witten’s intersection numbers, two of the authors [25] discovered,
and stated as a conjecture, that for each k the coefficient of 1/gk in the large genus
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asymptotics of normalized Witten’s intersection numbers is a polynomial of n and the
multiplicities in the arguments, and also that only the multiplicities of 0, 1, . . . , [3k/2]−1
are involved. In the computations for the current paper, we discovered that the same
phenomenon holds also for the normalized BGW numbers C(d), now with the kth
coefficient depending on n and the multiplicities of 0, 1, . . . , [k/2] − 1. Both of these
conjectural statements were proved by Eynard et al [18].

There is a further discovery. We already know that for each k the coefficient Ak(d
′)

in (21), d′ ∈ (Z≥1)
n−1, is a polynomial ak of n and the multiplicities. As we will see

from Section 6, the DVV-type relations for BGW numbers (cf. Section 2.1) imply that
the power series

∑∞
k=0 ak/g

k is unchanged by (g → g−1, n→ n+2). So, if we write this
power series in terms of X−1 instead of g−1 with X = 2g − 2 + n, then the coefficients
are polynomials of the multiplicities of 1, . . . , [k/2]− 1, independent of n. Namely,

C(d) ∼ 1

π

∞∑
k=0

ck(p1(d
′), . . . , p[k/2]−1(d

′))

X(d)k
, dn → ∞ , (25)

for some polynomials ck, where pr(d
′) denotes the multiplicity of r in d′. The first few

polynomials ck are given by

c0 = 1 , c1 = −1

2
, c2 =

5

8
, c3 = −11

16
, c4 =

83

128
− 27

8
p1 .

The constant terms of ck agree (necessarily) with the coefficients of γ(X) (cf. (22)).

This makes it very natural to introduce the renormalized BGW numbers Ĉ(d) by

Ĉ(d) :=
C(d)

γ(X(d))
, d ∈ (Z≥1)

n . (26)

Theorem 2. For any fixed n and fixed d′ ∈ (Z≥1)
n−1, the numbers Ĉ(d) satisfy

Ĉ(d) ∼
∞∑
k=0

ĉk(p1(d
′), p2(d

′), . . . )

X(d)k
, dn → ∞ , (27)

where d = (d′, dn), ĉk are universal polynomials of p1, p2, . . . having rational coefficients,
with ĉ0 ≡ 1 and ĉk|pb≡0 = 0 (k ≥ 1). Moreover, under the degree assignments

deg pd = 2d+ 1 (d ≥ 1) , (28)

the polynomials ĉk, k ≥ 1, satisfy the degree estimates

deg ĉk ≤ k − 1 . (29)

We will give a proof of this theorem, independent of [18], in Section 6.

From (29), we know that ĉk does not depend on pd with d ≥ (k−1)/2. In particular,
ĉk = 0 for k = 1, 2, 3. We list a few more ĉk below:

ĉ4 = −27

8
p1 , ĉ5 = −27

4
p1 , ĉ6 = −45

4
p1 −

1125

16
p2 .

Several more coefficients for both ck and ĉk are given in Table 2 of Section 6. We are
also able to give explicit expressions for all ĉk|pb=δb,d ; see Section 7.
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By Theorem 2 and the above-mentioned result of Eynard et al [18, Theorem 4.3], we
also know that for any fixed L ≥ 1 and fixed n ≥ 1, and for d = (d1, . . . , dn) ∈ (Z≥1)

n,

Ĉ(d) =
L−1∑
k=0

ĉk(p1(d), p2(d), . . . )

X(d)k
+O

(
1

X(d)L

)
, g(d) → ∞ , (30)

where the implied O-constant only depends on n and L.

Based on an algorithm given in [15, 16] (see equations (52)–(53) of Section 2.2)

we have computed Ĉ(dn) for genera far bigger than 40, from which we also see the

phenomenon that Ĉ(dn) rapidly tends to 1 as d → ∞. (For example, 1 − Ĉ(10010) is
roughly 1.8 × 10−285.) This together with Theorem 2 leads us to the discovery of the
conjectural asymptotic formula

1 − Ĉ(dn) ∼
(1
2

)δn,2

√
4 (n− 1)

π n d

(
(n− 1)n−1

nn

)2d+1

, as d→ ∞ . (31)

More details and generalizations of this will be discussed in Section 8.

We end this section by presenting two applications of Theorem 1.

The first one is an application for the Painlevé II hierarchy. Following [4, 9, 12, 35],
define a sequence of polynomials md = md(u0, u1, u2, . . . , u2d), d ≥ 0, by means of
generating series as follows:

b ∂2(b) − 1

2
∂(b)2 − 2 (λ− 2u0) b

2 = −2λ , (32)

where ∂ :=
∑

i≥0 ui+1∂/∂ui, and

b(λ) = 1 +
∑
d≥0

(2d+ 1)!!md

λd+1
. (33)

The first few md are m0 = u0, m1 =
1
2u

2
0 +

1
12u2. By the Painlevé II hierarchy we mean

the following family of ODEs:

22d−1(2d− 1)!! (∂X + 2V )
(
md−1

(
VX−V 2

2 , (VX−V 2)X
2 , . . .

))
− V X − αd = 0 , (34)

where d ≥ 1 and αd are constants. We will focus on the case when αd = 1/2, d ≥ 1.
In this case, it can be shown that, for each d ≥ 1, there exists a unique formal solution
V (X) to (34) of the form

V (X) = −
∞∑
n=0

vd,n

X(2d+1)n+1
, vd,n ∈ C , vd,0 =

1

2
. (35)

In Section 9 we will use Theorem 1 to prove the following theorem.

Theorem 3. For each d ≥ 1, the coefficients vd,n of the formal solution V (X) to the
dth member of the Painlevé II hierarchy have the following asymptotics:

vd,n ∼ 1

π

((2d+ 1)n− 1)!

(2d+ 1)n−1 (n− 1)!
, n→ ∞ . (36)

We note that for the particular case when d = 1 the above theorem was essentially
proved in [27] and [21] by using a deep Riemann–Hilbert analysis, and we now achieve
a new proof. As far as we know, the cases with d ≥ 2 are new.
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The second application that we will present is to use Theorem 1 to study the large
genus asymptotics of the more general integrals, which we call the BGW-kappa numbers,
where the Theta-class is coupled with powers of κ1-class as well as psi-classes∫

Mg,n

ψd1
1 · · ·ψdn

n Θg,n κ
m
1 =: ⟨κm1

n∏
j=1

τdj ⟩
Θ
g . (37)

By the degree-dimension matching, these numbers vanish unlessm+d1+· · ·+dn = g−1.
A small table of these BGW-kappa numbers is provided in Section 10.

Like the numbers C(d), we introduce the normalized BGW-kappa numbers as follows:

C(m;d) :=
3m 22g−1

∏n
j=1(2dj + 1)!!

(X(m;d)− 1)!
⟨κm1 τd1 · · · τdn⟩Θg , X(m;d) := X(d) + 3m.

(38)

Obviously, C(0;d) = C(d). In Section 10 we will use Theorem 1 to prove the following

Proposition 1. For any fixed m ≥ 0, there exists a constant K(m) such that∣∣∣∣C(m;d)− 1

π

∣∣∣∣ ≤ K(m)

g(m;d)
for all d ∈ (Z≥0)

n , (39)

where g(m;d) = g(d) +m = |d|+m+ 1.

We also give in Section 10 an application of Theorem 2 to BGW-kappa numbers.

The paper is organized as follows. In Section 2 we review a recursive definition of
BGW numbers as well as an explicit formula for their n-point generating series. In Sec-
tion 3 we give closed formulas for BGW numbers. In Section 4 we present several results
on structures for BGW numbers. In Section 5 we prove Theorem 1, and in Section 6 we
prove Theorem 2. Further asymptotic formulas and conjectural subexponential asymp-
totics are given in Sections 7, 8, respectively. In Sections 9, 10 we present applications
of the main theorems.

Acknowledgements The work was partially supported by NSFC No. 12371254, the
CAS No. YSBR-032, the National Key R and D Program of China 2020YFA0713100,
and the China Scholarship Council. Parts of the work of J.G., P.N. and D.Y. were done
during their visits in MPIM, Bonn; they thank MPIM for excellent working conditions.

2. Review of general theory of BGW numbers

The definitions for BGW numbers given in Section 1 are not directly calculable since
the integrals over the unitary group or moduli space are not algorithmically defined. In
this section we review two algorithms that can be used to effectively compute the BGW
numbers and that can and have been implemented on a computer.

2.1. Recursive definition of the BGW numbers. It is known from [14, 37] (cf. also [2,
7, 38]) that the partition function Z of the BGW numbers, defined by

Z = exp

(∑
g≥1

∑
n≥1

1

n!

∑
d1,...,dn≥0

d1+···+dn=g−1

⟨τd1 . . . τdn⟩Θg td1 · · · tdn

)
(40)
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(cf. (2)), is a particular tau-function for the celebrated KdV hierarchy. In particular,
u := ∂2 logZ/∂2t0 satisfies the KdV hierarchy

utd = ∂x(md(u, ux, uxx, . . . , u2dx)) , d ≥ 0 , (41)

with t0 ≡ x, where md is defined in (32), (33). It is also known that Z satisfies the
following infinite set of linear equations called the Virasoro constraints:

LmZ = 0 , m ≥ 0 , (42)

where Lm, m ≥ 0, are operators defined by

Lm := −(2m+ 1)!!
∂

∂tm
+
∑
d≥0

(2d+ 2m+ 1)!!

(2d− 1)!!
td

∂

∂td+m

+
1

2

∑
a+b=m−1

(2a+ 1)!! (2b+ 1)!!
∂2

∂ta∂tb
+

1

8
δm,0 . (43)

See [2, 14, 22, 37] (cf. also [3, 5, 7, 17, 38]).

For n ≥ 1, d = (d1, . . . , dn) ∈ (Z≥0)
n, it is convenient to denote

B(d) := ⟨τd1 . . . τdn⟩Θg(d)
n∏

j=1

(2dj + 1)!! , (44)

where we recall that g(d) = |d|+ 1. Using the m = 0 case of (42), we obtain

B(0,d) = (2g(d) + n− 2)B(d) , 2g(d)− 2 + n > 0 . (45)

In general, a recursion for the BGW numbers that is equivalent to the Virasoro con-
straints was derived in [14] by Do and the second author of the present paper:

B(d,d) =

n∑
i=1

(2di + 1)B(d1, . . . , di + d, . . . , dn)

+
1

2

∑
a+b=d−1

(
B(a, b,d) +

∑
I⊔J={1,...,n}

B
(
a, {di}i∈I

)
B
(
b, {dj}j∈J

))
,

(46)

where d ≥ 0. We refer to (46) as the DVV-type relation (here “DVV” stands for
Dijkgraaf–Verlinde–Verlinde), because it is analogous to the DVV relation for Witten’s
intersection numbers [13]. It is also closely related to the topological recursion [14, 19].
Note that originally the DVV-type relation for BGW numbers was written in another
normalization, denoted Ug,n(2d1 + 1, . . . , 2dn + 1) [14], which is related to B(d) by

Ug,n(2d1 + 1, . . . , 2dn + 1) = B(d) /

n∏
j=1

(2dj + 1) .

By induction on the sum
∑n

i=1(2di +1) = 2g(d) + n− 2, we know that the numbers
B(d) can be uniquely determined by (46) along with the initial value

B(0) =
1

8
(47)

(see (5), (44)). However, it is not at all obvious from (46) that B is symmetric in its
arguments. In other words, if we force this symmetry by defining B as a function on
unordered multisets, then (46) is an overdetermined system because we can choose any
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of the n + 1 arguments of B(d1, . . . , dn+1) as the “d” of (46) and it is non-trivial that
the right-hand side will be independent of this choice.

Using the DVV-type relation (46), we can in principle compute the numbers C(d)
for partitions d = (d1, . . . , dn) of g− 1 for any g, and we have done so for all g up to 40.

2.2. Explicit formulas of n-point generating series. Following [4, 5, 17], consider
the following n-point generating series of the BGW numbers:

Fn(λ1, . . . , λn) =
∑

d1,...,dn≥0

B(d1, . . . , dn)

λd1+1
1 · · ·λdn+1

n

. (48)

Using the matrix-resolvent method [4], an explicit formula for Fn(λ1, . . . , λn) was ob-
tained in [17] (see [5] for a different proof)

F1(λ) =
∑
d≥0

(2d+ 1)!!3

8d+1(d+ 1)!(2d+ 1)

1

λd+1
, (49)

Fn(λ1, . . . , λn) = − 1

n

∑
σ∈Sn

tr(M(λσ(1)) · · ·M(λσ(n)))∏n
i=1(λσ(i+1) − λσ(i))

− δn,2
λ1 + λ2

(λ1 − λ2)2
, n ≥ 2 ,

(50)

where

M(λ) :=
∑
k≥−1

(
(2k − 1)!!

2k

)3
(

k (k + 1) k + 1

−8k3+12k2+4k+1
8 −k (k + 1)

)
λ−k

(k + 1)!
, (51)

with the usual conventions (−1)!! = 1 and (−3)!! = −1.

There is a useful variant of formulas like (50) given by Dubrovin and the third author
of the present paper (see [15, Proposition 3.2.3]). A special case of the variant gives the
numbers ⟨τd1 . . . τdn⟩Θg efficiently when all but at most two of the d’s are equal. Indeed,
define a sequence of traceless 2× 2 matrix-valued functions Mm,d(λ) (m ≥ 0) by setting
M0,d(λ) =M(λ) as above (independent of d) and then inductively defining

Mm,d(λ) =
1

m

∑
i+j=m−1

[(
λdMi,d(λ)

)−
, Mj,d(λ)

]
(52)

form ≥ 1, where A(λ)− denotes the sum of the terms with strictly negative exponents of
a Laurent series A(λ) in 1/λ. Then we have the following generating function formula:

(λ1 − λ2)
2

m!

∑
a,b≥0

B(a, b, dm)

λa+1
1 λb+1

2

=

m∑
k=0

tr
(
Mk,d(λ1)Mm−k,d(λ2)

)
− δm,0 . (53)

This formula allows us to calculate all of the numbers C(a, b, dn−2), and in particular
the numbers C(dn), quite efficiently even when the genus is large, in which case the
recursive formula (46) would be useless because it requires one to have computed and
stored the BGW numbers for all smaller genera. Using it, we computed the rational
numbers C(dn) for 1 ≤ d ≤ 100 and 1 ≤ n ≤ 10. This computation took about 20 hours
on a relatively fast desktop computer, which sounds like a lot until one realizes that,
for example, the numerator and denominator of the rational number C(10010) each has
3020 digits.
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3. Exact formulas for n-point BGW numbers

For n ≥ 2, expanding the right-hand side of (50) in the region |λ1| > · · · > |λn| ≫ 0,
one gets a formula for n-point BGW numbers which is similar to a formula for Witten’s
intersection numbers given in [25]. For σ ∈ Sn, introduce the notation

S+
σ =

{
1 ≤ r ≤ n

∣∣σ(r + 1) > σ(r)
}
, S−

σ =
{
1 ≤ r ≤ n

∣∣σ(r + 1) < σ(r)
}
.

Here σ is considered to be cyclic, so that we have the convention σ(n+ 1) = σ(1). For
k1, . . . , kn ≥ −1, introduce the notation

ak1,...,kn := tr(Ak1 · · ·Akn) , (54)

where Ak := f(k)R(k), k ≥ −1, with

f(k) :=
(2k − 1)!!3

23k(k + 1)!
, R(k) :=

(
k(k + 1) k + 1

−8k3+12k2+4k+1
8 −k(k + 1)

)
, (55)

and we make the convention that ak1,...,kn = 0 if any of the ki is less than or equal to −2.

Note that Ak is just the coefficient of λ−k in the Laurent series M(λ) defined in (51).

Proposition 2. For n ≥ 2 and d = (d1, . . . , dn) ∈ (Z≥0)
n, we have

B(d) =
∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
J∈(Z+ 1

2
)n

{1≤q≤n|Jq>0}=S+
σ

adσ(1)+J1−Jn,...,dσ(n)+Jn−Jn−1 . (56)

Proof. In the region |λ1| > · · · > |λn| ≫ 0, we have the Laurent expansion

n∏
q=1

1

λσ(q+1) − λσ(q)
= (−1)|S

+
σ |

∑
j1,...,jn≥0

n∏
q=1

λ
Jσ,q(jq)−Jσ,q−1(jq−1)−1

σ(q) , (57)

where for q = 1, . . . , n,

Jσ,q(j) :=

{
−j − 1, σ(q) < σ(q + 1),

j, σ(q) > σ(q + 1).
(58)

Expanding both sides of (50) and using (57), we get

B(d) =
∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
j∈(Z≥0)n

adσ(1)+Jσ,1(j1)−Jσ,n(jn),...,dσ(n)+Jσ,n(jn)−Jσ,n−1(jn−1) .

(59)

For each σ ∈ Sn with σ(n) = n, by changing the variable Jq =
1
2 +Jσ,q(jq), q = 1, . . . , n,

we obtain formula (56). □

Proposition 2 could be rewritten in a more elegant way as follows:

Proposition 3. For n ≥ 2 and d = (d1, . . . , dn) ∈ (Z≥0)
n, we have

B(d) =
∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
k1,...,kn≥−1

k1+···+kn=d1+···+dn

ak1,...,kn ωd,σ,k , (60)
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where the numbers ωd,σ,k have the following explicit expression

ωd,σ,k = max

{
0, min

r∈S+
σ

{ r∑
q=1

(dσ(q) − kq)

}
+ min

r∈S−
σ

{ r∑
q=1

(kq − dσ(q))

}}
. (61)

Proof. For each σ ∈ Sn with σ(n) = n we change the variable kq = dσ(q) + Jσ,q(jq) −
Jσ,q−1(jq−1), q = 1, . . . , n, in formula (59) and we get

B(d) =
∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
k1,...,kn≥−1

k1+···+kn=d1+···+dn

ak1,...,kn ωd,σ,k , (62)

where the numbers ωd,σ,k are the number of solutions j ∈
(
Z≥0

)n
for the linear equa-

tions:

dσ(q) + Jσ,q(jq)− Jσ,q−1(jq−1) = kq, q = 1, . . . , n . (63)

Now it suffices to prove that these numbers ωd,σ,k have the expression (61). Indeed, by
using (58), equations (63) can be solved in terms of jn by

jr =

{
−jn − 1 +

∑r
q=1(dσ(q) − kq), r ∈ S+

σ ,

jn +
∑r

q=1(kq − dσ(q)), r ∈ S−
σ .

(64)

Here we use σ(n) = n to obtain Jσ,n(jn) = jn. Therefore, ωd,σ,k is equal to the number
of jn ∈ Z≥0 such that jr ≥ 0 in (64) for all r = 1, . . . , n − 1, and hence is equal to the
right-hand side of (61). This finishes the proof. □

We note that when n ≥ 3 and some of dj are less than zero, then formula (56) or
formula (60) still holds true (where both sides are 0), since both sides are the coefficients

of λ−d1−1
1 · · ·λ−dn−1

n in the power series Fn(λ1, . . . , λn) defined in (48).

Let us give some examples for Proposition 3. First we introduce the following nota-
tion: for n ≥ 1 and e ∈ Zn, write

M(e) = max
{
0, min

1≤i≤n
{ei}

}
(65)

which can be written in terms of a generating function by∑
e1,...,en≥0

xe1−1
1 · · ·xen−1

n M(e1, . . . , en) =
1

(1− x1 · · ·xn)
∏n

i=1(1− xi)
. (66)

For n = 2, Proposition 3 reads that

B(d1, d2) =
∑

k1+k2=d1+d2

M(d1 − k1) ak1,k2 , (67)

where ak1,k2 can be explicitly given as follows:

ak1,k2 = −f(k1)f(k2)
((
(k1 − k2)

2 + k1+k2
2

)
(k1 + 1)(k2 + 1)− k1+k2+2

8

)
,

with f(k) defined in (55). Actually, we also have a simpler formula for B(d1, d2):

B(d1, d2) =
1

g

d1∑
h=0

(g − 2h)Fh Fg−h , where Fh :=
(2h− 1)!!3

23h h!
. (68)

The equivalence of (67) and (68) can be proved as in [24]. Since
∑g

h=0(g− 2h)Fh Fg−h

vanishes by antisymmetry, we see the RHS of (68) is indeed symmetric in d1 and d2.
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We also note that formula (68) also holds for d1 = −1, d2 ≥ 1 and d2 = −1, d1 ≥ 1
(where both sides are 0). With the normalization C(d) the above formula becomes

C(d1, d2) =
22g

(2g)!

d1∑
h=0

(g − 2h)Fh Fg−h . (69)

For n = 3, Proposition 3 reads

B(d1, d2, d3) = −2
∑

k1+k2+k3=d1+d2+d3

ak1,k2,k3 M(d1 − k1, d1 + d2 − k1 − k2) , (70)

where ak1,k2,k3 can be given more explicitly by

ak1,k2,k3 = f(k1) f(k2) f(k3)(k1−k2)(k2−k3)(k3−k1)
(
(k1+1)(k2+1)(k3+1)+ 1

8

)
. (71)

For n = 4, Proposition 3 reads that

B(d1, d2, d3, d4) = 2
∑

k1+k2+k3+k4=d1+d2+d3+d4

ak1,k2,k3,k4

×
(
M
(
d1 − k1, d1 + d2 − k1 − k2, k4 − d4

)
−M

(
d1 − k2, d1 + d2 − k2 − k3, d1 + d3 − k1 − k2, k4 − d4

)
−M

(
d1 − k1, d2 − k3, k2 − d3, k4 − d4

))
, (72)

where we have used the fact that ak1,k2,k3,k4 = ak2,k3,k4,k1 = ak1,k4,k3,k2 .

4. Rational functions, asymptotics and integrality

In this section we consider the numbers C(λ, g − 1 − |λ|), where λ is a given fixed
partition and we allow g to vary.

When |λ| = 0, the formula for C(g − 1) is known; see (10). Based on the DVV-type
relation (46), we can find that for |λ| = 1, 2, 3 the quotient of C(λ, g−1−|λ|) by C(g−1)
is a rational function of g. Explicitly,

C(1, g − 2)

C(g − 1)
=

g − 1

(2g − 1)3
Q1(g) ,

C(λ, g − 3)

C(g − 1)
=

(g − 1)(g − 2)

(2g − 1)3(2g − 3)3
Qλ(g) , |λ| = 2 ,

C(λ, g − 4)

C(g − 1)
=

(g − 1)(g − 2)(g − 3)

(2g + 1)(2g − 1)3(2g − 3)3(2g − 5)3
Qλ(g) , |λ| = 3 ,

where

Q1(g) = 8g2 − 4g + 3 ,

Q1,1(g) = 64g4 − 192g3 + 224g2 − 144g + 117 ,

Q2(g) = 64g4 − 192g3 + 216g2 − 108g + 135
2 ,

Q1,1,1(g) = 1024g7 − 7168g6 + 19072g5 − 24256g4 + 18832g3 − 15520g2 + 11418g + 14823 ,

Q1,2(g) = 1024g7 − 7168g6 + 18944g5 − 23040g4 + 14056g3 − 6272g2 + 5411g + 16365
2 ,

Q3(g) = 1024g7 − 7168g6 + 18816g5 − 21952g4 + 10360g3 + 1125g + 7875
2 .

The general situation is described in the following two propositions.
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Proposition 4. For n ≥ 1 and for a given fixed partition λ = (λ1, . . . , λn−1), we have

C(λ, g − 1− |λ|)
C(g − 1)

=
Q̃λ(g)

(2g − 2|λ| − 2)2|λ|+n

∏|λ|
i=1(2g − 2i+ 1)2

, (73)

where Q̃λ(g) ∈ Z[1/2][g] is a polynomial, and (a)b := a(a+1) · · · (a+ b− 1) denotes the
ordinary Pochhammer symbol.

Proof. Write the left-hand side of (73) as Φ̃λ(g). In terms of Φ̃λ(g), recursion (46) reads

Φ̃d,λ(g) =

n−1∑
j=1

2λj + 1

2g + n− 2
Φ̃λ1,...,λj+d,...,λn−1(g) +

(
1− 2d+ 2|λ|+ n− 1

2g + n− 2

)
Φ̃λ(g)

+
∑

a+b=d−1
a,b≥0

[
8g(g − 1)

(2g + n− 2)(2g − 1)2
Φ̃a,b, λ(g − 1)

+
∑

I⊔J={1,...,n−1}

2
(
X(a, λI)− 1

)
!C(a+ |λI |) Φ̃a,λI

(
a+ 1 + |λI |

)
Φ̃b,λJ

(
g − 1− a− |λI |

)

×

(
g − a− |λI |

)
a+1+|λI |

(
g − 1− a− |λI |

)
a+1+|λI |(

2g + n− 2−X(a, λI)
)
X(a,λI)+1

(
(g − 1

2 − a− |λI |)a+1+|λI |
)2
]
. (74)

Note that Φ̃∅(g) = 1. Then Proposition 4 is proved by induction in |λ|. Indeed, using
the induction assumption, one can show that each term in the right-hand side of (74)

multiplying the factor (2g−2|λ|−2d−2)2|λ|+2d+n+1

∏|λ|+d
i=1 (2g−2i+1)2 is a polynomial

in Z[1/2][g] . This finishes the proof. □

Proposition 5. For n ≥ 1 and for a given fixed partition λ = (λ1, . . . , λn−1), we have

C(λ, g − 1− |λ|)
C(g − 1)

=
Qλ(g)∏n−3

j=1 (2g + j)

|λ|∏
i=1

2g − 2i

(2g − 2i+ 1)3
, (75)

where Qλ(g) ∈ Z[1/2][g] are polynomials.

Proof. For n = 1 we have Q∅(g) = 1. Assume that n ≥ 3 and n is odd. Write
d = (λ, g − 1− |λ|). From Proposition 3 we know that

(2g + n− 3)!

22g−1
C(d) =

∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
k1,...,kn≥−1

k1+···+kn=d1+···+dn

ak1,...,kn ωd,σ,k , (76)

where ak1,...,kn is defined in (54), and ωd,σ,k is defined in (61). By the definition (54) of
ak1,...,kn , we know that

8k1+···+kn (kn + 1)! ak1,...,kn
(2kn − 1)!!3

∈ Z[1/2][kn] . (77)

Now we claim that all nonzero summands in the RHS of (76) correspond to

g − |λ| ≤ kn ≤ g +
n− 3

2
. (78)
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Indeed, one can show that kn < g−|λ| implies ωd,σ,k = 0, and that kn > g+ n−3
2 implies

ak1,...,kn = 0. Therefore, we obtain from (77) and (78) that

8g−1 (g + n−1
2 )!

(2g − 2|λ| − 1)!!3

∑
σ∈Sn
σ(n)=n

(−1)|S
+
σ |+1

∑
k1,...,kn≥−1

k1+···+kn=d1+···+dn

ak1,...,kn ωd,σ,k ∈ Z[1/2][g] . (79)

Moreover, we notice that the polynomial (79) has zeros at g = |λ|, |λ| − 1, . . . ,−n−1
2 ,

(since at these points, g−1−|λ| is a negative integer and the polynomials (79) equals 0
by the discussion in Section 3), so we obtain that

(2g + n− 3)!

22g−1

8g−1 (g − |λ|+ 1)!

(2g − 2|λ| − 1)!!3
C(d) ∈ Z[1/2][g] . (80)

Using (80) and the one-point formula (10), we deduce (75) for n ≥ 3 odd. For n even
and n ≥ 4, the proof is similar and for n = 2, the proof is based on the fact that
C(d1, d2) = C(0, d1, d2). □

We note that the above two propositions are analogous to results of Liu–Xu [34] on
Witten’s intersection numbers, and that in [25] we used the matrix-resolvent formula to
prove rationality for Witten’s intersection numbers.

We make one further remark. In the formulas given before Proposition 4 we see that
the polynomials Qλ(g) occurring for different λ of the same length m are very close
for g large, e.g., the three polynomials Qλ(g) for m = 3 all start 1024g7 − 7168g6, and
even their g5 coefficients are near each other. We will return to this point in more detail
later.

It will be convenient to write the polynomials Qλ(g) as polynomials of the variable X,
i.e., Qλ(g) = Pλ(X), X = 2g − 2 + n. For example,

P1(X) = X2 −X +
3

2
,

P2(X) = X4 − 6X3 +
27

2
X2 − 27

2
X +

135

8
,

P1,1(X) = X4 − 10X3 + 38X2 − 68X +
273

4
,

P3(X) = X6 − 15X5 +
177

2
X4 − 260X3 +

3375

8
X2 − 3375

8
X +

7875

16
,

P1,2(X) = X6 − 21X5 + 179X4 − 795X3 +
15957

8
X2 − 23247

8
X +

41121

16
,

P1,1,1(X) = X7 − 28X6 +
653

2
X5 − 4109

2
X4 +

30361

4
X3 − 33581

2
X2 +

170757

8
X − 82467

8
.

The statement of Proposition 5 can then be written equivalently as

C(λ, g − 1− |λ|)
C(g − 1)

=
Pλ(2g + n− 2)∏n−3

j=1 (2g + j)

|λ|∏
i=1

2g − 2i

(2g − 2i+ 1)3
, (81)

where Pλ(X) ∈ Z[1/2][X] is a monic polynomial.

By using formula (10) and formula (81) we arrive at the following proposition.
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Proposition 6. For any fixed n ≥ 2, fixed λ = (λ1, . . . , λn−1) ∈ (Z≥1)
n−1, and for dn

being an indeterminate, we have

C(λ, dn) =
1

X(λ, dn)δn,2 (X(λ, dn)− 1)!

(2dn + 1)!!3

2dn+1 dn!
Pλ(X(λ, dn)) , (82)

where Pλ(X) ∈ Z[1/2][X] is a monic polynomial of degree
∑n−1

j=1 (2λj + 1) + δn,2 − 2.

We observe from the above examples that the polynomials Pλ(X) for |λ| = 1, 2 are
irreducible over Q, and we have checked that it is still true for |λ| = 3, . . . , 9. We
expect that this irreducibility holds for all partitions λ, and this is consistent with an
observation that the BGW numbers often contain large prime factors.

Remark 1. For d′ = (d1, . . . , dn−1) ∈ (Z≥0)
n−1 fixed and dn an indeterminate, write

d = (d′, dn). Then from Proposition 6 and (8) we have

C(d) =
1

X(d)δn,2 (X(d)− 1)!

(2dn + 1)!!3

2dn+1 dn!
Pd′(X(d)) , (83)

Here Pd′(X) is defined via

P0,d′(X) := (X − 1)1−δn,2Pd′(X − 1) , d′ ∈ (Z≥0)
n−1 . (84)

Formula (83) (or Proposition 6) implies the following corollary, which is similar to a
result of Liu–Xu [32, 34] for Witten’s intersection numbers.

Corollary 1. For g, n ≥ 1, d1, . . . , dn ≥ 0 satisfying d1 + · · ·+ dn = g − 1, we have

gδn,2
dn!

∏n
j=1(2dj + 1)!!

(2dn + 1)!!3
⟨τd1 · · · τdn⟩g ∈ Z[1/2] . (85)

In the introduction we formulated the “Integrality Conjecture” that the numbers
⟨τd1 · · · τdn⟩g are integral away from 2, and also made the observation that they are
often highly factorized. Corollary 1 does not imply the Integrality Conjecture, but does
give both some bounds on the denominators of ⟨τd1 · · · τdn⟩g and nice information about
prime factors of ⟨τd1 · · · τdn⟩g. The following statement, based on the numerical data up
to genus 40, gives a stronger version of the Integrality Conjecture.

Conjecture 3. For n ≥ 1 and d = (d1, . . . , dn) ∈ (Z≥0)
n, we have both

⟨τd1 · · · τdn⟩Θg ∈
∏n

j=1 dj !

24g
Z (86)

and

⟨τd1 · · · τdn⟩Θg ∈
max1≤j≤n{(2dj + 1)!!}

∏
r≥0, pr(d)≥1(pr(d)− 1)!

24g
Z , (87)

where g = |d|+ 1, and pr(d) denotes the multiplicity of r in d.

We notice that none of (85), (86), (87) imply either of the others, and also that each
is weaker than the best possible factorization. For instance,

⟨τ6τ7τ8τ18⟩Θ40 = 2−15031851175112133171192232292312372 1011M ,

where M has no prime factors less than 1000, whereas formula (85) implies the divis-
ibility of ⟨τ6τ7τ8τ18⟩Θ40 (away from 2) by 3−113−25271192232292312372, formula (86)
implies the divisibility by 3145674111131171, and formula (87) implies the divisibility
by 395573112131171191231291311371.
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5. Uniform large genus asymptotics

In this section, we prove Theorem 1. Our proof will mainly use the recursion (46),
and techniques introduced by Aggarwal [1] in the study of the large genus asymptotics
of Witten’s intersection numbers. Before entering into the details, it is convenient to
rewrite the DVV-type relation (46) in terms of C(d) as follows:

C(d) =
n∑

j=2

2dj + 1

X(d)− 1
C(d2, . . . , dj + d1, . . . , dn)

+
∑
a,b≥0

a+b=d1−1

[
2

X(d)− 1
C(a, b, d2, . . . , dn)

+
∑

I⊔J={2,...,n}

(X(a,dI)− 1)! (X(b,dJ)− 1)!

(X(d)− 1)!
C(a,dI)C(b,dJ)

]
, (88)

where n ≥ 1, d = (d1, . . . , dn) ∈ (Z≥0)
n, and X(·) is as in (7).

5.1. Lower bound. Let us first show the following lemma on positivity of C(d).

Lemma 1. For every n ≥ 1 and every d = (d1, . . . , dn) ∈ (Z≥0)
n, we have

C(d) > 0 . (89)

Proof. By using the DVV-type relation (88) and by recalling that C(0) = 1/4. □

Now we give in the following lemma a better lower bound for C(d).

Lemma 2. For every n ≥ 1 and every d = (d1, . . . , dn) ∈ (Z≥0)
n, we have

C(d) ≥ C(|d|) . (90)

Proof. Noticing that the statement is trivial when n = 1 and the fact that C(d) is
unchanged by removing 0’s in d, we can assume n ≥ 2 and d1, . . . , dn ≥ 1. Because of
the symmetry of C(d) in its arguments, we can also assume that d1 is the smallest of
the dj ’s. We now do mathematical induction with respect to X(d) = 2|d|+ n ≥ 3. For
X(d) = 3, from Table 1 we see that (90) is true. By Lemma 1 and by the induction
hypothesis we get

C(d)− C(|d|) ≥ −2 d1
C(|d|)− C(|d| − 1)

X(d)− 1
+ 2

C(0)C(|d| − 1)

(X(d)− 1)(X(d)− 2)
. (91)

Using formula (10), we can write the right-hand side of (91) as

1

2

(
1

X(d)− 2
− d1

|d|(|d|+ 1)

)
C(|d| − 1)

X(d)− 1
, (92)

which is positive because d1 ≤ |d|
n and n ≥ 2. This finishes the proof. □
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5.2. Upper bound. To give an upper bound of C(d), we first give in the follow-
ing lemma an estimate related to the quadratic-in-C terms of (88), analogous to [1,
Lemma 3.1].

Lemma 3. For n ≥ 1 and for d = (d1, . . . , dn) ∈
(
Z≥1

)n
, we have

∑
a,b≥0

a+b=d1−1

∑
I⊔J={2,...,n}

(
X(a,dI)− 1

)
!
(
X(b,dJ)− 1

)
!(

X(d)− 1
)
!

≤ 4

(X(d)− 1)(X(d)− 2)
. (93)

Proof. For n = 1, the inequality (93) is trivial. Assume that n ≥ 2. For each a, b, I, J
satisfying a + b = d1 − 1 and I ⊔ J = {2, . . . , n}, we set n1 = |I|, g1 = a + 1 + |dI |,
n2 = |J |, g2 = b+ 1+ |dJ |. Then X(a,dI) = 2g1 + n1 − 1 and X(b,dJ) = 2g2 + n2 − 1.
By counting the number of 4-tuples (a, b, I, J) with given values of ni and gi, we find

∑
a,b≥0

a+b=d1−1

∑
I⊔J={2,...,n}

(
X(a,dI)− 1

)
!
(
X(b,dJ)− 1

)
!(

X(d)− 1
)
!

≤
∑

n1+n2=n−1

∑
g1,g2≥1
g1+g2=g

(
n− 1

n1

)
(2g1 + n1 − 2)! (2g1 + n2 − 2)!

(X(d)− 1)!

=
∑

n1+n2=n−1

(
n− 1

n1

)(
2
n1! (X(d)− n1 − 3)!

(X(d)− 1)!
+

∑
g1,g2≥2
g1+g2=g

(2g1 + n1 − 2)! (2g1 + n2 − 2)!

(X(d)− 1)!

)
,

(94)

where g = g(d) = |d| + 1 as usual. We estimate the two terms on the right-hand side
of (94) separately. For the first term we have

2
∑

n1+n2=n−1

(
n− 1

n1

)
n1! (X(d)− n1 − 3)!

(X(d)− 1)!
=

2

(X(d)− 1)(X(d)− 2)

n−1∑
n1=0

n1∏
j=1

n− j

X(d)− 2− j

≤ 2

(X(d)− 1)(X(d)− 2)

∞∑
n1=0

(
1

3

)n1

=
3

(X(d)− 1) (X(d)− 2)
, (95)

where in the inequality we used the fact that n ≤ X(d)
3 (implied by d ∈ (Z≥1)

n). For
the second term we have∑
n1+n2=n−1

∑
g1,g2≥2
g1+g2=g

(
n− 1

n1

)
(2g1 + n1 − 2)! (2g2 + n2 − 2)!

(X(d)− 1)!

≤
∑

g1,g2≥2
g1+g2=g

n1+n2=n−1

(
2g−4
2g1−2

)−1

(X(d)− 1)(X(d)− 2)
≤

n (g − 3)
(
2g−4
2

)−1

(X(d)− 1)(X(d)− 2)
≤ 1

(X(d)− 1) (X(d)− 2)
,

(96)
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where for the first inequality we used the fact that X(d) = (2g1+n1−2)+(2g2+n2−2)
and that (

a1
b1

)(
a2
b2

)
≤
(
a1 + a2
b1 + b2

)
, (97)

and for the last inequality we used g ≥ 3 and n ≤ g− 1. Combining (94), (95), (96), we
obtain the lemma. □

Following Aggarwal [1], for X , n ≥ 1, introduce

θX ,n := max
d∈(Z≥0)

n

X(d)=X

C(d) . (98)

Before continuing, we introduce a number-theoretic function f(X , n), defined through
the recursion

f(X , n) =
2

3
f(X − 1, n− 1) +

1

3
f(X − 1, n+ 1) +

4

(X − 1)(X − 2)
, ∀n ≥ 3,X ≥ 8 ,

(99)

together with the initial data f(X , n) = 1/π for 1 ≤ X ≤ 7 or n = 1, 2. By induction,
we know that f(X , n) is monotone increasing with respect to n, and

f(X , n) ≤ 1

π
+

X∑
k=8

4

(k − 1)(k − 2)
. (100)

Hence f(X , n) is bounded by 1. Let us also prove the following lemma.

Lemma 4. For X ≥ 1, and for 1 ≤ n ≤ X
5 , we have the uniform estimate

f(X , n) =
1

π
+ O

( 1
X
)
, X → ∞ . (101)

Proof. It is not difficult to show, either directly or using generating function, that the
solution of the recursion (99) with the given initial condition, is given for n ≥ 2 and
X ≥ 7 by

f(X , n) =
1

π
+

2(X − 7)

3(X − 1)
−

X∑
k=8

2(k − 7)

3(k − 1)
P (n,X − k) , (102)

where the coefficients P (n, j) are defined by(3−√
9− 8t2

2t

)n−2
=:

∞∑
j=0

P (n, j) tj . (103)

These coefficients can be estimated by the residue theorem:

P (n, j) =
1

2πi

∫
C
t−j−1

(
3−

√
9− 8t2

2t

)n−2

dt ≤ 1.05−j × 1.23n−2 ,
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where we have taken the contour C to be the circle |t| = 1.05 <
√
9/8, on which we

have

∣∣∣∣3−√
9−8t2

2t

∣∣∣∣ < 1.23. Let us now estimate the right-hand side of (102):

X∑
k=8

2(k − 7)

3(k − 1)
P (n,X − k) ≥

X∑
k=M+1

2(k − 7)

3(k − 1)
P (n,X − k) ≥ 2(M − 6)

3M

X−M−1∑
j=0

P (n, j) ,

(104)

for any 7 ≤M ≤ X . Taking M = [0.1X ] and using n ≤ X
5 , we have

∞∑
j=X−M

P (n, j) ≤ 14× 1.05−X+M × 1.23n ≤ 14× 0.998X . (105)

By using
∑∞

j=0 P (n, j) = 1 and concluding formula (102) and the estimates (104), (105),
we finish the proof of the lemma. □

The significance of the function f(X , n) is given by the following important lemma.

Lemma 5. For n ≥ 1, X ≥ 1, the numbers θX ,n have the upper bound

θX ,n ≤ f(X , n) . (106)

Proof. For 1 ≤ X ≤ 7, we check from Table 1 that inequality (106) holds. For n = 1,
inequality (106) is implied by (10). For n = 2, let 0 ≤ d1 ≤ d2 and g = d1 + d2 + 1.
Using (69) we get

C(d1, d2) =
22g

(2g)!

d1∑
h=0

(g − 2h)Fh Fg−h

≤ 22g

(2g)!

(
gFg +

(g − 1)(g − 2)

2
F1Fg−1

)
=

(16g2 − 23g + 9)Γ(g − 1
2)

2

8π (2g − 1) Γ(g)2
≤ 1

π
, (107)

where in the first inequality we used that Fd+1/Fd is monotone increasing for d ≥ 0.

Now consider the case that n ≥ 3, X ≥ 8. Let us prove inequality (106) by induction
on X . For every d = (d1, . . . , dn) ∈

(
Z≥0

)n
satisfying X(d) = X , assume d ∈

(
Z≥1

)n
and without loss of generality assume d1 = min{dj}. Then by applying Lemma 3 to (88)
and by induction, we obtain

C(d) ≤
(
1− 2d1

X − 1

)
f(X − 1, n− 1) +

2d1
X − 1

f(X − 1, n+ 1) +
4

(X − 1)(X − 2)
,

(108)

where we have used the fact that f(X , n) is bounded by 1. This gives

C(d) ≤ 2

3
f(X − 1, n− 1) +

1

3
f(X − 1, n+ 1) +

4

(X − 1)(X − 2)
= f(X , n) ,

where we have used n ≥ 3, d1 ≤ |d|
n = X−n

2n , and the fact that the function f(X , n) is
increasing with respect to n. For the case that some of dj equal zero, by (8) and by
induction we have

C(d) ≤ f(X − 1, n− 1) , (109)

where the right-hand side is less than f(X , n) because of (99) and again the monotonicity
of f(X , n). Combining both cases, we finish the proof of (106). □
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We are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 2 and (98), we have the lower and upper bound

C(|d|) ≤ C(d) ≤ θX(d),n , (110)

for every n ≥ 1, d ∈ (Z≥0)
n. We know from (10) that the lower bound equals 1

π+O( 1
g(d))

with an absolute constant in O( 1
g(d)). For the upper bound, we know from Lemma 4

we know that when n ≤ X(d)
5 , θX ,n is bounded by 1

π +O( 1
X ) with an absolute constant

inO( 1
X ). Consider the case that d ∈ (Z≥0)

n with X(d)
5 < n ≤ X(d)

3 . Assume d ∈ (Z≥1)
n.

Then there must exist some j such that dj = 1. Without loss of generality, assuming
that d1 equals 1, then recursion (88) reads

C(1, d2, . . . , dn) =
n∑

j=2

2dj + 1

X(d)− 1
C(d2, . . . , dj + 1, . . . , dn)

+
2

X(d)− 1
C(d2, . . . , dn) +

∑
I⊔J={2,...,n}

(
X(0,dI)− 1

)
!
(
X(0,dJ)− 1

)
!

(X(d)− 1)!
C(dI)C(dJ).

(111)

By applying Lemma 3 and by taking maximum in both sides of (111), we get

C(d) ≤ θX(d)−1,n−1 +
4

(X(d)− 1)(X(d)− 2)
. (112)

When some dj is 0, the inequality (112) is still true according to (8), so we get

θX ,n ≤ θX−1,n−1 +
4

(X − 1)(X − 2)
, (113)

for every X
5 < n ≤ X

3 . Writing this as

θX ,n +
4

X − 1
≤ θX−1,n−1 +

4

X − 2
, (114)

and iterating t times we find

θX ,n ≤ θX−t,n−t +
4

X − 1
− 4

X − 1− t
≤ f(X − t, n− t) +

4

X − 1
− 4

X − 1− t
, (115)

for any t ≤ [5n−X+1
4 ]. Applying this with t = [5n−X+1

4 ] and using Lemma 4 we obtain

that θX ,n is bounded by 1
π+O( 1

X ) uniformly when X
5 < n ≤ X

3 . This together with (110)

implies that formula (19) holds for X(d)
5 ≤ n ≤ X(d)

3 . For n > X(d)
3 , we have θX(d),n =

θX(d)−1,n−1 (indeed, since C(d) is unchanged by removing any 0 argument, we have

by definition θX ,n = θX−1,n−1 for n > X
3 ), which implies that formula (19) still holds.

Combining all three cases, we obtain the statement of Theorem 1. □

Remark 2. Although our proof for BGW numbers is similar to Aggarwal’s for Witten’s
intersection numbers [1], we have made several improvements and simplifications. For
examples, the technique of random walks used in [1] is avoid here, and our estimates
are completely uniform instead of requiring n = o(

√
g) in [1]. Actually, as it was

shown in [10], it is not possible to extend the asymptotics of the normalized Witten’s
intersection numbers [1, 10, 11, 25] beyond the range n = o(

√
g). We hope to generalize

Theorem 1 to Witten’s intersection numbers with a better normalization.
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6. Polynomiality in large genus

In this section, we prove Theorem 2 by using the recursion (88).

Proof of Theorem 2. We first allow the fixed d′ = (d1, . . . , dn−1) ∈ (Z≥0)
n−1. Write

d = (d′, dn) with dn ≥ 0. By using (83) and Stirling’s formula we have

C(d) =
1

π

∞∑
k=0

Ck(d
′)

X(d)k
, as dn → ∞ , (116)

where Ck are functions of d′. By using the recursion (88) and by performing Laurent
expansions, we obtain

Ck(d,d
′)− Ck(d

′) = −
k−1∑
l=1

(−1)k−l

(
k − 1

l − 1

)
Cl(d,d

′)

+

n−1∑
j=1

(2dj + 1)
(
Ck−1(d1, . . . , dj + d, . . . , dn−1)− Ck−1(d

′)
)

+
∑
a,b≥0

a+b=d−1

[
2
(
Ck−1(a, b,d

′)− Ck−1(d
′)
)
+

∑
I⊔J={1,...,n−1}

k−2∑
l=0

a(a,d′
I),k,l

Cl(b,d
′
J)

]
,

(117)

where d ≥ 0 and aw,k,l are numbers defined by

aw,k,l :=
k−2∑
u=l

(
4|w|+1

(
u− 1

l − 1

)
X(w)u−l S(k − u− 1, X(w))B

(
w
))

.

Here B(w) is defined in (44) and S(n, k) denotes the Stirling number of the second
kind. Write

Ck(d
′) =: c̃k(p0(d

′), p1(d
′), . . . ) , (118)

where pr(d
′) denotes the multiplicity of r in d′. This defines functions c̃k(p), k ≥ 0,

where p = (p0, p1, p2, . . . ). Then formula (117) becomes

c̃k(p+ ed)− c̃k(p) = −
k−1∑
l=1

(−1)k−l

(
k − 1

l − 1

)
c̃l(p+ ed)

+
∑
i≥0

(2i+ 1) pi
(
c̃k−1(p− ei + ei+d)− c̃k−1(p)

)
+

∑
a,b≥0

a+b=d−1

[
2

k−1∑
l=0

(
c̃k−1(p+ ea + eb)− c̃k−1(p)

)

+
∑

E(t+ea)≤k−1
0≤tr≤pr, r≥0

k−2∑
l=0

(
c̃l(p− t+ eb)αt+ea,k,l

∏
i≥0

(
pi
ti

))]
, d ≥ 0 , (119)

where E(t) =
∑∞

j=0(2j+1)tj , αt,k,l = a(0t01t12t2 ··· ),k,l, and ed denotes (0, . . . , 0, 1, 0, 0, . . . )

with “1” appearing in the (d+ 1)th place.
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Let us now prove by induction that c̃k(p), k ≥ 0, belong to Q[p0, p1, . . . ] and satisfy
the degree estimates

deg c̃k(p) ≤ k − 1 , k ≥ 1 , (120)

under the degree assignments deg pd = 2d + 1, d ≥ 0. For k = 0, by using Theorem 1
we know that c̃0(p) ≡ 1. Assume that for 1 ≤ l ≤ k − 1, c̃l(p) ∈ Q [p0, p1, . . . ] are
polynomials satisfying deg c̃l(p) ≤ l − 1 (l ≥ 1). Then for k and for every d ≥ 0, the
RHS of equation (119) are polynomials in p0, . . . , p[(k−3)/2]. Moreover, by the inductive
assumption these polynomials are independent of d for every d ≥ k + 1, i.e.,

c̃k(p+ ed)− c̃k(p) =

{
fd(p0, . . . , p[(k−3)/2]) , d ≤ k ,

g(p0, . . . , p[(k−3)/2]) , d ≥ k + 1
(121)

for some fd (d ≤ k), g belonging to Q[p0, . . . , p[(k−3)/2]]. The compatibility of (121)
implies that g(p0, . . . , p[(k−3)/2]) ≡ A is a constant. Solving (121) we obtain that c̃k
have the form

c̃k(p) = h(p0, . . . , pk) + An′(p) , (122)

where h ∈ Q[p0, . . . , pk] and n
′(p) :=

∑
i≥0 pi. Now we aim to show that A = 0. Con-

sider equation (119) with k replaced by k+1. Using a similar analysis and using (122),
we obtain that for every d ≥ 2k + 2,

c̃k+1(p+ ed)− c̃k+1(p) = 4Ad + A′ n′(p) + s(p0, . . . , pk) . (123)

where A′ ∈ Q is a constant, and s(p0, . . . , pk) is some polynomial in Q[p0, . . . , pk]. This
contradicts with (69) unless A = 0. Therefore,

c̃k(p) ∈ Q[p0, . . . , pk]. (124)

Then taking d ≥ k + 1 in equation (119) gives

0 = −
k−1∑
l=1

(−1)k−l

(
k − 1

l − 1

)
c̃l(p) +

∑
i≥0

(2i+ 1) pi
(
c̃k−1(p− ei)− c̃k−1(p)

)

+

[ k−3
2

]∑
a=0

(
4
(
c̃k−1(p+ ea)− c̃k−1(p)

)
+

∑
E(t+ea)≤k−1
0≤tr≤pr, r≥0

k−2∑
l=0

(
c̃l(p− t)αt+ea,k,l

∏
i≥0

(
pi
ti

)))
.

(125)
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Using (125) and (119), we obtain

∆pd c̃k(p) = −
k−1∑
l=1

(−1)k−l

(
k − 1

l − 1

)
∆pd c̃l(p) +

∑
i≥0

(2i+ 1) pi∆pi+d
c̃k−1(p− ei)

+ 2

d−1∑
a=0

∆pa∆pd−1−a
c̃k−1(p) − 4

[(k−3)/2]∑
a=d

∆pa c̃k−1(p)

+
d−1∑
a=0

∑
E(t+ea)≤k−1
0≤tr≤pr (r≥0)

k−2∑
l=0

(
∆pd−1−a

c̃l(p− t)αt+ea,k,l

∏
i≥0

(
pi
ti

))

+

[(k−3)/2]∑
a=d

∑
E(t+ea)≤k−1
0≤tr≤pr (r≥0)

k−2∑
l=0

(
c̃l(p− t)αt+ea,k,l

∏
i≥0

(
pi
ti

))
, d ≥ 0 . (126)

We find that each term of the RHS of (126) is of degree less than or equal to k− 2− 2d
for every d ≥ 0, which implies deg c̃k ≤ k − 1. In particular, c̃k is a polynomial that
only depends on p0, . . . , p[k/2]−1.

Now restrict to the case when d′ is a fixed partition. From (116), (29) we know that

Ĉ(d) ∼
∞∑
k=0

Ĉk(d
′)

X(d)k
, dn → ∞ , (127)

where Ĉk are functions of d′ with Ĉ0 ≡ 1. Define ĉk(p1, p2, . . . ) ∈ Q[p1, p2, . . . ], k ≥ 0,
via

γ(X)

∞∑
k=0

ĉk(p1, p2, . . . )

Xk
=

∞∑
k=0

c̃k(0, p1, p2, . . . )

Xk
, (128)

where the left-hand side is understood as a power series in X−1. It then follows from
deg c̃k ≤ k − 1 that deg ĉk ≤ k − 1. Using (127), (116), (118), we know that

Ĉk(d
′) = ĉk(p1(d

′), p2(d
′), . . . ) , (129)

for all d′. The statement that ĉk(0, 0, . . . ) = 0 follows from the fact that C(d) =
γ(2d+ 1). This finishes the proof of Theorem 2. □

Remark 3. Formula (117) is analogous to a formula given in [34, Corollary 3.6].

For d = (d1, . . . , dn) ∈ (Z≥0)
n, we extend the definition of Ĉ(d) in (26) by

Ĉ(d) :=
C(d)

γ(X(d)− p0(d))
. (130)

Then the following corollary easily follows from Theorem 2.

Corollary 2. For any fixed n ≥ 1 and fixed d′ = (d1, . . . , dn−1) ∈ (Z≥0)
n−1, we have

Ĉ(d) ∼
∞∑
k=0

ĉk(p1(d
′), p2(d

′), . . . )

(X(d)− p0(d′))k
, X(d) → ∞ , (131)

where d = (d′, dn), and ĉk(p1, p2, . . . ) are the same polynomials as those in Theorem 2.
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We note that, since for fixed n ≥ 1 and fixed d1, . . . , dn−1 ≥ 0, C(d)/C(|d|) is a
rational function of X(d) whose asymptotic expansion is convergent, the polynomials
ĉk(p1, p2, . . . ) , k ≥ 0, contain all information of BGW numbers. We provide in Table 2
some explicit values of ĉk(p1, p2, . . . ), ck(p1, p2, . . . ).

k ck(p1, p2, . . . ) ĉk(p1, p2, . . . )

0 1 1

1 −1
2 0

2 5
8 0

3 −11
16 0

4 83
128 − 27

8 p1 −27
8 p1

5 −143
256 − 81

16 p1 −27
4 p1

6 625
1024 − 639

64 p1 −
1125
16 p2 −45

4 p1 −
1125
16 p2

7 −1843
2048 + 25533

128 p1 −
1701
8 p21 − 19125

32 p2
783
4 p1 − 1701

8 p21 − 10125
16 p2

Table 2. Expressions for ck(p1, p2, . . . ) and ĉk(p1, p2, . . . ) with k ≤ 7

Similar to (30), for fixed L ≥ 0 and fixed n ≥ 1, and for d = (d1, . . . , dn) ∈ (Z≥0)
n,

Ĉ(d) =

L−1∑
k=0

ĉk(p1(d), p2(d), . . . )

(X(d)− p0(d))k
+O

(
1

(X(d)− p0(d))L

)
, g(d) → ∞ , (132)

where the implied O-constant only depends on n and L.

Remark 4. We have the following conjectural statement, which is stronger than (132),
that for any fixed L ≥ 0,

Ĉ(d) =
L−1∑
k=0

ĉk(p1(d), p2(d), . . . )

(X(d)− p0(d))k
+O

(
ĉL(p1(d), p2(d), . . . )

(X(d)− p0(d))L

)
, g(d) → ∞ , (133)

where the implied constant only depends on L. In terms of C(d), this conjecture states
that for any fixed L ≥ 0,

C(d) =
1

π

L−1∑
k=0

ck(p1(d), p2(d), . . . )

(X(d)− p0(d))k
+O

(
cL(p1(d), p2(d), . . . )

(X(d)− p0(d))L

)
, (134)

as g(d) → ∞, where the implied constant only depends on L.

We end this section by giving some information about the interval Ig,n defined in
the introduction. Denote by m(g, n) and M(g, n) its endpoints, i.e., the minimum and
maximum of all C(d) with d ∈ (Z≥1)

n and g = |d| + 1. Conjecture 2 implies that

m(g, n) = C(1n, g − 1 − n) and M(g, n) = C(dp(d + 1)n−p), where d = [g−1
n ] and
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p = (d+ 1)n− g + 1. Using (133), we then find the conjectural asymptotic formulas

γ(2g − 2 + n) − m(g, n) =
27n

8π (2g − 2 + n)4
+ O

( 1

g4

)
, (135)

γ(2g − 2 + n) − M(g, n) =
(2d+ 1)!!3

2d+1π (d+ 1)!

(d+ 1)n− g

(2g − 2 + n)2d+2
+ O

( 1

gmin{2d+2,6}

)
,

(136)

where d = [g−1
n ] and both O-constants are absolute. In particular M(g, n) differs from

γ(2g − 2 + n) by a quantity of the order of g−2d−1. These two formulas are only to
leading order in 1/X, but the full analysis gives several more terms. These statements,
which greatly refine Theorem 1, are still only conjectural, but we are currently trying
to prove some version of them and hope to return to this in a later publication.

7. Further asymptotic formulas

In this section, we will give asymptotic formulas of another type for BGW numbers,
including and based on a closed asymptotic formula for two-point BGW numbers.

For every d ≥ 1, define the power series Wd(X) ∈ X−2d−2Q[[X−1]] by the formula

1− Ĉ(d, X2 − 1− d) ∼ Wd(X) , as X → ∞ . (137)

(The fact that Wd(X) is well defined is because of Theorem 2.) In terms of the polyno-
mials ĉk(p), we have

Wd(X) = −
∞∑

k=2d+2

ĉk(ed)

Xk
. (138)

Formula (69) implies that, for every d ≥ 2,

Wd−1(X)−Wd(X) =
(2d− 1)!!3

8d d!

(X2 − 2d) Γ
(
X+3
2

)
Γ
(
X+1
2 − d

)3
Γ
(
X
2 + 1

)3
Γ
(
X
2 + 1− d

) , (139)

where the right-hand side is interpreted as a power series of X−1 by Stirling’s formula.
Together with the limiting condition W∞(X) = 0, formula (139) determines Wd(X),
d ≥ 1, completely, the first few terms being

Wd(X) =
(2d+ 1)!!3

2d+1 (d+ 1)!

( 1

X2d+2
+

(2d− 1)(d+ 1)

X2d+3

+
(2d+ 3)(d+ 1)

(
6d3 + 7d2 − 8d+ 1

)
6(d+ 2)X2d+4

+ · · ·
)
. (140)

In the following proposition, we give an explicit formula for Wd(X).

Proposition 7. The power series Wd(X) for any fixed d ≥ 1 is given by

Wd(X) =
(2d+ 1)!!3

2d+1 d!

∑
j≥1

Aj(d)

d+ j

1

(X − 2d− j + 1)2d+2j
. (141)
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Here the inverse Pochhammer symbols 1/(X−2d−j+1)2d+2j are interpreted as elements
of Q[[1/X]], and Aj(d) (j ≥ 1) are polynomials defined by the asymptotic formula

2−2d−4 Γ
(
X+1
2 − d

)3
Γ
(
X+3
2

)
Γ
(
X
2 + 2

)3
Γ
(
X
2 − d+ 1

) =
∞∑
j=1

Aj(d)

(X − 2d− j + 1)2d+2j+2
, (142)

in which both sides are interpreted as power series of X−1. More explicitly,

Aj(d) = (−1)j−1 (j − 1)!
∑

0≤l≤[ j+1
2

]

(2l − 1)!!

8l l!3
(j − 2l)2l (d+

3
2 − l)j−1 . (143)

Proof. It is easy to verify that the left-hand side of (142) (as a power series in X−1) is
invariant under X → 2d− 3−X, so Aj(d) is well defined from (142).

Let us first use the mathematical induction to prove the following equality:

Ĉ(d1, d2 + 1)− Ĉ(d1, d2) =
4(d1+d2+2) (2d1 + 4d2 + 7) (d1 + 1)Fd1+1 Fd2+1

(2d1 + 2d2 + 5)! γ(2d1 + 2d2 + 4)
, (144)

with Fd and γ(X) given by (68) and (23), respectively. Denote by G(d1, d2) the right-
hand side of (144). For d1 = 0, (144) follows directly from (10). If we assume that (144)
is true for d1 = k − 1, then for d1 = k

Ĉ(k, d2 + 1)− Ĉ(k, d2) =
(
Ĉ(k − 1, d2 + 2)− Ĉ(k − 1, d2 + 1)

)
+
(
Ĉ(k, d2 + 1)− Ĉ(k − 1, d2 + 2)

)
−
(
Ĉ(k, d2)− Ĉ(k − 1, d2 + 1)

)
= G(k − 1, d2 + 1) +

4k+d2+2 (d2 + 2− k)Fk Fd2+2

(2k + 2d2 + 4)!
− 4k+d2+1 (d2 + 1− k)Fk Fd2+1

(2k + 2d2 + 2)!

= G(k, d2) ,

where for the second equality we used formula (69). This completes the proof of (144).

By (137) and (144) we find the identity

Wd(X)−Wd(X + 2) =
(2d+ 1)!!3

8d+1 d!
(X − d+ 3

2)
Γ
(
X+1
2 − d

)3
Γ
(
X+3
2

)
Γ
(
X+4
2

)3
Γ
(
X+2
2 − d

) , (145)

where the right-hand side is understood as its asymptotic expansion in X−1 as X → ∞.
This formula together with Wd(X) ∈ X−2d−2Q[[X−1]] uniquely determines Wd(X). It
is easy to verify that the right-hand side of (141), with Aj(d) defined by (142), has the
same recursive property. Hence the first statement of Proposition 7 is proved.

Let us now prove (143). Denote by rd(X) ∈ Q[[X−1]] the asymptotic expansion of
the left-hand side of (142). Using the property Γ(z + 1) = zΓ(z), we see that

(X − 2d− 1)3 rd+1(X) = (X − 2d) rd(X). (146)

From (142) and (146), we obtain the following two recursions for Aj(d):

Aj+1(d+ 1)−Aj+1(d) = 2(d+ j + 1)(2d+ j + 2)Aj(d)

− ((2d+ j + 3)(2d+ 3) + j2)Aj(d+ 1) , (147)

− j3Aj(d+ 1) + (2d− j + 3)Aj+1(d+ 1)− (2d+ j + 3)Aj+1(d) = 0 . (148)

Here j ≥ 0, and we make the convention that A0(d) ≡ 0. Notice that equations (147)–
(148), together with the initial value A1(d) ≡ 1, uniquely determine all Aj(d). It is easy
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to verify that the right-hand side of (143) satisfies (147)–(148) and takes value 1 when
j = 1. This completes the proof of (143). □

It follows from (138) and (141) that

ĉk(ed) = −(2d+ 1)!!3

2d+1d!

[ k
2
]−d∑

j=1

Aj(d)

d+ j

k−2d−2j∑
l=0

(
k − 1

l

)
(−j)l S(k − l − 1, 2d+ 2j − 1) ,

(149)

where S(n, k) are the Stirling numbers of the second kind.

It is interesting to notice that the polynomial Aj(d) is the product of (d + 3/2)[j/2]
and a polynomial of degree [(j − 1)/2], which can be easily proved by using (143). For
the reader’s convenience we provide the first few Aj(d):

A1(d) = 1 , A2(d) = −1

2
(2d+ 3) , A3(d) =

1

8
(2d+ 3) (10d+ 21) ,

A4(d) = − 3

16
(2d+ 3) (2d+ 5) (14d+ 31) .

We also remark that althoughWd(X) is defined as the asymptotics of two-point BGW
numbers it also gives information about multi-point BGW numbers. Indeed, from (127)
and Theorem 2 we can deduce that for a given n ≥ 2 and for d = (d1, . . . , dn) with
1 ≤ d1 ≤ · · · ≤ dn−1 fixed,

Ĉ(d) = 1 −
n−1∑
j=1

Wdj (X(d)) +O(X(d)−2d1−2d2−3) , dn → ∞ . (150)

Similar to (137), for n ≥ 1, λ = (λ1, . . . , λn−1), define Wλ(X) ∈ Q[[X−1]] via

Ĉ(λ, dn) ∼ −
∑

I⊂{1,...,n−1}

WλI
(X(λ, dn)) , dn → ∞ , (151)

with W∅(X) = −1. Then we have the following proposition.

Proposition 8. We have

∑
k≥0

ĉk(p)

Xk
= −

∑
q1,q2,···≥0

W1q1 ,2q2 ,...(X)

∞∏
i=1

(
pi
qi

)
, (152)

where both sides are understood as elements in Q[p1, p2, . . . ][[X
−1]]. Moreover, the power

series Wλ(X) ∈ X−2|λ|−ℓ(λ)−1Q[[X−1]].

Proof. Using (127), Theorem 2 and (151), we obtain (152). Using (28)–(29) and compar-

ing degrees on both sides of (152), we obtain that Wλ(X) ∈ X−2|λ|−ℓ(λ)−1Q[[X−1]]. □
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We list a few examples of Wλ(X) below:

W1,1(X) =
1701

4X7
+

380295

64X8
+

832815

16X9
+

2935197

8X10
+ · · · ,

W1,2(X) =
388125

16X9
+

83804625

128X10
+

1336975875

128X11
+

131751025875

1024X12
+ · · · ,

W1,1,1(X) =
1754703

8X10
+

245520639

32X11
+

79688662083

512X12
+

615031348329

256X13
+ · · · ,

W1,1,2(X) =
779513625

32X12
+

21043769625

16X13
+

41031922798125

1024X14
+ · · · .

We note that Proposition 8 together with (127) and Theorem 2 implies (150) and
formulas like

Ĉ(d) = 1−
n−1∑
i=1

Wdi(X(d))−
∑

1≤i<j≤n−1

Wdi,dj (X(d)) +O(X(d)−2d1−2d2−2d3−4) ,

(153)

for n ≥ 1, 1 ≤ d1 ≤ · · · ≤ dn−1 fixed and dn → ∞. Based on numerical experiments, we
conjecture that the leading term of Wλ(X) is

2 (2|λ|+ ℓ(λ))!C(λ)X−2|λ|−ℓ(λ)−1 . (154)

8. Subexponential asymptotic terms

In Section 1 we have described the discovery of the conjectural asymptotic for-
mula (31). In this section we study subexponential asymptotics more systematically.

Let us look, for a fixed partition µ = (1 ≤ µ1 ≤ · · · ≤ µn), at the asymptotics of

1 − Ĉ(d) with d = µd = (µ1d, . . . , µnd) as d → ∞. Similar to (31), we find (based
on computations using formula (60)) the following conjectural asymptotic formulas as
d→ ∞:

1− Ĉ(µ1d, µ2d) ∼ 2√
π d

µ
2µ1d+3/2
1 µ

2µ2d+3/2
2

|µ|2|µ|d+7/2
,

1− Ĉ(µ1d, µ2d, µ3d) ∼ 2 pµ1√
π d

(µ2 + µ3)
2(µ2+µ3)d+5/2 µ

2µ1d+3/2
1

|µ|2|µ|d+9/2
,

1− Ĉ(µ1d, µ2d, µ3d, µ4d) ∼ 2 pµ1√
π d

(µ2 + µ3 + µ4)
2(µ2+µ3+µ4)d+7/2 µ

2µ1d+3/2
1

|µ|2|µ|d+11/2
.

With the help of these formulas and based on more computations, we obtain the fol-
lowing conjectural asymptotic formula: for any fixed n ≥ 2,

1− Ĉ(d1, . . . , dn) ∼
(1
2

)δn,2
n∑

j=1

2

πX(d)

(
X(d)

2dj + 1

)−1

, min
1≤j≤n

{dj} → ∞ . (155)

Since
2

π
(2d+ 1)! ∼ (2d+ 1)!!3

2d+1 (d+ 1)!
, d→ ∞ ,
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we can rewrite the conjectural formula (155) equivalently as

1− Ĉ(d1, . . . , dn) ∼
(1
2

)δn,2
n∑

j=1

(2dj + 1)!!3

2dj+1(dj + 1)!

1

(X(d)− 2dj)2dj+2
, min

1≤j≤n
{dj} → ∞ .

(156)

Remark 5. Notice that the form (2d+1)!!3

2d+1 (d+1)!
in (156) also appears in the leading coeffi-

cents of Wd(X) in (141), so we obtain from (132) that formula (156) holds true even if
some dj ’s are not large (but requires X(d) → ∞). So we guess that

1− Ĉ(d) =
( n∑
j=1

(2dj + 1)!!3

2dj+1(dj + 1)!

1

(X(d)− 2dj)2dj+2

)
(1 + o(1)) (157)

for any fixed n ≥ 3 and for d = (d1, . . . , dn) ∈
(
Z≥0

)n
, uniformly as X(d) → ∞. The

conjectural formula (157) implies that, for any two partitions d and d′ of the same
length and the same weight,

Ĉ(d)− Ĉ(d′) =
∑
m≥0

(2m+ 1)!!3

2m+1 (m+ 1)!

pm − p′m
(X(d)− 2m)2m+2

(1 + o(1)) , (158)

as X(d) = X(d′) → ∞. We note that there is a coherent consistence between for-
mula (158) and Conjecture 2. Another point is that formula (158) also explains the
phenomenon (cf. (24)) described in Section 1. As a further example, we have

Ĉ(2, 3, 14, 19) = 0.99999999969689849693814650552875212296 · · · ,

Ĉ(2, 3, 15, 18) = 0.99999999969689849693814752270899360002 · · · ,

whose difference is about 1.01718×10−24 and the prediction gives 0.92432×10−24 with
error less than 10 percent.

Now we compute the subleading terms for the subexponential asymptotics (31), (156).

Based on the numerical experiments, we find that the error between 1 and Ĉ(dn) for
fixed n ≥ 2 is of the form

1− Ĉ(dn) ∼ Yn(d)
(
1 +

b1(n)

d
+
b2(n)

d2
+ · · ·

)
, d→ ∞ , (159)

where

Yn(d) =
(1
2

)δn,2

√
4(n− 1)

π n d

(
(n− 1)n−1

nn

)2d+1

, (160)

and b1(n), b2(n), . . . are rational number whose numerical values become a little simpler
if we set

Ln := 24 log
(
1 + b1(n)x+ b2(n)x

2 + · · ·
)
, (161)

in which the first few values are given by

Ln =
−11n2 − n+ 7

n2 − n
x+

14n3 − 16n2 + n+ 7

2n(n− 1)2
x2

+
−721n6 + 1803n5 − 1953n4 + 901n3 − 243n2 + 93n− 31

120n3(n− 1)3
x3 + · · · . (162)
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Recall the discovery in Section 7 that the asymptotics for two-point BGW numbers are
building blocks for the higher-point numbers, at least when all but one dj ’s are fixed.
The following observation generalizes this for the subexponential asymptotics.

Observation. First of all, we find that the ratio of Ĉ(d, d, d, d)− 1 and Ĉ(d, 3d+1)− 1,
which are both exponentially small, is asymptotically equal to 4 to all orders in d−1.
Here the number 3d + 1 is chosen such that these two BGW numbers have the same
argumentX(d). More generally, we conjecture that the ratio of Ĉ(dn)−1 and Ĉ(d, d′)−1
is asymptotically equal to n for n ≥ 3, where d′ is defined by 2d′ + 1 = (n− 1)(2d+ 1).
We notice that if n is odd, then d′ is not an integer, but we can still define C(d, d′) by
the two point formula (69) with the definition of Fh there replaced by

Fh :=
Γ
(
h+ 1

2

)3
π3/2 Γ(h+ 1)

. (163)

Now let us focus on the asymptotics for 1 − Ĉ(d1, d2) again. Recall that if d1 is
fixed, this asymptotics is exactly Wd1(X) explicitly given in (141). Another important
observation is that, the right-hand side of (141) makes sense (i.e. each term has lower
order than the previous one) even if X and d are proportional and are in the region
X − 2d ≫ 0. Note that this property will not be true if we write Wd(X) in another
basis, e.g. the powers of X−1 as in (140) or the basis 1/(X − 1)−k (k = 1, 2, . . . ) used
in [18]. Therefore, for any fixed integer N ≥ 1, we define a function W (N ; d,X) by

W (N ; d,X) =
(2d+ 1)!!3

2d+1d!

N∑
j=1

Aj(d)

d+ j

1

(X − 2d− j + 1)2d+2j
, (164)

where Aj(d) are polynomials defined in (143). We note that W (N ; d,X) is well defined
in the region X − 2d > N . According to the previous observations, we conjecture that

1− Ĉ(d1, d2) = W (N ; d1, X(d1, d2))
(
1 +O(X(d1, d2)

−N )
)
, X(d1, d2) → ∞ (165)

holds for any fixed N ≥ 1 and for d1 ≤ d2. Now for general d = (d1, . . . , dn) of length
n ≥ 3, we have the following conjecture.

Conjecture 4. For any fixed n ≥ 3, any fixed N ≥ 0 and for d = (d1, . . . , dn) satisfying
min1≤i<j≤n{di + dj} ≥ N/2, we have the asymptotics:

1− Ĉ(d) =
n∑

i=1

W (N ; di, X(d))
(
1 +O

(
X(d)−N

))
, X(d) → ∞ . (166)

As a consequence of Conjecture 4, for fixed n ≥ 0, the asymptotic expansion of

1− Ĉ(dn) is explicitly given by

1− Ĉ(dn) = nW (N ; d, n(2d+ 1))
(
1 +O(d−N )

)
, d→ ∞ , (167)

for any fixed N ≥ 0. This explicitly gives all the numbers b1(n), b2(n), . . . in (159), and
the first three of them coincide with those in (162).

9. Application to the Painlevé II hierarchy

In this section, we will discuss the connections between the BGW numbers and two
famous Painlevé hierarchies. We begin with the Painlevé XXXIV hierarchy (cf. [5, 9]),
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by which we mean the following family of ODEs:

2u + t
du

dt
− (2d+ 1)

d

dt

(
md

(
u,
du

dt
,
d2u

dt2
, . . . ,

d2du

dt2d

))
= 0 , (168)

where d ≥ 1, and md are the polynomials defined in (32), (33). The case with d = 1
agrees with the Painlevé XXXIV equation (14).

Lemma 6. For each d ≥ 1, there exists a unique formal solution to equation (168) of
the form

u(t) =
∑
n≥0

Ad,n

t(2d+1)n+2
, Ad,0 =

1

8
. (169)

Proof. If we assign degrees
deg ui = i+ 2 , i ≥ 0 , (170)

then the polynomials md are homogeneous of degree 2d+ 2. The lemma follows. □

Lemma 7. The coefficients Ad,n in (169) are related to the BGW correlators by

Ad,n =
((2d+ 1)n+ 1)!

22nd+1 (2d+ 1)!!n n!
C(dn) , (171)

where C(d1, . . . , dn) is defined in (6).

Proof. As it was done in [5], dividing both sides of the m = 0 case of (42) by Z and
differentiating the resulting equality twice with respect to t0 and using (41), one obtains

2u− (1− t0)ut0 +
∑
k≥1

(2k + 1)tk∂t0(mk) = 0 , (172)

where we recall that u := ∂2t0(logZ). Specializing t = t∗ = (t∗0, t
∗
1, t

∗
2, . . . ) in (172) with

t∗d = 1, t∗i = 0 (i ̸= 0, i ̸= d) , (173)

we find

2u(t∗)− (1− t0)ut0(t
∗) + (2d+ 1)∂t0(md(u(t

∗), ut0(t
∗), . . . )) = 0 . (174)

The lemma is proved by noticing that

u|t=t∗ =
∑
n≥1

C(dn) ((2d+ 1)n+ 1)!

22nd+1(1− t0)(2d+1)n+2(2d+ 1)!!nn!
+

1

8(1− t0)2
(175)

and by putting t = 1− t0. □

It is convenient to work with another normalization of the Painlevé XXXIV hierarchy:

22d+1(2d+ 1)!! ∂X(md(Y/2, YX/2, YXX/2, . . . ))−XYX − 2Y = 0 , d ≥ 1 , (176)

which is related to (168) by the rescalings

t =
1

2

(
(2d− 1)!!

2

)−1/(2d+1)

X , u = 2

(
(2d− 1)!!

2

)2/(2d+1)

Y . (177)

The formal solution of interest (a solution to (176)) now has the form

Y (X) =
∑
n≥0

yd,n

X(2d+1)n+2
, yd,0 =

1

4
. (178)
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Theorem 4. For each d ≥ 1, the coefficients yd,n of the unique formal solution Y (X)
given in (178) to the Painlevé XXXIV hierarchy (176) have the following asymptotics:

yd,n ∼ 1

π

((2d+ 1)n+ 1)!

(2d+ 1)nn!
, n→ ∞ . (179)

Proof. By using (171), (177) and Theorem 1 we obtain (179). □

Corollary 3. For each d ≥ 1, we have

yd,n ∼ 1

π

((2d+ 1)n+ 1)!

(2d+ 1)nn!

(
1 +

r1(d)

n
+
r2(d)

n2
+ · · ·

)
(n→ ∞) , (180)

with explicitly computable coefficients rk(d) ∈ Q.

Proof. Let us first show, without using Theorem 4, that

yd,n ∼ A
((2d+ 1)n+ 1)!

(2d+ 1)nn!

(
1 +

r1(d)

n
+
r2(d)

n2
+ · · ·

)
, n→ ∞ , (181)

for some nonzero constant A. Using (176), (178) and using the homogeneity of md, we
obtain a recursion that expresses (2d+ 1)n yd,n by an element in

spanQ

{ ∑
n1+···+nk=n−1

k∏
j=1

(((2d+ 1)nj + 2)ij yd,nj
)
∣∣ k ≥ 1, i ∈ (Z≥0)

k, |i|+ 2k = 2d+ 3
}
.

The leading asymptotics in (181) of yd,n can be deduced from the linear terms

(2d+ 1)n yd,n − ((2d+ 1)(n− 1) + 2)2d+1 yd,n−1 .

It follows that
k∏

j=1

(yd,nj
((2d+ 1)nj + 2)ij ) = O

(
yd,n

n!

((2d+ 1)n+ 1)!

k∏
j=1

((2d+ 1)nj + 1 + ij)!

nj !

)
(182)

for each k ≥ 0, i1 + · · · + ik + 2k = 2d + 2 and n1 + · · · + nk = n − 1. By using the
logarithmic convexity of the function ((2d+ 1)n+ 1+ ij)!/n!, we obtain the right-hand

side of (182) is O(yd,nn
−2d(h−1)−2k+2) when n1, . . . , nk ≤ n− h. This shows that up to

any relative power in n−1, the recursion that yd,n satisfies is linear and of finite order.
This proves (181). The determination of A = 1/π follows from Theorem 4. □

Corollary 4. For each d ≥ 1, we have the asymptotic expansion

Ĉ(dn) ∼ 1 +
a1(d)

X(dn)
+

a2(d)

X(dn)2
+ · · · (n→ ∞) (183)

with explcitly computable ak(d) ∈ Q , the first three cases being

Ĉ(1n) ∼ 1− 9

8 (3n)3
− 9

4 (3n)4
− 219

8 (3n)5
+ · · · ,

Ĉ(2n) ∼ 1− 225

16 (5n)5
− 2025

16 (5n)6
− 96075

128 (5n)7
+ · · · ,

Ĉ(3n) ∼ 1− 55125

128 (7n)7
− 275625

32 (7n)8
− 3340575

32 (7n)9
+ · · · .
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Proof. Formula (183) is proved by using (26), (171), (177), (178), Corollary 3 and
Stirling’s formula. □

By (149) and the conjectural formula (134), one can deduce that for any fixed d ≥ 1,

1− Ĉ(dn) ∼ (2d+ 1)!!2 (2d− 1)!!

2d+1 (d+ 1)!X(dn)2d+1
(X(dn) = (2d+ 1)n) (184)

to leading order as n → ∞. This conjectural formula is consistent with Corollary 4.
Compare also with the asymptotic formula (31) when n is fixed and d tends to infinity.

Proof of Theorem 3. According to [9] (cf. [20]), performing the following invertible trans-
formation

Y = VX − V 2, (185)

V = −
22d−1(2d− 1)!! ∂X(md−1(

Y
2 ,

YX
2 , . . . ))− αd

22d(2d− 1)!!md−1(
Y
2 ,

YX
2 , . . . )−X

(186)

on the Painlevé XXXIV hierarchy yields the Painlevé II hierarchy (34).

We note that in general, αd could be an arbitrary constant. But the particular
solution V (X) derived by the above transformation of the power series in (178) only
solves the Painlevé II hierarchy for the parameter αd = 1

2 . This can be seen by comparing

the coefficients of X−2 on both sides of (185), and by noticing that V (X) has the leading
term −αd/X. So Y (X) defined in (178) corresponds to the formal solution (35) to (34)
with αd = 1/2.

To prove formula (36), we note that the transformation (185) gives the following
relations between vd,n and yd,n:

yd,n = ((2d+ 1)n+ 1) vd,n −
∑

n1+n2=n

vd,n1 vd,n2 . (187)

Using the asymptotics (179) of yd,n and facts about asymptotics of very rapidly divergent
series (cf. [8]), it is easy to show that vd,n is asymptotically equal to yd,n/((2d+1)n−1),
as claimed in (36). □

Similar to Corollary 3, we have the following

Corollary 5. For each d ≥ 1, the coefficients vd,n of the formal solution to the Painlevé II
hierarchy has the following asymptotic expansion:

vd,n ∼ 1

π

((2d+ 1)n− 1)!

(2d+ 1)n−1(n− 1)!

(
1 +

s1(d)

n
+
s2(d)

n2
+ · · ·

)
, n→ ∞ , (188)

with explicitly computable coefficients sk(d) ∈ Q.

Proof. Similar to the proof of Corollary 3. □

10. Application to BGW-kappa numbers

For g,m ≥ 1, n ≥ 0, d1, . . . , dn ≥ 0, define the BGW-kappa numbers by〈
κm1

n∏
j=1

τdj

〉Θ
g

:=

∫
Mg,n

κm1 ψ
d1
1 · · ·ψdn

n Θg,n , (189)
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which vanishes unless m + d1 + · · · + dn = g − 1. One could of course also include
powers of other kappa’s in (189), but we will study only the integrals with a power of
κ1 and here we use the terminology “BGW-kappa numbers” for convenience. Another
name that can be found in the literature is super JT gravity. According to [39], these
numbers are related to the volumes of moduli spaces of super hyperbolic surfaces, called
Stanford–Witten volumes V Θ

g,n(L). This relation is given by

V Θ
g,n(L1, . . . , Ln) =

∑
m,d1,...,dn≥0

m+d1+···+dn=g−1

⟨κm1 τd1 · · · τdn⟩Θg
(2π2)m

m!

n∏
j=1

L
2dj
j

2djdj !
. (190)

As proved in [39] (cf. [29, 33, 36]), the BGW-kappa numbers can be expressed in
terms of the BGW numbers as follows:

⟨κm1
n∏

j=1

τdj ⟩
Θ
g =

m∑
l=1

(−1)m−l

l!

∑
m1,...,ml≥1

m1+···+ml=m

(
m

m1, . . . ,ml

)〈 n∏
j=1

τdj

l∏
i=1

τmi

〉Θ

g

. (191)

Using (191) we compute a few BGW-kappa numbers in Table 3. It follows from (191)
and the Integrality Conjecture for the BGW numbers that the BGW-kappa numbers
are integral away from powers of 2. We refer to the latter statement as the Integrality
Conjecture for the BGW-kappa numbers.

g = 2

⟨κ1⟩Θ = 3
128 ≈ 2.34× 10−2

g = 3

⟨κ1τ1⟩Θ = 63
512 ≈ 1.23× 10−1 ⟨κ21⟩Θ = 111

1024 ≈ 1.08× 10−1

g = 4

⟨κ1τ21 ⟩Θ = 7221
2048 ≈ 3.53 ⟨κ21τ1⟩Θ = 106911

32768 ≈ 3.26

⟨κ1τ2⟩Θ = 8625
32768 ≈ 2.63× 10−1 ⟨κ31⟩Θ = 45093

16384 ≈ 2.75

g = 5

⟨κ1τ31 ⟩Θ = 4825971
16384 ≈ 2.95× 102 ⟨κ21τ2⟩Θ = 1974135

131072 ≈ 1.51× 10

⟨κ1τ1τ2⟩Θ = 524925
32768 ≈ 1.60× 10 ⟨κ31τ1⟩Θ = 16199169

65536 ≈ 2.47× 102

⟨κ1τ3⟩Θ = 44835
65536 ≈ 6.84× 10−1 ⟨κ41⟩Θ = 53483271

262144 ≈ 2.04× 102

⟨κ21τ21 ⟩Θ = 9127017
32768 ≈ 2.79× 102

g = 6

⟨κ1τ41 ⟩Θ = 3540311739
65536 ≈ 5.40× 104 ⟨κ21τ1τ2⟩Θ = 1155623625

524288 ≈ 2.20× 103

⟨κ1τ21 τ2⟩Θ = 605705625
262144 ≈ 2.31× 103 ⟨κ21τ3⟩Θ = 151428375

2097152 ≈ 7.22× 10

⟨κ1τ22 ⟩Θ = 55787625
524288 ≈ 1.06× 102 ⟨κ31τ21 ⟩Θ = 386376633

8192 ≈ 4.72× 104

⟨κ1τ1τ3⟩Θ = 19922175
262144 ≈ 7.60× 10 ⟨κ31τ2⟩Θ = 4184142525

2097152 ≈ 2.00× 103

⟨κ1τ4⟩Θ = 8831025
4194304 ≈ 2.11 ⟨κ41τ1⟩Θ = 171037302471

4194304 ≈ 4.08× 104

⟨κ21τ31 ⟩Θ = 13555541331
262144 ≈ 5.17× 104 ⟨κ51⟩Θ = 69673098483

2097152 ≈ 3.32× 104

Table 3. BGW-kappa numbers up to genus 6
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We also provide a table (see Table 4) for the normalized BGW-kappa numbers
C(m;d) defined in (38) with g ≤ 7. The data for C(1;d) is omitted since C(1;d) =
C(1,d). As before, we have listed in Table 4 the smallest common denominator D = Dg

of these numbers for each g and then tabulated the integerDC(m;d) in the last column.
Inspired by Conjecture 2, and based on Table 4 and further numerical experiments, we
also conjecture that the function (m,d) 7→ C(m;d) for partitions (m,d) of g − 1 is
monotone with respect to the ordering that (m,d) ≺ (m′,d′) if m > m′, or m = m′ and
d ≺ d′.

We now give a proof of Proposition 1.

Proof of Proposition 1. If follows from (191) and (38) that

C(m;d) = 3m
m∑
l=1

(−1)m−l

l!

∑
m1,...,ml≥1

m1+···+ml=m

(
m

m1, . . . ,ml

)

× C(d1, . . . , dn,m1, . . . ,ml)

(X(m;d)−m+ l)m−l
∏l

i=1(2mi + 1)!!
. (192)

For fixed m ≥ 0, the summation in the RHS of (192) is finite. The summand corre-
sponding to l = m, m1 = · · · = ml = 1 contributes the leading term C(d, 1m), which
by Theorem 1 equals 1/π + O(1/g(m;d)) uniformly as g(m;d) → ∞. The rest sum-
mands equal O(1/(X(m;d)−m+ l)m−l), which also equals O(1/g(m;d)) uniformly as
g(m;d) → ∞. This proves the proposition. □

For the special case when n ≥ 1 and d1, . . . , dn−1 ≥ 0 are all fixed, Proposition 1 is
analogous to a result given by Liu–Xu [34] for Witten’s intersection numbers.

Remark 6. In another direction, we also study the large-g asymptotics when m is no
longer fixed. In particular, we find that ⟨κm1 τd1 · · · τdn⟩g has a simple asymptotic formula
when d = (d1, . . . , dn) ∈ (Z≥0)

n is fixed and g → ∞:

⟨κg−1−|d|
1 τd1 · · · τdn⟩Θg ∼ π2|d|+n−2 2g−1−3|d|

33g−
7
2
−|d|+n ∏n

j=1(2dj + 1)!!
(3g − 4− |d|+ n)! , (193)

with the first four cases being

⟨κg−1
1 ⟩Θg ∼ 2g−1

π2 33g−
7
2

(3g − 4)! , ⟨κg−2
1 τ1⟩Θg ∼ π 2g−4

33g−
5
2

(3g − 4)! ,

⟨κg−3
1 τ2⟩Θg ∼ π3 2g−7

5 · 33g−
7
2

(3g − 5)! , ⟨κg−3
1 τ21 ⟩Θg ∼ π4 2g−7

33g−
3
2

(3g − 4)! ,

as g → ∞.

The following proposition generalizes Proposition 6.

Proposition 9. For fixed m ≥ 1, fixed n ≥ 2, fixed d1, . . . , dn−1 ≥ 1, and for dn being
an indeterminate, we have

C(m;d) =
1

(X(m;d)− 1)!

(2dn + 1)!!3

2dn+1 dn!
Pm;d1,...,dn−1(X(m;d)) , (194)

where X(m;d) = X(d)+3m as before and Pm;d1,...,dn−1(X) ∈ Q[X]. Moreover, C(m;d)
C(m+|d|)

is a rational function of X(m;d).
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g = 3, D = 1280

C(2; ∅) 333
1280 0.260156 333

g = 4, D = 1146880

C(3; ∅) 135279
573440 0.235908 270558

C(2; 1) 45819
163840 0.279657 320733

g = 5, D = 252313600

C(4; ∅) 53483271
252313600 0.211971 53483271

C(3; 1) 2314167
9011200 0.256810 64796676

C(2; 2) 131609
458752 0.286885 72384950

C(2; 1, 1) 9127017
31539200 0.289386 73016136

g = 6, D = 734737203200

C(5; ∅) 69673098483
367368601600 0.189654 139346196966

C(4; 1) 24433900353
104962457600 0.232787 171037302471

C(3; 2) 278942835
1049624576 0.265755 195259984500

C(3; 1, 1) 386376633
1435033600 0.269246 197824836096

C(2; 3) 3365075
11534336 0.291744 214355277500

C(2; 1, 2) 5926275
20185088 0.293597 215716410000

C(2; 1, 1, 1) 13555541331
45921075200 0.295192 216888661296

g = 7, D = 399697038540800

C(6; ∅) 1057428386631
6245266227200 0.169317 67675416744384

C(5; 1) 1196989428069
5709957693440 0.209632 83789259964830

C(4; 2) 103748833683
427483463680 0.242697 97005159493605

C(4; 1, 1) 2242040330133
9084023603200 0.246811 98649774525852

C(3; 3) 31418131
115343360 0.272388 108872620991680

C(3; 1, 2) 80848213893
293894881280 0.275092 109953570894480

C(3; 1, 1, 1) 6931945897497
24981064908800 0.277488 110911134359952

C(2; 4) 354207573
1199570944 0.295279 118021963323600

C(2; 1, 3) 222438209
749731840 0.296690 118586257982080

C(2; 2, 2) 4360002121
14694744064 0.296705 118592057691200

C(2; 1, 1, 2) 3184112229
10687086592 0.297940 119085797364600

C(2; 1, 1, 1, 1) 466903889307
1561316556800 0.299045 119527395662592

Table 4. Numerical data for C(m,d) with g ≤ 7
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Proof. Substituting (82) in (192), we get (194). The second statement that C(m;d)
C(m+|d|) is

a rational function of X(m; d) can then be deduced from (10). □

The following proposition generalizes Theorem 2.

Proposition 10. For every m ≥ 0, for fixed n ≥ 1, fixed d′ = (d1, . . . , dn−1) ∈ (Z≥1)
n,

and dn ≥ 0, we have

C(m;d) ∼ 1

π

∞∑
k=0

Ck(m;d′)

X(m;d)k
(X(m;d) → ∞) , (195)

where d = (d′, dn), Ck(m;d′) are functions of m, d1, . . . , dn−1 with C0 ≡ 1. Moreover,
there exist a sequence of polynomials

ck(m; p1, p2, . . . ) ∈ Q[p1, p2, . . . ] , k ≥ 0 , (196)

with c0(m; p1, p2, . . . ) ≡ 1, such that

Ck(m;d′) = ck(m; p1(d
′), p2(d

′), . . . ) , k ≥ 0 . (197)

Furthermore, under the degree assignments

deg pi = 2i+ 1 (i ≥ 1) , (198)

the polynomials ck(m; p1, p2, . . . ), k ≥ 1, satisfy the degree estimates

deg ck(m; p1, p2, . . . ) ≤ k − 1 ; (199)

in particular, ck(m; p1, p2, . . . ) does not depend on any pd with d ≥ (k − 1)/2.

Proof. Expanding both sides of (192) with respect to 1/X(m;d), we obtain

Ck(m; d1, . . . , dn−1) = 3m
m∑
l=1

(−1)m−l

l!

∑
m1,...,ml≥1

m1+···+ml=m

(
m

m1, . . . ,ml

)
1∏l

i=1(2mi + 1)!!

×
k∑

j=0

Cj(d1, . . . , dn−1,m1, . . . ,ml)S(k − j,m− l − 1) ,

where S(n, k) are the Stirling numbers of the second kind. The proposition is then
proved by using Theorem 2. □
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