
ASYMPTOTICS OF NAHM SUMS AT ROOTS OF UNITY

STAVROS GAROUFALIDIS AND DON ZAGIER

Abstract. We give a formula for the radial asymptotics to all orders of the special q-
hypergeometric series known as Nahm sums at complex roots of unity. This result is used
in [2] to prove one direction of Nahm’s conjecture relating the modularity of Nahm sums
to the vanishing of a certain invariant in K-theory. The power series occurring in our
asymptotic formula are identical to the conjectured asymptotics of the Kashaev invariant of
a knot once we convert Neumann-Zagier data into Nahm data, suggesting a deep connection
between asymptotics of quantum knot invariants and asymptotics of Nahm sums that will
be discussed further in a subsequent publication.
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1. Introduction

Nahm sums are special q-hypergeometric series whose summand involves a quadratic form,
a linear form and a constant. They were introduced by Nahm [14] in connection with
characters of rational conformal field theories. Nahm formulated a very surprising conjecture,
that has elicited a lot of interest, relating the question of their modularity to the vanishing
of a certain invariant in algebraic K-theory (more specifically, in K3-group, or equivalently
the Bloch group, of the algebraic numbers). This conjecture, at least in one direction, is
proved in [2] using the asymptotics given in this paper together with the construction of
units associated to elements of K-theory given there.

Key words and phrases: Nahm’s conjecture, modular functions, K-theory, Bloch group, asymptotics,
Kashaev invariant.
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2 STAVROS GAROUFALIDIS AND DON ZAGIER

The definition of Nahm sums and the question of determining when they are modular
were motivated by the famous Rogers-Ramanujan identities, which say that

G(q) :=
∞∑
n=0

qn
2

(q)n
=

∏
n>0

(n
5
)=1

1

1− qn
, H(q) :=

∞∑
n=0

qn
2+n

(q)n
=

∏
n>0

(n
5
)=−1

1

1− qn
,

where (q)n = (1− q) · · · (1− qn) is the q-Pochhammer symbol or quantum n-factorial. These
identities imply via the Jacobi triple product formula that the two functions q−1/60G(q) and
q11/60H(q) are quotients of unary theta-series by the Dedekind eta-function and hence are
modular functions. More generally, Nahm [14] considered the following multi-dimensional
generalization

FQ(q) = FA,B,C(q) =
∑
n∈ZN≥0

qQ(n)

(q)n1 · · · (q)nN
∈ Z((q

1
d )) , (1)

where Q : ZN → Q is a quadratic function, i.e., a function of the form

Q(n) =
1

2
ntAn+Bn+ C

where A = (aij) is a symmetric positive definite N×N matrix with rational entries, B ∈ QN

a column vector and C ∈ Q a scalar and d is any denominator of Q (i.e., any positive integer
with dQ(ZN) ⊆ Z).

Our aim is to give the asymptotic expansion of FQ(q) as q approaches a root of unity (of
order prime to a denominator of Q) radially.

The constant term of these asymptotic expansions is used in [2] to prove one direction of
Nahm’s modularity conjecture. Very strikingly, our formulas are identical to a collection of
power series (one for every complex root of unity) associated to a Neumann-Zagier datum
in [5, 6] and conjectured to be the asymptotic expansion of the Kashaev invariant at complex
roots of unity. The coincidence of the asymptotics of Nahm sums at q = 1 and the series
of [5] was observed several years ago via an explicit map from Neumann-Zagier data to
Nahm data, and leads to a deeper connection between quantum invariants of knots defined
on the roots of unity (such as the Kashaev invariant) and q-series invariants of knots (such
as the 3D-index of Dimofte-Gukov-Gaiotto [4]). This connection will be explained in a later
publication [10].

Nahm sums appear naturally in cohomological mirror symmetry [12], in the representa-
tion theory of quivers [13] and in quantum topology in relation to the stabilization of the
coefficients of the colored Jones polynomial [9]. In addition they are building blocks of
the 3D-index of an ideally triangulated manifold due to Dimofte-Gaiotto-Gukov [4, 3], and
appear as holomorphic blocks in the state-integrals of Chern-Simons theory with complex
gauge group [1, 8]. Further connections between quantum topological invariants and Nahm
sums are given in [10].

2. Asymptotic formula for the summand of a Nahm sum

Recall the Pochhammer symbol (qx; q)∞ =
∏

i≥1(1 − qix), an entire function of x for
q a complex number with |q| < 1. Lemma 2.1 below gives the radial asymptotics of the
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Pochhammer symbol at roots of unity. To formulate it, recall the rth Bernoulli polynomial
Br(x), the rth polylogarithm function Lir(w) =

∑
k≥1w

k/kr for |w| < 1 and the cyclic
quantum dilogarithm function

Dζ(x) =
m−1∏
t=1

(1− ζtx)t ∈ Q(ζ)[x] (2)

where ζ is a primitive mth root of unity. The function that we will actually use is Dζ(x)1/m

when |x| < 1, where the mth root is defined by using the principal part of the logarithm
of each factor in (2). Below, if f(ε) is the germ of a smooth function of ε defined in a
neighborhood of 0 in the right half-plane <(ε) > 0, we write that

f(ε) ∼
∞∑
k=0

ak ε
k (3)

for ε ↘ 0 if f(ε) =
∑K−1

k=0 akε
k + O(εK) for every K > 0 as ε tends to 0 from the right, or

equivalently if f is C∞ from the right at 0 with Taylor coefficients ak = f (k)(0)/k! .

Lemma 2.1. Let w be a complex number with |w| < 1, q = ζe−ε/m where ζ is a primitive
mth root of unity, and ν a complex number such that νε = o(1). Set

log(q w e−
νε
m ; q)∞ = − 1

mε
Li2(z)−

( ν
m
− 1

2

)
log(1− z)− εν2

2m

z

1− z
(4)

− 1

m
logDζ(w)− log(1− w) + ψw,ζ(ν, ε)

where z = wm. Then, ψw,ζ(ν, ε) has an explicit asymptotic expansion in C[νε2/3][[ε1/3]] ⊂
C[ν][[ε]] as ε↘ 0,

ψw,ζ(ν, ε) ∼ −
∑
r≥2

m∑
t=1

(
Br

(
1− t+ ν

m

)
− δr,2

ν2

m2

)
Li2−r(ζ

tw)
εr−1

r!
(5)

in which the coefficient of νn is O(ε2n/3) for every n ≥ 0.

Fix a positive definite N × N matrix A with rational entries and let (z1, . . . , zN) denote
the unique solution in (0, 1)N of Nahm’s equation

1 − zi =
N∏
j=1

z
Aij
j (i = 1, . . . , N) . (6)

We define a real number

Λ = −
N∑
j=1

L(z) , (7)

where L(z) is the Rogers dilogarithm function (shifted by a constant to make L(1) = 0),
defined for 0 < z < 1 by

L(z) = Li2(z) +
1

2
log(z) log(1− z) − π2

6
. (8)
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Let

Ã = A + diag(z/(1− z)) (9)

where diag(z/(1− z)) denotes the diagonal matrix with diagonal elements zi/(1− zi).

Proposition 2.2. Fix k = (k1, . . . , kN) ∈ (Z/mZ)N . Consider natural numbers ni ∈ N for
i = 1, . . . , N satisfying ni ≡ ki mod m for i = 1, . . . , N and write ni = 1

ε
log 1

zi
+ 1√

ε
xi where

z = (z1, . . . , zN) ∈ (0, 1)N is the distinguished solution of Nahm’s equation and q = ζe−ε/m.
Then,

e−εQ(n)/m∏N
i=1(q)ni

=
( ε

2π

)N
2
e

Λ
mε

N∏
i=1

θBii (1− zi)
1
2
− 1
m

N∏
i=1

Dζ(θi)
− 1
m

N∏
i=1

θ
(Ak)i
i

(θi; ζ)ki
(10)

e−
1
m
xtÃxe

1
m
Btxε1/2− 1

m
Cε

N∏
i=1

ψ
ζkiz

1
m
i ,ζ

(xi ε
−1/2, ε) (11)

where θi = z
1/mi
i ∈ (0, 1). When |xi| ≤ ελ−

1
6 for some λ > 0, then each term of the product

of the ψ-terms in (10) has an asymptotic expansion in C[x][[ε1/2]] in which the coefficient of
xn is O(εn).

3. Asymptotic formula for a Nahm sum

The Nahm sum FQ(q) is a formal Puiseux series with integer coefficients in the variable

q
1
d , (where d is a denominator of Q) analytic in a finite covering of the punctured open unit

disk 0 < |q| < 1. It will be convenient to work with the complex-valued function fQ = fA,B,C
defined in the upper half-plane by

fQ(τ) = fA,B,C(τ) = FQ(e2πiτ ), =(τ) > 0 , (12)

with the convention that (e2πiτ )λ = e2πiτλ for any λ ∈ Q. Our main Theorem 3.1 concerns
the asymptotic expansion of fQ(τ) at the cusps, i.e., when τ approaches a rational number
from above. To formulate our results, we need to introduce some more ingredients, namely
the quadratic Gauss sums (which appear in the constant term of the asymptotics), and the
formal Gaussian integration which gives the asymptotics to all orders.

Recall the formal Gaussian integration of an analytic function f(x) in N variables x =
(x1, . . . , xN) ∈ CN with values in a power series ring, following the notation of [18]

IA
[
f
]

=

∫
RN e

− 1
2
xtAxf(x)dx∫

R e
− 1

2
xtAxdx

∼
∑
n≥0

1

2nn!
(∆n

Af)(0) , (13)

where ∆A denotes the Laplacian with respect to the quadratic form xtAx. In particular, for
1× 1 matrices A, the formal Gaussian integration is given explicitly by:

IA

[
∞∑
j=0

cjx
j

]
∼

∞∑
`=0

(2`− 1)!! c2`A
−` . (14)

This expression is meaningful if the cn belong to some power series ring (such as C[[ε1/2]])
and the valuation of cn approaches zero as n tends to infinity.
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For our asymptotic formulas, we use the formal Gaussian integration (motivated by Propo-
sition 2.2)

IQ,ζ(k, ε) = I 1
m
Ã

[
e

1
m
xtBε1/2− 1

m
Cε

N∏
i=1

ψ
ζkiz

1
m
i ,ζ

(xi ε
−1/2, ε)

]
(k ∈ (Z/mZ)N) (15)

which is a formal power series in ε with complex coefficients, where we think of the function
inside the argument of I as an analytic function of x = (x1, . . . , xN) ∈ CN with values in the
power series ring C[[ε1/2]].

We call a positive integer D a strong denominator of Q if the value of Q(k) modulo 1
for k ∈ ZN depends only on the residue class of k modulo D. (For instance, one can take
D = 2d where d is any common denominator of Q, i.e., any integer with dQ(ZN) ⊆ Z.) The
final ingredient is the quadratic Gauss sum

G(Q,α) =
1

DN

∑
k∈(Z/DZ)N

e
(
αQ(k)

)
, (16)

where

e(x) = e2πix , (17)

α ∈ Q is prime to D and α denotes the reduction of α modulo D and D is any strong
denominator of Q. The sum on the right is clearly independent of the choice of D.

We now have all the ingredients to formulate our main theorem concerning the radial
asymptotics of Nahm sums at roots of unity. Since fA,B,C(τ) = e(Cτ)fA,B,0(τ), we can
restrict to the case C = 0.

Theorem 3.1. Let Q(x) = 1
2
xtAx+Bx be a quadratic function from ZN to Q as above. Fix

a rational number α whose denominator m is odd and prime to some denominator of Q, and

let ζ = e(α) denote the corresponding primitive m-th root of unity. Let θi = z
1/m
i ∈ (0, 1),

where (z1, . . . , zn) as in (6) is the positive real solution of the Nahm equation for A. Then
the asymptotics of the function fQ(τ) defined in (12) as τ tends to α ∈ Q is given by

e−
Λ
mε fQ

(
α +

iε

2πm

)
∼ χN

mN/2
c(Q)G(Q,α)SQ,ζ(ε) as ε↘ 0 , (18)

where Λ ∈ R is defined by (7), χ is the 12th root of ζ defined by χ = e
((
m−1
2

)
α
12

)
, c(Q) is

defined by

c(Q) = det(Ã)−
1
2

N∏
i=1

θBii (1− zi)
1
2
− 1
m (19)

with Ã (a positive definite matrix with positive determinant) as in (9), G(Q,α) is the Gauss
sum (16) and SQ,ζ(ε) is the formal power series in ε defined by

SQ,ζ(ε) =
N∏
i=1

Dζ(ζθi)
− 1
m

∑
k∈(Z/mZ)N

ζQ(k)

N∏
i=1

θ
(Ak)i
i

(ζθi; ζ)ki
IQ,ζ(k, ε) (20)



6 STAVROS GAROUFALIDIS AND DON ZAGIER

with IQ,ζ(k, ε) as in (15), where Q(k) denotes the reduction of Q(k) modulo m. Moreover,
we have

SQ,ζ(ε)
m ∈ Fm[[ε]] (21)

where F = Q(z
1
d
1 , . . . , z

1
d
N) and Fm is the cyclotomic extension F (ζ) of F .

It is the final statement (21) of this theorem, restricted to ε = 0, that is used in [2] to
prove one direction of Nahm’s Modularity Conjecture.

Remark 3.2. When ζ = 1, the statement and the proof of Theorem 3.1 is valid when A, B
and C have real (but not necessarily, rational) entries.

4. Proof of the asymptotic formulas

4.1. Proof of Lemma 2.1. In this section we give the proof of Lemma 2.1.

Proof. We have

− log(q w e−
νε
m ; q)∞ = −

∑
n≥1

log(1− qnw e−
νε
m )

=
∑
k≥1

1

k

∑
n≥1

(qnw e−
νε
m )k

∼
∑
k≥1

m∑
t=1

(ζtw)k

k

e−k(ν+t)ε/m

1− e−kε
sum by n ≡ t mod m

=
∑
k≥1

m∑
t=1

(ζtw)k

k

∑
r≥0

Br

(
1− t+ ν

m

)(kε)r−1

r!
definition of Br(x)

=
∑
r≥0

m∑
t=1

Br

(
1− t+ ν

m

)
Li2−r(ζ

tw)
εr−1

r!
definition of Li2−r(z) .

Using the distribution property
m∑
t=1

Lir(ζ
tw) = m1−r Lir(w

m)

for the polylogarithm, we see that the r = 0 and r = 1 terms are given by

1

ε

m∑
t=1

Li2(ζ
tw) =

1

mε
Li2(w

m)

and
m∑
t=1

(1

2
− ν + t

m

)
Li1(ζ

tw) =
( ν
m
− 1

2

)
log(1− wm) +

1

m
Dζ(w) + log(1− w)

respectively, and that the r = 2 term is given by

ε

2

ν2

m2

m∑
t=1

Li0(ζ
tw) =

εν2

2m

wm

1− wm
.
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The result follows. �

4.2. Proof of Proposition 2.2. In this section we give the proof of Proposition 2.2. Let
ni be as in the statement of Proposition 2.2 and q = ζe−ε/m. It follows that qni = wie

−νiε/m

where wi = ζkiθi, θi = z
1
m
i and νi = xiε

−1/2. Therefore,

1

(q)ni
=

(qni+1; q)∞
(q; q)∞

=
(qwie

−νiε/m; q)∞
(q; q)∞

(22)

For the expansion of the denominator, the modularity of η(z) (or alternatively, the Euler-
macLaurin formula) implies that when q = e−ε with ε↘ 0, we have:

log
( 1

(q; q)∞

)
=
π2

6ε
− 1

2
log
(2π

ε

)
− ε

24
+O(εK) (23)

for all K > 0. For the expansion of the numerator in (22), we use Lemma 2.1 combined with
the following identity:

Dζ(ζ
kiθi) =

(θi; ζ)mkiDζ(θi)

(1− zi)ki
=

(θi; ζ)mkiDζ(θi)∏N
j=1 θ

m(Ak)i
j

, (24)

where the first equality follows form the fact that

Dζ(ζx)

Dζ(x)
=

(1− x)m

1− xm

and the second equality follows from the fact that z is a solution to Nahm’s equation.
Finally, the quadratic form expands as follows:

Q(n) = Q
(1

ε
log

1

z
+

x√
ε

)
=

1

2ε2
(log z)tA log z − 1

ε
√
ε
xtA log z +

1

2ε
xtAx

− 1

ε
Bt log z +

1√
ε
Btx+ C .

Using the fact that z satisfies Nahm’s equation (6), it follows that

− ε

m
Q(n) = − 1

2mε
log z · log(1− z) +

1

m
Bt log z − ε

m
C

− 1

2m
xtAx+

1

m
√
ε
xt log(1− z) +

1

m

√
εBtx .

The first term in the first line of the above equation converts the dilogarithm by the Rogers
dilogarithm. The middle term of the last line of the above equation cancels with one term
of (4). The remaining terms combine to conclude (10). This concludes the proof of Equa-
tion (10) in Proposition 2.2.

Fix λ > 0 and let |x| ≤ ελ−
1
6 . Then, we can use the asymptotic expansion (5) of ψ and

conclude the claim of the proposition. �
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4.3. Proof of Theorem 3.1. In this section we give a proof of Theorem 3.1. Our strategy
is to split Nahm sums according to congruence classes in which case their summand is a
positive real number with a unique peak, and their asymptotics can be studied using several
applications of the Poisson summation formula.

Below, ζ denotes a primitive mth root of unity coprime to D, a strong denominator of Q.
Denote by an(q) the summand of (1) for n = (n1, . . . , nN) ∈ ZN≥0.Clearly, we can split FQ(q)
as

FQ(q) =
∑

k∈(Z/mZ)N , k′∈(Z/dZ)N
F

[k,k′]
Q (q) , (25)

where

F
[k,k′]
Q (q) =

∑
n∈ZN≥0

n≡k mod m, n≡k′ mod D

an(q) and an(q) =
qQ(n)

(q)n1 · · · (q)nN
. (26)

When n is in a fixed congruence class modulo mD, with n = k mod m and n = k′ mod d,
then Q(n) takes a fixed value modulo 1/D and using the Chinese remainder theorem, we
get:

ζQ(n) = e(αQ(k′)) ζQ(k)

where x and x denote the reduction of x modulo m and D respectively.

Set f
[k,k′]
Q (τ) = F

[k,k′]
Q (e(τ)). When τ = α + iε

2πm
(i.e., q = ζe−ε/m), it follows that

f
[k,k′]
Q (τ) = e(αQ(k′)) ζQ(k)f

[k,k′]
Q,ζ (ε) (27)

where

f
[k,k′]
Q,ζ (ε) =

∑
n∈ZN≥0

n≡k mod m, n≡k′ mod D

a+n (ζe−ε/m)e−εQ(n)/m, a+n (q) =
1

(q)n1 · · · (q)nN
. (28)

Recall the definition of f(ε) ∼ g(ε) from (3).
Claim 1: We have:

f
[k,k′]
Q,ζ (ε) ∼ f

[k,0]
Q,ζ (ε) . (29)

This follows from an application of the Poisson summation formula discussed below. As-
suming this, it follows that ∑

k′ mod D

f
[k,k′]
Q,ζ (ε) =

1

D
f
[k]
Q,ζ(ε) (30)

where

f
[k]
Q,ζ(ε) =

∑
n∈ZN≥0

n≡k mod m

a+n (ζe−ε/m)e−εQ(n)/m .

We now write

fQ(τ) = FQ(e2πiτ ) =
∑
n∈ZN≥0

an(e2πiτ )e2πiQ(n)τ .
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Notice that an(e(τ)) depends on τ modulo 1. Now using a strong denominator D of Q and
Combining (25), (27), (29) and (30), we split

fQ

(
α +

iε

2πm

)
∼ G(Q,α)

∑
k∈(Z/mZ)N

ζQ(k)f
[k]
Q,ζ(ε) . (31)

We now study in detail the asymptotics of f
[k]
Q,ζ(ε) as ε ↘ 0 for fixed k ∈ (Z/mZ)N .

The asymptotic analysis uses Proposition 2.2 (which describes a unimodal property of the

summand of f
[k]
Q,ζ(ε)) and the Poisson summation formula applied several times described

terse in p.53–54 of [18] and in much more detail in [17].

Let 1√
ε
xi = ni − 1

ε
log 1

zi
and set x

(0)
i (ε) =

⌊
−1
ε

log 1
zi

⌋
+ ki. So, if ni = ki mod m, then

xi ∈ (x
(0)
i (ε) +mZ)

√
ε. Using Proposition 2.2, and extending a+n (q) = 0 for n ∈ ZN \ZN≥0, it

follows that

f
[k]
Q,ζ(ε) = γQ,ζ(ε)

∑
x∈(x(0)(ε)+mZ)

√
ε

e−
1
m
xtÃxϕ(x, ε)

where

γQ,ζ(ε) =
( ε

2π

)N
2
e

Λ
mε

N∏
i=1

θBii (1− zi)
1
2
− 1
m

N∏
i=1

Dζ(θi)
− 1
m

N∏
i=1

θ
(Ak)i
i

(θi; ζ)ki
e−Cε/m

and

ϕ(x, ε) = e
1
m
Btxε1/2

N∏
i=1

ψ
ζkiz

1
m
i ,ζ

(xi ε
−1/2, ε) .

Claim 2: When λ < −1/2, then we have:∑
x∈(x(0)+mZ)

√
ε

e−
1
m
xtÃxϕ(x, ε) ∼

∑
x∈(x(0)+mZ)

√
ε; |xi|<ελ+ 1

2

e−
1
m
xtÃxϕ(x, ε) . (32)

Claim 3: When λ > −2/3 and K ∈ N, then we have:

e−
1
m
xtÃxϕ(x, ε) = e−

1
m
xtÃx

(
1 +

K∑
p=1

Cp(x)εp/2
)

+ o(εK(3λ+2) (33)

where Cp(x) are polynomials defined by Proposition 2.2.
Claim 4: If P is a polynomial and when λ < −1/2, then we have:∑

x∈(x(0)+mZ)
√
ε; |xi|<ελ+ 1

2

P (x)e−
1

2m
xtÃx ∼ (mε)−N/2

∫
RN
P (x)e−

1
m
xtÃxdx . (34)

Note that there is a competition of the range of λ in claims 2 and 3, and it is fortunate that
the allowable range is nonempty. All three claims (32)-(34) follow from an application of the
Poisson summation formula explained in detail in p.623–625 of [17]. Let us elaborate a bit
with some comments on Poisson summation focusing on Claim 4 which states, among other
things, that the asymptotics of a sum over a shifted lattice is independent of the shift.
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Poisson summation: Suppose that φ is a C∞-function with more than polynomial decay
at infinity, i.e., |φ(x)| = o(|x|K) for all K > 0. Then,∑

k∈Z

φ((k + α)ε) ∼ 1

ε
φ̂(0) . (35)

The proof of (35) follows from Poisson summation formula∑
k∈Z

φ(k + α) =
∑
`∈Z

φ̂(`)e(`α)

which implies that ∑
k∈Z

φ((k + α)ε) =
1

ε

∑
`∈Z

φ̂
( `
ε

)
e(`α) . (36)

Since φ is C∞, φ̂(x) = O(|x|−K) for every K > 0 as |x| � 0. Consequently, for ` 6= 0, each
term of the right hand side of (36) is exponentially small and so is the sum for all nonzero
`. This proves (35).

To show Claim 4, we use the Poisson summation formula∑
x∈(x(0)+mZ)

√
ε

P (x)e−
1
m
xtÃx =

∑
x∈x(0)+mZ

P (x
√
ε)e−

ε
2m

xtÃx =
∑
x∈mZ

g(x)e(xtx(0)) ∼ g(0)

where g(x) denotes the Fourier transform of P (x
√
ε)e−

ε
2m

xtÃx. Since

g(0) = ε−N/2
∫
RN
P (x)e−

1
m
xtÃxdx ,

and since the sum in Claim 4 for |xi| > ελ+
1
2 is O(εK) for all K > 0, Claim 4 follows. In

conclusion, we have shown that:

f
[k]
Q,ζ(ε) ∼

χN

mN/2
c(Q)

N∏
i=1

Dζ(ζθi)
− 1
m

N∏
i=1

θ
(Ak)i
i

(ζθi; ζ)ki
IQ,ζ(k, ε) (37)

where IQ,ζ(k, ε) is given by (15). The above proof applies mutantis mutandis to the proof of
Claim 1.

Combining Equations (37) and (31) concludes the proof of Theorem 3.1. �

5. A syntactical identity among two collections of formal power series

In this section we discuss a syntactical identity between two formal power series at each
complex root of unity, one introduced in [5] and [6] to describe the conjectural asymptotics of
the Kashaev invariant near 1 and near general roots of unity, respectively, and the other being
the radial asymptotics of Nahm sums as q tends to a root of unity ζ, as given in [18] for ζ = 1
and in the present paper for general ζ. We observed by chance that the asymptotic series
found in [18] and in [5] agreed to all orders. This then turned out to be true for all ζ, giving
a surprising connection between radial asymptotics of q-series and asymptotics of quantum
invariants defined at roots of unity that was highlighted in [7] and further discussed in [10].
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Formally, this connection can be expressed by the commutativity, for all roots of unity ζ, of
the following diagram

NZ data Nahm data

Power series

-T

HHH
HHj(1)ζ

���
��� (2)ζ

(38)

whose ingredients we now explain.
Briefly, Neumann-Zagier (in short, NZ) data are obtained from an ideal triangulation

of a cusped hyperbolic 3-manifold M triangulated with N tetrahedra with shapes z =
(z1, . . . , zN) ∈ C \ {0, 1} [15, 16]. The shapes satisfy the NZ equations, which have the
form

zAz′′B = e−πiη (39)

where for a complex number w, we define w′ = 1/(1 − w), w′′ = 1 − 1/w and (A B) is
the upper half of a symplectic matrix (i.e., it has full rank and ABt is symmetric) and
η ∈ ZN . A solution of (39) in C \ {0, 1,∞} gives rise to a PSL(2,C)-representation of the
fundamental group of M and describes the complete hyperbolic structure of M when the
solution is in the upper half plane (i.e., =(zi) > 0 for all i). The NZ equations are written
for each edge of the triangulation, and for a choice of (meridian-longitude) peripheral curves
of each boundary component of M . When M has a single torus boundary component,
equipped with a meridian and longitude, the matrices A and B discussed in [5] we obtained
by eliminating the shape z′ (using the fact that zz′z′′ = −1) giving rise to the vector η in (39),
and by removing one the edge equations and replacing it by a meridian gluing equation. In
addition, a flattening f ∈ ZN was introduced and used in [5].

The map T that appears in (38) converts the NZ equation to a Nahm equation. Assuming
that B is nonsingular, we can formally convert (39) in the following form

1− zi = e(B.ei)
N∏
j=1

z
Aij
j (i = 1, . . . , N) . (40)

where ei is the ith coordinate vector, e(x) is as in (17) and

A = I −B−1A, B =
1

2
(−B−1η + (1, . . . , 1)t) . (41)

Since (AB) is the upper half of a symplectic matrix, it follows that A is symmetric. This
motivates the map T from NZ-data to Nahm-data

T (A,B, η, f) 7→ (A,B,C) (42)

where C = f . The transformed equation (40) is the Nahm equation of a twisted Nahm sum
F ∗ defined by:

F ∗A,B,C(q) =
∑
n∈ZN≥0

e(B.n)
q

1
2
ntAn+B.n+C

(q)n1 · · · (q)nN
∈ C((q

1
d )) (43)
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where A = (aij) is a symmetric positive definite N×N matrix with rational entries, B ∈ QN

are column vectors and C ∈ Q a scalar.
Now fix a primitive root of unity ζ. The arrow (1)ζ in (38) is a power series defined

in [6] (under the hypothesis that H = −B−1A + diagonal(z′) is invertible), and the arrow
(2)ζ is the formula of Theorem 3.1 applied formally to the twisted Nahm sum F ∗A,B,C(q) as
q → ζ. The reason for the commutativity of the diagram (38) is that in [5, 6], the formal
power series (4) appears due to asymptotic expansion of Faddeev’s quantum dilogarithm.
The latter is a ratio of two infinite quantum factorials, one in the variable q = e(τ) and the
other in the variable q̃ = e(−1/τ). Ignoring one of the infinite quantum factorials produces
identical power series after formal Gaussian integration.

6. Coefficient versus radial asymptotics of Nahm sums

In this section we discuss a relation between the coefficient and the radial asymptotics of
an analytic function in the complex unit disk under some fairly weak analytic assumptions
which (for instance) are satisfied for the Nahm sums (1).

Consider a function

G(q) =
∞∑
n=0

c(n)qn . (44)

analytic function in the open complex unit disk |q| < 1 and with an asymptotic expansion
at q = 1

G(e−z) ∼ eC
2/(4z)

∞∑
α

Aαz
α , (45)

as z → 0 with <(z) > 0 where C is a positive real number and α is a sequence of real
numbers tending to infinity. In the case of a Nahm sum, α ∈ N, and in most applications,
α lies in a fixed number of arithmetic progressions of the form α0 + 1

d
N for α0 ∈ Q and

d ∈ N. Assume further that for every N > 0, there exists θN > 0 such that θN = o(N) and

|G(e−h+iθ)| < hNeC
2/(4h) for h > 0 (and small) and |θ| > |θN |.

Theorem 6.1. Under the above assumptions, we have:

c(n) ∼ 1

2

√
C

2π

1

n3/4
eC
√
n
∑
`≥0, α

(−1)`

C`−α (2`− 1)!!

(
α + `− 1

2

2`

)
1

n
`
2
+α

2

Aα (46)

Note that this implies that the asymptotics of the Fourier coefficients c(n) determine the
radial asymptotics G(e−h) and vice-versa.

Proof. The Cauchy residue theorem and the change of variables q = e−z for z = h+ πiθ for
θ ∈ [−1, 1] and h > 0 fixed implies that

c(n) =
1

2πi

∫ h+πi

h−πi
enzG(e−z)dz .

Using the change of variables z = Cu/(2
√
n) it follows that

c(n) ∼
∑
α

AαK(α, n)
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where the accuracy of the approximation will depend on the accuracy and uniformity of (45)
and

K(α, n) =
1

2πi

∫ h+πi

h−πi
exp

(
C2

4z
+ nz

)
zαdz (47)

=
1

2πi

(
C

2
√
n

)α+1 ∫
exp

(
C
√
n

2

(
u+

1

u

))
uαdu .

The function K(α, n) can be written in closed form in terms of the modified Bessel function as
follows K(α, n) = Kα+1(−C

√
n), and the latter has a well-known asymptotic expansion but

since the direct calculation of the asymptotic expansion is not difficult, we give it completely
here. Make the substitution

u+
1

u
= 2− x2, u =

(√
1− x2/4 + ix/2

)2
(48)

to make the exponential in (47) a pure Gaussian. Then using the standard binomial coeffi-
cient identity

d

dx

(uk
k

)
=
∞∑
j=0

(−1)j
(
k + j+1

2

j

)
xj (49)

with k = α + 1 together with the standard Gaussian integral (14) for j = 2` even, we get
that

K(α, n) ∼ Cα+ 1
2

2α+
3
2
√
π
eC
√
n

∞∑
`=0

(−1)`

C`
(2`− 1)!!

(
α + `− 1

2

2`

)
n−

3
4
− `

2
−α

2 . (50)

This completes the proof. �

7. Modular Nahm sums

In this section we give an applications of the asymptotic Theorem 3.1 to the case when
the Nahm sum FA,B,C(q) is modular.

Let XA = (XA,1, . . . , XA,N) ∈ (0, 1)N denote the distinguished solution of the Nahm
equation 1 − X = XA and let ξA ∈ B(C) denote the corresponding element of the Bloch
group and set

C0(A) = −L(ξA)/(2π)2 (51)

where L is our normalization of the Rogers dilogarithm given in (8).
We first make some general remarks about modular functions and their asymptotic proper-

ties near rational points. First, by modular function we will always mean a function invariant
under a subgroup of finite index of SL(2,Z). (We do not have to assume that this subgroup
is a congruence subgroup, i.e. one containing the principle congruence subgroup Γ(M) for
some M ∈ N, although in the case of Nahm sums, which always have an expansion in rational
powers of q with integral coefficients, a well-known conjecture implies that if they are modu-
lar at all then they are in fact modular with respect to a congruence subgroup.) For any such
function g(τ) and any P ∈ P1(Q) = Q∪{∞}, we define the valuation vP (g) ∈ Q of g at P as
the smallest exponent of q = e(τ) in the Fourier expansion of (g ◦ γ)(τ), where γ ∈ SL(2,Z)
is any element such that γ(∞) = P . This definition is easily seen to be independent of the
choice of γ.
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Recall fQ(τ) from (12), and let FQ denote FA,B,C .

Proposition 7.1. If fQ(τ) is modular, then for every P ∈ P1(Q) we have

vP (FQ) ≥ C0(A) (52)

with equality when P = 0.

Proof. Let f = fQ, P = a/c for (a, c) = 1, c > 0 and γ =
(
a b
c d

)
∈ SL(2,Z). Take ε > 0 and

set τ = (iε−1 − d)/c in the upper half-plane (τ →∞ as ε→ 0+). Then,

γ(τ) =
aτ + b

cτ + d
=
a

c
+
iε

c

combined with q = e(τ) = e(ivP (f)/(cε))e(−dvP (f)/c) implies that

(f ◦ γ)(τ) = f

(
a+ iε

c

)
= C ′ qvP (f)(1 +O(q1/D)) ∼ C ′e(ivP (f)/(cε)) (53)

for some C ′ 6= 0 and some D ∈ Q+. On the other hand, Theorem 3.1 with ζ = e(P ) and
n = c imply that

f

(
a+ iε

c

)
∼ C ′′e(iC0(A)/(cε)) (54)

where C ′′ is a constant, possibly zero. A comparison between (53) and (54) implies inequal-
ity (52). When P = 0, i.e., ζ = 1, Theorem 3.1 asserts that C ′′ 6= 0. In that case, (53)
and (54) imply equality in (52). �

As a special case of the proposition, for P =∞ it follows that

v∞(fQ) = min
n∈ZN≥0

(
Q(n)

)
≥ C0(A) (55)

whenever fQ is modular. If in addition 1
2
ntAn+ntB ≥ 0 for all n ∈ ZN≥0 (as is the case for all

the modular triples (A,B,C) of rank 1, 2 or 3 listed in [18] and [17]), then v∞(fA,B,C) = C
and we deduce that C ≥ C0(A). Moreover, in all cases observed, the equality C = C0(A)
holds if and only if the vector B is zero, and this value occurs whenever the matrix A is
integral and even. (The converse to this last statement, however, is not true; for instance,

the Nahm sum fA,0,C0(A) is modular also for A =
( 4/3 2/3
2/3 4/3

)
or its inverse A =

( 1 −1/2
−1/2 1

)
, as

well as for several non-integral 3× 3 matrices A.)

Appendix A. Application: proof of the Kashaev-Mangazeev-Stroganov
identity

The current paper is needed crucially in [2], where the asymptotic properties of Nahm
sums at roots of unity are used to prove Nahm’s conjecture about their modularity. A
further essential ingredient in [2] was the following finite version of the 5-term relation for
the cyclic quantum dilogarithm due to Kashaev, Mangazeev and Stroganov:
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Proposition A.1. [11, Eqn.C.7] Let X, Y and Z be three complex numbers satisfying
Z = 1−X

1−Y and ζ a primitive mth root of unity. Then

Dζ(1)Dζ(yζ/x)Dζ(x/yz)

Dζ(1/x)Dζ(yζ)Dζ(ζ/z)
= (ζy)m(1−m)/2 f(x, y | z)m , (56)

where x, y and z are mth roots of X, Y and Z and

f(x, y | z) =
∑

k mod m

(ζy; ζ)k
(ζx; ζ)k

zk . (57)

An independent proof of the above identity was given in unpublished work of Gangl and
Kontsevich. In this appendix we give a simple proof of this identity as an application of the
asymptotic formula in Lemma 2.1, or rather of its weakening (take w = x, ν = 0 and retain
only the leading terms)(

x; ζe−ε/m
) −m
∞ ∼ Dζ(x)

(1− xm)m/2
eLi2(x

m)/ε (x ∈ C, xm 6∈ [1,∞), ε↘ 0) . (58)

in combination with a famous identity of Ramanujan. The same method could presumably
be used to prove many other identities.

Note that the right hand side of (57) is well-defined because the relation Z(1 − Y ) =
1−X implies that the summand is m-periodic. Furthermore, both sides of (57) are rational
functions on the curve zm(1 − ym) = 1 − xm, so it suffices to prove them in an open set of
that curve. With this in mind, let X, Y, Z be as in the proposition above but also satisfying
that X, Y 6∈ R and |X/Y | < |Z| < 1. Set x = X1/m, y = Y 1/m, and z = Z1/m, and choose
q = ζe−ε/m with ε > 0 small. The Ramanujan 1Ψ1 summation formula says that

1Ψ1(x, y, z; q) :=
∞∑

k=−∞

(qy; q)k
(qx; q)k

zk =
(q; q)∞ (qyz; q)∞ (1/yz; q)∞ (x/y; q)∞
(qx; q)∞ (1/y; q)∞ (z; q)∞ (x/yz; q)∞

, (59)

where (x; q)k = (qkx; q) −1|k| for k < 0 and where the series converges because of the conditions

placed on X, Y and Z. Denote by Ak the kth summand in the series. Then for fixed k we
have

Ak+m
Ak

=
m∏
j=1

(
1− qk+jy
1− qk+jx

z

)
=

1− Y
1−X

Z + O(ε) = 1 + O(ε) (ε↘ 0) ,

so Ak is periodic up to finite order in ε. This implies that the left-hand side of (59) is the
sum of m terms each of the form

∑
n∈Z φ(n) where φ(x) is an approximate Gaussian centered

at x = 0. If we assume only k = o(1/ε) rather than k = O(1), then we have instead:

Ak+m
Ak

=
1− e−kεY
1− e−kεX

Z + O(ε) = 1 +
( Y

1− Y
− X

1−X

)
kε + O(ε+ k2ε2) .

It follows that

Ak+nm =
(ζy; ζ)k
(ζx; ζ)k

zk · exp
( X − Y

(1−X)(1− Y )

n2m

2
ε + O(nε+ n3ε2)

)
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for k fixed and n = o(1/ε). Our assumptions on (X, Y, Z) imply that <
(

Y−X
(1−X)(1−Y )

)
< 0, so

the right-hand side behaves like a Gaussian. We deduce that

1Ψ1(x, y, z; ζe−ε/m) ∼
√

2π

ε

√
(1− Y )(1−X)

(X − Y )
f(x, y | z) (ε↘ 0), (60)

where f(x, y | z) as in Equation (57). On the other hand, by the transformation formula of
the Dedekind eta-function the factor (q; q)∞ in (59) satisfies the asymptotic formula

(q; q)∞ = (µ+ O(ε))

√
2π

ε
e−π

2/6mε

for some (24m)th root of unity µ, and inserting this and the asymptotic formula from (58)
into the product in equation (59) we find the alternative asymptotic formula

1Ψ1(x, y, z; ζe−ε/m)m ∼
√

2π

ε
Cm/2D eB/ε (ε↘ 0), (61)

where

B = −Li2(X/Y Z)+Li2(Y Z)+Li2(1/Y Z)+Li2(X/Y )+Li2(1)−Li2(X)−Li2(1/Y )−Li2(Z),

C =
(1− Y Z) (1− 1/Y Z) (1−X/Y )

(1−X) (1− 1/Y ) (1− Z) (1−X/Y Z)
,

and

D = µ24
Dζ(ζx)Dζ(1/y)Dζ(z)Dζ(x/yz)

Dζ(ζyz)Dζ(1/yz)Dζ(x/y)
,

where µ24 = ζm is a 24th root of unity. The quantity B vanishes by the standard functional
equations of the dilogarithm. Using further the identities

Dζ(ζx) = Dζ(x)
(1− x)m

1− xm
, Dζ(1/x)Dζ(x) = µ6x

−m(m−1)
2

(1− xm)m

(1− x)m

(where µ6 is a sixth root of unity) and comparing the asymptotic equations (60) and (61),
we get (56) as desired.
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