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PERIOD FUNCTIONS AND THE SELBERG

ZETA FUNCTION FOR THE MODULAR GROUP

JOHN LEWIS AND DON ZAGIER

The Selberg trace formula on aRiemann surface X connects the discrete spectrum of
the Laplacian with the length spectrum of the surface, that is, the set of lengths of the
dosed geodesics of on X. The connection is most strikingly expressed in terms of thc
Selberg zeta function, which is a 111cromorphic function of a cOlnplex variable s that is
elefined for ~(s) > 1 in terms of the length spectrum and that has zeros at a11 sEC
for whieh s (1 - s) is an eigenvalue of the Laplacian in L 2 (X) . We wi 11 beinterested in
the casc when X is thc quotient of the upper half-plane 1l by cither the modular group

f 1 = SL(2,Z) or the extended modular group r = GL(2,Z), where , = (:~) E r acts

on 1i by Z M (az + b)/(cz + d) if det(,) = +1 and Z M (ai + b)/(ci + d) if elet(,) = -1.
In this case the length spectrum of X is given in terms of dass nUlllbers and units of
orders in real quadratie fields, whilc the eigenfunctions of the Laplace operator are the
non-holomorphic modular functions usua11y ca11ed Maass wave forms. (Good expositions
of this subjcct can be founel in [6] and [7]).

A strikillg fact, discovered by D. Mayer [4, 5] and for whieh a simplified proof will be
given in the first part of this paper, is that the Selberg zeta function Zr(s) of 1i/f can
be reprcsented as the (Fredholm) dcterminant of the action of a certain element of thc
quotient field of the group ring Z[r] on an appropriate Banach space. Specifically, let V be
the space of functions holomorphic in JI) = {z E C llz -11 < ~} and contilluouS in lDl. The

semigroup {, E r 1,(lDl) ~ lDl} acts on thc right by 7r8 ( : :) f (z) = (cz + d) -28 f (~:t~). In

particular, for all n 2:: 1 the element (~ ~), whieh can be written in terms of the generators

a = (~ ~) and p = (~ ~) of f as a n
-

1p, acts on V. It turns out (cf. §2) that the fornlal
expreSSIon

00

L = (l_a)-l p = L [~~]
n=1

(1)

defines an operator L s = 1r8 (.e) of trace dass on V (fifst for ~ (s) > ~, and then by
analytic continuation to a11 s). This implies that thc operator 1 - L s has a deternünant
in thc Fredholm sense; and thc result then is:

Theorem 1. The Selberg zeta function 011l/r is given by

Zr(s) = det(l - L s ) .

1

(2)



(Actually, Mayer's result is that the Selberg zeta function of 1l/f1 equals det(1 - L;),
but everything works in much the same way for the two groups fand f 1 . We will discuss
both cases, but in our exposition have given precedence to the larger group f.)

On the other hand, as we already mentioned, the function Zr(s) has a meromorphic
continuation with zeros corresponding to the eigenvalues of even Maass wave fornls on
SL(2, Z). Fonnally, equation (2) says that these zeros correspond to the fixed points of
L s , Le., to the functions h E V such that h(z) = L:~=1 (z + n)- 2S h(1/(z + n)). Adding
z- 2S h(1/z) to both sides we find that h(z) + z- 2S h(1/z) = h(z -1), or equivalently, that
the shifted function 'ljJ(z) = h(z - 1) satisfies thc three-term functional equation

'ljJ(z) = 7/J(z + 1) + Z-2s 'Ij;(1 + 1/z) . (3)

It is therefore natural to ask whether there is a direct connection between the spectrum of
the Laplace operator ~ on ri/f and the solutions of the three-term functional equation.
Such a connection was discovered (independently of Mayer's work) in [2], whose lnain
result, in a slightly strengthened fonTI, can be stated as follows:

Theorem 2. Let s be a complex number with 0 < ~(s) < 1. Then there is a canonical
bijection between square integmble solutions of ~u = s(l - s) u in 1l/f and holomorphic
solutions of (3) in the cut plane C' = C" (-00,0] satisfying the growth condition 'Ij;(x) =
O(l/x) as x --+ 00.

The formula for the correspondence U H 7/J in [2] was completely explicit (eq. (12) below),
but its proof was indirect and did not make the reasons for its properties at all transparent.
Other proofs and several other formulas for 'Ij; in terms of u were found in [3], where it was
also observed that this correspondence is exactly analogous to the relationship between
a hololnorphic modular fonn and its period polynomial in the sense of Eichler, Shhnura,
and Manin. We will eall the function 'ljJ(z) thc period function of the wave form u.

Taken together, these two theoreills give another point of view on the Selberg trace for
Inllla: Theorenl 1 rclates the "lcngth spectrunl" definition of the Selberg zeta function to
the fixed points of the operator L s and henee, by implieation, to the solutions of the func
tional equation (3), and Theorem 2 relates the solutions of (3) to the "discrete spectrum
of the Laplacian" definition of Zr. In this paper (which, except for the simplifieations in
the proof of Theorern 1, is mostly expository) we will discuss both aspects. Part I uses
reduction theory to establish the connection between the Selberg zeta function and the
operator L s . In §l we outline a proof of Theorenl 1. The details (e.g. the proofs of vari
ous assertions needed from reduction theory, verification of convergenee, ete.) are filled in
in §2, while thc following section gives various complements: the Inodifications when r
is replaced by r 1, a refornul1ation of sonle of thc ideas of thc proof in terms of group
algebras, and abrief description of Mayer's original approach via the sYlnbolie dynanlies
of the continued fraction nlap. Part 11 describes the connection between the solutions
of the functional equation (3) and the eigenfunctions of the Laplacian in 1l/f. We will
give several fonnulas for the u +-+ 'ljJ correspondence, sketch some the ideas involved in the
proof, describe the analogy with the theory of periods of modular forms, and discuss some
other properties of so!tltions of (3) on C' or on lR+. Here we will give fewer details than
in Part land omit all proofs, referring the reader to [2] and [3] for lnore information.
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PART 1. REDUCTION THEORY AND THE SELBERG ZETA FUNCTION

§1. The formal calculation. The basic conjugacy invariants of an element "'/ E rare the
numbers Tr(')'), det(",/), and ß(",/) = Tr(",/)2 - 4det(",/) (trace, determinant, discriminant).
We will caU ')' hyperbolic if L\ (')')is positive and (to distinguish between "'/ and -",/, w hieh
act in t he same way on 1l) also Tr(1') > O. If l' is hyperboHe, we set

(s E C)

and define k (1') as the largest integer k such that "'/ == ')'g for some ,0 E f (whieh is then
hyperbolie and primitive, i.e. k(,o) = 1). The Selberg zeta funetion Zr(s) for r is defined
by

00

Zr(s) == II
{"y} in r m=O

"y primitive

UR(s) > 1),

where the notation" {1'} in r" nIeans that the produet is taken over aU (primitive hyper
bolle) elements of r up to f-eonjugaey. That the funetion Zr(s) extends IueroInorphically
to all complex values of s is one of thc standard consequenees of the Selberg traee formula,
which expresses its logarithrnie derivative as a surn over the eigenvalues of the (hyperbolie)
Laplaeian in 1lIr.

For ~(s) > 1 we have the simple computation

-log Zr(s) ==
00 00

L: L: L: ~ detb)km Nb)-k(8+m)

{"y} in r m=O k=l
"y primitive

L:
{"y} in r

"y hyperbolic

1
k(,) Xs('Y) , (4)

where the last step just expresses the fact that every hyperbolic element of r can be
written uniquely as ')'k with l' priInitive and k ;::: 1.

To get further we use aversion of reduetion theory. This theory is usually presented
for quadratic fonns, but is translatable into the language of matrices by the standard
observation that there is a 1:1 correspondence between conjugacy classes of matrices of
traee t and determinant n and equivalence classes of quadratic forms of diseriminant
t 2 - 4n. We define the set of reduced elements of r by
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i.e. lnatrices with non-negative entries which are non-decreasing downwards and to the
right. (We will explain in §3B where this definition comes from.) Then we have the
following facts, whose proofs will be indicated in §2:

(I) Every reduced matrix can be writtcn uniqucly as a prodllct (~ n\ )... (~ T~l) with

n1, . .. ,nl ;::: 1 for a unique positive integer f = l(,).
(11) Every conjugacy classes of hypcrbolic lnatrices in r contains reduced representa

tives ,; they all have the salne value of f(,) and there are f(,)/k(,) of them.
(111) If, is reduced, then the operator '1rs(,) is of trace c1ass and Tr'1rs(,) = Xs(,)'

Combining these assertions with (4), we find

1
-logZr(s) = L f() Xs(,)

(I1) 'YE Red '

- Tr ( L n-(1) '1r s (,))
(II!) 'YERed f- ,

(I) 1f (~~ (~ 1r8(~~)r), (5)

and this is equivalent to (2) by the definition of J:. and the Fredholm determillant formula
logdet(l- L s ) = -l:~1 Tr(L;)/f.

§2. Details. In this section wc vcrify the assertions (1)-(111) and establish the validity of
the formal calculations of §1 für W(s) > 1; (2) then holds for all s by analytic continuation.

A. Proof of (I). Suppose that, = (:~) E Red. If a = 0 thcn, = (~~) with d 2: 1

and we are already finished with l(,) = 1. If a > 0, wo set n = rd/bl - 1 (i.e. n is the
unique integer n < d/b ::; n + 1). One easily checks that this is the only n E Z for which

, = (~ ~ ),* with ,* E Red. Moreover, the sum of the entries of,* is slnaller than that of
" so we can assunle by induction that ,. has the form c1aimed, and then so does , with
f(,) = f(')'*) + 1.

B. Proof of (11). This is esscntially cquivalent to the theory of periodic continued

fractions: to each hyperbolic matrix, = (::) we associate the roots a-d±2~ of

')'X = x, which are quadratic irrationalities; two ,'s are conjugate if and only if the
corresponding roots are f-cquivalent; each quadratic irrationality has a continued fraction
expansion 1/(m1 + 1/(m2 + 1/ ... » which is eventually periodicj and if the fixed point
of ')' has a continued fraction expansion with period (nb'" ,nt) then , is conjugate to

tbe reduced matrix (~ :1 )... (~ :l) with n1, ... 1 nt 2:: 1. Howevcr, onc can also do the
reduction procedure directly on the matrix level. We define a conjugacy dass prcserving
lnap F fronl the set of hyperbolic matrices to itself by , = (: ~) ~ F(/) = (~ ~ )-1, (~ ~)
where n is the unique integer for which the interval (n, n + 1] contains both d/b and c/a.
(This definition must be lnodified slightly if a = 0.) Notice that if, is rcduced then tbis

is thc sanle n as was used in the proof of (I) allel F (,) is simply ')'* (~ ~) in tbe notation
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above. The effect of F on a reduccd matrix, = (~ r~l ) ••• (~ :l) is thus simply to replace

it by the cyclically permuted product F(,) = (~n12)'" (~ :t )(~ n\ ). It is clear that

under this "internal conjugation" the exact period of , will be the number l(,)/k(,).
(Prooj. If, is the kth power of another matrix " with k ~ I, then " is also reduced and

hence also a product of matrices (~ ~), and the cycle (nI, ... ,nl) for, is just the k-fold

concatenation of the cycle for ,'; and conversely if the cyclc of, is a k-fold concatenation
then , is a kth power. Hence l(,)/k(,) is the exact period of thc sequence of integers
{ni} .) The assertion of (11) is thus proved if we show that (i) iterating F often enough
eventually sends an arbitrary hyperbolic element of r to an element of Red, and (ii) two
elements of Red are r -conjugate only if they are already "internally" conjugate, i.e., if and
only if one is mapped to the other by apower of F. Both steps are proved by aseries
of elementary inequalities which show that each application of F "improves things" (i.e.
either makes a non-recluccd matrix nlore nearly reduccd in the sense that some positive
integer measnring the failnre of the inequalities defining Red gcts sIualler, or else reduces
the size of thc entries of the luatrix coujugating one rcduced , into another). We omit
the details, which are exactly parallel to the proofs of the corresponding assertions in the
usual reduction theory of qnadratic forms as carried out in standard books, e.g. in §13
of [8].

C. Proof of (111). If, is reduced, then , maps the closed interval [- ~, ~] into the
half-open interval (0,2] and heuce luaps the closed disk [ll into the open disk [ll. Standard
results frOIll the theory of composition operators on spaces of holoIllorphic functions (cf. [5],
Thm. 7.9 anel LeIllma 7.10 and the papers cited there) then imply that the operator 7rs (g)
is of trace class and that its trace equals Xs (g).

D. Verification of convergence. The operator Ls = ?TsC!:) senels h E V to

00 1 1
(Lsh)(z) = " ( )2 h(-).LJ z+n s z+n

n=1

Since h is holomorphic at 0, the surn converges absolutely for s in thc half-plane ~(s) > ~

to a function which again belongs to V, and the absolute convergence also implies that
this operator is of trace class. We have to show that in the smaller half-plane ~(s) > 1
all of the steps of the calculations in (4) and (5) are justifieel. But this follows from the
calculations theIuselves: The absolute convergence of thc product defining Zr (s) (and
hence of the surn defining i ts logarithIll) for ~ (s) > 1 is well-known, and since in (4) and
(5) all terms are replaced by their absolute value when s is replaced by its real part, the
various interchanges in the order of SlUlll11ation are autornatically justified. The validity
of the last line of the proof also follows, since the formula L: Tr(Al)/f = -logdet(l - A)
is true for any trace dass operator A for which L: ITr(Al)/ll converges. We can also run
the calculation backwards (and hence verify the convergence of the infinite product for
Zr(s) in the half-plane lR(s) > 1) by showing directly that the SUIn Ms := L:')'ERed IXs(,)1
is convergent for ~(s) > 1. Indeed, we have

M= ct (k + Vk 2 - 4) 1-21R(s) + ci; (k + Vk 2 + 4) 1-2~(s)
s L Vk2 _ 4 2 L Vk 2 + 4 2 '

k~3 k~1
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with ct = # {, E Red I Tr(,) = k, det (')') = ±1}, and the required convergence follows
fronl the estimate ct « kl+~ (V E > 0), which is obtained by straightforward esthnates
using the divisor function.

§3. Complements. In this section we discuss some further aspects of the proof given in
the last two sections.

A. The Selberg zeta function für SL(2, Z). In this subsection we treat thc case
when the group r = GL(2, Z) is replaced by its subgToup f 1 = SL(2,71), the usual
ruodular group. We dcnote by Z(s) thc Selberg zeta function for f 1, which is defined
for ~(s) > 1 by the same product expansion as before but with the product running
over r l-conjugacy classes of primitive hyperbolic elements of f 1. As rnentioned in the
introduction, the stateluent of Theorem 1 for r 1 is the identity

Z(s) = dct(l - L;) . (6)

We indicate the changes that have to be rnade in thc proof of §§1-2 in order to prove this.

The caIculation (4) is unchanged except that now the summation is over r 1-conj ugacy
classes anel the number k(')') must be replaccd by k1 (')'), thc largest integer n such that ,
is the n th power of an element in r 1. For the first line of (5) we needed that

(7)

which followed frolll Statement (11). This rUllst now be replaced by

, E f 1 =} # {T' E Red I,' r, ,} = 2~;~~)'
which we will prove in a mornent. The first line in (5) then becomes

(8)

(9)-log Z(s) =
2L i(')') Xs(')') ,

')'ErlnRed

and thc restriction ')' E r 1 iruplies that in the last line of (5) we SUlll only over even i.

It remains to prove (8). Write ')' = ')'8 where k > 0 and ')'0 is primitive in r, and set
i o = i (,0)' Then k (')') = k, l (')') = klo, and (7) expresses thc fact that thc r -conj ugatcs to
, in Red correspond to the io possible "internal conjugates" of a reduced representativc
of this conjugacy class. We now distinguish two cases. If dct(,o) = +1, thcn k1 (,) = k
(because '0 E r 1 and is clearly primitive there), but i o is even and thc numbcr of,' E Red
which are r rconjugate to ')' is lo/2, because half of the i o "internai" conjugations in our
cyclc are conjugations by elerueots of detcrruinant -1 and hence are 110 longer counted. If
on the other hand det(,o) = -1, then k is even and k1 (')') = k/2, because the element,5 is
now prinütive in r 1, but to ruake up for it the nuruber of,' E Red which are r 1-conjugate
to , is now the fuIl number i o, because there is 00 longer any distinction between internal
conjugacies by eleruents of determinant +1 01' -1. (Conjugating by the product of the

first r matrices (~ ~) of the cycle of ,0 is the same as conjugating by the product of the

last io - r of them, and r anelio - r have opposite parities.) This establishes (8) in both
cases.
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B. Identities in the group ring. In this subsection we redo part of the calcula~ion

in §1 in a slightly different way in which the elements of Red are bllilt up out of powers of
a finite rather than an infinite sum; this also helps us to understand the structure of Red
and pennits us to make sense of the fonnal expressions in (1).

Recall that 0' = (~ ~) and p = (~ ~). These elements generate r, but of course not at

all freely: e.g. one has (0'-1 p)2 = (0'-2 p2)6 = 1. On the other hand, thc subseluigroup
Q of r generated by p and 0' is the free semigroup generated by these two elements, Le.
its elements are all words in 0' and p and all such words distinct. In fact, the set Q is
contained in the larger sub-semigroup P of r consisting of all matrices with non-negative

entries, which is easily seen to be the semigroup generated by the two eleInents fi, = (~ ~)

anel a, subject to the unique relation 1'\,2 = 1. Since p = O'fi" every element of P is either
a word in p and 0' or else fi, tinles such a word, so P = Q U ",Q (disjoint union). This
says that Q ........ {I} = O"P, the subset of P consisting of words in I'\, and 0' which begin with

a 0-, or equivalently of Inatrices (: ~) satisfying c 2: a 2: 0, d 2: b 2: 0. In turn, the

subset of Q consisting of words in a and p which end in a p is the subset of those elements
satisfying the additional inequalities b ~ a ~ 0, d ~ c ~ 0, i.e. precisely our set Red. This
shows again that the eleIuents of Red are uniquely expressible as products of the lnatrices

O"n-l p = (~~) with n 2: 1. We define l(,) for any , E Q as the number of p's in the

representation of, as a word in p and 0"; this agrees with our previous definition on the
subset Red = Qp.

Let Qn be the subset of Q consisting of words in p and 0" of length n. The recursive
description Qo = {I} and Qn+1 = QnO' U QnP implies the identity L:,EQn (,] = ([0"] + [pD n

in the group ring Z[r]. More generally, if we introduce a variable v and define

Kv = [al + v [p] = [~ ~] + v [~ ~] E Z[f][v],

then we have K vn = L:,EQn vl(T) [,]. On the other hand, Q = U~=o Qn, so to deal with
all of Q (01' Red) we IUliSt work with infinite sums of elements of r. In particular, let

00

Lw = (1-wa)-1 p = L1LJn-1[~1~]'
n=l

This reduces to our previous formal expression L at w = 1, but now makes sense as an
element in the ring Z[rJ[[wJ] of formal power series in one variable over the group ring
Z(r], 01' as an element of C[r] if w E C, Iwl < 1. Then we have the identities

K v »-l (p] = L v l (T)-l [,]

"YERed
n(')')=n

and L.w l = L wn(T) [,] ,

,ERed
lCf)=l

where n(,) for, E Q denotes the length of, as a word in a and p. Combining, we get

(1 - 1LJ K v ) -1 [p] = Lw (1 - vw Lw) -1 = L vl (')')-l1LJnCf}-l [,] .

,ERed
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Integrating with respect to v givcs thc identity

vl(-y)
-log(l - vw LW) = "E -e- wn(r) [,l ,

,ERed (,)

and the contcnt of §1 can now be sUffiluarized by saying that we computecl -log Zr(s) as
the trace of 1rs of this SUlll on V in the linüt v = W = 1.

c. The Selberg zeta function and the dynamics of the Gauss map. The proof
of equation (6) given originally by Mayer is parallel in luany ways to the one given above,
but was expressed in tenns of ideas cOlning from symbolic dynarnics. Specifically, he used
the connection between closecl geodesics on 1l/f1 and periodic continued fractions to
relate the Selberg zcta function to thc dynanlics of thc "continued fraction map" (Ganss
luap) F : [0,1) ---+ [0,1) which maps x to the fractional part of I/x (and, say, to 0 if x = 0).
We givc a vcry brief outline of the argulncnt.

To a "dynamical systelu" F : X ---+ X and a weight function h : X ---+ C one associatcs
for each integer n :2: 1 a partition Junction

h(x) h(Fx) h(p2x) ... h(pn-lx)

(surn over n-periodic points). In our case, X = [0,1), F is the continued fraction rnap, and
we take for h(x) the function hs(x) = x2s where sEC with ~(s) > ~ (to Inake the series
defining Zn converge). Using thc technique 0 f "transfer operators" and Grothendieck's
theory of nuclear operators, Mayer shows that

(Vn :2: 0). (10)

On the other hand, the definition of the Selberg zeta function can be written Z (s) =
00n (SR(S +k)-I, where (SR(S) (the letters "SR" stand for Smale-Ruelle) is defined as the

k=O
produet over all closed primitive geodesics in 1l/fl of (1 - e--\S), A being the length of
the geoclesic. The connection between closed geodesics and periodic continuecl fractions

leads to the equation (SR(S) = exp( 1: .!.Z2n(F, hs )). (Here only even indices oceur
n=1 n

because the nlap x 1-7 X-I - m implicit in the definition of P corresponds to a luatrix
of deternünant -1, so that only even itcrates of F correspond to the action of elements

of r 1') Together with (10) and the deterrninant fonnula exp (- 1: .!. Tr(An)) = det(1-A)
n=1 n

det(l - L; 1)
this gives (SR(S) = 1 ( L~) and hence finally Z(S) = det(l - L;).

(et 1 - s

A similaI' proof, of course, works also for eqnation (2), but now llsing all the Zn(F, hs)'
This version of Mayer's theorem was develaped by Efrat [1]. Ta counect this to the
discussion in A above, wc rewrite (9) slightly as

" 1 + det(,)
-log Z(s) = L.J l() Xs(,) ,

,ERed '
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or equivalently as the factorization Z(s) = Z+(s)· Z_(s) where Z+(s) = L:Red Xs(,)/f(,)
and Z_(s) = L:Red det(')Xs(,)/l(,). The first factor is Zr(s) by the calculation in
Sections 1 and 2, so its zeros correspond to even Maass wave forms, while the zeros of the
second factor Z_ (s) correspond to the odd wave forms. See §5B for more on this.

PART Ir. PERIOD FUNCTIONS OF MAASS WAVE FORMS

§4. Various descriptions of the period correspondence. We explained in the in
troduction how the identity (2) should lead one to expect some sort of correspondence
bctween cigenfullctiollS of the Laplacian in 1i/f and holomorphic solutions of the three
ternl functional equation (3). In this section we give several eIescriptions of this "period
correspondence," each of which puts into cvidence certain of its properties. There eIoes
not seenl to be any single description which exhibits all aspects of the correspondence
simultaneously.

We first recall some basic facts about Maass wave fonus and fix tenuinology. The Maass
wave forms for the modular group f 1 = 8L(2, Z) are the non-constant fI-invariant eigen-

functions of the hyperbolic Laplacian ~ = _y2 (::2 + -ffr) which are square-integrable

on the lllodular surface 1i/f1. The space of these forms breaks up nnder the action of the
involution" : Z 1---1- -z into the spaces of even (invariant) and odd (anti-invariant) forms.
In particular, the even forms are the eigenfunctions of Ö. on 1l/f, since f is generated by
f 1 and L. WC will always use the letter u to denote a Maass fonn and the letter s for its
spectral parameter, Le. for the complex number s such that the eigenvalue of u under Ö. is
8(1 - s). (Note that the number 1 - s is an equally gooel spectral parameter for u, but to
describe the period correspondence u +-+ 'IjJ we mllSt fix the choice of s since thc fllnctional
equation (3) clepends on s. However, this dependence is very sinlple because it is known
that s always has real part ~ and hence 1- 8 = S, so that the rnap 'IjJ(z) 1---1- 'IjJ(z) maps the
space of solutions of (3) for one choice of s to thc corresponding choice for the other.) Thc
invariance of u under the translation nlap T : z 1---1- Z +1 and the conjugation rnap " implies
that u(x + iy) has a eosine expansion with respect to x, and the square~illtegrabilityof u
and differential equatioll ~u = s(l - s) u imply that this expansion has the form

00

u(x + iy) = VY L an K s- t (27rny) cos(27rnx) l

n=l

(11)

wherc K,,l is a modifiecl Bessel function.

A. Description of the period correspondence via integral transforms. A
nurnber of fonnulas for the period correspondence u +-+ 'ljJ were given in [2]. A particularly
direct Olle is the integral formula

(OO tSu(it)
'ljJ(z) = Z Ja (Z2 + t 2 )s+1 dt UR(z) > 0) . (12)

This was obtained after a number of interruediate steps. Olle of the most striking is that
there is an an entire function 9 (w) which is related to u by

g(±27rin) = ~ (27rn)-s+I/2 an (n = 1, 2, 3, ... ) (13)

9



(Le., 9 is a "holomorphie interpolation" of the Fourier eoeffieients of u) and to 'ljJ by

g(k)(O) = (1 ) 1/J(k)(l) (k = 0,1,2, ... ) (14)r 2s+ k

(so that the Taylor eoeffieients of 9 at 0 and 'ljJ at 1 determine eaeh other). The funetion
9 in turn is obtained from another intermediate funetion rjJ whieh is defined by

rjJ(w) = w1- s (oo VWi J
8
_1 (wt) u(it) dt (15)io :;J

(Hankel transform) and defines 'ljJ by

1/J(z) = f'" tjJ(w) W
2s - 1 e-zw dw (16)

(Laplace transfonn). Substituting (15) into (16) gives (12), while substituting the Fourier
expansion (11) into (15) and integrating term by term leads to the formula

00 (21Tn)-s+1/2 an
rjJ(w) = w L w2 + (21Tn)2 .

n=l

In partieular, rjJ(w) has siInple poles of residue ~ (21Tn) -s+1/2an at w = ±21Tin and no
other poles, so the funetion g(w) := (1 - e-W)rjJ(w) is entire and satisfies (13), while on
the other hand, onee one has proved that 'ljJ(z) satisfies the three-tenn functional equation
(3) one iInmediately gets

f'" g(zw) w2s- 1e-w dw = z-2s [1/J (Z-l) -1/J (Z-l + 1)] = 1/J(z) ,

and (14) follows easily. No single one of these fornullas pennits one to eleduce in a direct
way the properties of 'lj;(z) (Le., the analytic eontinuability to C' = C , (-00,0] and the
functional equation (3)) from the fact that u is a Maass fonn, and the proof of this in [2]
is quite cornplex. On the other hand, they do give explicit ways to get frolll u to 'lj; and
back: the forward direction is given by (12), while (13) and (14) detennine the Fourier
eoefficients of u as special values of the power series g(w) = Lk 'ljJ(k) (l)wk /k! r(2s + k).

We refel' to [2] and [3] for a more detailed discussion of these ideas and of other related
approaehes, including one based on a sumlnation formula of Ferral' and another in terms
of the Helgason automorphic boundary form of 'lL, which are also important aspects of the
story and provide usefnl perspeetives.

B. Description in terms of Fourier expansions. Thc integral representation (12)
lnakes visible the analyticity of 'ljJ(z) in a neighborhood of the positive real axis, but does
not nlake it cleal' why 'lj; satisfies the three-term functional equation. In [3] a different
description of 'lj; was given in which the functional equation becomes obvious anel thc key
point is the contilluability of 'ljJ across thc positive real axis. The starting point is thc
following simple algebl'aic fact.

Lemma. 1/ 'ljJ : C,lR -+ C is any function satisfying the three-term functional equation (3)
then the function f : 1l ---1- C defined by

j(z) = 'lj;(z) + e-2nis 'lj;( -z) (17)
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is l-periodic (i.e. T-invariant). Conversely, if f : 1l --+ C is any l-periodic function, then

the Junction 'lj; : C " IR --+ C defined by

{
f(z) - Z-2s J(-l/z)

'lj;(z) = Z-2s f(l/ z) - f( -z)

if~(z) > 0

iJC:S(z) < 0
(18)

satisfies the functional equation (3). MoreoverJ iJ s (j. Z then the correspondences (17) and
(18) between l-periodic functions in 1l and solutions of (3) in C " lR are inverse maps to
each other up to a non-zero scalar factor 1 - e- 21t"is.

Then we have the following very elegant description of the period correspondence.

Theorem 3. Let'lJ, be an even Maass wave form with spectral parameter sand Fourier

expansion given by (11), and f : 1l --+ C the l-periodic holomorphic function defined by

00

j(z) = L 7~s-~ an e21l'inz
n=l

(z E 1l) . (19)

Then the function 'lj; defined by (18) extends holomorphically from C " IR to C' and is
bounded in the right half-plane. ConverselYJ if s is a complex number with ~(s) > 0,
'lj; : C' --+ C a holomorphic solution of (3) which is bounded in the light half-planeJ
f : 1l --+ C the l-periodic holomorphic function defined by (17) J and {an} the coefficients
defined by the Fourier expansion (19), then the function u : 1i --+ C defined by the Fourier

series (11) is an even Maass wave form with spectral parameter s.

The proof of this theorem, given in (3] 1 relies essentially on the properties of L-series. It
is well-known that the L-series L(p) = L::n an/nP of a Maass wave form has a hololll0rphic
extension to all cOlnplex values of panel satisfies a functional equation nudel' pHI - p,
and conversely that these properties of the coefficients an imply the r -invariance of the
function u defined by (11). The L-series can be represented as thc Mellin transform of
the restrietions to the imaginary axis of either u or f (with different gamnla-factors).
We can now use the inverse Mellin transform to writc the function 'lj; defined by (18)
in thc uppper and lower half-planes as integral transfonns of L(p), and the functional
equation of L turns out to be just what is needed in order that these two formulas agree
and define a holonlorphic function in all of C'. Conversely, if u is defined by (11) and f
by (19) for SOlne coefficients an (satisfying a growth condition), and if 'lj; is the function
defincd by (18), then the Mellin transforms of the restrictions of 'lj; to the positive and
thc negative iInaginary axes are both linear combinations of L(p) and L(l - p). Now if 'lj;

extends holonl0rphically across Il4 anel satisfies the growth condition, we can rotate the
two paths of integration to II4, and the equality of these two linear combinations then
gives the functional equation of the L-series.

This argument Inakes clear which properties of'lL correspond to which properties of 'lj;: if
{an} is any collection of coefficients (of not too rapid growth), then the function u dcfined
by (11) is aT-invariant eigenfunction of the Laplacian with eigenvaluc 8(1- s), while the
function 'ljJ defined by (19) and (18) is a hololnorphic solution of the functional equation
(3) in the upper and lower half-planes; this gives a bijection between translation-invariant
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even eigenfunctions of .6. and functions 'lj; on C" lR satisfying (3), and under this bijection
the eigenfunctions which are invariant under z f---t -1/z correspond to the functions W
which extend hololuorphically across the positive real axis.

C. Unfolding from the positive real axis. In this subsection we state a result
from [3] to the effect that the restriction map from the space of hololllorphic solutions of
(3) in C' to the space of analytic solutions of (3) on Rt-, which is obviously injective, is
in fact bijective under suitable growth conditions. This complelnents the results of the
two preceding subsections: in A we described how to get fronl U to 'lj;1~ via an integral
transform and how to get the Fourier coefficients of u from the Taylor expansion of 7/J at
1 E lR.t, and in B we explained how to get the values of 'lj; off the real axis from u and
Vlce versa.

Theorem 4. Let s be a complex number with ~(s) > 0. Then any bounded real-analytic
solution of the functional equation (3) on the positive real axis extends to a holomorphic
solution of (3) in the whole cut plane which is bounded in the right half-plane.

The proof of this theorem is by a kind of "bootstrapping": by repeated applications of
the functional equation (3) one successively extends Wto larger and larger neighborhoods
of 114 Ce', while preserving the growth eonditions. In fact, thc growth conclitions can
be relaxed, e.g. if ~(8) = ! then the assumption 'lj;(x) = o(l/x) as x ~ °already iInplies
that Wcontinues to a holomorphic function in C' and is bounded in ~(z) > 0, which
together with Theorem 3 iIuplies that s is the speetral parameter associatcd to a Maass
wave fornl. This is especially surprising because it turns out that any Sll100th solution
of the functional equation on II4 is O(l/x) as x ~ 0 and that these solutions form an
uncountable-dimensional vcctor space for any s, whcreas thc M~'1SS forms exist only for
special values of sand then fornl a finite-dilllcnsional space.

§5. Complements. In the final section of the paper we give various examples of solutions
of thc functional equation (3), especially the polynomial solutions for negative integral
values of 8 which give the link to the dassical theory of periods of modular forms, and
also indicate the changes that must be made when r is replaced by its subgroup r l .

A. Examples and equivalent forms of the three-term functional equation. If
we relax the growth conditions on the function 'I/J, then there are luany more solutions of
the functional equation (3). For example, an infinite dass of solutions for any s is given
by w(z) = f(z) + z-2s f(l/z) for any odd and 1-periodic entire function f. There are
also luore interesting exan1ples which ncarly satisfy the growth conditions of Theoreul 3
and which correspond to the zeros of the Selberg zeta function other than the spectral
paranleters cOIning fron1 Maass wave forms. These zeros ocenr at 8 = 1 and at the zeros
of ((28), where ( is the Riemann zeta function (cf. [7], pp. 48-49). Thc solution of (3) for
8 = 1 is given by 'lj;(z) = l/z. The solutions corresponding to the trivial zeros of ((28) at
s = -1, -2, ... will be discussed in the next section. Thc solutions corresponding to the
non-trivial zeros arise as follows. For ~(s) > 1 dcfine

'lj;s (z) = ((28) (1 + Z-2s) + 2 L (1nz + n)-2s ,
m,n~l
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a kind of "half-Eisenstein-series." The series converges absolutely and it is easy to check
that it satisfies the functional equation (3). On thc othcr hand, the shifted function
hs(z) = 'lj;s(z + 1) is not a fixed point of the Mayer operator Ls; instead, as one checks
in a straightforward way, onc has (LshsHz) = hs(z) - ((2s). It follows that thc (easily
obtained) analytic continuation of h8 givcs a fixed point of (the analytic continuation of)
L s at the zeros of ((28).

We also mention two equivalent forms of the period functional equation, as a sampie
of the algebraic character of the theory. The first is the equation

'Ij;(z) = (z + 1)-28 ['I/J(~1) + 1/J(~1)] .
z+ z+

Writtcn in the languagc of the group algebra Z[f], this says that 1rs(K)'Ij; = 'I/J, whcre
K is the element K1 = [0"] + [p] of §3B and is related to the Mayer element L by the
eqllation .c(1 - .c)-l = (1 - K)-l[p]. The seconcl says that 'Ij; is fixed by the operator
1rs(L:n;::o [pnO"]). Written out, this is the infinitely-nlany-term functional equation

7jJ(z) = f. 1 7jJ (Fn - 2 z + Fn
-

1
)

»=1 (Fn z + Fn+d2s Fn z + Fn +1

where {Fn } are the Fibonacci numbers. Note that this series, unlike the oue defining the
Mayer operator L s , is rapidly convergent if ~(8) > 0 and ~(z) > -(1 + -15)/2.

B. Even and odd Maass wave farms. We now consider thc Inodular group f 1

instead of r. As mentioned at the beginning of §4, the Maass wave forms for r 1 break up
into two kinds, the even oues (which are invariant nnder the map u(z) H u( -z) and hence
nnder all of r) anel the oelel ones (for which u(z) = -u( -z)). The spectral panuneters
corresponding to both kinds of Maass fornls are zeros of thc Selberg zeta function Z(s) of
r}, with the ones corresponding to even fonns being zeros of Zr (8). On the other hand,
as we saw in Part I l Zr (8) is the determinant of the operator 1 - L s, while Z (8) is the
deternlinant of 1-L~ = (1-L s) (1+L s). The odd Maass fornls should therefore correspond
to the solntions in V of Lsh = -h and hence, after the same shift 'Ij;(z) = h(z - 1) as in
thc evcn case, to the solutions of the odd three-tenn junctional equation

1
'Ij; (z) = 'Ij; (1 + z) - z- 2s 'Ij; (1 + - ) ,

z
(20)

instead of the even functional equation (3). This is in fact true and, as one woulel expect,
thc description and properties of this "odd period correspondcnce" are very sinülar to
those in the even case. The Fourier eosine expansion (11) is naturally replaced by the
corresponding sine series. The integral transform (12), wmch fiUSt obviously be Inoelified
since u(iy) is now identically zero, is replaced by

(~(z) > 0) ,

where U x = ~~ (z = x + iy). The algebraic correspondence described in the Lemma in

§4B is true with appropriate sign changes (change the sign of thc second term in (17) and
of both tenns in thc second line of (18)), and Theorerrl 3 then holds mutatis mutandum.
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(21)

Exanlples ofnon-Maass sohltions ofthe odd functional equation are the function 1_z-28

(or more generally 1(z) - z- 281(1/z) with 1 even and 1-periodic) for all sand 'ljJ (z) = log z
for s = o. The example 'l/J8(Z) discussed in Subsection A has no odd analogue. (The
analogons fact about Selberg zeta functions is that all thc zeros of Z_(s) = Z(s)/Zr(s)
correspond to the odd spectral paraIlleters, whereas the zeros of Zr(s) correspond both to
even Maass forms and to zeros of the Riemann zeta function.) The two alternate forms of
the even functional equation given at thc end ofA havc the obviaus odd analogues (replace
K 8 ,1 by Ks,-l and L:n20 1f; Ipn u by L:n20(-1 )n7/;l p n u ))'

Finally, one can give a unifonll description of the period functions associated to Maass
forms, without separating into the even and add cases. These functions should corrcspond
to the fixed points of L; on V, and this leads (after the usual shift 7/;(z) = h(z - 1)) to
the "nlaster functional equation"

'lj;(z) = 1f;(z + 1) + (z + 1)-28 'lj;(z': 1)·

We will call a solution of (21) aperiod function. Since the involution 1f;(z) ~ z-28'l/J(1/z)
prescrves this equation, every period function decoIllposes uniqucly into an even (in
variant) and odd (anti-invariant) part, and one checks easily that thc even and odd
period functions are precisely thc solutions of (3) or (20), rcspectively. The descrip
tion of thc period correspondencc givcn in §4B is now modified as follows. Any 1
periodic eigenfunction of 6. with eigenvalue s(l - s) has a Fourier expansion of thc form
u(x + iy) = JYL:n,#o an K 8 -t (27rlnly)e27rinx. We then define a 1-periodic holomorphic
function 1 on C " IR by two different Fourier series, using the an with n > 0 in thc upper
half-plane and the an with n < 0 in the lower half-plane. In each half-plane there is a
1:1 correspondence between the space of I-periodic functions and the space of solutions
of (21) given by the (up to a scalar factor, inverse) transformations

I(z) ~ 7/;(z) := I(z) - Z-28 I( -l/z) , 7/;(z) ~ I(z) := 7/;(z) + Z-28 'lj;(-l/z).

Then, just as before, the invariance of u under z ~ -l/z is cquivalent (under suitable
growth conditions) to the analytic continuability of 7/;(z) across the positive real axis.

C. Integral values of sand classical period theory. Let s be a negative integer,
which we write in tbe form 1 - k with k ~ 2. The factor Z-28 in the Inaster functional
equation (21) (or in its even or odd versions (3) or (20)) now becolnes a monomial and
we can look for polynomial sohltions 7/;, which we will then call period polynomials. The
degree of such a polynomial must be :::; 2k - 2, so the probleIll of finding all solutions for a
given k is just a Inatter of fi"nitc linear algebra. For k = 2, 3, 4 and 5 we find that the only
polynolnial solution is z2k-2 -1 (which is an odd polynomial but an cven period function),
but for k = 6 there are three linearly independent solutions z10 - 1, z8 - 3z6 + 3z4 - z2,
and 4z9 - 25z7 + 42z5 - 25z3 + 4z. This has to do with the fact that for k = 6 thc space
S2k of cusp forms of weight 2k on the Illodular group has a non-trivial element for the
first time, nanlely thc discriminant function

00 00

6.(z) = e27riz rr (1 - e27rinz) = L r(n) e 27l"inz .

n=l n=l
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Assoeiated to this cusp form is its Eichler integral Li(z) = L:n n-117(n)e27rinz, whieh is not

quite modular (of weight 2 - 2k = -10) but instead satisfies (cz + d)lOLi(~:t~) = Li(z) +
P-y(z) for any, = (~~) E r 1 with P-y a polynomial of degree ::; 10, and the 3-diInensional
spaee of pcriod polynomials is generated by the odd and evcn parts of the polynolnial P-y
for , = (~ ~I ), together with the polynolnial ZlO - 1. In general, if oue associates to any

eusp fornl f(z) = L: Ane27rinz E S2k its Eiehier integral J(z) = L: n-2k+1 Ane27rinz, then
the differeuee j (z) - Z2k - 2 j (-1/z) is a polynomial P = P f of degree ::; 2k - 2 whieh
satisfies the period conditions

-1 1 1
P(z) + Z2k-2p(-) = P(z) + z2k-2P(l - -) + (z - 1)2k-2p(--) = 0,

z ,z 1-z

and the period theory of Eichier , Shimura and Manin teIls us that this space has diInension
2 dhn S2k-2 + 1 anel is spanned by z2k-2 - 1 and by the even and odd parts of the
polynomials PI' But an elementary ealculation shows that polynomials satisfying the
period conditions are precisely the polynomial solutions of (21) with s = 1- k (and further
that this space breaks up into the direet surn of its subspaces of odd and even polynomials
and that these are precisely thc polynomial solutions of (3) and of (20) respectively). This
fits in vcry well with our picture since it is known that s = 1 - k is a zero of Zr(s) of
multiplicity Ok := dhn S2k and a zero of Z (s) of multiplicity 20k + 1. What 's more, one
ean get directly from eusp forms of weight 2k to nearly r I-invariant eigenfunctions of the
Laplaee operator with eigenvalue k(l- k). For instanee, the eigenfunetion defined by (11)
with s = -5 and an = 7(n)/n11 /2 is not only invariant nudel' the translation T and the
reflect ion i, but is nearly invariant under z f---t -11z, the difference u(-11z) - u(z) heing a
polynomial in x, y and 11y with coeffieients whieh are c10sely related to those of the odd
period polynomial 4z9 - 25z7 + 42z5 - 25z3 + 4z above.
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