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§1. INTRODUCTION AND MAIN RESULTS

Let C be aRiemann surface, L a line bundle over C, and n a natural number. Thell
there is a moduli space of stable n-dilnensional vector bundles E over C with determinant
bundle An(E) =L; this moduli space is slnooth but in general non-colnpact and can be
compactified by the suitable addition of selni-stable bundles to a projective, but in general
singular, variety NC ,71,L' The topology of this variety clepends only on the genus 9 of C anel
the degree d of L (in fact, only on cl 1l10clulo n, since tensorillg E with a fixed line bundle
LI replaces L by L ® Li'), so we will also use the notation Ng,n,d' We will be studying only
the case n = 2, and hence will drop the n and replace d by c = (_I)d in the notation. ThuH
for each 9 we have two Inoduli spaces of stahle 2-ditnensional bundles Ng- and Nt, both
projective varieties of complex dimension 39 - 3. We will be looking mostly at the smooth
space Ng- and will often denote it silnply .f\(y.

The additive coholnology of Ng has been known for many years ([NI]; in fact, the Betti
nUlllbers of Ng,n,d for all n and d were f01Uld in beautiful and famous papers of Atiyah-Bott
[AB] and Harder-Narasiulhan [RN]), hut the multiplicative structure was not: it was known
that that the I(iinneth cOlnponents of the ehern classes of a certain universal bundle ove)'
Ng generate the coholnology ring, hut not what the relations were. Mumford (cf. [ABL
p. 324) gave certain relations coming froln the vanishing of the ehern classes beyond thc:::
ditnension of another bundle and conjectured that these generate the ideal of a11 relations.
The main objects of this paper are

(a) to prove Mlllnford's conjecture and give a cOlllplete additive and luultiplicative de­
scription of the cohomology ring of Ng (over Q) and of its intersection pairing,

(b) as ffil application, to pl'ove the Verlinele fonnulas for the dimensions of spaces 01'
sections of certain lille bUllelles over Arg±, anel

(c) as a further application, to give direct proofs of three conjectures of Newstead [N2]
(or lnore properly, of Newstead and Raluanan) concerning the characteristic classes
of Ng •

Each of the rnain results on this list had 01' has been proved by other authors: Mumford's
conjecture hy I(irwan [K], the Verlincle fonnulas by Szenes and Bertram [S, BS] and others
[DW, Do, NR, T2], anel Newsteacl's conjectures by Gieseker [G], Thaddeus [T2], and Kirwan
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(I<], but since our proof (found in 1901) also yields detailed information abotit the structure
of the cohomology which I11ay be of SOlne interest, it seenlecl worthwhile to publish it anyway.
While this paper was in preparation, I learned of vel'Y recent work by several other authors
[B, KN, ST]) which contains llluch of the saI11e information on the cohomology ring.

Before describing the results on H* (Ng ), we l'ecall briefly the statement of the Verlinde
formulas. It is known that the canonical bundle of N; has the form .c;2 where .c~ is an

arnple line bundle which is, I11oreover, a square if € = +1; in fact, both Pic(N:) and

Pic(Ng-) are isonlorphic to Z, with generators .c12 and L_, respectively, so that every line

bundle over N; is equivalellt to L~/2-1 with k E Z, ek = +1. We set

(g > 0, k E Z , e = ±1, ek = 1) . (1)

The I<odaira vanishing and SeITe duality theorelns imply that

{

dilll HO(N; , .c:/2
-

1
)

D~(g, k) = 0

(-1 )U-1 dim H 3g-3 (N; , .c:/2
-

1
)

if k ~ 2

if Ikl ~ 1

if k ~ -2

and that D ~ (g, k) is (-1) 9 -1-synulletrie uneler k ~ - k. (It is to achieve this simple sym~

metry that we Illade the shift k ~ k - 2 in the definition of D~.) The formula which was

conjectul'ed by Verlinde is:

Theorenl1.
ej - 1

sin2g - 2 ti
j (mod k) k

j~O (mod k)

(2)

We remark that the nUIubers defined by the right-hand side of (2) ean be given in many
other ways. About a dozen fonunlas for D±(g, k) were colleeted in §1 of [Z]. For instance,
D+(g, k) can be given by the generating fnnetion

~ D ( k) (2 . 2 )9-1 ksin(k - l)x k k tanxL...J + g, ~ - SIn x = = -
k sin kx cos x tan kx

g=1

and for a fixed integer 9 ~ 2 is a polynonlial in k of degree 3g - 3 of the form

where ßr denotes 2r IB2r l/(21')! (Bu = nth Bel'noulli number) and Gg , the only negative
coeffieient in the polynonlial, is fixecl by D+ (9, 1) = O. There are similar results für D _.

As Iuentioned above, independent (and earlier) proofs ofVerlinde's formulas were given
by Szenes [S] in the case of Ng- and by Bertraul-Szenes [ES] in the ease of Nt. The basic
idea in the case of Ng- is to suppose that the original curve G is hyperelliptic (this is all
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right since the nUlubers D€(g, k) are independent of the complex structure of C), and then
use an explicit description of Desale-R,anlanan of Ng as a Grassillannian of linear spaces
contained in the intersection of two quadrics. The proof in [ES} is based on a beautiflll
duality result which lets one compute the invariants D+ (g, k) of the singular variety N: es
a different invariant of the S11100th lllanifold Ny-, after which the proof is again completed
by taking C hyperelliptic. We will also use this duality result of Bertram-Szenes to reduce
the proof of Theorelll 1 to a Riclnann-Roch type calculation on Ny-, but will then be able to
give a lnnch luore direct conlputation by luaking use of our knowledge of the ring structure
and intersection pairing in thc COhOlll0logy of the latter space.

We now describe the results on the cohomology of Ny in lllore detail; the full statements
are contained in §3. Over Ny x C there is a universal 2-dimensional bundle V whose
fibre over {x} X C is the bundle over C paranletrized by x. This bundle is well-defined
only up to tensoring with a line bundle over N g , but the combination of ehern classes
ci(V) - 4C2(V) E H4(Ny x C) is well-defined. Its !(ül1neth COITlpOnents give cohomology
classes

which, as already luentioned, are known to generate the ring H* (Ng ). The relations given
by Mumford are defined as folIows. Let Ng denote the moduli space of all stable rank 2
bundles of degree 4g - 3 aver the curve C. It is fibered over the Jacobian Jg of C and
its rational coholl1ology splits as the tensor product of those of Ny and Jg • There is CL

2-diInensiollal bundle V over Ng x C defined analogously to V, and its push-forward f! V,
whel'e f : N g xe -+ Nu is the projection, has dimension 2g -1, so the Chern class ci(f!(V))
vanishes for i ~ 2g. On the othel' hand, the I(iinneth components of these Chern classes
can be computed as polynonüals in the generators 0', ß, and .,pi (this will be carried out in
§6), so their vanishing gives relations. Mumford's conjecture is

Theorenl 2. The kernel 0/ the m,a]) Q[a, ß] ® A('l/JI, ... ,.,p2g) ~ H* (Ny, Q) IS the ideal
generated by the K1i.1lneth C01f~])(J1leHts 0/ Ci (f! ("V)), i ~ 2g.

The action of the genus 9 lnapping dass group on Ny (via the interpretation of Ng as
aspace of unitary representations of trI (C) in the sense of Narasimhan-Seshadri) induces
an action of the group Sp(2g, Z) on H*(Ng , Q) (leaving 0' and ß invariant and acting
in the obvious way on the ljJd. The ring Hj(Ng ) of coholnology classes invariant under
this action is of especial interest. Clearly it is gel1erated by the c1asses G, ß, and '"Y =
-2 L:f=I 'l/Ji'I/Ji+y E H 6 (Ny). We get relations in Hj(Ny) by taking the various !(ünneth
components of ci(f! V) for i ~ 2g, in particular, the top-dimensional Kiinneth components
cr+g(/!V) '- [Jg] E H2r(Ng) (r ~ g). These are essel1tially the classes ~r defined in the
following theoreln, which cOlllpletely describes the 111ultiplicative and intersection structure
of Hj(Ng ).

TheorelTI 3. Define elernents er = er(0', ß, '"'() E Q[O' l ß, ,} recursively by

(r E Z) (3)

with initial conditions ~o = 1, ~,. = 0 for r < O. Then

i) The kernel 0/ the rna]l Q[O' l ß, ,] ~ Hj (Ny) is the ideal generated by ~g, ~g+l and ~g+2'
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ii) Define classes ~r,.'l,t E Q[O', ß, ,] by

lIli~,.!!) (, + S - I) ßs-l (2,)'+t l

er,.'l,t = L....J. I' t' ~r-l ,
1 . .

1=0

(r, S, t ~ 0). (4)

Then the er,.!!,t with r + s + t ~ 9 are a basis /or the kernel 0/ Q[a, ß,,] --; Hj(Ng ) and the
(images 0/) the er,.!!,t with r + s + t ~ 9 - 1 are a basis /or the image 0/ this map.

iii) The intersection ]miring with res]Ject to this basis is the ]Jroduct 0/ a permutation and a
diagonal matrix: (er,.!!,ter' ,Si ,t', [Ny]) is non-zero i/ and only i/,' = 8, 8' = r, t' = 9 - 1 -­
r - s - t.

As a corollary of part ii), we find that the Hilbert polynomial of Hj (Ng ) is

(5)

This is the saille as the Hilbert polynoillial of the cohomology of the Grassmannian of 3­
planes in Cg+2 , hut the ring structures are quite different and there seems to he no direct
connection.

I would like to say a few words ahout the origin of the proof given here, which is
a case history in backwards reasoning. I first learlled of the Verlinde formulas from a
beautifullecture by Bott in Gencva in 1990, and discussed with hirn sorne of the elementary
reformulations mentioned after Theorell1 1. Oue of these formulas (the generating function)
haB astrang Rielnann-Roch flavor, allel this was the starting point for Michael Thaddeus to
try to find what fOl'lllulas for intersections llull1bers in the cohomology of Ng would give the
desired answer if substitutecl into the Hirzebruch-Rielnann-Roch theorem [Tl]. Surprisingly,
the answer turned out to be unique. In particular, one had to have

(-1 )n22g - 2 - p9"'n!
[Ng ]) = ( )1 bg - 1 - n - p (m + 2n + 3p = 39 - 3)

9-P·

bk := coefficient of x 2k in -::-- ( = 0 if k < 0)
Slnx

(6)

in order for the Verlinde fOflllula to be correct. Thaddeus pointed out that knowing the
intersection numbers in principle deternlines all the relations in H*(Ng ) (since by Poincan~;

duality x = 0 in H* if and only if (xy, [Ny]) = 0 far all y E H*), hut added that actually
finding these relat.ions, anel chccking that the Betti nUll1bers ohtainecl agreed with the known
Betti nUlnhers of Ny, woulel be a "harel exercise in 11llll1ber theory." To solve the exercise,
the first step was to find the relations. Unfortunately, I had not read [AB] and did not know
of the MUlllford relations, whose fairly direct calculation by the Grothendieck-Hirzebruch­
Riemann-Roch theorem (given in §G) woulel have sin1plified things considerably. Instead,
following Thadcleus's hint, I took the conjectural intersection formula (6) as the starting
point. Since the first relation alnong the generators 0', ß, 'l/Ji is known to be in degree
29 aod to be unique, there had to be a unique (up to a constant) dass eg of this clegree
whose intersection nUlllbers with all generators vanished. A computation up to 9 = 15
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and inspection of the coefficients of the classes obtained made it clear that the form of (g
(normalized to begin a Y / 9 1) was

a g 2g - 1 a g - 2 ß 2 0: 9 - 3 , 20g2 - 489 + 7 o:g-4 ß2 lOg - 17 0:9 - 5ß1
~g = -9! + 6 (9 - 2)1 + 3 (9 - 3)1 + 360 (g - 4)! + -4-5- (g - 5)!

280g3 - 159692 + 18749 - 93 o:g-6 ß3 2 0: 9 - 6 ')'2

+ 45360 (g - 6)1 + "9 (9 - 6)! + ...

and in general timt the coefficient of o:g-2"-3P ßn,P in (g had the form + r4>,,:9, P)3 )I -1
3n P 9 - n - p .p.

for some polynolnials ePn (g, p) of degree n, the first few of these being

ePo(g,p) = 1,
A. ( ) _ g2 _ 6(p + 1)9 1008p2 + 1872p + 245
'P2 g, P - 2 5 + 1400 .

Inspection of these and further values led after SOlne effort to the (then still conjectural)
fonnula

..J" ( ) C ffi' fX lI • J3X (1 tanhJ3X)P( J3X )g
'.pn 9,]1 = oe clent 0 In ;;:;-v X -;;:;-:v ;;:;-:v ,

Sillh v 3X X v 3X tanh v 3X

whieh in turn is equivalent to a generating function (Proposition 4 below) and to the
reeursion (3). (The proof of the equivalence of these formulas, whieh is not difficult, will
be omitted since we have given the "closed forn11.1la" only a.s a curiosity and will make no
further use of it.) The next step was to show that the ideal deflned as the radieal of the
intersection pairing (6) coincided with the ideal generated by the ~r with r ~ 9 (this proof
will be given in §§2-3 below) anti that the din1cnsions of the graded cOlnponents of the
quotient ring by this ideal Coil1cided with the known Betti nun1bers of N g (proof in §4).
At this point (Fall 1991) I learnecl of the Mtunford relations. A direct computation (§6)
showed that they coincide essentially with the Cs, cOll1pleting the proof. In the meantime
different (and very pretty) proofs of the Verlinde formulas had been given by Szenes (8] for
e = -1 and by Bertra.In-Szenes [BS] for e = 1, and since then several l1l0re proofs, both for
the rank 2 and general rank cases, have been given by Val'ious authors and the Mumford
conjecture had beell proved by Frances IGrwan. These proofs used other methods, not:
relying on the explicit detennination of H* (Ng ) and its intersection structure. Recently,
as mentioned at the beginnillg of this introduction, several authors have also studied thiE'>
COholllology ring anti fOHnd Inany of the results given in this paper, including in particular
th~ recursive fonnula (3) for the basic relations ~r E H 2r(Ng ). However, the approach and
techniques here are a bit different aud luay be of independent interest, and some of the
information obtained seeIUS to be a little l1lore detailecl, so after some hesitation (and with
the eneourageluent of several people) I c.lecided to publish nlY original proof. I apologize to
all cOl1cerned for the clelay and for the duplieation of results.

§2. CALCULUS OF THE THADDEUS EVALUATION MAP

We will be cOllcerned n10stly with the classes a, ß, land the subril1g Hj (Ng ) whieh
they generate, since the fuH structure of the COholllology ring can be deduced relatively

5



easily onee this part is known. (This will be earried out in §4.) We write R for the graded
ring Q[a,ß,,], I g for the "~-ideal" e!JR+eg+lR.+~g+2R,and I! for the "evaluation ideal"
{x E R I Eg[xy] = 0 \:Iy ER.}, where Eg : R. -t Q is the "evaluation map" defined by

(and 0 if m + 2n + 3p # 3g - 3).

Dur goal in the next two seetions is to show that 1f = I g and to eompute the additive and
multiplieative strueture of the quotient ring R.j Ig ; we will show later that the er (r ~ g) are
the Mumford classes and then deduee by a eOluparison of dinlensions that I g = 1f really
eoincicles with the kernel of R -t H*(Ng ) and henee also that formula (6) is eorrect.

The key idea is to cOlubine all the luappillgs Eg into a single invariant

Er : R -t Q[T],
00

Er[x] := L Eg[x] (-~ T)9-1
g=1

(x E R)

(the factor - t is included only for convellience). Notice that the sum is actually finite
beeause Er sencls any luonoluial in 0', ß, , to a monoluial in T, namely

if m = n + 3k, k ~ 0,

otherwise.
(7)

where a k (= (-1) k bk in the previous notation) is giYen by

(LI. := coefficient of x 2k in
x

A(x):= -'-h-'
SIll x

We will also consider the obvious extension of Er to R,[[Xl' X2, ... ]] -+ Q[T][[XI, X2, ... ]L
where Xl, X2, . .. are fonnal variables. The result of this extendeel map will then be apower
series in T but as apower series in the Xi will have coefficients whieh are polynomials in
T. In fact, the eleluents of R,[[XI' X2, . .. ]] anel Q[T][[XI, X2, . .. ]] which are considered will
always be hOll1ogeneous of degl'ee 0 if the Xi are assigueel appropriate (negative) degrees, so
the eoefficient of any lnononlial in the Xi will be a hOluogeneous polynomial in 0', ß, I 01' a.
nl0nonlial in T. As a sill1ple exall1ple, if :c is a fonnal variable thell the value of Er on the
element eOX of Q[a][[x]] is

00 111 00

Er [e Ox
] = L ~'d ET[a m

] = L (lk x3kT k = A(x3 T) E Q[T][[x]]
m=O k=O

anel all the functions occurring are hOluogeneous of dehl1'ce 0 if x and T are given degrees
-2 and 6, respectively. Sinülarly, if x and z are fannal variables (af weights -2 and -6)
and n ~ 0 an integer, then

Er [ß n en~+21%] = L xn+3k ( -z)p (lk (n+p;k+l) T7I+p+k

k,p~O

x n T7I x 3 T
- (1 + zT)n+2 A( 1 + zT)
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and hence

ET [f(ß) eox +2 "Y%] = 1 f( xT ) A( x
3
T )

(1 + zT)2 1 + zT 1 + zT
(8)

for any polynonüal (or-with thc proviso above-power series) f(ß).

It turns out that a lnore convenient basis for R is given by the monomials in a, band,* = 2')' + aß rather than a, ß, ')'. The analogue of (7) for this basis is the idel1tity

To prove it, we note that

if 7n = n + 3k, k ~ 0,

otherwise.
(9)

which vanishes by (7) unless 7n has the form n + 3k for SOlne k ~ 0 and in that case equals

The assertion follows because the SUUl equals (2k
p
-l) by a standard binomial coefficient

identity. (Recall that (:) is defined for any integer p ~ 0 and any nlunber x as the polynomial

x(x - 1) ... (x - p + 1) / p!. In particular, ek; 1) is (-1) p if k = 0 and for k ~ 1 is the usual
binolnial coefficient if 0 ~ p ~ 2k - 1 and 0 if p ~ 2k.)

Now, repeating the calculatioll leadil1g to (8) with ,* instcad of" we find

ET [ß n eO"x+"Y· %] = L ek
p
- 1) ak x n+3k zP Tn+p+k

k,p~O

= L (LI.: x u +3k T u+k (1 + zT)2k-l

k~O

and hence

Proposition 1. Let x und z be forrnal TJariable~<; and f a ]JOwer series in one variable. Then

(10)

This identity, like fonnula (8), is coulpletely equivalent to the formulas (7) 01' (9) and
hence detennines the evaluation map Er completely. However, for many purposes we will
need a more general result in which x and z are replaced by functions of ß. The following
generalization of (10) is the basic identity of our "calculus of evaluation maps":
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Proposition 2. Let f, 11. and 7.0 be IHJwer serie~'f in one variable with u(O) =f o. Then

ET [f(ß) eu(ß)o+w(ßh'· J = ßI /2 f(ß) Q' (T) I
Sillh[ßl/2(u(ß) + ßw(ß))J ß=Q(T}

where Q(T) is the lJOwer serie~'l defined by Q-1 (ß) = ß/u(ß).

Proof. We have

ET [f(ß) eU(ß)O+UJ(ß);·] = '""' _1_ eßT! [f(ß)u(ß)1Il w (ß)p] tT [am ßn,*p]
W m!p!

1Il,n,p~O

= L Ck; 1) (1k Cß" [J(ß)ll(ßr+ 3kw (ßV] Tn+p+k
u,k,p~O

= L (lk CßT! [f(ß)u(ß)n+3k (1 + Tw(ß))2k-1 J T n+k

u,k~O

(11)

[
f(ß)u(ß)n+3/2T1/2 ] n

= '" C ß" [ ] T ,~ Sillh U(ß)3/2Tl/2(1 +Tw(ß))

where Cßn [F(ß)] dellotes the coefficiellt of ßU in apower series F(ß). But by the (formal)
residue calculus we have

[ n+l] _ [F(ß)dß J
CßT! F(ß)u(ß) - Resß=o (ß /7.l(ß) )n+l

= R,est=o [F(Q(t)) Q'(t) elt] = Ctn [F(Q(t)) Q'(t)J
t u +1

for any power series F(ß). The proposition follows. •

A siluilar proof gives the following even 010re general result, which will be used re­
peatedly in §§5-7.

Proposition 3. Let f, h, u and w be lJOwer series in one variable with h(O)u(O) =1= o. Then

f Eg[J(ß) h(ß)g eu(ßln+w(ßh'] (- ~T)g-I = ßI/2 f(ß) Q' (T) I (12)
g=l 4 sinh[ßl/2(u(ß) + ßw(ß))] ß=Q(T)

where Q(T) is tILe power senes defined by Q-l (ß) = ß/u(ß)h(ß).

§3. THE CLASSES ~r AND ~r,6,t

In this section we will investigate in detail the properties of the elements ~r and er,6,t

of R defined in Theorem 3. Our object is to prove that the ideal 19 of R generated by eg ,

eg+l, and eg +2 coincides with the "evaluation ideal" I{ defined in the last section. Note
that, by virtue of the recursion (3), all ~r with l' ~ 9 belong to I g anel ,Ig C I g+1 .

An explanation of the origin of the classes ~, and a closed formula for them as poly­
nomials in Q', ß and /l was givell in the illtl'oduction. A lnore useful description of these
classes is in tenns of a gelleratillg fUllction.

8



Proposition 4. Defiue Fo{:r,) = 2:::0 Crx" E R.[[x]]. Then

e-2,X/ß (1 + X Vß )'· /2ßVP
Fo(x) = JTJ'VI - ßx2 1 - x

(13)

where ,* = aß + 2, as in §2.

Rernark. The quanti ties , j ß, jJJ, and , * j ßJTJ occurring in (13) are not in R, butone can
rewrite (13) as

tanh- 1 VX 1 1 x x 2

C(x) = - - = - + - + - + ... E Q[[x]],xJX x 3 5 7

which is clearly apower series with coefficients which are polynomials in 0', ß, and ,.

Proof. The 'recursioll and initial value given in (3) translate into the first order linear dif­
ferential equation (1- ßx2 ) FJ(x) = (0' + ßx +2,x2 ) Fo(x) with initial condition Fo(O) = 1,
and this can be solved by standard Illethods to give (13)-01', of course, one can simply
verify that the right-hand side of (13) satisfies the differential equation. •

We next turn to the quantities Cr,.'l E R2r+4.'l defined by (4) with t = O. The general
eleIllellt Cr,6,t is sinlply Cr,.'l(2,)1 jt!, so it suffices to study these two-index classes. The
generating function just given extenels easily to theIn:

Proposition 5. Define F(x, y) = Lr,l";>'o Cr,~xry8 E R,[[x, yn. Then

e- 2 ,:r./ß (1 + x..;rJ - ßY) ,. /2ßVP
F(x,y)=. .

J(l - ßy)'l. - ßx2 1 - xJTJ - ßy

Proof. For fixed l' we have

'" t 6 _ ~ (2,y)1 t ~ (, + s -1) (ß )8-1
L.J "r,6 Y - L.J I! ~"-I L.J r y
~;>'O 1=0 6=1

1 ~ (2,y)1
= (1 - ßy)r+l L.J I! Cr-I.

1=0

Multiplying by x r and sununing over r ~ 0 we obtain

e2,:r.y/(I-ßy) x
F( x, y) = ß Fo( ß) ,

1- y 1- y

and the desired result follows by substit.uting the fonllula given in Proposition 4. •

(14)

The following result shows that C,·,6 belangs to the ideal I r+6 and hence (by virtue of
the inclusioll ,Ig C I g+1 noted above) that er,s,t E I r+6 +t for all 1', s, t ~ O.
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Theorenl 4. Far T, $ ;3 0 we have

~ ~-l [(r + I) (1' +1- 1)](r,. = 8 (-1) ,,+ r ~o-I (r+o+l,

where the binol1l.ial coefficient (r+~-l) is to be taken as 0 if r = I = O.

(15)

Proof 1. Denote the right-halld siele of (15) by ~;,3' We will prove the equality e;,lI = ~rl!l

by induction on s, the case s = 0 being trivial. A trivial binomial coefficient identity
shows-indepenelently of the definit.ion of the classes ~i-that ~r,8 satisfies the recursion
relation

8 ~r,s = (1" +8) ß~r,3-1 +2, ~r-l ,3-1 .

On the other hanel, using the recursion for the es, and taking appropriate care with the
1= 0 tenns if T = 0 or 1, we finel:

Proof 2. We ClLn write the definition of e; s in the alternative fonn ",

(the bino111ial coefficient vanishes unless 0 ~ i ~ 8 01' T + $ < i ~ r + 28; set I = 8 - i in the
first case and I = i - l' - s in the second). The corresponding generatillg function is then
given by

10



Using-the residue theorenl we find that the coefficient in square brackets equals

['" ('r +s- i) r .fj ,+2.fj] [", y.fj t
28

]
Cti+j L.J l' X Y i = Cti+j L.J (1 _ xi)8-i+l

r,8~O 8~O

= Cti+j [ (1 - xi)i ] = R.est-o [ , ,(1 - xt)i di ]
1 - xi - yi 2 - i l +1+1 (1 - xi - yi2 )

( ) [
(1 - xt)i dt] i Aj+l Bi - Bi+1 Ai

= - ReSt=l/A + R,eSt=l/ B '+ '+1 ( 2) = (-1) AB't l 1 1 - xt - yt -

where A and Bare the roots of A + B = x, AB = -y, so

e-2-y(A+B)/ß (1 + AJ,Z11 +BVß) -y. /2ß-n

p·(x, y) = Po(A) Fo(B) = J(l _ A2ß)(1 _ ß2ß) 1 - AVlJ 1 - BVß '

anel this equals F (x, y) by (14) anel the defilli tiollS of A anel B. •

By inverting (15), or by expallding in powers of A anel B the identity Fo(A)Fo(B) ==
F(A + B, -AB) jast proved, we get the following forn1l1la, which will be generalized in §7:

Corollary.

We now give the l11ain result relating the classes er,8 and the Thaddeus evaluation
map.

Theorenl 5. The Thadde'lt.q i1ltersection 1l'lt1nbers 0/ the cla.qse.q er,8.t are given by

I
E (t t ] - ( 1),>+.fj49 - 1 9· 8 J J

9 ~r,8,t ~,./, 8\ t' - - ( + + 1) I I t' t" r,.fj' r',8 r+8+t+t',9-1 ·r s r. S. . .

- x:c' VTJ (1/ tanh B+ 1/ tanh 8') ß=(x+x')T

x + x' I 1
= x' (1 - ßy) + x (1 - ßy') ß=(x+x')T = 1 - (xy' + x'y) T .

,
Proof. We have ~r,." = ~r,. (2")')' /t! alld (from the definition) Eg[x")'h] = 2h (9 ~.h )! Eg-h[XJ

for all x E R, so it suffices to prove the theOrel1l for t = t' = O. We can rewrite the generating;
function ielenti ty (14) in the fornl

F( ) - sinhB ox+(9/ßv'P-x/ß)-y·
x,y - x/71 e ,

so, denotillg by (J' = (JI(ß) the corl'esponding power series with x', y' in place of x, y,

F( ) F( ' ') - sinh B . sinh ()' . e(x+x')o+w(ß)-Y· (ß) _ () + ()' _ X + x'
x, y X ,y - f7J m ' W - f7J ß

XYf-J x'Yf-J ßYf-J

Applying Proposition 2 (in the easy case when u(ß) is constant, here x + x'), we obtain

co (F( )F(' ')] _ Sillh B . sinh B' . (x + x') J711
"T x, Y x, Y - m,m . I (8 8')

J:y f-J x Y fJ SIll 1 + ß=(x+x')T

X+x' I

11



Comparing coefficients of Tg- 1 , we find

Ey [F(:c;, y) F(x', V')] = (_4)9-1 (xy' + x,y)y-1

1 1

anel the desireel iJentity foHows by equating the coefficients of xry~x,r y'~ on both sides. 11

Corollary. Iff = I y lor oll 9 ~ 1.

Prool 01 the corollary. From the theorenl we know that E g [~rl.'l,t~r'181, t l ] is non-zero if r' = $,

3' = r, r + 3 + t + t' = 9 - 1 anel zero in all other cases (as asserted in part (iii) of Theorern
3). On the other hand, fronl er,8,t = (=1= O)a r ßlI,t + lower order terms (in a lexicographic
ordering of the exponents), we see that the eleIllents er,,,,t (r, s, t ~ 0) form an additive basis
for R. Together, these facts iIllply that the eleIllents ~r'~lt with r + s + t ~ 9 belong to the
ideal 1f (because their intersection nlllllbers with aH basis eleluents vanish) and that thcy
in fact fonn a basis of it. The first of these two stateIllents shows that 19 ~ 1f (because 1:7
is the ideal generatecl by ~g, ~9+1, and ey+2 anel each of these belongs to the ideal lJE), and
the second that 1f ~ I y (hecause ~r,s,t E I g for 7' + s + t ~ 9 by virtue of Theorem 4). 11

Another cOllsequence of Theorenl 5 is the fonllula (5) for the Poincare polynomial of
the graded ring Rjlf (which we have not yet proved coincides with Hj(Ng )), since

r,-"t~O

r+lI+t~y-l

T,+2s+3t _ C [ 1 ]
- u

y
-

1
(1 - u)(1 - uT)(l - uT2)(1 - uT3)

(1 - T9)(1 - T9+ 1)(1 - Tg+2)

(1 - T)(1 - T2)(1 - T3)

(use a partial fraction decoillpositioll). This fOrInula for the dimensions of the graded
components of RjIf is a reftection of the free resolution (syzygy)

§4. COMPUTATION OF THE BETTI NUMßERS

In this section we cOlllplete the solution of Thaddeus's "number-theoretic exercise" by
computing the Poincan~ series of the quotient ring of Rg = Q[a, ß] <9 A(1/;1, ... , 1/;2g) by the
ideal (which we again denote by I:, although it is of course bigger than the corresponding
ideal in R) of eleulents x E Rg wit.h Eg(xR'fl) = O.

In Sectiolls 2 and 3 we considered only the ring R. = Q[a, ß, ,] and its image in H* (Ny),
under the asslunption of the intersection fOl'l11ula (6). Here we extend this analysis to the
study of the fuH ring

With the natural ext.ension of tohe intersection functional Eg froID R to Rg , to be explained
in amoment, we get an ideal I; = {x E Ry I Eg[xy] = 0 Vy E R.y} (this ideal is the natural

12



extension to R g of the ideal in R. clenotecl I:: up to now) and we will show that the Poincan~

polynolnial

Pt(R.g / I:) = L dinl((R.g /I:)i) t i

i~O

agrees with the known Poincare polynolnial of H* (Ng ). On the other hand, froul the
equali ty I: = I 9 proved in the last seetion together with the fact (to be proved in §6) that
~r coincides with the MUlnford dass and hence maps to zero in H* (Ng ), we deduce that
there is a surjection R.g / I: --* H*(Ng ), and the eqnality of the dilnensions then proves at
the sarne tillle the isolllorphislll of these two rings and the correctness of the intersection
fonnula (6).

We first mnst introduce SOlne notations. It is convenient to use both the notations
1/;), ... ,.,p2g and 1/;1, ... ,1/;!J' 1/J;, ... ,1/;; with 1/;: = 1/;i+g. We write fi (1 ~ i ~ g) for the
dass 1/;;-I/;i+g = .,pi1/;; E H 6 (Ng ), so I = Z::f=1 li. Clearly Rg has a basis consisting of the
elelnents

(1', S~ 0, A, B, C ~ [9], A, B, C pairwise disjoint) (16)

where [g] = {I,··· ,g} and 1/;A, 1/;8' 'c are defined as TI .,pi, TI 1/;:, TI li, the products in
iEA iEB iEC

the first two cases being taken in ascending order of the indices. In [Tl], Thaddeus showed
that for A aud B disjoint oue has

if A = B = 0,
otherwise.

This fonllula, which indudes as a special case the identity (x·..·t'~, [Ng]) = (:~t')! (x, [Ng-hD
used in the proof of the Corollary to Theorem 5, reduces the calculation of all (x, [Ng ]) to
the ease when x E Q[cr, ß]. Because of it, if we extend the Inap E g : R -+ Q to Rg by setting

if A = B = 0,
otherwise (A, B, C pairwise disjoint),

then the desired eqnality E!J[x] = (x, [Ny]) will hold for all x E Rg if it is true for x E R.

vVith this ext.ension of Eg to R.g , we cau st.ate the result we want to prove as

Theoreln 6.

(Note that the expression on the right has the fonn A~ == gu , so is a polynomial in t.)

Proof. It is elear that instead of the basis (16) we ean take the elenlents

(1", S ~ 0, A, B, C ~ [g], A, B, C disjoint) (17)

since ~r,,, is a polynonlial in 0' and ß with coefficients in Q[,] and leading tenn (in a
lexicographic ordering) a non-zero n1ultiple of a r ß[j. Theorelu 5 and the formulas above
imply that the intersection nUluber of two such eleluents is given by

E g [~,·,3 'l/;A 'l/;n IC . ~,., ,JJ' 1/;A' 'l/;B' ICI]

= (*) Jr, .... , J,-J ,JJ JA,BI JAI,B Jcnc' ,0 Jr+rl+IAI+IBI+ICI+ICII,g-l

13



where J is the !(ronecker delta and (*) is a non-zero factol'" depending only on g, r, S, A
and B. Therefore, if we clecolnpose R.y as a clirect SUfil

r, ...,c~O
A,BS;[g], AnB=0

R(r,lf,A,B,c)
'g , R (r,,,,A,B,c) _ t ",I. ",1.*. ffi 0...,.,

'g -l..,r, ... o/Ao/B '\I7 "L/C,

CS;[g] ..... AuB
ICI=c

then (i) each piece R.;r,,,,A,B,c) is orthogonal (with respect to the pairing Eg(xx']) to all

I I I I k (" rB A g-l-r-,,-IAI-IBI-c)of R g if r+s+ A + B +c ~ 9 and to all hut a single bloc R,g" , ,
if r+s+IAI+1Bl+c ~ 9-1, and (ii) in the latter case the matrix of the pairing between the
blocks has rank p(n-IAI-IBl,c,9-1-r-s-IAI-IBI-c), where by definition

p(n; i, j) := rank of the en x (j) lllatrix (J1nJ,0) I,J~[nJ, III=i, I1I=j . (18)

It follows that the rank of the full pairing on R g , which is the dimension of the quotient
Rg /1f, equals

L p(g - lAI - IBI, c, c') ,
",8,C,CI~O

A,B~[gJ, AnB=0
r+"'+IAI+1 BI+c+c'=g-1

and, luore precisely, that the Poincare polynonlial of Rg/lf is given by

(19)
r,lf,c,c'~O

A,B~{yJ, AnB=0
r+ 8+1A 1+IB J+c+c'=9- 1

(Actually, it would suffice for UR to COluput.e the total diluension, sinee onee we have es··
tablished diln(R.g /1f) = dirn H*(Ng ) anel 1f ~ I(er(Rg -+ H*(Ng )) it would follow thai;
R.g / I: "V H* (Ng ) and hence that all individual Betti nUlnbers agree. But it will be no
harcler to eOlnpute the POineRl'e polynonlial direcHy.) We thus have two problems: to
caleulate the ranks p(n; i, j) and to caleulate the SUHl (19).

LeIllIlla. Let 11, i, j be integers with n ~ i, j ~ O. Then the number p(n; i,j) defined b~,

(18) is given by

p(nj i,j) = { ( . ~'.. )
Inln(Z,) )

ij i + j > n,

ij i + j ~ n.
(20)

Proof. Clearly the rank is 0 if i +j > 11, since then no subsets of [n] of cardinalities i and j
ean be disjoint. "Ve thus assulne i + j ~ n and, by synunetry, that i ~ j; then we have to
prove that the (7) x C~) nwJ,rix P with entries PI,} = J1n},0 (1, J ~ (n], 111 = i, IJI = j)
hrus maxilnal rank. VVe will prove this by showing that the (j) x (~) matrix Q with entries

( _l)k (71-i-{+k-l)
Q J,I = W(nj;) (J, I ~ [n], IJ I= j, 111 = i, IJ n 11 = k)
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is a right inverse of P. Let 11 , 12 be two subsets of [n] of cardinality i. Then

(p" Qhllh = 2:= Ph,J QJ,I'J = 2:= QJ,1'J'
J~[HlIJI=j J~Ii IJI=j

where 1~ = [n] " 11 denotes the cOlllpleOlent of 11 in [n]. Write the cardinality of 11 n 12 as

i -1. Then each J in the last sunl has an intersection with 1~ n 12 of some cardinality k ~ I
and an intersection with 1~ " 12 of carelinality j - k, and conversely for each k ~ 1 there are

(k) (nj-~k') ways of choosing these two intersections. Hence .

as clailned. •

Substituting the result of the lcnllua into (lD) we find

r,s,c,c'~O
A,B~[yJ, AnB=0

7,+s+IAI+ 1BI+c+c'=g-l

(
9 - lAI - IBI) t2r+4 .• +3IAI+3JBI+6c

ulin(c, c') .

(Notice that c + C' ~ 9 -lAI-lEI is autoluatically satisfied, so ouly the second case of (20)
applies.) For each integer h ~ 9 there are 2" (~) ways to choose disjoint subsets A and B of
[g] with ]A] + ]B] = h, so we can rewrite this

r ,3,h,c,c' ~O,
r+ ... +h+c+c'=g-1

There are now two ways of finishing the COlllputation. The first, mechanical, way is to make
a standard generating function construction, writing Pt as the coefficient of xg-1 in the
series obtained frolll the above expression by onütting the second summation condition and
inserting a factor };r"+s+!t+c+c'. This series CcUl be sUllllned in closed form and one can then
compute the required coefficient by residue caIenius usillg the substi tution 1L = t / (1 +t3 X) 2 ;

the details are a bi t teclious. A nicer Inethoel is as follows. Write p = min(c, c'), q = Ic - e'l.
Then the sUllunation over c and c' can be replaced by a stuumation over p and q, but if
q #- 0 then there are two pairs (c, c') = (p,]J + q) anel (p + q, p) corresponding to (p, q), so

Pt (R,y/1:) = 2:=
Plq,r,3,h~O,

21J+q+r+s+h=y-l

15



Now using the identity

(n ~ 0),
q,r,..,,~O

q+,,+.,=n-l

whose proof is just an exercise in sUlluning geolnetric series, we find

p,u,h~O

21'+H+h=!J

(g) (g - h) 2t3 h t 6p
- t6p

+
2n

- t6p
+

4n + t Bp
+

6n

h p () (1 - t2 ) (1 - t4 )

g! 3 h tO i+6i - t2i+4j

?= h! i! j! (2t) (1 - t2 )( 1 - t4 ) ,
",I,J~O

h+i+i=!J .

where in the second line we have repeatecl the initial trick {c, c'} = {p, p + q} in reverse by
setting {p, p+11} = {i, j} wi th one pair (i, j) corresponding to two pairs (p, n). The trinomial
theorem now gives t.he clesired result (1- t 2 )(1- t 4 )Pt = (1 +2t3 +t 6 )g - (t 2 +2t3 +t 4 )Y • I.

Remark. The proof of the theorelll has given us an additive basis of Ry/ I: (:: H *(Ny))
with "anti-diagonal intersectioll pairing," Le., such that each basis element has a non-zero
intersection with exactly one basis elelllent. This basis is the union of bases of the blocks
R~r,,,,AIB,c) for all (1·,.5,A,B,c) with 'r+s+IAI+IBI+c ~ 9-1, the latter being given as

folIows: if c ~ c' := 9-1-1'- S -IAI- JBI-c, then take all (g-IA!-l B I) elements (17) with

ICI = c, while if c > c' then take the (g-IAc~-IBI) eleillents ~r,8"pA"pB ~c QC,C'IC where C'
runs over the subsets of [g] " AU B of cal'dinality c'.

§5. CHARACTERISTIC CLASS COMPUTATIONS I: PROOF

OF THE NE\VSTEAD AND VERLINDE CONJECTURES

To cOlllplete the proofs of Theol'elllS 2 and 3 and the intersection fonnula (6), we still
must show that ~r coincides with the classes defined by MUlllford and hence vanishes in
H*(Ng ) for r ~ 9. This will be done in the next sectioll, whereas here we still assume
fonllula (6) and use it to COlllpute various nUlllerical invariants of Ny by the Hirzebruch­
Rieluaun-Roch fonullia. Since there are several calculations to be done, we have divided the
section into three subsections: in A we calculate the ehern classes of the tangent bundle
Tg of Ng , in B we pl'ove the three fOrIllulas

conjectured in §5 of [N2], and in C we prove the two Verlinde formulae (2), all under
the asslllnption of (6). Although it would be lllore logical to interchange this section and
the next oue to reUlove the (teillporary) hypotheticality of the results proven here, we have
preferred this order because the calculation of the Mllluford classes uses the same techniques
as the calculations in this sectioll, but is 1l10re difficult, so that it is easier to "practise" by
calculating the nlunerical invariants first.
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We first fix sonle nota.tions neeclecl here and in §6. Let u E H2(C) be the cohomology
fundalnental class of our genus 9 RjeuHuln surface GI and eI, ... ,e2g a basis of H I (C) with
eiei+g = U (1 ~ i ~ 9) anel a11 ather intersection nUll1bers equa.l to O. As in the introduction,
Jg ancl Ng clenote the 1110duli spaces of isolllOrphisl1l clnsses of I-dhnensional anel of stable
2-diInensional bundles, respectively, of degree 49 - 3 over C. (The reason for this choice
of degree will he reealled below.) Then Ng is fibred over Jg with typical fibre Ng by the
determinant lllap 1r : Ny -+ Jg anel its rational eoholllology ring is the tensor produet of
H* (Ng ) with H* (Jy ), the latter being the free exterior algebra on the 2g dasses di E H I (Jg )

defined by the fonllula

2g 2

CI(U) = (49 - 3) 0 U +L di 0 ei + x 0 1 E H 2 (Jg X C) '" L Hr(Jg ) 0 H 2
-

r(C).
i=1 r=O

Here U is the "tautologieal" Hne bunelle over Jg x C with fibre over [L] X C isomorphie
to Land the dass x E H2 (Jg ) is not uniquely clefinecl and ean be taken to be 0, since U
is unique only up to tensoring by the pull-back of aHne bundle over Jg • There is also a.

tautological 2-diluensiona.l bUl1cUe V over Ny x C whose restrietion to {E} xC is isomorphiG
to E and whose restl'ictions to the fibres of 1r 0/, where / : Ng XC -+ Ng is the projection
lnap, are the tensor proclucts of a fixed 2-dilllensional buncUe V over Ny xC with a variable
line bundle. The bundles V and V are unique only up to tellsoring by a line bundle over
Ng and Ng , respectively, hut tohe 4-dinlensional bundle End(V) = V 0 V· is uniquely
defined and is thc pull-back of the uniquely defined bundle End(V) over Ng x C, anel
silnilarly for the 3-dituensianal subbuncUes Wand vV of endolllorphisins of trace O. Thus,
while the Chern dasses of V a.re unique only up to a tl'unsfonuation Cl (V) M Cl (V) + 2u I

C2(V) 1-4 C2(V) + cdlr)u + u2 with 1l E H 2(Ng ), the Chern classes Cl (W) = 0, C2(W) =
4C2(V) - cdV)2 and C3(W) = 0 of Ware well-defined. The dasses 0', ß, VJi of Newstead'~i

theorelll are then clefined by thc fonuula

2y 4

C2(VV) = 20' 0 a +42: tPi 0 ei - ß 0 1 E H 4 (Ng x C) ::: L Hr(Ng) ® H 4
-

r(C).
i=1 r=2

(The coefficiellts 2 anel 4 arise because C2(VV) = 4C2(V) - Cl(V?,) We also write

29

" 2D = L, d i 0 ei E H (lg X C)
i=1

2g

W= L tPi 0 ei E H 4 (Ng X C).
i=I

(22)

Then the fonnulas for cdU) anel C2(VV) becolue

Cl (U) = (49 - 3) 0 U +D + x 0 1, (23)

and the intersection nUlubers for the ej hnply the relations

D2 = -2A 0 U, D 3 = 0, Dw = B 0 U, w2 = I 0 U, 'lJ3 = 0 (24)

with A = L:f=l did j+g E H 2 (Jg), B = L:f=I (-diVJi+g + di+gtPi) E H 4 (Ng), and I =
-2 L:f=I tPi'l/Ji+g E HG (Ng ).

Finally, we reca11 the relatiollship between the Chern character and (total) Chern dass
of a vector bUlldle:
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Lenllua 1. Let ~ be a d·dirne118ionul b'ILlldle otJer a ba~'fe 8]Jace Be. Then the total ehern
dass and the ehenl chu1ncter' 0/ eure related by

00 (_1)n-l
log c(e) = L Sn

nn=l

00

H ch(e) = d+ L Sr;
n.n=l

The proof is inunediate frOlll the definitions and the splitting principle. We will also use
the notation c(e)t for the generatil1g function L:i~oCi(~)ti = exp(- L:n~l Sn(e) (-t)n/n)

v v
of the Chern dasses of e.
A. The tangent bundle of Ng • To prove parts (b) and (c) of (21), as weH as for the
Verlinde fonllulas, we willl1eed the Chern dass of Tg • Their calculation was performed in
principle in §4 of [N2], hut the final result was not given explicitly, so we repeat it here.

The choice of 49 - 3 for the degrees of the bUl1dles paranletrized by Jg and Ng im­
plies that HO(C, vl!y) = {O}, H 1 {C, Wy) :: T(Ny)y for y E Ng and heuce that the (K­
theoretical) push-forward f! (vl!) equals -Tg ([N2], Lemnla in §4, 01' [AB], p. 582). Hence
by the Grothelldieck-Hirzebruch-Rie1uuun·Roch theorelll

ch(Tg ) = - f· (eh(W). td(C)) = - f*(ch(W) . (1 - (9 - 1)a)).

Applying Lelnllla 1 to eh(W) = 1 + C2(VV) we find that sn(W) = 0 for n odd and

S2r(W) = 2 (-C2(W)r = 2 (ß 0 1 - 4\lJ - 200 a)r
'29

= 2ß" 0 1 - s.,. L pr-l'lj;i 0 ei + (167'(7' - 1)ßr-2, - 4roßr-1) (9 a
i=1

and therefore

sn(T
g

) = f. ((9 - 1) $u(Hf) a _ Su+d W ))= { 2 (g - 1) ßr -1 if n = 2r > 0,
n + 1 2o:ßr - Srßr , if n = 2r + 1.

This last equatioll, whieh is Theorelll 2 of §4 of [N2], iluplie8 on the one hand the formulas

p(Tg ) = exp ( -2(g - 1)~ (-~)') = (1 + ß)2g-2

(=Corollaries 1 and 2 of [N2], §4) and henee

o ( Vß/2 ) 2g-2
td(Tg ) = e . -Iß/ '81nh 2

and on the other hand gives the "doscd" fonnnhlS

f7j f7j cosh..J!J sinh..J!J •
ch(Tg ) = (9 - 1)( 1 + 2 cosh V ß) + 20' cosh V ß - 2 ( ß - ßVß ),

for the ehern character (recall that ,. = 2, + aß) and, by Lenuna 1 agaill,

( )
9-1 (20' (tanh -1 J73 1).)

c(Tg ) = 1 - ß exp 1 _ ß + 2 ßVß - ß(1 - ß) I

for the total ehern dass of the buucHe Tg •
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B. The N ewstead conjectures. In this subseetion we prove the three assertions of (21)
under the asS1Ul1ption of the interseetion fornlula (6). Part (a) is then trivia!, since, as

discussed in §4, a class x E R = Q[O', ß, ,] vanishes in H* (Ng) if and only if Eg[xy] = 0 for
all y ER., and the trnth of this for :r = ß9 is a special case of (6). Part (c) of (21) also
follows easily, since by (25), (26) and the Hirzebruch-Riemann-Roch theorem we have

x(Ng , Tg ) = E g [td(Ng ) ch(Tg )]

= (g - 1) Eg [eo C'iu~ß/2 )2
9
-2 (1 + 2 coshß)]

+ 2 E [eo ( . v71Jit )29 -2 (0' cosh~ _ ( co8h .JP - ~) ,*)]
y !uuh P/2 ß ~

= (g - 1)(1 - 2) + 2(1 - 9),

the two expressions E y [••. ] being calculable by a direct, though tedious, application of
Proposition 3 to the corresponding generating functians. Ta get part (b), we have to show
that for alilnonolllials y = c:ißi,*k in R the expression x 2 g-2 Eg[y c(Tgh/xL which apriori
is a Laurent polynoll1ial in x, is actually a polynoll1ial. Replacing y by a generating functioll
ßr eUo+wi', we see that that we have ta prove that for euch 7' ~ 0 the power series

00

Cr = Cr(x,u, 10, T) = L x2g
-

2 Eg [ß r eUo+w
,· c(T9h/x] (-T/4)9- 1

9=1

Q'(T) = (2 + ux)x .
(1 +uT)2

in lL, 10 and T has coefficients ill'Q[X] rather than Q[x,1/x]. Substituting for c(Tg ) froln
(27), we find that er has the fonn of the left-hand side of (12) with

ßr 2 2x
f(ß) = x 2 _ ß' h(ß) = x - ß, u(ß) = lL + x 2 - ß'

(ß)
- 2tanh-l(v1//x) _ 2x

10 - 10 + ßv1J ß(:c 2 - ß) ,

T = Q-l (ß) = ß ,ß = Q(T) = (2 + ux )xT ,
'll(x2 - ß) + 2:c 1 + uT

- (.:m + v:) sinh(uy'lJ + wßy'lJ) + 2 cosh(uy'lJ + wßy'lJ) IJ=Q(T)

(2 + 1LXr xr Tr

Now using (12) and the addition law for sinh we find after some computation

x vTJ . 2 + 1LX • ßr
C _ x2 _ß (l+uT)2 I

r - sinh[uv11 + wßJTJ + 2tanh- 1(vTJ/x) ß=Q(T)

2 + 'l.lX ßr

(1 + uT)2 I

(1 + uT)r+1 (1 + 2uT) (1 + O(xT)) ,

which indeed contains only Ilonnegative powel's of x. 110reover, taking x = 0 we see that

1 00

Cr(O, u, w, T) = 8,> 0 . ( T)( T) = or 0 '"(-1 )9-
1 (29 - 1) u g

-
1 Tg- 1

, 1 +u 1 +2'll ' L
9=1
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anel hence that thc top nOll-Vi:Lllishillg ehern dass of Tg satisfies

{

49-1 (?Y - 1)(( - 1)1
E [ ißi .. h (T )] - - 9 .9 a , C2y-2 Y - o

By (9), this is equivalellt to thc closcd fOl'll1Ula

if i = 9 - 1, j = 0, h = 0

otherwise.

C2y-2 (Ty ) = (-1 )g-l (29 - 1) ßY -
l

, (28)

a result which will be gelleralized in §7 (Theorelu 7), where we will give another proof of
(21b).

c. The Verlinde fornlulas. We have to prove the two fornlulas stated in Theorem l.
The case c = -1 is straightforward: Ng- = Ng is SlIlooth, so the Hirzebruch-Rlemann-Roch
theorem together with (25) and Cl (.C_) = a gives

D_(( k) = '(N [,k/2-1) = E [eko/2 ( Jß/2 )2 9 -2]
g, X 9 , - Y • 1 f?i/2Sln 1 V fJ

and hence (by Proposition 3 with f = ! sinh 4, h = 7' tL = t, tlJ = 0 and T = -t sin2 x)

L:
oo

D_ (g, k) . 2g-2 _ k tan x _ k2 + 2 . 2 7k 4 +40k2 + 88 . 4 •••

(k/ )
-1 Sln x - . J. - 1 + SIll X + 3 Sln x + ,

2 9 Sln h~X 6 60
9=1

which is equivalent to fOl'lllula (2) for c = -1 by an eleluentary identity ([Z], eq. (5)). That
this works so easily is of course not surprising, since Thadcleus wrote down the formula (6),
which we are still assllluing, pl'ecisely to produce the VerEnde fOl'll1Ula in the case c = -l.

For c = +1 we can no longer apply the Ilieluanll-Roch theoreul directly, since N:'
is singular. Howevel', as Illentioned in the discussioll following Theorem 1, Bertram and
Szenes [BS] gave a fonnula fol' D+ (9, k) in tel'lllS of invariants of the non-singular variety
Ng = Ng- , nalnely

D+ (g, k) = dirn HO(Ng , SYlllk- 2Vo) ,

where Vo is the twist by a Elle bundle of the restriction of V to Ny x {P}, P E C ~

the line bundle being chosen so that Cl ('/0 ) = a. The right-hand side of this formula
equals x(Ng , SYlllk-2 '10 ) anel hence can be C0111puted by the lliemann-Roch theoreIll as
E g [Ch(SY111 k

- 2VO) tel(Ng )]. Now using (25) anel cOlnputing Ch(SYIU k - 2 VO) from

c(Vo) = (1 + Xl )(1 + :C2) => Xl + X2 = Cl = 0', (Xl - X2)2 = ci - 4C2 = -ß,

1(5
k-2V) e(k-l)Xl - e(k-l)x:l (k-2)0/2 sinh (k - 1)VlJ/2

C 1 YUl v0 = = e ,
eIl - eX:l sinh Vß/2

anel then calculating the generating scries of Proposition 3 in the usual way, we obtain

L:
oo

D+(g, k) . 29- 2 _ k sin(k - l)x
( /)

Sln X - • ,
9=1 k 2 g-1 COS x Sln kx

which, as reluarked after Theorelll 1, is equivalent to fOrInula (12) in the case c = 1.
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§6. CHAHACTERISTIC CLASS COMPUTATIONS 11: THE MUMFORD CLASSES

In this section we conlpute the ehern classes of the pU8h-forward f! (V). As lnentioned
in the introduction, this is a (2g - 1)-clitnensional bundle over Ny (by the Riemann-Roch
theorenl anel the choice of 4g - 3 as the degree of the underlying 2-dimensional bundles), so
ci(f!(V)) E H 2i (i/g) vanishes for i ;;: 2g and we wish to show that the I<Üllneth component
of this dass in H 2i - 2g (Ng ) &; H 2g (Jg ) I"V H 2i - 2g (Ng ) is essentially the dass ~i-g) completing
the proof that the ideal 19 = 1: is contained in, and hence coincides with, the kernel of the
map R g --+ H*(Ng ).

Under the identificat.ion of H*(Ng ) with H*(Ng ) &; H*(Jg ) the determinant of V is
just the (pull-back of the) line bundle U, while the bundle vV c End(V) is the pull-back of
W, so by (23) we have

cleit) = CI(U) = (4g-3)00'+D+x01, 4C2(V)-CI(V)2 = C2(W) = 2o:00'+4'lT-ß01

and hence fonnally

Write 0 = \lJ + %00' so that 02 = , &; 0', 03 = 0 by (24). We apply to this situation
the following lenuna..

Lelnnla 2. Let ~ be a 2-diul.ensional b7/'71dle ouer a base S]Jace X, and s'Uppose that the
ehern dass 0/ ehas a (for1nal) dccvmpvsitivn 0/ the form, c(e) = (1 + XI )(1 + X2) - J with
Xl, X2 E H 2 (X), J E H 4 (X), 03 = O. Then

Proof. Applying Lenuna 1, we find

o
logc(e) = log(l + Xl) + log(l + .X2) + log(l + ( )( ))

1 + Xl 1 + X2

~ ( ) n -1 Xli + X ~l 0 62

- L.J -1 + - ---~--~
- n=l Tl. (1+xt}(1+x2) 2(1+xl)2(1+X2)2'

n-I n-l (n-l n-l ( 1) n-2 + n-2)
(t) n TI xl - X 2 r Xl - X 2 n n - x 1 X 2 r2

Sn I., = Xl + X 2 - 11 u - n - Q

Xl - X2 (Xl - X2)3 2 (Xl - X2)2

for n ;;: 1, and conlputing ch(e) = 2+ 2:~=1 s7I(~)/n! yields the forontla given. Alternatively,
we can write

and expand the right-hand siele in a Taylor series in J whieh breaks off at the 02 term. Note,
by the way, that the coefficients of 0 and 02 in the lemlna are power series in Xl and X2,

despite appeal'ances. •
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We now apply this to the bnndle V. Note that for our purposes we can·suppose that
the dass x E H 2 (Jg ) is 0, since this dass will snrvive the pushing-down by fand an easy

lemma says that the effect of twisting by a. line bnndle L on the total Chern dass of a

bundle F is given hy

c(F 0 L)t = (1 + t:z:)N c(F)t/(l+xt) (N = dimF, x = cl(L)),

which makes sense fonnally even for rational dasses x and preserves the property of c(F)t
of being a polynolnial of degree ~ N in t. '\Te find

h(V- ) - 1. D+(2g- fi)u [ I v11 2sinh v7J/2 1" (2 sinh .../ß/2 cosh .../ß/2) 1"2]C -e 2
2 2COSl-2-+ .../ß U- ß..flJ ---ß-- 0

and Inultiplying this out we find that ch(V) has the I(üuneth-decomposed form X 0 1 +
I:;~l Yi 0 ei + Z 0 a with )[ = 2 cosh Jß/2 anel

Z = 2cosh Vß (49 - 3_A) _ sinh JTJ/2 B _ (2 sinh 01/2 _ cosh Vß/2) f
2 2 4 Vß ßVP ß .

But by the Grothenelieck-Hirzebruch-R.iellllulu-Roch theorem and the fact that td(C) =
1- (g -l)a we have ch(f!(V)) = f*(ch(V)tcl(C)) = -(9 -1) X + Z, so this yields a formula.
for the ehern charactel' of f! (V) . In tenns of the notations of Lemma 1 this formula says
that dirn f! (V) = 29 - 1 (which we knew) and

n - { (29 - 1)ß~ - 2nß";2 B for n even,
2 s u (f! (V)) = '1 _ 1 ,,_ 3 " -1

-nß-2- A + 2(n - 1) ß-2- f - Ct ß---r" for n odd.

Lemlua 1 then gives the fonunla

1 2 At 2Bt2 2,t tanh-1 (t.../ß) *
= (9 - 2") log(l - ßt ) + 1 _ ßt2 + 1 - ßt2 - ß(1 - ßt 2 ) + ß-IlJ f

01'

for the total Chern dass of f! (11).

The last step is to evahIate the slant product with [Jg ]. This is performed with the
help of the followillg leuuua.

Lenulla 3. Let A E H 2 (Jg ), B E H 4 (Ng ) be tlle classes ap]Jearing in (24). Then

Ar BlI { (,/2)P
- - "fJ] = ])1.,-1 "I Y. '". 0

ij 1- = 9 - p, S = 2p (0 ~ p ~ g),

ij 21' + $ f:. 29-
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Corollary. Let K, E H*(Ny). ThcH e(A+2Bt),.. " [Jg ] = K,g e2K"Yt".1.

Proof. Applying the principle

we find

2 - 0Xi - , (i E S) (30)

L TI didi+g,
I~{)"" ,9} iEI

III==r

Elf

81
= L TI 7/Jjdj+g TI -7/Jk+gdk'

J, J(~ { 1, ... 1g} jE J k E J(

IJI+ll·tl=="

Multiplying these expressions and taking the slant product with [lg], which means picking
out the coefficient of TIf==l didi+g, we find that the only tenns that contribute are those
wi th J = [( = {1,. .. ,g} " [ anel hence that

Ar B"
T,"" -:;f " [.lg] = O.!l,2(g-r) L TI -1/Ji7/Ji+g ,

I~{l, ... ,y}, III==r iel

and applying (30) again we see that this agrees with the fornlula given in the lemma. The
corollary follows iUl111ediately hy expanding the exponential. •

Applying the lelluna with Ii = t/(1 - ßt2
) to formula (20) and using (13), we find

c(f!P~))-2t " [.ly] = t Y Fo(t),

and this says precisely that cy+,·(f! (V)) " [Jgl is a lnultiple of er, as desired.

§7. COt\·lPLEMENTS

In this final section we give refinellwnts of two of the calculations of the paper and
mention SOlne related problellls. The two calculations in question concern the Chern classes
of Tg = T(Ng ) and the ring structure of R., respectively.

At the end of suhsection A of §5 it was shown that the nth Chern class of Tg vanishes·
for n > 29 - 2 (Newstead conjecture) and is a lllultipie of ßy-l for n = 29 - 2 (equation
(28)). Continuing the calclliations given there to other values C2g-2-i with i small, we
find elnpirically that C2g-J is a linear cOlllbination of aßy-2 alld ß9-3'Y and more generally
that C2g-2-i(Tg ) belongs to the ideal ßy-I-2i (ß, ,)i of R, 01' equivalently, that it is a linear
combinatioll of lllonolllials a r ß}I,t with r + t ~ i. The following result gives a proof of
this and at the saUle tÜlle an explicit way to COlllpute these Chern classes in terms of our
canonical basis {~r,.!Ilt},'+Jl+t(y-l of H* (Ny), in principle generalizing formula (28).

Theoren17. Let F(:c,y,z) = L:erl",tXrY'~zt be the generating function for the basis er,,,,t
of R .. Then

~ [ '" ] (T)Y-l 1 2
~ Eg c(Tg ) F(:c, y, z) -"4 = .JE . 1 + (3x _ 4y + z) T + .JE

where ß = (1 + (x +Z)T)2 - 4z (2 + x) T 2.
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Corollary. The tvtal ehern cla8~'l vf Ty belougs to the subs]Ja.ce of H* (Ny) s]Klnned by the
classes ~r,,,,t wit}" l' + S + 2t ~ 9 - 1.

Proof. Denotc the left-hand side of (31), apower series in x, y, z and T, by ip(x, y, z, T).
Since ~r,tJ,t = ~r,tJ(2,)t /t!, we have F(x, y, z) = e2iZ F(x, y) where F(x, y) = F(x, y, 0) is
the generating function of thc two-index fs. Substituting for the latter from (14), we find
that ip(x, y, z, T) has the fonn of the left-hand side of (12) with

f(ß) = sinhB . _1_, h(ß) = 1 - ß, u(ß) = _2_ + x - zß,
xv1J 1-ß 1-ß

2 tauh -1 v7J 1 () x
w(ß) = ß( ..;rJ - 1 - ß) + ß..f1J - V7J + z,

_ ß I 1 ß2/T2

Q I(ß) = T = 2 + (1 _ ß)(x _ zß) , Q (T) = clT/dß = 2 + x - Zß2 '

where B = B(ß) = tanh -1 ( x.Jß ) as in the proof of Theorell1 5. Eqnation (12) then gives
1- ßy

( ) ß2/T2 sinh B 1 I
<P x,y,z,T = .. 1

2+x-zß2 x(l-ß) sinh(B+2tanh- ß) fJ=Q-l(T)

ß2/T
2

1 I
- 2+:c-Zß2 x(1+ß)+2(1-ßy) ß=Q-l(T)'

We get (31) by substituting the solution of the quadratic eqllation Q(ß) = T. The right··
hand side of (31) is apower series in xT, yT, zT and zT2 and therefore contains only
monomials x r Y'~ z t T!J -1 wi th l' +S +2t ;>, 9 - 1, so the corollary follows from Theoren1 5. •

Note that thc Corollary gives anothel' pl'oof of (21b ), since r + 28 + 3t ~ 2(r + s + 2t).

Frolu equation (31) and Theore111 5 we can in principle calculate the total ehern dass
c(Tg ) as a cOlubination of classes ~r,tJ,t with 1'+s+2t ~ g-1, this representation heing unique
hecause there are 110 relations in H*(Ng ) aIuong tbe classes ~r,,,,t with r+s+t ~ g-1. Thi~

would give for each 9 ;>, 1 a specific eleluent c(g) E Rand it would be of interest to compute
the generating funcion L:~1 c(y) (-T/4)Y-l. However, I have not done this computatioD
and have no gucss as to the fonu of the answer .

The second point concerns the ring strncture in R. Of course, fron1 one point of view
R is just the polyno111ial algebra Q[Cl', ß, ,l on three generators of degrees 2, 4 and 6, so its
ring struetUl'e is known. However, we huve now replaced the "obvious" basis of R consisting
of 111onoillials Cl' rß~, t by the basis consisting of the eleillents ~r ,-', t, independent of g, whieh
have a good intersection behavior in thc quotient R.y of R for every 9 (Theorem 5). The
question then arises how to cOlnpute the structure constants of the 111ultiplication of R with
respect to this basis, i.e., t.he rat.ional nlunbers C;·,lJ~t t 'r " t defined by the formula

1, 1, 1. :.I, :.I, :.I

r, lJ, t~O
,+2lJ+3t=rl +1':.1+2."1'1 +2":.I+3tl +3t:.l
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(32)

Beeause of the usual relation er,~,t = er,s (2,)t /t! we huve

C'7',s,t = t! C",8,t-t l -t2

rl ,-"I ,tl ;r2 ,S2,t2 t
1

1t2! (t _ t
1

_ t2)! rl ,.51 ,O;r2,S2,0

(= 0 ullless t ~ t l + t2), so we can suppose that t 1 = t 2 = O. If also 81 = 82 = 0, then the
corollary to Theorenl 4 gives thc answer. A luore general result, whose proof (similar to
those we have given) we will onlit, is that in general

III i 11 ( rl ,r2) ( ) . ( , )1
- - '""'" -1; 1'1 + 1"2 - J ' -
erl ,"I e r2,-"2 = ~ ., C' _ ')' (" _ ')' ~r1 +r2-2 j,"1 + lI 2+i +. J. '1 J. 12 J.

;=0 ~.5~0

1 ~t~.!II1 +.52

where (r,.!II := C';S) -] er,.!II' This fOrnlUla describes the 111ultiplieation in the ring R/,R with
respeet to the basis ~r,.!II' To describe the 111ultiplication in the fuU ring R, i.e" to deternline
all the C's, is equivalent to COlllputing the n\.llnbers E g [e r1'''1 ~r2'''2era,.!IIa] for aU rj, Si and 9
(subject to 39 - 3 = L:(1"i + 2sd), because by Theorenl 5 we have

C r, s, t = (-1) r+" ('I' + 8 + 1) 1'! s! t! E
rl "~1,O;r2 ,82,0 4r+s+t (r" + s + t + 1)1 r+.!II+t+l [e r 1,"1 ~r2 ,.!II2~.!II,r] . (33)

The new problenl has the extra attract.ion that E g [ert,.!II1 e r 2,.52era,"a] is symmetrie in all thr~~
pairs of indices (7'i, 8d, whereas the structure constants have only a 2-fold symmetry. Aß
usual, the answer is expressed in tel'lns of generating functions:

Theoren18. Let F(x, y) be the generating /1Lnctiun 0/ the er,,, as in §S and Er : R ~ Q[[TlI
the intersection n1L1nber intJariant defined in §2. Then

t"T[F(:cI,yt}F(X2,Y2)F(X3,Y3)] = l_AT
1
+BTl (34)

with A = L: XiYj - XI X 2X 3, B = (L: xdCL: XiYi+lYi+2) (indices rnodulo 3),
i#j i i

Proof. Just like that of Theorenl 5, except. that now we use the trigonoluetrie identity

sinh( BI +B2 + (3 ) 1 1 1
sinh 8] sinh B2 sinh B3 = 1 + tanh 8] tanh 82 + tanh 81 tanh 83 + tanh B2 tanh 83

insteacl of the corresponding silnpler ident.ity with only two ()'s. •

Corollary. The n1J,rnber E g [er l,S1 e r2,,'I2era ,-"a) vanishes unless r] + r2 + ra = 9 - 1 + 2j,
81 + 82 + 83 = 9 - 1 - j with 0 ~ j ~ Inill(1"1,1'2, 7"3)'

Proof. Replace each :l:i by U:Ci, each Yi by UYi, and T by 1l-2T in forn1l1la (34). Then the
right-hand side has the fonn (X + llXlx2xaT)-1 with X independent of 1l, so its Taylor
series contains 110 negative powel'~ of u anel any tenn divisible by 'lli (j ~ 0 is also divisible
by x{ x~x{ This is easily seen to be equivalent to the statelnent of the eoroUary. •

From (33), it also follows that the tripie intersection number Eg{~r}'''1 ~r2,.52~rallla] is
o unless 9 - 1 ~ ll1ax( r] + 81, 1'2 + 82, 1"3 + 83), the eases with equality being deseribed
by equation (32), and one ean use Theorenl 8 to give explieit formulas in various other
liluiting eases" It would be niee to find a shnple fOl'lnula for the eoeffieient of arbitrary
1110nolnials x ~l Y: 1 X;2 y~::2 X;3 y;a T 9-] in the Taylor series of the rational function in (34),
thus detel'lnining t.he struet.ure coeffieients of R cOlllpletely, but I have not been able to do
this.
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