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§1. INTRODUCTION AND MAIN RESULTS

Let C be a Riemann surface, L a line bundle over C, and n a natural number. Then
there is a moduli space of stable n-dimensional vector bundles E over C with determinant
bundle A®(F) = L; this moduli space is smooth but in general non-compact and can be
compactified by the suitable addition of semi-stable bundles to a projective, but in general
singular, variety N¢ . 1. The topology of this variety depends only on the genus g of C and
the degree d of L (in fact, only on d modulo n, since tensoring E with a fixed line bundle
L, replaces L by L& L), so we will also use the notation Ny ,, 4. We will be studying only
the case n = 2, and hence will drop the n and replace d by € = (—1)? in the notation. Thus
for each g we have two moduli spaces of stable 2-dimensional bundles A;” and N}, both
projective varieties of complex dimension 3¢ — 3. We will be looking mostly at the smooth
space N, and will often denote it simply N,.

The additive cohomology of Ay has been known for many years ([N1]; in fact, the Betti
numbers of Ny ,, 4 for all n and d were found in beautiful and famous papers of Atiyah-Bott
[AB] and Harder-Narasimhan [HN]), but the multiplicative structure was not: it was known
that that the Kinneth components of the Chern classes of a certain universal bundle over
N, generate the cohomology ring, but not what the relations were. Mumford (cf. [AB),
p. 324) gave certain relations coming from the vanishing of the Chern classes beyond the
dimension of another bundle and conjectured that these generate the ideal of all relations.
The main objects of this paper are

(a) to prove Mumford’s conjecture and give a complete additive and multiplicative de-
scription of the cohomology ring of Ny (over Q) and of its intersection pairing,
(b) as an application, to prove the Verlinde formulas for the dimensions of spaces of

sections of certain line bundles over A ;h, and

(c) as a further application, to give direct proofs of three conjectures of Newstead [N2]
or more properly, of Newstead and Ramanan) concerning the characteristic classes
g

of N,.

Each of the main results on this list had or has been proved by other authors: Mumford’s
conjecture by Kirwan [K], the Verlinde formulas by Szenes and Bertram [S, BS] and others
[DW, Do, NR, T2], and Newstead’s conjectures by Gieseker [G], Thaddeus [T2], and Kirwan
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(K], but since our proof (found in 1991) also yields detailed information about the structure
of the cohomology which may be of some interest, it seemed worthwhile to publish it anyway.
While this paper was in preparation, I learned of very recent work by several other authors
[B, KN, ST]) which contains much of the same information on the cohomology ring.
Before describing the results on H*(A,), we recall briefly the statement of the Verlinde
formulas. It is known that the canonical bundle of N§ has the form £7? where L, is an
ample line bundle which is, moreover, a square if ¢ = +1; in fact, both Pic(J’\f',‘.;+ ) and

Pic(N ;) are isomorphic to Z , with generators L'._]*,/ % and L_, respectively, so that every line

bundle over Ny‘ 18 equivalent to Eiﬂ_l with k € Z, ¥ = +1. We set
Dc(g,k) = x(N;, £*7) (g>0,keZ,e==%1,¢e" =1). (1
The Kodaira vanishing and Serre duality theorems imply that

dim HO(NE,  £/*7h) ifk > 2
D.(g,k) = 0 if k| < 1
(~1)¢~ ' dim B33 (N, £E7Y) itk < =2

and that D.(g,k) is (=1)9~!-symmetric under k — —k. (It is to achieve this simple sym-
metry that we made the shift £ — k& — 2 in the definition of D,.) The formula which was
conjectured by Verlinde is:

N9 gt
Theorem 1. D.(g,k) = (—) Z —_— (2)

2 1 29—-2 77
7 (mod k) S k
Jj#0 (mod k)

We remark that the numbers defined by the right-hand side of (2) can be given in many
other ways. About a dozen formulas for D4 (g, k) were collected in §1 of [Z]. For instance,
D, (g,k) can be given by the generating function

oo

Z D,(g,k) (% sin’ z)

g=1

9=1 _ ksin(k — 1)z f k tanz

sinkz cosz tan kz

and for a fixed integer ¢ > 2 is a polynomial in k of degree 33 — 3 of the form

-1 —1)(5g — 4
D+(g, k) = ﬁy—l k3§—3 + nggy—'Z k3y—5 + (g ;éog )‘69_3 k3g—7 4+ e 4
-3 1 ces 1 _
24 (1 + 3+ + =7 ) Lo+ 092 Lot oot
29-2 + 292 +Cgk
ls(g_l)(g_l 3(9—1)(9_1)

where (3, denotes 27|B,,|/(2r)! (B, = nth Bernoulli number) and C, the only negative
coefficient in the polynomial, is fixed by D4 (g,1) = 0. There are similar results for D_.

As mentioned above, independent (and earlier) proofs of Verlinde’s formulas were given
by Szenes [S] in the case of N~ and by Bertram-Szenes [BS] in the case of N. The basic
idea in the case of A;” is to suppose that the original curve C is hyperelliptic (this is all

2



right since the numbers D,(g, k) are independent of the complex structure of C), and then
use an explicit description of Desale-Ramanan of A, as a Grassmannian of linear spaces
contained in the intersection of two quadrics. The proof in [BS] is based on a beautiful
duality result which lets one compute the invariants D4(g, k) of the singular variety AV} as
a different invariant of the smooth manifold N, o » after which the proof is again completed
by taking C hyperelliptic. We will also use this duality result of Bertram-Szenes to reduce
the proof of Theorem 1 to a Riemann-Roch type calculation on N, o » but will then be able to
give a much more direct computation by making use of our knowledge of the ring structure
and intersection pairing in the cohomology of the latter space.

We now describe the results on the cohomology of N, in more detail; the full statements
are contained in §3. Over A, x C there is a universal 2-dimensional bundle V whose
fibre over {z} x C is the bundle over C parametrized by z. This bundle is well-defined
only up to tensoring with a line bundle over Ny, but the combination of Chern classes
3 (V) — 4ea(V) € HY(N, x C) is well-defined. Its Kiinneth components give cohomology
classes

a€ HX(Ng), vi€H'N,) (i=1,...,2), Be€H (N

which, as already mentioned, are known to generate the ring H*(N;). The relations given
by Mumford are defined as follows. Let A/, denote the moduli space of all stable rank 2
bundles of degree 49 — 3 over the curve C. It is fibered over the Jacobian J; of C and
its rational cohomology splits as the tensor product of those of N, and J,. There is a
2-dimensional bundle V over N, 4 X C defined analogously to V, and its push-forward iV,
where [ : ng xC — ./\79 is the projection, has dimension 2¢ — 1, so the Chern class C,'(f!(f/):)
vanishes for ¢ 2 2¢g. On the other hand, the Kiinneth components of these Chern classes
can be computed as polynomials in the generators a, 8, and ; (this will be carried out in
§6), so their vanishing gives relations. Mumford’s conjecture is

Theorem 2. The kernel of the map Qfo, B)@Q A1, ... ,2y) = H*(N,, Q) is the ideal
generated by the Kinneth components of c;(fi(V)), 1 2 2g.

The action of the genus g mapping class group on N, (via the interpretation of N, as
a space of unitary representations of 7;(C) in the sense of Narasimhan-Seshadri) induces
an action of the group Sp(2¢,Z) on H*(N,,Q) (leaving « and f invariant and acting
in the obvious way on the ;). The ring H}(N,) of cohomology classes invariant under
this action is of especial interest. Clearly it is generated by the classes a, 8, and v =
=23 by, € HS(N,). We get relations in Hj(N,) by taking the various Kiinneth
components of ¢;(fiV) for 1 > 2g, in particular, the top-dimensional Kiinneth components
crig(AVY N [Jy) € H¥(N,) (r 2 g). These are essentially the classes £, defined in the
following theorem, which completely describes the multiplicative and intersection structure

of Hf(N,).
Theorem 3. Define elements £, = £ («, 8,7) € Qla, 8, 7] recursively by
(r+Dép=alr+rfé1+ 2762 (r€Z) (3)

with nitial conditions §o =1, £, =0 for r < 0. Then
i) The kernel of the map Qla,8,v] —» H}(N,) s the ideal generated by €;, €441 and £g4a.
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i) Define classes €, , 4 € Qla,(,7] by

min(r,s) I+¢
r+s—1\ ,_;(2
I S CTIEU AT
=0

Then the £, with T+ s+t 2> g are a basis for the kernel of Qa, 8,v] & H}(Ny) and the
(images of) the £, withr + s+t < g— 1 are a basis for the image of this map.

i1i) The intersection pairing with respect to this basis is the product of a permutation and a
diagonal matriz: (€460 o0, [N,]) 38 non-zero if and only if r' =3, ' =7, t' = g—1--
r—s—1t.

As a corollary of part ii), we find that the Hilbert polynomial of Hj{(N,) is

Gy—6 ) ; i (1- t29)(1 — t29+2)(1 — f20+H4)
J.=Z:0 (hmH1(Ny)t - (1 _ t2)(1 _ t4)(1 _ tﬁ) . (5)

This is the same as the Hilbert polynomial of the cohomology of the Grassmannian of 3-
planes in €12, but the ring structures are quite different and there seems to be no direct
connection.

I would like to say a few words about the origin of the proof given here, which is
a case history in backwards reasoning. I first learned of the Verlinde formulas from a
beautiful lecture by Bott in Geneva in 1990, and discussed with him some of the elementary
reformulations mentioned after Theorem 1. One of these formulas (the generating function)
has a strong Riemann-Roch flavor, and this was the starting point for Michael Thaddeus to
try to find what formulas for intersections numbers in the cohomology of N, would give the
desired answer if substituted into the Hirzebruch-Riemann-Roch theorem [T1]. Surprisingly,
the answer turned out to be unique. In particular, one had to have

~1)"229=2=rgim!
(angran, W = EZIE gL (mr2n 3= 39 3)
o= )

bg := coefficient of z2* in L (=0ifk <0)
sinz

in order for the Verlinde formula to be correct. Thaddeus pointed out that knowing the
intersection numbers in principle determines all the relations in H*(A,) (since by Poincaré
duality £ = 0 in H* if and only if (zy, [N;]) = 0 for all y € H*), but added that actually
finding these relations, and checking that the Betti numbers obtained agreed with the known
Betti numbers of NV, would be a “hard exercise in number theory.” To solve the exercise,
the first step was to find the relations. Unfortunately, I had not read [AB] and did not know
of the Mumford relations, whose fairly direct calculation by the Grothendieck-Hirzebruch-
Riemann-Roch theorem {given in §6) would have simplified things considerably. Instead,
following Thaddeus’s hint, I took the conjectural intersection formula (6) as the starting
point. Since the first relation among the generators «, 8, ¥; is known to be in degree
2g and to be unique, there had to be a unique (up to a constant) class £, of this degree
whose intersection numbers with all generators vanished. A computation up to g = 15



and inspection of the coefficients of the classes obtained made it clear that the form of ¢,
(normalized to begin a?/g!) was

ad 29—1 o?7%fF 2 a97%y 2092 —48g+ 7 a?4B? 109 - 17 o9 fFy

e P IR )] 360  (9-4)! 4 (g-5)
+_28093——1596g2%—1874g-93 a?=5 33 +_2 a9-672_+ .
45360 (g—6)! " 9 (g-6)

2 $n(g,p)
3ntpr (g — 2n — 3p)!p!
for some polynomials ¢,(g, p) of degree n, the first few of these being

and in general that the coefficient of a?=2" =37 87~? in £, had the form

6p 1

2
bolg.p) =1, $io.p) =g~ L1, hilg.p) =L~

6(p+ 1)y + 1008p? + 1872p + 245
5 1400 )

Inspection of these and further values led after some effort to the (then still conjectural)
formula

¢n(g,p) = Coefficient of X" in i(i _ tanh\/3X)P( V3X )g
nlg,pP) = sinh/3X \ X XV3X tanh v3X /)

which in turn is equivalent to a generating function (Proposition 4 below) and to the
recursion {3). (The proof of the equivalence of these formulas, which is not difficult, will
be omitted since we have given the “closed formula™ only as a curiosity and will make no
further use of it.) The next step was to show that the ideal defined as the radical of the
intersection pairing (6) coincided with the ideal generated by the §, with r > ¢ (this proof
will be given in §§2-3 below) and that the dimensions of the graded components of the
quotient ring by this ideal coincided with the known Betti numbers of A, (proof in §4).
At this point (Fall 1991) I learned of the Mumford relations. A direct computation (§6)
showed that they coincide essentially with the {’s, completing the proof. In the meantime
different (and very pretty) proofs of the Verlinde formulas had been given by Szenes [S] for
€ = —1 and by Bertram-Szenes [BS] for £ = 1, and since then several more proofs, both for
the rank 2 and general rank cases, have been given by various authors and the Mumford
conjecture had been proved by Frances Kirwan. These proofs used other methods, not
relying on the explicit determination of H*(N,) and its intersection structure. Recently,
as mentioned at the beginning of this introduction, several authors have also studied this
cohomology ring and found many of the results given in this paper, including in particular
the recursive formula (3) for the basic relations §, € H*"(N,). However, the approach and
techniques here are a bit different and may be of independent interest, and some of the
information obtained seems to be a little more detailed, so after some hesitation (and with
the encouragement of several people) I decided to publish my original proof. I apologize to
all concerned for the delay and for the duplication of results.

§2. CALCULUS OF THE THADDEUS EVALUATION MAP

We will be concerned mostly with the classes a, 3, v and the subring H}(N;) which
they generate, since the full structure of the cohomology ring can be deduced relatively
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easily once this part is known. (This will be carried out in §4.) We write R for the graded
ring Q[a, 8,7], I, for the “6-ideal” ;R +€,41 R+ €442 R, and If for the “evaluation ideal”
{z € R| Eylzy] =0 Vy € R}, where E; : R = Q is the “evaluation map” defined by

E;la™B"y"] = right-hand side of (6) (and 0 if m 4 2n + 3p # 39 — 3).

Our goal in the next two sections is to show that I f = I, and to compute the additive and
multiplicative structure of the quotient ring R/I,; we will show later that the £, (r > g) are
the Mumford classes and then deduce by a comparison of dimensions that I, = I f really
coincides with the kernel of R — H*(N,;) and hence also that formula (6) is correct.

The key idea is to combine all the mappings E; into a single invariant

oo

&r: R - Q[T], Erlz] = Z E,[z](-1T)""! (z € R)

g=1
(the factor —% is included only for convenience). Notice that the sum is actually finite
because £ sends any monomial in «, 8, 4 to a monomial in T, namely
(—3)? m!p! (H":P'H) ar TP ifm=n+3k k20,

0 otherwise.

Er[a™p"y?] = { (7)

where ag (= (—1)*b; in the previous notation) is given by

ar := coefficient of z2* in A(z) =

sinhz

We will also consider the obvious extension of & to R[[z),z2,...]] = QT|([z1,z2,...]],
where ), x,,... are formal variables. The result of this extended map will then be a power
series in T but as a power series in the z; will have coefficients which are polynomials in
T. In fact, the elements of R[[z,z2,...]] and Q[T][[z,,z2,...]] which are considered will
always be homogeneous of degree 0 if the z; are assigned appropriate (negative) degrees, so
the coeflicient of any monomial in the z; will be a homogeneous polynomial in «, 3, v or a
monomial in T. As a simple example, if z is a formal variable then the value of £r on the
element e¢™* of Q[a][[z]] is

er[e] = 3 S erla™] = 3w e T = AGPT) € QT ()
m=0 k=0

and all the functions occurring are homogeneous of degree 0 if z and T are given degrees
—2 and 6, respectively. Similarly, if £ and z are formal variables (of weights —2 and —6)
and n 2 0 an integer, then

ST [ﬁﬂ en.:~:+2-rz] — Z mn+3k(_z)p ag (n+p:k+1) Tn+p+k

k,p20
_ z . .'13"+3k Tu+k B T A( $3T )
Y~ U L R C R S L S Ry



and hence
1 L, xT 3T

erlfiprei] = (1+zT)2f(l+zT) (T ®)

for any polynomial (or—with the proviso above—power series) f(5).

It turns out that a more convenient basis for R is given by the monomials in «, b and
~4* = 24 + aff rather than a, 8, v. The analogue of (7) for this basis is the identity

m! p! (2‘:‘1) ar TPy fm=n+3k k20,

0 otherwise.

ST [amﬁu,y*l’] = { (9)

To prove it, we note that

p B
Erfa™p "y = 2P7e (‘Z) Epfamtegntiyr=a],

4=0

which vanishes by (7) unless m has the form n + 3k for some k£ 2 0 and in that case equals

5T[an+3kﬂn,ytp] = (n + 3k)! pl ax prtk+p zp:(—l)p_q (n + 3k + Q) (n +k+p+ 1) .
=0 q p—q

The assertion follows because the sum equals (ka_]) by a standard binomial coeflicient

identity. (Recall that (;) is defined for any integer p = 0 and any number z as the polynomial

z{z —1) -+ (z —p+1)/p!. In particular, (zkp_]) is (—=1)? if k = 0 and for k > 1 is the usual

binomial coefficient if 0 < p € 2k -1 and 0 if p > 2k.)

Now, repeating the calculation leading to (8) with 4* instead of v, we find

gT [ﬁn ear+7' z] - Z (2k—1) a Zl?"+3k 2P T11-|-p+k

¥
k,p>20
- Z“k $11+3k Tu+k (1 + ZT)Qk—] — z"T A($3T(1 + ZT)2)
= 1+ 2T

and hence

Proposition 1. Let z and z be formal variables and f a power series in one vartable. Then

z3/?TY2 f(2T)
sinh [.1:3/2T1/2(1 + zT)] '

Er[e™™*7* £(B)] =

(10)

This identity, like formula (8), is completely equivalent to the formulas (7) or (9) and
hence determines the evaluation map & completely. However, for many purposes we will
need a more general result in which z and 2 are replaced by functions of 8. The following
generalization of (10) is the basic identity of our “calculus of evaluation maps”:
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Proposition 2. Let f, v and w be power series in one variable with u(0) # 0. Then

; eu(ﬂ)a-{-w(ﬁ)y' _ Bl/Zf(ﬁ) Q’(T)
Er [f('@) ] N sinh[ﬂlfz(u(ﬁ) +ﬂw(ﬁ))] A=Q(T) (11)

where Q(T) is the power series defined by Q~1(8) = B/u(f).
Proof. We have

Er[f(B)e et = Y7 #p,cﬁn [f(B)u(B)"w(B)] Er[a™B""]

w,n,p20

= Z (2kp— 1) ai Cgn [f(g)u(ﬂ)n+3kw(ﬁ)p] etk

n,k,p20

= 3 @ Cpe[f(B)u(B)™ (1 + Tw(B))* ] T+
n,k2>0

_ F(B)u(B)"+3/2T/2 n

B %;) Con [sinh[u(ﬁ)"lzTUz(l + Tw(ﬁ))] ™,

where Cgn{F(83)] denotes the coefficient of 8" in a power series F(8). But by the (formal)
residue calculus we have

Con [F(B(B)"™] = Respea [ 0]

= R.es,=0[F (Q(?,? gl(t) dt] = Ci [F(Q(1)) Q'(2))]

for any power series F(3). The proposition follows. W

A similar proof gives the following even more general result, which will be used re-
peatedly in §§5-7.

Proposition 3. Let f, h, u and w be power series in one variable with h(0)u(0) # 0. Then

o __BEIBQ)
e sinh (172 (u(B) + Bw(B))] | s=q(r)

where Q(T) is the power series defined by Q~1(8) = B/u(B)1(B).

o0

E, [f(ﬂ) h(ﬂ)g eu(ﬂ)c~+w(ﬁ)1‘] (__
1

1
: (12)

§3. THE CLASSES &, AND &, ,

In this section we will investigate in detail the properties of the elements £, and &, , ¢
of R defined in Theorem 3. Our object is to prove that the ideal I, of R generated by £,
£g+1, and £,42 coincides with the “evaluation ideal” [ gE defined in the last section. Note
that, by virtue of the recursion (3), all £, with » 2 g belong to I; and yI, C Iy41.

An explanation of the origin of the classes £, and a closed formula for them as poly-
nomials in «, # and «y, was given in the introduction. A more useful description of these
classes is in terms of a generating function.



Proposition 4. Define Fy(x) =3 o, &a” € R[[z]]. Then

Fo(z) = e—273/8 (1+:E\/H)‘7'/2ﬂx/ﬂ, (13)

B V1 - Bz? I V]

where ¥* = aff + 2y as in §2.
Remark. The quantities v/3, VB, and v*/8+/B occurring in (13) are not in R, but one can
rewrite (13) as

az+4'z2C(Bz?) te h-l 1 1 2
Fyfe) = & L Cw=EE e L 1T e,

/1= Bz? z\/T z 3 5 7

which is clearly a power series with coefficients which are polynomials in a, 3, and .

Proof. The recursion and initial value given in (3) translate into the first order linear dif-
ferential equation (1 — Bz?) F}(z) = (o + Bz + 2y2?) Fy(z) with initial condition Fp(0) = 1,
and this can be solved by standard methods to give (13)—or, of course, one can simply
verify that the right-hand side of (13) satisfies the differential equation. W

We next turn to the quantities &, , € R4 defined by (4) with ¢ = 0. The general
element &, ,, is simply &.,(27)'/t!, so it suffices to study these two-index classes. The
generating function just given extends easily to them:

Proposition 5. Define F(z,y) =3, .50 &ns2"y* € Rl[z,y]]. Then

F(z,y) = (14)

e~ 2x/B (l_i_x\/z;_ﬂy)-r‘/m\/ﬁ
V(I = By)? — Bz \1—zvB — By '

Proof. For fixed r we have

Y by’ —Z( 6.12( ) By)*~!

s20
: "w
1 _ ,BJ r+1 Z: Er—

=0

Multiplying by z" and summing over r 2 0 we obtain

e2v=y/(1-By) z

F
1-8y 0 l—ﬂy)’

and the desired result follows by substituting the formula given in Proposition 4. B

F(z,y) =

The following result shows that &, , belongs to the ideal I, and hence (by virtue of
the inclusion 47, C I;41 noted above) that &, 5+ € Irq ¢ for all 7,5,¢ 2 0.
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Theorem 4. For r, s 2 0 we have
> r+41 r+1-1
s = -1 = a1 Srtatiy 15
o= 0 () (717 e (15)
where the binomial coefficient (r+i_l) 18 to be taken as 0 if r =1 = 0.

Proof 1. Denote the right-hand side of (15) by £ ,. We will prove the equality &7, = &,
by induction on s, the case s = 0 being trivial. A trivial binomial coefficient identity
shows—independently of the definition of the classes §;—that ¢, , satisfies the recursion
relation

$ gr,s = (7' + -9) g gr,a—l + 2y £r—1,a—1 .

On the other hand, using the recursion for the {’s, and taking appropriate care with the
[ =0termsif r =0 or 1, we find:

s E:,J_(T + S) ﬂ E:,a—l - 27 5:—1,3—]

-5 f(—l)"‘l"[(s ] G R CERERI G | [T

=0

s~1 ) . .
— 2 Z(—l)a—l_l [(7 j—l) - ( +f‘ 2)] fam1-1&rps—2+1
l.—.

! r+1
= Z(—l)avl ( -ll_ ) {(S = €stbrgspt = (T + s+ 14+ 1) i1 ot

- ﬁ [(3 -1 - 1 Es-—l 2 €r+s+l - (’ + s+ l) Ea—l—] ‘Er+a+i ]]
— 29 [Eamims Erputt — Eucimr Ergagioz] }

a1 r+1
= (—1)8_1 ( -;- ) {(a 63—!-1)§r+3+l - fs—l—l (a E"'*"'H)} =0. u

Proof 2. We can write the definition of £; , in the alternative form ’,
. fr4+s—1
Cre = Z (=1) ( . ) §i&;
t+)=r+2s

(the binomial coefficient vanishes unless 0 Kt < sorr+3s<i<r+2s;set! =s—1tin the
first case and [ = 7 — 7 — s in the second). The corresponding generating function is then
given by

x . s i r+s—ay
Fen= T o= Deves] X (717w,
r,s20 1,720 r,220 T

r+2s=1i4;
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Using-the residue theorem we find that the coefficient in square brackets equals

s — ; " ys t2a
o[ 55 (e [ ]
) — s—i41
N\ S (1—at)
(1 — =)’ dt
titHit+1(1 — xt - yt?)
(L—st)yidt ] _, ., A¥IBi B+l 4
= —(RGS:=1/A+Rest=1/B) |:ti+f+1(1—$t—yt2) - (-—1) A-B ,

where A and B are the roots of A+ B =z, AB = —y, so
- JO-AB(1-BB) \1-AVB 1 - BB

and this equals F(z,y) by (14) and the definitions of A and B. B

(1 — xt)?
1 -zt —yt?

= Ci+; l: ] = Res;—o

F*(z,y) = Fo(A) Fo(B)

¥

By inverting (15), or by expanding in powers of A and B the identity Fy(A)Fp(B) ==
F(A + B,—AB) just proved, we get the following formula, which will be generalized in §7:

min{ry,ry) + 23
(T T2 —
Corollary. £ry &y = Z (-1) ( o= ) Eritra—2j,j -
j=0

We now give the main result relating the classes £, and the Thaddeus evaluation
map.

Theorem 5. The Thaddeus intersection numbers of the classes £, 41 are given by

_ r+849—1 g'
Ey [{r,a,t {,4‘31‘1;] = (—1) 49 (r pen 1) TS 1 7/] fsr,ar Jrr,36r+a+l+t',g_] .

1
Proof. We have &, 4 = &,,(27)!/t! and (from the definition) E,[zv"] = 2"( g'h)l Ey_ulz]
g —h)!
for all z € R, so it suffices to prove the theorem for t = ¢/ = 0. We can rewrite the generating
function identity (14) in the form

sinh 8 . z\/B
Flz,y) = oTHOBVE-ZIDY g () = tanh“( ) ,

so, denoting by §' = 8'(3) the corresponding power series with z’, y’ in place of z, y,

sinh@ sinhé’ L . 0+60 z4+12'
Flz T)F(:L"‘,‘l AR . _e(r+$ Ya+w(B)y : w ﬁ — _
@ ey BN W =37~ "5
Applying Proposition 2 (in the easy case when u(f) is constant, here z + z'), we obtain

sinhf sinhd (z+z') VB

Er[F(z,y)F(="y")] = o/B  z'/B sinh(d+6) f=(s+2)T
z+z
- za'/B(1/tanh 6 4 1/ tanh 8') f=(z+z")T
z+z 1

z' (1= PBy)+=(1-By) L:(Jﬁz')T B 1—(zy' +2'y)T .

11



Comparing coefficients of 797!, we find
By[F(z,y) F(a',y")] = (=4~ (a’ + 2'y)"™

and the desired identity follows by equating the coefficients of J:"y’:l:'r' y"' on both sides.

Corollary. If =1, for allg 2 1.

Proof of the corollary. From the theorem we know that E, [E,-‘ a,0€r 5, y] is non-zeroif r’ = s,
3 =r,r+s+t+1t = g—1and zero in all other cases (as asserted in part (iii) of Theorern
3). On the other hand, from £, ,¢ = (# 0)a” 3%y 4+ lower order terms (in a lexicographic
ordering of the exponents), we see that the elements &, , ; (r,s,t 2> 0) form an additive basis
for R. Together, these facts imply that the elements &, ,; with r 4+ s + ¢ > ¢ belong to the
ideal I7 (because their intersection numbers with all basis elements vanish) and that they
in fact form a basis of it. The first of these two statements shows that I, C ] f (because I,
is the ideal generated by g, {441, and ;42 and each of these belongs to the ideal I ;3 ), and

the second that I” C I, (because &4, € Iy for 7 + s +t > g by virtue of Theorem 4). W

Another consequence of Theorem 5 is the formula (5) for the Poincaré polynomial of
the graded ring R/ f (which we have not yet proved coincides with H}(N;)), since

r42s4+31 L 1
Z T = Cus- [(1—1:)(1—uT)(l—uTQ)(l—uT3)]

r,s,t20
r+atigg~—1

_(1=-T9(1- Tt (1 - T9%2)
T 1= -T?)(1-1T3)

(use a partial fraction decomposition). This formula for the dimensions of the graded
components of R/IF is a reflection of the free resolution (syzygy)

0 —f{g+2 g1 €y
(59 £u1 59+2) fot2 0 =& §a+l
g4+2

0— R yRp et & O/, ps
§4. COMPUTATION OF THE BETTI NUMBERS

»R— R/IF =0,

In this section we complete the solution of Thaddeus’s “number-theoretic exercise” by
computing the Poincaré series of the quotient ring of Ry, = Q[a, 8] ® A(¥1,...,1%24) by the
ideal (which we again denote by I7, although it is of course bigger than the corresponding
ideal in R) of elements z € R, with E,(zR,) = 0.

In Sections 2 and 3 we considered only the ring R = Q[e, §,7] and its image in H*(N}),
under the assumption of the intersection formula (G). Here we extend this analysis to the
study of the full ring

Ry = Qo[a,ﬁ] X A(d)h ;w?.g)

With the natural extension of the intersection functional Ey from R to Ry, to be explained
in a moment, we get an ideal I” = {z € R, | E,[vy] = 0 Vy € R,} (this ideal is the natural

12



extension to R, of the ideal in R denoted [/ gE up to now) and we will show that the Poincaré
polynomial
Pu(Ry/IF) = dim((R,/IF):) ¢t
i>0

agrees with the known Poincaré polynomial of H*(A,;). On the other hand, from the
equality [ f = I, proved in the last section together with the fact (to be proved in §6) that
&, coincides with the Mumford class and hence maps to zero in H*(N), we deduce that
there is a surjection R, /I f — H*(N;), and the equality of the dimensions then proves at
the same time the isomorphism of these two rings and the correctness of the intersection

formula (6).

We first must introduce some notations. It is convenient to use both the notations

P1,.. Y2 and Y, Yy, 1,00 Py with Y7 = P, We write (1 €1 < g) for the
class Yiitg = YiYp! € HO(N,), so v = 5.%_, vi. Clearly R, has a basis consisting of the
elements

a" B Pavyve (r,s20, A B,CClg], A, B,C pairwise disjoint) (16)

where [g] = {1, -+ , ¢} and ¥4, ¥}, yc arve defined as [] ¥, [] ¥, II i, the products in
t€EA i€B i€C

the first two cases being taken in ascending order of the indices. In [T1}, Thaddeus showed

that for A and B disjoint one has

(o7 B, Wymictl) ifA=B=0,

0 otherwise.

(o B Y a bl 1o, W) = {

This formula, which includes as a special case the identity (zv", [A,]) = I;_igﬁ!ﬁ (z, [Ng=nl)
used in the proof of the Corollary to Theorem 5, reduces the calculation of all (z, [V,]) to
the case when z € Q[a, 8]. Because of it, if we extend the map E, : R — Q to R, by setting
E,_ Cl[(i.r ﬁ“] fA=B= @
E r s * — g—| ’
sla” B pa ¥ vl { 0 otherwise (A, B, C pairwise disjoint),
then the desired equality E,[z] = (z,[N,]) will hold for all z € R, if it is true for z € R.

With this extension of E, to R,, we can state the result we want to prove as

(14 3)20 — (¢ 4 12)%0

Theorem 6. Pi(Ry/1]) = (1+1%)% = (¢t +12)?

(Note that the expression on the right has the form Aj—f—g—u, so is a polynomial in ¢.)

Proof. It is clear that instead of the hasis (16) we can take the elements
Ers VAV YO (r,s20, A B,CClg], A, B,C disjoint) (17)

since &, is a polynomial in o and § with coefficients in Q[y] and leading term (in a
lexicographic ordering) a non-zero multiple of a”#°. Theorem § and the formulas above
imply that the intersection number of two such elements is given by

EglérsVavhrc v ba ¥ vor]
= (%) 0,0 6 s 84, B 041 BOCAC! 9 Ortr 4| A|+|BI+|CI+]C"] 9—1

13



where § is the Kronecker delta and (#) is a non-zero factor-depending only on g, r, s, A
and B. Therefore, if we decompose R, as a direct sum

Ry — @ Rf’r,s,A,B,C) , Rgr,a,A,B,c) — Er’,a d)A 1Ib*B . @ Q‘TC :
r,s,c20 CClg]~AUB
A,Bg[y], AnB=@ lC!:c
then (1) each piece R_E,r"‘A‘B'C) is orthogonal (with respect to the pairing Ey[zz']) to all

of Ry if r+s+]A|+|B|4c¢ 2> g and to all but a single block Rg"r’B’A'g_l_r_’_Ml_'Bl_c)
if r+s+|A|+|B|+c € g—1, and (ii) in the latter case the matrix of the pairing between the
blocks has rank p(n—|A|—|B|,¢,g—1—r~s—|A|—|B}—c), where by definition

p(n;i,7) = rank of the (%) x (';) matrix (87~s0) (18)

LJC[n), [I|=i,|J]|=5 ~

It follows that the rank of the full pairing on Ry, which is the dimension of the quotient
R_,,/If, equals

> plg = |A| = [Bl,c,¢),
r,a,c,c')O
A,BC[y], ANB=0
r+s+|A|+|B|4e+c'=g-1

and, more precisely, that the Poincaré polynomial of Ry/1 yE is given by

Pu(Ry/IF) = > p(g —|A| = |Bl, ¢, &) s t3lalFslBl+oe (9

r8,¢,¢' 20
A,BCly], AnB=0
r+a+|A|+|Bl+ctc'=g~1

(Actually, it would suffice for us to compute the total dimension, since once we have es-
tablished dim(R,/IF) = dim H*(N) and IF C Ker(R, = H*(N,)) it would follow that
Rg/If = H*(N,) and hence that all individual Betti numbers agree. But it will be no
harder to compute the Poincaré polynomial directly.) We thus have two problems: to
calculate the ranks p(n;t,7) and to calculate the sum (19).

Lemma. Let n, i, j be integers withn 2 i, 7 2 0. Then the number p(n;1,7) defined by
(18) 1s given by
0 ifi4j>n,

min(z, 7)

(20)

Proof. Clearly the rank is 0 if ¢ + 7 > n, since then no subsets of [n] of cardinalities ¢ and 7
can be disjoint. We thus assume : + 7 € n and, by symmetry, that 1 € j7; then we have to
prove that the (’:) X (;‘) matrix P with entries Py j = §;ny9 (I,J C [n], [I| =1, |J} = J)

has maximal rank. We will prove this by showing that the ('J') X (':) matrix () with entries

(_l)k(vl-i-—i+k-l)
Q! = I\ fn—1
. @7

(J,IC[n),|J|=3 Il=1|JNnI|=k)
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is a right inverse of P. Let I, Iz be two subsets of [n] of cardinality :. Then

(P-Qnn= Y, PnQin= >, Qun.

JE[n] [J]=j Jen =i

where I| = [n] \ I; denotes the complement of I in [n]. Write the cardinality of Iy N I; as
i — . Then cach J in the last suun has an intersection with 7] N Iy of some cardinality k < {
and an intersection with I] N\ 7 of cardinality 7 — k, and conversely for each k < [ there are
({) (“J__‘;') ways of choosing these two intersections. Hence '

(n—i—j+k-1
(P-Q)n,za=i<,i)(n;_i:)'(_l)k(j n%i )

)
= (nl—z) g(_l)k(ﬂl—:;,?)(ﬂ—i—i+k—1)

as claimed. W

Substituting the result of the lemma into (19) we find

. g—— A - B T a c
P,(Ry/ff) = Z ( Al | |) 2r+45+3|Al+3|B|+6c

] !
mn(c, ¢
r.s,c,c' 20 ( ’ )
A,BCly], ANB=0
r+a4|Al+|Bl4+etc’=g-1

(Notice that ¢+ ¢’ < g — |A| — | B| is automatically satisfied, so only the second case of (20)
applies.) For each integer h < g there are 2" ({) ways to choose disjoint subsets A4 and B of
[9] with |A| + |B| = h, so we can rewrite this

By _ oh (Y g—h 2r+4s+3ht6e
Pr (Ry/Ig ) Z - (h) (min(c,c’) )

",3,’1,0,6120,

r+3+h+c+c'=g-—l

There are now two ways of finishing the computation. The first, mechanical, way is to make
a standard generating function construction, writing P, as the coefficient of X9~ in the
series obtained from the above expression by omitting the second summation condition and
inserting a factor X to+h+ete’ Tlhis series can be summed in closed form and one can then
compute the required coefficient by residue calculus using the substitution u = ¢/(1 4+ X)?;
the details are a bit tedious. A nicer method is as follows. Write p = min(¢,c'), ¢ = [c—¢/|.
Then the summation over ¢ and ¢’ can be replaced by a summation over p and ¢, but if
q # 0 then there are two pairs (c,c¢’) = (p,p + ¢) and (p + ¢, p) corresponding to (p, q), so

—h
P! (Ry/I_qE) - Z 2h (g) (g ) t2r+43+3h+ﬁp (1 + th _ 60,(;) .
P78, 20, h p

2ptqtrtsth=g-—1
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Now using the identity

(1 =2 (1 -1
-1 -t)

Yoo (14— 4,) =

¢,r,8 20
g+r+s=n—1

(n20),

whose proof is just an exercise in summing geometric series, we find

E q g — h A tBP - t6P+2ﬂ _ t6p+4n + t6p+6n
P‘(RQ/IQ ) = Z (h)( )(ztg) (1—t2)(1 — t4)

p.,hz20 p
2p+nth=p
0i+6j _ 42i+4j
= Y ey LT
Rigtg! ™™ —2)(1 —t4)’
W Ml (1-22)(1 -4
htit 3=y :

where in the second line we have repeated the initial trick {c, ¢’} = {p,p + ¢} in reverse by
setting {p, p+n} = {1, 7} with one pair (3, j) corresponding to two pairs (p,n). The trinomial
theorem now gives the desired result (1 —#2)(1 —#)P; = (1423 +¢5)9 — (12 + 263 +¢4)9. M

Remark. The proof of the theorem has given us an additive basis of R,/1 gE (= H*(Ny))
with “anti-diagonal intersection pairing,” i.e., such that each basis element has a non-zero
intersection with exactly one basis element. This basis i1s the union of bases of the blocks
Rf,’"'A'B’C’ for all (r,s, A, B,c) with r+s+4|A|+|B|+c € g—1, the latter being given as
follows: if ¢ £ ¢’ := g—1—r—s—|A|—|B|—c, then take all (y—lAcl—lBl) elements (17) with
|C1 = ¢, while if ¢ > ¢’ then take the (9—"1',_|B|) elements &, , 95 D ¢ Q¢ Ve Where C'
runs over the subsets of [g] \ A U B of cardinality ¢'.

§5. CHARACTERISTIC CLASS COMPUTATIONS I: PROOF
OF THE NEWSTEAD AND VERLINDE CONJECTURES

To complete the proofs of Theorems 2 and 3 and the intersection formula (6), we still
must show that £, coincides with the classes defined by Mumford and hence vanishes in
H*(N,) for 7 2 g. This will be done in the next section, whereas here we still assume
formula (6) and use it to compute various numerical invariants of A, by the Hirzebruch-
Riemann-Roch formula. Since there are several calculations to be done, we have divided the
section into three subsections: in A we calculate the Chern classes of the tangent bundle
T, of Ny, in B we prove the three formulas

(@) B2 =0in H¥(N,); (b) ci(T,) =0fori>2—1; (c) x(Np,T;) =3 -3¢ (21)

conjectured in §5 of [N2], and in C we prove the two Verlinde formulae (2), all under
the assumption of (6). Although it would be more logical to interchange this section and
the next one to remove the (temporary) hypotheticality of the results proven here, we have
preferred this order because the calculation of the Mumford classes uses the same techniques
as the calculations in this section, but is more difficult, so that it is easier to “practise” by
calculating the numerical invariants first.
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We first fix some notations needed here and in §6. Let 0 € H2(C) be the cohomology
fundamental class of our genus ¢ Riemann surface C' and ey, ..., ez, a basis of H'(C) with
eiei+g = 0 (1 €t < g) and all other intersection numbers equal to 0. As in the introduction,
Jg and N, ¢ denote the moduli spaces of 1somorphisin classes of 1-dimensional and of stable
2-dimensional bundles, respectively, of degree 49 — 3 over C. (The reason for this choice
of degree will be recalled below.) Then N s 1s fibred over J, with typical fibre Ay by the
determinant map 7 : N, s — J, and its rational cohomology ring is the tensor product of
H*(N,) with H*(J,), the latter being the free exterior algebra on the 2¢ classes d; € H'(J,)
defined by the formula

2y 2
allU) = (4g—3)®a+Zdi®e;+m® le H3(J, x C) = ZH"(J_,,)®H2_'(C).

=1 r=0

Here U is the “tautological” line bundle over J, x C' with fibre over [L] x C isomorphic
to L and the class = € H?(J,) is not uniquely defined and can be taken to be 0, since U
is unique only up to tensoring by the pull-back of a line bundle over J,. There is also a
tautological 2-dimensional bundle V over A, x C whose restriction to {E] } x C is isomorphic
to E and whose restrictions to the fibres of 7 o f, where f : N x C — Ng is the projection
map, are the tensor products of a fixed 2-dimensional bundle V over N, x C with a variable
line bundle. The bundles V and V are unique only up to tensoring by a line bundle over
A?_., and N, respectively, but the 4-dimensional bundle End(V) = V @ V* is uniquely
defined and is the pull-back of the uniquely defined bundle End(V) over N, x C, and
similarly for the 3-dimensional subbundles W and W of endomorphisms of trace 0. Thus,
while the Chern classes of V' are unique only up to a transformation ¢; (V) = ¢;(V) + 2u,
c2(V) = c2(V) + ci(V)u + u? with u € H?(N,), the Chern classes ¢; (W) = 0, cp(W) =
dca2(V) — ¢1(V)? and c3(W) = 0 of W are well-defined. The classes a, 3, ¥; of Newstead’s
theorem are then defined by the formula

2y 4
(W) =2000+4) $i@ei-fOle H (N, xC)= ) H'(N;) @ H"(C).

=1 r=2

(The coefficients 2 and 4 arise because c3(W) = 4¢3(V) — ¢;(V)2.) We also write

29 29
D=) di®e; € H}(J,xC) T =) $:®ei € H (N, x C). (22)
i=1 i=1

Then the formulas for ¢;(U) and ¢;(W) become
all)=49-3)®e+D+z®1, 2(W)=2a@c+47 - 8®1 (23)
and the intersection numbers for the e; imply the relations
D*=-24A®0, D=0, DV=BQo, ¥'=v®0 ¥ =0 (24)

with A = Z?:l didiyy € HQ(Jy), B = E?:l (_d“lbﬂ'g + d,‘+g‘l,[),') € H4(ng), and v =
-2 2?:1 1/)i¢i+g € HG(N9)~

Finally, we recall the relationship between the Chern character and (total)} Chern class
of a vector bundle:
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Lemma 1. Let £ be a d-dimensional bundle over a base space Bg. Then the total Chern
class and the Chern character of € are related by

o _1yn—1 e Sn
oge(@) =3 E s 6 @ =a4 T2 (o= sal) € HT(BY)).
n=l n=1l ’

The proof is immediate from the definitions and the splitting principle. We will also use
the notation ¢(£): for the generating function }°.5, ci(§) ¢ = exp(— En>l sn(€) (1) /n)
of the Chern classes of £.

A. The tangent bundle of N,;. To prove parts (b) and (c) of (21), as well as for the
Verlinde formulas, we will need the Chern class of T,. Their calculation was performed in
principle in §4 of [N2], but the final result was not given explicitly, so we repeat it here.

The choice of 4g — 3 for the degrees of the bundles parametrized by J, and 1\79 im-
plies that HO(C,W,) = {0}, H(C,W,) = T(N,), for y € N, and hence that the (K-
theoretical) push-forward fi(W) equals —T, ([N2], Lemma in §4, or [AB], p. 582). Hence
by the Grothendieck-Hirzebruch-Riemann-Roch theorem

ch(Ty) = = f*(ch(W) - td(C)) = = fo (ch(W) - (1 - (g — 1)a)) .
Applying Lemma 1 to ch(W) = 1 + c2(W) we find that s,(W)} =0 for n odd and
S0 (W)=2(—co(W))" =2(8Q1 -4V - 2a@0)"
2y

=287 @1-8ry B 'pi®ei+ (16r(r — 1)y —4raf") @0

i=1

and therefore

S,,-}-](W) { 2(9_1)’51' ifn=2r>0,
(L) =fllg—1)su(W)o — ———= )=
S ( 9) f((g )q ( )U n+1 ) 2aﬁr—8rﬂr'17 1fn=2r+1
This last equation, which is Theorem 2 of §4 of [N2], implies on the one hand the formulas
a@)=2a  pn)=eo(-2-0Y L) =4 pro
r=1

(=Corollaries 1 and 2 of [N2], §4) and hence
29—-2
td(Tg) =" (ﬂ) ,
sinh v/3/2

and on the other hand gives the “closed” formulas
cosh+/B sinhB, .
- )v* (26)
g8 [N/
for the Chern character (recall that v* = 2y + o) and, by Lemma 1 again,

o)== oo 2542 (5 57 - ) ) e

for the total Chern class of the bundle Tj,.

ch(T,) = (¢ — 1)(1 + 2cosh /B) + 2o cosh /8 — 2 (
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B. The Newstead conjectures. In this subsection we prove the three assertions of (21)
under the assumption of the intersection formula (6). Part (a) is then trivial, since, as
discussed in §4, a class £ € R = Qla, 3, 7] vanishes in H*(N,) if and only if E,;fzy] = 0 for
all y € R, and the truth of this for « = (Y is a special case of (6). Part (c) of (21) also
follows easily, since by (25), (26) and the Hirzebruch-Riemann-Roch theorem we have

X(Ng, Ty) = E,[td(Ny) ch(T,)]
=(g-1)E, [e“ (E\{%ﬁ)?yﬂ (1+ ZCoshﬁ)]
+ 2E, [e" (ﬁﬁ)”_z (o cosh \/E_ (ﬂ"ég@ - 9_1;}'7?_7) 7‘)]

={g-D(1-2)+2(1-yg),

the two expressions E,[...] being calculable by a direct, though tedious, application of
Proposition 3 to the corresponding generating functions. To get part (b), we have to show
that for all monomials y = a*874** in R the expression 292 Eqly c(Tg)1:], which a priori
is a Laurent polynomial in z, is actually a polynomial. Replacing y by a generating function
BT et we see that that we have to prove that for each r > 0 the power series

Cr = Colz,u,w0,T) = Y _ 227 B, [B7 "7 o(Ty)y1 /0] (-T/4)°

g=1

in u, w and T has coefficients in Q[s] rather than Q[z,1/z]. Substituting for ¢(T}) from
(27), we find that C, has the form of the left-hand side of (12) with

ﬁf‘

22

f(ﬁ)=m, n(B) = z* - B, “(ﬁ)=u+$;—_ﬁ,
o) = w tanh ™! (v/B/z) B 2z

Or=vt2==5F " Be-p

- _ Jé] _ _ (24 uz)zT e (24 uz)z
T=Q 1(6)—u(:r2—ﬂ)+2:c’ p=QT)= 1+uT Q(T)_(l-l-uT)Z'

Now using (12) and the addition law for sinh we find after some computation

z\/B . 2 4+ ux g
_ z? —f (14 uT)?
sinh[uv/f + wB/B + 2tanh ™ (VB/z) |s=0(T)

2 4+ uzx g
(1 uT)?

(-—\;—B. + g—) sinh(uv/f + wBvB) + 2 cosh(uv/B + wB/B) A=Q(T)

B 24+ uz) " T"
T+ uT)H (14 2uT) (1 4+ 0(zT))’

which indeed contains only nonnegative powers of z. Moreover, taking z = 0 we see that
1 [= o]

—1)9"1 (929 — g—1 g—1
TP oa =t 207 @ - )T

g=1

Cr(0,u4,w,T) =6,

il
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and hence that the top non-vanishing Chern class of T, satisfies

47129 ~1)(g—-1)! ifi=g—-1,j=0,h=0

0 otherwise.

E, [aiﬁj'f*h C2y—2(Ty)] = {
By (9), this is equivalent to the closed formula

cag-a(Ty) = (~1)7 (2 = 1) o7, (28)

a result which will be generalized in §7 (Theorem 7), where we will give another proof of

(21b).

C. The Verlinde formulas. We have to prove the two formulas stated in Theorem 1.
The case € = —1 is straightforward: A" = Ny is smooth, so the Hirzebruch-Riemann-Roch
theorem together with (25) and ¢;(£-) = a gives

L o 2 -
D_(g,k) = X(N,, £4/* ‘)=Ey[e’°"“(§m%/_z)zg ]

and hence (by Proposition 3 with f = 4 sinh YE = %, vu=% w=0and T = —% sin? z)

a- 2>

[ +]

k) k tan: k%42 7k* + 40k2
Z k/2(-‘; sin??"% ¢ = rmT:l—i— + sin’ z + t + 88 sinfz 4.,

sin kz 6 360

which is equivalent to formula (2) for e = —1 by an elementary identity ([Z}, eq. (5)). That
this works so easily is of course not surprising, since Thaddeus wrote down the formula (6),
which we are still assuming, precisely to produce the Verlinde formula in the case € = —1.

For ¢ = +1 we can no longer apply the Riemann-Roch theorem directly, since N g*'
is singular. However, as mentioned in the discussion following Theorem 1, Bertram and
Szenes [BS] gave a formula for D4 (g,k) in terms of invariants of the non-singular variety

Ny = N7, namely

g

D.(g,k) = dim H°(N,, Sym*~2V,),

where Vp is the twist by a line bundle of the restriction of V to N, x {P}, P € C,
the line bundle being chosen so that ¢;(V5) = a. The right-hand side of this formula
equals x(N,, Sym*~2?V;) and Lence can be computed by the Riemann-Roch theorem as
B, [ch(Sym*—?V,) td(N)]. Now using (25) and computing ch(Sym*~2Vp) from

cVo)=0+z))1+x) = ni+m=c=0a, (z;—1z9)%=ct—4c; =-p,

ch(Sym"_zVo) _ elb=1)z1 _ e(k—l):r?z J(k=2)a/2 smh( _ 1)\/H/2
e*l — e*2 sinhvB/2 '

and then calculating the generating series of Proposition 3 in the usual way, we obtain

Z D+ J, sin g—2$ - k Sill(k - 1).’1:
(k/2)5- 1 cosz sinkz ’

which, as remarked after Theorem 1, is equivalent to formula (12) in the case € = 1.
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§6. CHARACTERISTIC CLASS COMPUTATIONS II: THE MUMFORD CLASSES

In this section we compute the Chern classes of the push-forward fi(V). As mentioned
in the introduction, this is a (2g — 1)-dimensional bundle over J{/'y (by the Riemann-Roch
theorem and the choice of 49 — 3 as the degree of the underlying 2-dimensional bundles), so
ci(fi(V)) € H*(N,) vanishes for i > 2¢ and we wish to show that the Kiinneth component
of this class in H2=29(N,)® H?9(J,) & H*~29(N,) is essentially the class £;_,, completing
the proof that the ideal I, = T yE is contained in, and hence coincides with, the kernel of the
map R, — H*(N}).

Under the identification of H*(N,) with H*(N,) ® H*(J,) the determinant of V is
just the (pull-back of the) line bundle U, while the bundle W < End(V) is the pull-back of
W, so by (23) we have

a(Vy=c(U) = (4g-3)@0+D+2®1, 4ca(V)—cr(V)? = c2(W)=2a@0+4¥-4Q1

and hence formally

(V) =14 c(V) + ea(V) = (1+ C‘(V)Jr,)‘/g® 1) (1+ av) _2‘/B®1) - ‘I’—%@a.

4

Write § = ¥ + § @ o so that 62 = y® o, §° = 0 by (24). We apply to this situation
the following lemma.

Lemma 2. Let § be a 2-dimensional bundle over a base space X, and suppose that the
Chern class of € has a (formal) decomposition of the form c(€) = (14 z1)(1 + z2) — § with
ry, 77 € H3(X), 6§ € HY(X), &3 = 0. Then

x)

! - pT2 Iy _ pT2 I|+ g
cll(€)=6r1+612+€ € 5 — ((e [ _ [ e 2)52‘

1 — T2 I —11:2)3 2(.’5] -—:I:g)

Proof. Applying Lemma 1, we find

)

log e(€) = log(1 + 21) + log(1 + 22) + log(1 + Ty )

= f: (—1)n-1 zy + 2y 4 B 8
oyt n (14+z1)(14+2z2) 201+ 71)%(1 4+ z2)2’

m;;—l _ :133_1 m;l—] . .’B;_] _ n(n _ 1) -2 +z n--2 2
——= - 1|n )
T) — T (z1 — z2)3 2 (:1:1 - :|:2)'2

sa(§) =z + 23 —n

for n 2 1, and computing ch(€) = 2+3°°7 | s.(£)/n! yields the formula given. Alternatively,
we can write

ch(é) = e39€) ¢osh \/4 c1(€)? — cp(é) = e3(#1+w2) oogh \/ (1 —x3)2—§6
and expand the right-hand side in a Taylor series in § which breaks off at the 6% term. Note,

by the way, that the coefficients of § and §% in the lemma are power series in z; and zg,
despite appearances. W
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We now apply this to the bundle V. Note that for our purposes we can-suppose that
the class z € H?(J,) is 0, since this class will survive the pushing-down by f and an easy
lemma says that the effect of twisting by a line bundle L on the total Chern class of a
bundle F is given by

(F@L) =1 +t)Ne(F)yseny (N =dimF, z=c¢(L)),

which makes sense formally even for rational classes z and preserves the property of ¢(F),
of being a polynomial of degree £ N in t. We find

ch(V) = e2P+(29-3)0 [2cosh ? + %6 _ (2Sir);h\/\gy/2 N coshg/ﬁ/z) 52]

and multiplying this out we find that ch(V) has the Kiinneth-decomposed form X ® 1 4
Ef-il Yi®ei + 2 ®c with X =2 cosh /B/2 and

VB (4g—3 A) sinh /B/2 (25inhﬂ/2 cosh\/a/fl)
= sh — - -——" B - )
7Rk VB 5B g )

2 4
But by the Grothendieck-Hirzebruch-Riemann-Roch theorem and the fact that td(C) =
1—(g—1)o we have ch(fi(V)) = fu(ch(V)}td(C)) = —(9—1) X + Z, so this yields a formula
for the Chern character of fi(V). In terms of the notations of Lemma 1 this formula says
that dim fi(V) = 2¢ — 1 (which we knew) and

=

n—=2

(29 —-1)B% —-2n8"7 B for n even,
—n.,ﬁ%Aﬁ-Z(n—1),(32;—3'y—c1r,8"__rl for n odd.

2" su(fi(V)) = {

Lemma 1 then gives the formula

oo

log c(fi(V))-2e == D 2"su(£i(V))

n=]

= (g 3) log(1 ~ 4) +

At 2Dt? 2yt tanh ™' (t\/B) .
T—pe " 1-pE Ba-pe) T BB

or

1+ t\/ﬁ)""/w‘/ﬁ exp(At + 2Bt — 27t/ﬁ)

(7))o = (1= p2)" (1 “tV/B 1- g2

(29)

for the total Chern class of fi(V).

The last step is to evaluate the slant product with [J,]. This is performed with the
help of the following lemma.

Lemma 3. Let A € H*(J,), B € H*(N,) be the classes appearing in (24). Then

L2 )
SN !

2\
Ar Ba ("r/..,) £f1'=g—p1.5=2p (0 -<\ng)r
\[Jy]=
0  if2r4s#2g.
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Corollary. Let k € H*(N,). Then elATIBYR [J,] = «¢ e2mvt

Proof. Applying the principle

=0, wo; =g (€S) = %(Z-’ﬁ'); S [I= G0

i€S ICS, {I|=r i€l
we find
AT B
T= > Hédw, == > Il¢ds [] ~drrede.
) IC{1,... g} i€l ) JKC{1,... 9} j€J keK
H|=r |J[+|K|=3

Multiplying these expressions and taking the slant product with [J,], which means picking
out the coefficient of []%_, didis.4, we find that the only terms that contribute are those
with J = K = {1,... ,¢9} ~ I and hence that

A" B°
T [7y) = 8a,2(5-r) Z ]:[""'1[’:'1/’:'+g '

IC{1,... g}, (H|=r i€l

and applying (30) again we see that this agrees with the formula given in the lemma. The
corollary follows iinmediately by expanding the exponential. W

Applying the lemma with & = t/(1 — §t?) to formula (29) and using (13), we find
o fi(V))-2e N [Jy) = t* Fo(t),

and this says precisely that c,4,(fi(V)) ~ [J,] is a multiple of £,, as desired.

§7. COMPLEMENTS

In this final section we give refinements of two of the calculations of the paper and
mention some related problems. The two calculations in question concern the Chern classes
of Ty = T(N,) and the ring structure of R, respectively.

At the end of subsection A of §5 it was shown that the nth Chern class of T, vanishes
for n > 2g — 2 (Newstead conjecture) and is a multiple of 397! for n = 2¢ — 2 (equation
(28)). Continuing the calculations given there to other values coq—z—; with 7 small, we
find empirically that c4—3 is a linear combination of ¢8~? and 3973y and more generally
that c24-—2-;(7},) belongs to the ideal 5971~2(3, )" of R, or equivalently, that it is a linear
combination of monomials o”#*y" with r +¢ < 7. The following result gives a proof of
this and at the same time an explicit way to compute these Chern classes in terms of our
canonical basis {£; 4t }r4stigg—1 of H*(N,), in principle generalizing formula (28).

Theorem 7. Let F'(:c,z ,2) = 3 &5y 2! be the generating function for the basis &, 4
of R. Then

Z E, [C(Tg)ﬁ‘(:r,i ,z)] (__14_1)!}—1 _

g=1

where A = (1+ (2 +2)T)? -4z (2 + 2) T2

1 2
VA 1+ Bz—4y+2)T+ VA

(31)
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Corollary. The total Chern class of T, belongs to the subspace of H*(Ny) spanned by the
classes £, withr + 542t < g - 1.

Proof. Denote the left-hand side of (31), a power series in z, y, z and T, by ®(z,y,2,T).

Since &5 = &r4(27)!/t!, we have F(z,y,z) = e¥7* F(z,y) where F(z,y) = F(z,y,0) is
the generating function of the two-index £’s. Substituting for the latter from (14), we find
that ®(z,y,z,T) has the form of the left-hand side of (12) with

sinh 1 2
f(ﬁ)=$\/3'1—_ﬁy h(B)=1-0, u(ﬂ)=m+:ﬂ—zﬁa
_2 tanh_l\/ﬂ_ 1 0 Bk
=5 TR R T
gy B8 e _ L pAT?
Ql(ﬁ)_"T_2+(l—ﬁ)(m—zﬁ)’ Q(T)_dT/dﬁ—Z-}-:n—zﬁ?’

where 8 = 6(8) = ta.nh_l( 'l } as in the proof of Theorem 5. Equation (12) then gives

1 - By
&( T) B%/T? sinh 1 ‘
z,y,2,T) = - - -
24z —2z0% z(1-0) sinh(6+2tanh™' 3) B=Q~1(T)
B2 /T? 1

T 24w -2 o (14 6)+2(1 - By) s=Q-1(T)

We get (31) by substituting the solution of the quadratic equation Q(3) = T. The right-
hand side of (31) is a power series in T, yT, zT and zT? and therefore contains only
monomials z"y*z! T4 with r +s+2t > ¢ —1, so the corollary follows from Theorem 5. W

Note that the Corollary gives another proof of (21b), since r + 2s + 3t < 2(r + s + 2¢).

From equation (31) and Theorem § we can in principle calculate the total Chern class
c(Ty) as a combination of classes £, , ¢ with r4-s42t < g—1, this representation being unique
because there are no relations in H*(V, ¢) among the classes §, ,; with r+s+¢ < g—1. This
would give for each ¢ > 1 a specific element ¢9) € R and it would be of interest to compute
the generating funcion 377 c9) (=T /4)¢7*. However, I have not done this computation
and have no guess as to the form of the answer.

The second point concerns the ring structure in R. Of course, from one point of view
R is just the polynomial algebra Q[a, 3, 4] on three generators of degrees 2, 4 and 6, so its
ring structure is known. However, we have now replaced the “obvious” basis of R consisting
of monomials a”#°y* by the basis consisting of the elements ¢, , ;, independent of g, which
have a good intersection behavior in the quotient R, of R for every ¢ (Theorem 5). The
question then arises how to compute the structure constants of the multiplication of R with

. . . "y
respect to this basis, i.e., the rational numbers C;2°; .. ., defined by the formula
) ’ L 3 )

' _ ral
Ef‘l,-ﬁl,h ETQ,Sz,fz - § : Crl,sl,tl;rg,sg,tq ‘ET,JJ g
r, 8,120
r+284+3t=r;+ro4251+282431,4+3¢2
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Because of the usual relation &, . = &, (27)!/t! we have

cn',s,t _ t! ra,t—t;—ts
ri,81,1;rg,42,02 tl! t2! (t —t — tz)! r1,81,0;r2,82,0

(=0 unless t 2 t; + t2), so we can suppose that t; = {; = 0. If also s; = s3 = 0, then the
corollary to Theorem 4 gives the answer. A more general result, whose proof (similar to
those we have given) we will omit, is that in general

min(ry,rg) . .
= - (=1P (r1 4+ =) -
£r 8 £r 89 — ; g ; gr +ro—27,81+a0+7 + (*)gl‘, X (32)
1,31 2,32 J-ZO J! (’_1 - J)! (1.2 _J)! 1 2 1,81 2T7 rgﬂ a
1€t<ay+ag

where ,,, == (1) _IE,.', . This formula describes the multiplication in the ring R/yR with

respect to the basis £, ,. To describe the multiplication in the full ring R, i.e., to determine
all the C’s, is equivalent to computing the numbers Ey[€,, 2, &ry,006r5,95) for all r;, s; and g
(subject to 3g — 3 = > _(r: + 2s:)), because by Theorem 5 we have

rt (=1 (r+s+1)rlst!
ry,81,0ir2,82,0 = grtott (7‘ Tet+it 1)' r+a+t+1[£rl,,,16,-2',263‘,.] .

(33)

The new problem has the extra attraction that Ey[€,, s, &ry,9:8rs,05) is symmetric in all three
pairs of indices (r;, s;), whereas the structure constants have only a 2-fold symmetry. As
usual, the answer is expressed in terms of generating functions:

Theorem 8. Let F(x,y) be the generating function of the €, , as in §8 and E7 : R — Q{[T]
the intersection number invariant defined in §2. Then
1

Er [F(e1, 1) F(w2,y2) F(wa,ys)] = AT+ BT

with A=Y z,y; — z1z223, B= () )Y Tiviv1yire) (indices modulo 3).
i ; ;

(34)

Proof. Just like that of Theorem 5, except that now we use the trigonometric identity
sinh(#; + 62 + 63) 1 1 1
sinh 8, sinh 8, sinh 65 = tanh #, tanh#é, + tanh #, tanhé; + tanh 8, tanh 83
instead of the corresponding simpler identity with only two §'s. B

Corollary. The number Ey[grl,,1§r2_32§r3,,3] vanishes unless ry + 19 +1r3 = g — 1+ 27,
s1+824+s3=g—1—7 with0 <y <min(ry,r2,73).

Proof. Replace each x; by uz;, each y; by uy;, and T by «~*T in formula (34). Then the
right-hand side has the form (X + uzyzz3T)~! with X independent of u, so its Taylor
series contains no negative powers of u and any term divisible by u (5 2 0 is also divisible
by z]ziz]. This is easily seen to be equivalent to the statement of the corollary. W

From (33), it also follows that the triple intersection number Ey{,, o, &ry,556rs,05) 18
0 unless ¢ — 1 2 max(ry + s1,72 + 82,73 + s3), the cases with equality being described
by equation (32), and one can use Theorem 8 to give explicit formulas in various other
limiting cases. It would be nice to find a simple formula for the coefficient of arbitrary
monomials ' y; 22ys2 x5 y;> 797! in the Taylor series of the rational function in (34),
thus determining the structure coefficients of R completely, but I have not been able to do
this.
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