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Let A » 4 denote the moduli space of semistable n-dimensional vector bundles over a fixed
Riemann surface of genus ¢ and having as determinant bundle a fixed line bundle of degree d.
This is a projective variety, smooth if (d,n) = 1 (so that all semistable bundles are stable). Its
topology, which depends only on g, n and d (mod n}, and not on the specific Riemann surface or
line bundle chosen, has been extensively studied. In particular, a recursive determination of the
Betti numbers of Ny, 4 in the smooth case was proved by Harder and Narasimhan [HN] and by
Atiyah and Bott [AB] (by totally different methods: the former by counting points of the moduli
space over finite fields and using the Weil conjectures, and the latter via infinite-dimensional Morse
theory with the Yang-Mills functional as Morse function).

Over Ny, 4 there is a canonically defined line bundle 6, generalizing the classical theta
bundle over the Jacobian of a curve (corresponding to the case when n = 1 and the determinant
bundle is not fixed), and a basic tool in the study of the moduli spaces in question is the determi-
nation of the numbers dim H%(N .4, ©*) for variable k. An explicit formula for these numbers
was conjectured by the physicist E. Verlinde [Ve]. In the simplest case n = 2, it says that

dim H°(N,20,0% = Dy (9. k+2),  dim H'(N,3.1,0%) = D_(g,2k +2),

where

N 91 i
D,(;,,k):(f) Z e (g, keN, e=+1, eF=1). (1)

2 s 2g=-2 7j
7 {(mod k) Sin k
j20 (mod k)

Verlinde’s formula has now been proved by many people ([Sz], [BS], [Th], [Ki], [Do}, [NR},
[DW], [Z2] for n = 2; [Fa] and [BL], building on [TUY], and [Wi], [JK] for general ). In the present
paper, in which all the algebraic geometry and topology are suppressed, we will not say anything
about these proofs. Instead, we will discuss some of the many interesting number-theoretical and
combinatorial aspects of the formula itself. We will look mostly at the case n = 2, where we
collect together no fewer than ten formulas, some known and some new, for the numbers (1), but
we also give in §2 a formula for » = 3 and in §3 a simple proof of a certain reciprocity property
of the Verlinde numbers for general n.

In the final section of the paper, we solve the recurrences found by Harder-Narasimhan-
Atiyah-Bott, obtaining a closed formula for the Poincaré polynomial of the moduli space Ny ;4
in all {smooth) cases. This calculation has several amusing aspects: to guess the formula we have
to ignore the fact that polynomials in one variable commute, and to prove it we need an unusual
descending induction over real numbers.



81. THE VERLINDE FORMULA FOR n = 2

In this section we discuss the numbers D4 (g, k) defined by (1). We look mostly at D, (g, k),
which we denote simply by D(g, k), because of the relation

D_(g,k)=D(g,k)—29D(g,k/2) (k even) (2)

(for which, by the way, no geometric interpretation seems to be known). The first few values of
D(g, k) are given in the following table.

k: 12 3 4 5 6 . 7 8 9
g=0[11 1 1 1 1 1 1 1
1101 2 3 4 5 6 7 8
2001 4 10 20 35 56 84 120
3001 8 36 120 329 784 1680 3312
4101 16 136 800 3611 13328 42048 117072
500 1 32 528 5600 42065 241472 1122560 4411584

6 0 1 64 2080 40000 499955 4456256 30475264 168816960

7] 0 1 128 8256 288000 5980889 82671232 831000576 6485090688

For fixed k, equation (1) already describes the function g = D(g, k) as a sum of exponential
functions, e.g. for £ < 6 we have

k | 1
D(g, k)| 0

2 3 4 5 6
1 29 2971(2941) 2[(5+V5)91+(5-5)97"] 2291(39-1 1) 397!

This information can be put together into a generating function D (T) = E:‘;O D(g, k) T? which
is then a rational function of 7', e.g.,

E |1 2 3 4 5 6
DTy | 1 1 1 1-3T 1-67T 1 — 147 + 367
k 1-T 1-2T 1-6T+48T? 1 —10T+207T2 1-19T +967T? — 14473

The generating function Dy(T) is described in (ii) and {vi) of the Theorem below.

In the opposite direction, the function & — D(g, k) for fixed g is a polynomial of degree 0, 1
or3g—3forg=0,1, or > 1, respectively. (Of course it must be, by the Hirzebruch-Riemann-Roch
theorem, if Verlinde’s formula is to be true.) Explicit formulas for this polynomial will be given
in (iii), (iv) and (x) of Thedrem 1 below; the polynomial nature of D(g, k) is also clear from parts
(i1), (v) and (ix) of that theorem. The first few values are given by

g |0 1 2 3 4
K —k K%+ 10k* — 114% 2k% 4+ 21k7 + 168k° — 19143
Bl 1 k-
Dig. k) =5 180 7560

and a somewhat later value by

D(8,k) = (60k*! 4 1382k" + 16380k'" 4 133419k 4+ 846560%'*
+ 4638816k'! + 31104000k — 36740617k7) /35026992000 .

Note the factor 691 (= numerator of the Bernoulli number B;3) in the coefficient of k% here; it
will be explained by part (iii) of Theorem 1. Again we can form a generating function Fy(X) =
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e D(g, k4 2) X* the first few values being given by

1 1 1
FO(X)’—'W, FI(X)—m» Fz(X)—m»
1+ X+ X+ X3 146X +21X?+40X3 +21 X4 +6X5 4+ X6
F3(X)= (1___ ) ¥ F‘("Y)= ( )10 ]
14 19X + 190X2 + 946X + 2012X* 4+ 2012X5 + 946 X6 + 190X7 4 19X8 4 X9
F(X) = 1-x)e

The fact that D(g, k) for ¢ > 1 is a polynomial in k of degree 3¢ — 3, of parity ¢ — 1 and vanishing
at k = 0 and k = 1, means that F,(X) has the form (1 4+ ;X + -+ ¢3,-6X397%) /(1 - X)3972,
where the coefficients ¢; have the syminetry property czg—6—; = ¢;. Moreover, in the examples we
find that the ¢; are always positive. These properties of symmetry and positivity correspond to the
Gorenstein and Cohen-Macaulay properties, respectively, of the graded algebra @, H°(M, 2,0, 0%)
of which Fy(X) is the Hilbert series.

We now state a theorem giving a variety of descriptions of the numbers D(g, k). For some
parts of the theorem it will be more convenient to use the rational numbers Vj (k) defined by

D(g, k) = (k/2)*7 1 V,_1 (k) . (3)

Because of (2), we will (except in part (x)) give the results for D = D, only, mentioning one or
two especially interesting cases for D_ after the theorem.

Theorem 1. The same numbers {D(g,k)} 4 xeN (resp. {Va(k)}n>0, keN related to D(g, k) by (3))
are described by any of the following formulas:

(i) (Trigonometric sum)

Vak) = Y (sin fk_l)""". (4)
0<j<k :
(ii) (Generating Function)
k tan z 9 2

1-zvh stz = SEZ ¢ gy, (5)

(iii) (Explicit Polynomial)

h .1—1 2s
2 B,

Z Eoona k(A2 1), (6)

—2s

where By, denotes the (2s)th Bernoulli number and ¢y, , the coeflicient of z7%* in the Laurent

expansion of (sinz)~ %" atz =0.

o i) e

=1

(iv) (Divergent sum)

(2] o0
where Y~ P(n) for a polynomial P is to be interpreted via Y n' = ((~1).

n=1 n=1



(v) (Recursion)

h—1
1
Vilk) =k -1+ T Vi(k) Vios(k - 1) (h > 0). (8)
s=0
(vi) (Continued Fraction)
1 & N 1
% Z Vi(k) T" = I (stop after 9)
h=0 29T — k-1 terms).
1
9 _
2-2T -
9 —
(vii) (Factorization/Fusion Rules)
D(g,k)=Fk(y,0), (10)

where Fy, is the unique function on Zyo X Sy (Sk=Zyoey + -+ Zyoey) satisfying

Fe(gi+ 92,0 +m2) = Y Fi(g,m +e€)Filgz,m+ea)  (Yo1,02 2 0, ny,mz € Si),
0<a<k

Filg+1,m)= 3 Fi(g,n+2e) (Y920, n€Sk),
0<a<k
Fr(0,0) =1, Fr(0,e4) =0, Fi(0,eq+ €)= 84, and
1 if 2max{a,b,c} <a+b+c< 2k, a+b+codd,

Fr(0,e, +ep+e.) = { 0 otherwise

(viii) (Functional on Polynomials) ‘
D(g, k) = ®[(U§ + U} +---+ UE_))I, (11)

where U, (2} denotes the nth Chebyshev polynomial of the second kind (defined by U,,(cos 8)
=sin(n+1)8/sinf or by U_y = 0, Up = 1, U,, = 22U,y — U,_2) and ¥, : (z] — C the
functional defined by ®[f] =0 for f € (Ux—1), ®x{Un] = bpo for0 < n < k- 1.
(ix) (Trace)
D(g, k) = tr (MZ™Y), (12)

where My, is the (k — 1) x (k — 1} matrix {Mg(a,b)}oca b<k With

min{a,b) - min(k — a,k—b) ife=b {(mod 2},
My(a,b) = .
0 ifa#b (mod 2).
(x) (Determinant)
28
D_(g,2k) = m det A, (13)

where A = {ar5}o<reg 0cocg With ags =1, ary = (k+7)% = (k=r)?* forr > 1.
Remarks. 1. Formula (5) can also be written in the form

iD(g,k) (

sin m)g—l _ ksin(k - 1)z

oo

sin kz cosz



and formula (6) tells us that the polynomial D(g, k) has the form

; —1)(5g - 4
D(g, k) = ﬁy-l k3a=3 + g 2 k39=¢ + (_g—.‘))’((’j()—g“_).ﬁg—fi k39_7 + e+
2731+ 54+ o2gyr) 992
g—12 k9+3+ T ky+l +Cgkg—1

15(g - )(“"’) 39 - 1) (2

where 3, denotes 27| By, |/(2r)! (B, = nth Bernoulli number} and Cy, the only negative coefficient
in the polynomial, is fixed by D4 (g,1) = 0.

2. There are similar results for D_. We mention only the analogue of the generating function
(i) and the fusion rule description (vii), namely

D_(g,k) . 4, ktanz
Z —(k/gg-z in?9=? ¢ = - and D_(g,k) = Fi(g,€x-1) , (14)
=1 s

with Fy as in (vii). The first identity can be proved like (ii} or deduced from it using (2), and the
second follows immediately from the general formula for Fi(g,t) given in the proof of (vii) below.

3. The formula (13) is a variant of a formula of Y. Laszlo (communicated to me by A.
Beauville), who succeeded in evaluating dim H°(A, ©65~2) but obtained a result which looked
quite different from Verlinde’s formula. His result, after some simplification, can be written

A0, 1,k+e1,k+2e9,...,k+(g—1)e,-
D-(y,?k): E €1+ Egm1 ( IA(O 122 ) (Q‘ ) g l) ’
€1reego1 E{21} yLyLyeeey §f
where A(f,£1,...,6) = [I (€ — ). Observing that A(0,1,...,9) = 2792!4! ... (2¢)!,
0<j<i<y
writing each A(f, £1,...,€;) appearing in the numerator as a Vandermonde determinant, and

using the multilinearity of determinants, we easily sce that this formula is equivalent to (x).

4. As mentioned in the introduction, several of the other formulas occurring in the theorem
have occurred in the literature. In particular, I learned of (viii) (and of the whole question
of moduli spaces of bundles and the Verlinde formula) from a lecture of R. Bott in Geneva in
1990, and both the generating function (ii) and the description (vii) in terms of “fusion rules”
have appeared in various forms in papers of both mathematicians and physicists writing on the
subject. Since I do not know the literature well enough to avoid gaffes, I will not try to give
references or first discoverers. In any case, our aim is just to collect together in one convenient
place some of the known expressions for the Verlinde numbers in the rank 2 case; the various
proofs of equivalence, once the formulas have been found, are essentially exercises.

5. The forinula (iii) exhibits the polynomiality of Vj, (k) and gives an explicit formula for
its leading coefficient, and the same information can easily be read off from (ii) or (iv). The
description (x), on the other hand, also show that V,(k) is a polynomial in k, but a priori of a
higher degree than the true one.

Proof. (i) Here there is nothing to prove, as we are taking this as the definition.
gop g .
(ii)) The multiplication law (“distribution property”) of the cotangent function gives

ktanz 1 tan x tan x sin®
tanka':l_*_iz( T Li)z ——Z j 2.0
g 0Sj 2k tan(z + 72)  tan(z — 7%) 0< <k sin? 2L —sin’ 7

and the result follows by expanding the summands on the right as geometric series in sin? z.

5



(iii) Formula (ii) can be rewritten

ktanx d(sinx) k dz
k) = —Resg= = —Res;— | —— ——
Va(k) Resz=o [tan kz gip*ht! q:] #Sz=0 [tan kz sin®h g ]

(I8

The result follows since

(—4)*Bz, - 1 h -
- kza'hl, — "23 02.
tankz ;2o (2s)! i sin?* z .sz=:0 Cha ® +0(=)

We can also deduce (6) {except for the value of the constant term, which is determined by
the requirement V(1) = 0) directly from the definition (4). Indeed, for s > 1 denote by f,(z)

—1 d?-! . . . .
the function cot z. The standard partial fraction decomposition of cotz gives
(25 — 1)! dz?2-1

fal(z) = L ez(z — mn) =%, whence

et
[ ]
T
—
B
L2
—

mJ * _1ys—192s s
Z fa('rj) = :2, Z 5 = 5 (kzs _ 1) _ (1)(2—‘3!32(’62’ ).

0<i<k

nek

aZz0 (mod k)
On the other hand, induction on h shows that sin™?*z is a linear combination of f (), ...,
fn(z), and the fact that f,(z) = £72* 4+ O(z) as z — 0 implies that the coefficient of f,(z) in this
representation is cy .

Observe also that ¢, 4 is p-integral for all primes p > 2h — 25+ 1, so any such prime dividing
the numerator of Bs,/(2s)! also divides the coefficient of k22 in Vj,(k), e.g. the coefficient of k!2
in the polynomial V}, is divisible by 691 for all & < 350.

(iv) We can rewrite (jii) in the form Vj(k) = (2(’ o 2 ¢y o6(1 — 2s) (k** — 1) where

= (—4)*~h %2—_—f))-‘ ch,s- Diflerentiating the definition of ¢y, twice, we obtain the recursion
s—1)!
Chils = Chooy — MPch,, s0 i, is the coefficient of z?*~! in z(2? - 1%).--(z* — (h - 1)?) =

(2h - 1)! "’;;:‘ ]1).
(v), (vi) These forinulas follow more or less directly from (ii).

(vu) The uniqueness of a function Fi(g, n) satisfying the given axioms is clear, since we can
use the first two rules to reduce first ¢ and then the weight [n| of n € S, (where |nje; + -+
Tk—1€k—1| =01 + -+ -+ ng-y) until ¢ = 0 and |n] < 3, in which case the last rules give the value.
To prove existence we write down an explicit formula:

k. ooy sin(mja/k)
Fre(g,mier+ -+ npyex) = (5)9 E sin29=2(xi/k) ~%( rrg/k) H (sm (mj/k)

0i<k

Clearly this formula includes (10), so we need only check that it satisfies the axioms.

We can write the proposed formula for Fi(g, n) more succinctly as Y~ s(¢)?~!r(¢)", where
the sum is over all numbers { = ¢™3/% with 0 < j < k (i.e. (** =1, 0 < arg({) < 7),

2k = k _ ¢¢-¢° _ sin(rja/k)
T T wmmm T T G

s(Q) =

and r(()* = ri ()™ ...re—1{{)™ forn = nye; +.. .+ ng_1€x1 € Sk. An easy calculation shows

that 3 r.(Ci)ra(¢s) for two such numbers ¢; and ¢; equals s{(;) if ¢(; = ¢; and 0 otherwise.
0<a<k



Hence

2 (Zs(cn)g'*‘ r(G)™ ra(cl)) (Zs(cz)”" r(Ga)™ ra(cz)) = 3 syt p(gymtne,

0<a<k ™ (4 [ ¢
S (T s @ nl07) = S0
0<a<k ¢ ¢

which are the first two axioms. For the last, in the non-trivial case |n| = 3, we have

(€* = ¢ - ¢ -¢)
PBESREAGINQ %Z e .

<

The sum is 0 if a+b+c+1 is odd (replace by ~(~!) and otherwise is one-half of the corresponding
sum over all (2k)th roots of unity, so we find

Fi(0,eq + €0+ €c) 2k DT (T T+ P ()

C'.'k_

_{1 ifla=b| < ¢ {1 ifa+b<cora+b+c> 2k,

0 otherwise 0 otherwise,

which agrees with the given “fusion formula.”
(viii) Define a functional ¥, : (Jz] - C by

p—

; -1
W=7 Y fleosT)sn o2 Y -,

7 (mod 2k) (=1
Then Wi[f] = 0 for f in the ideal (Uy_;) because Uy_,(cos 1',‘-7-) = 0 for all j, and

1 Cn+l - C_"_]

‘I’L[Uﬂ] - =T (C C )2 -  _1
ke, (=T

¢2#1

— __ﬁ Z (Cn+2 - Cn _ C—n +C—n—2)

Cﬂh__—_l

equals 1 forn =0 and 0 for 1 <n < k- 1. Hence ¥; = ®,. On the other hand, if H(z) denotes
the polynomial Up(2)? + -+ -+ Ur—1(z)?, then

¢+ ¢! "“(ci“ - ¢! )’ _2k
H(——)= =
=) Zo ¢(-¢! (¢-¢ 1)

for (** =1, ¢* # 1. Hence
- g-1 _
@k(Hg)quk(IIG):% 3 (_L)?) - (g)g LS (sin %) 2942 _ D(g, k).

(=1 (C_C-l 0<j<k
(3#1

[

(ix) It is an exercise in the summation of geometric series to check that for each 0 < 5 < k the
vector v; with components (vj), = sin(7j/k) (0 < @ < k) is an eigenvector of M) with eigenvalue
k/2sin(mj/k). The equivalence of (4) and (12) is obvious from this. The relation of (ix) to (vii)

-



is that M, is the sum of the matrices N? (0 < a < k), where N, is the (k — 1) x (k — 1) matrix
whose (b, ¢) entry is the number F(0, ¢, + e, + €.) given in the last formula of (vii).

2
(x) Define numbers A, (p, r > 0) by Ao, = 0 and Ay, = (—1)P+';(P_fr) for p > 1, and
set bpy = 3 Aprar,. Then the matrix B = (bys)o<pey, 1<s<g 15 the product of A with a g x g

unipotent matrix, so has the same determinant. On the other hand, we have

o~ (=1)*tg? [ —cos[(k+r)z]+ cos[(k — r)z] = 2sinkzsinrz (r > 1)
Za,., (2s) { L —cosz = 2sin®(z/2) (r = 0)

and
) sl (2 -
AprSINME = —— — ~1)" e‘(”"”)’] = (=4 sin*(z/2))"” sinz
; P 2p dz nz=t:)( ) n ( (/ ))
forp> 1, so0
8,() ib (=1)*~1 g2 2 sin kx (-4 sin? a:/2)p—l sin z p>1)),
z) = — =
? =1 P (2s)! 2 sin?(z/2) (p=0).

In particular, Bo(z) = 2%/2+4 --- € Q[[z?]) and B,(z) = 2k(-1)P"12? + ... € Q[[=*]], so
we can write fp(z) E:o:l v,B,(z). Then v, = (-1)?"'D_(p,k)/(4k)? by (14). Replac-

ing (Bo,P1y...,Bg-1) by (Br,...,Bg=1,P0 — Zﬂ;i vpfp) corresponds to subtracting from the
first row of B a linear combination of the other rows and then moving it to the bottom row,
which changes the determinant by a factor (—1)9=!. But this new matrix, acting on the basis
{(=1)""'2%7/(25)'}1<s<q Of the g-dimensional vector space z*Q[[z?]]/z?9+?Q][z?]), is triangular

with diagonal entries 2k-2!,...,2k-(2¢ —2)!, 2k - (29)! vy. The assertion follows.

§2. THE VERLINDE FORMULA FOR n = 3

The Verlinde formula for bundles of rank 3 and trivial determinant is

. : 1k + 325
dim HO (N, 30,0%) = 397! (—---;;—)257 *Vimt,g-1,0-1(k+3),
where
. L mav=20, . Thi—am , . TC\-2n
Vima(k) = Z (sin T) (sin ?) (sin -E-) (k, I, m,n € N).

a,b,c (mod k)
a+b+e=0 (mod &)

(Here the meaningless terms with @ = 0, b = 0 or ¢ = 0 (mod k) are to be omitted.) With
methods similar to those used in proving part {ii) of the Theorem above, one obtains

. . . . . +y+ z)

Vi,m,n(k) = coefficient of sin?z . smg'"y-smz"z in Sz , 15

© ABYADEAE) 19
sin kz ) . . .2

where fi(z) = el In particular, Vi, o (k) is a polynomial of degree I + m + n in k* with



rational coefficients, the first few values being

Vi (k) = 3?57! (K? ~ 1) (k7 — 4) (k* + 47),

Vipa(k) = 32%; (K = 1) (k?* — 4) (k* + 40k + 679)

Vi (k) = 3?1101! (k* = 1) (k* — 4) (K* + 19) (k* + 19k% 4 628),

Vigalk) = % (k% — 1) (k¥ — 4) (3k® + 125k* 4 1757k" + 21155) ,

Vaga(k) = 152'“13! (k% = 1) (K* — 4) (19k® + 875k° + 22317k + 505625k + 5691964) .

The leading coefficient v;m, » of this polynomial is given by

1 1 . 2 2m_2n .. J(E+Y+2)
Vim,n = g3 amain Z —ramgn = coefficient of z%y*™2"" in At
T a,b,c €Z ~{0} at’btme f(z)f(y)f(z)
a+btec=0
with f(z) = snzm (as one sees by dividing =, y and z by k in the preceding generating function

and letting k tend to infinity). In the Verlinde case { = m = n = h (= g — 1) this number can be
expressed in terms of Bernoulli numbers as

h
4h—2r—1\ B B
— (—1)hobh+1 2r Gh—2r
v = (=) X;( 2h— 1 ) @)t (6h —2r)!’ o)

a formula also obtained by Stavros Garoufalidis and Leonard Weinstein (see also [Z1]).

The method of calculation also works for the Verlinde formula of higher rank n (given in
§3) and expresses the Verlinde number in this case as the coefficient of [[(sin z;)?9~% in a certain
trigonometric function of n(n —1)/2 variables z;. However, already for = = 4 the form I obtained
for this trigonometric function {(of 6 variables) was as a sum of about 80 terms, and the algebra
of putting these terms over a common denominator and simplifying defeated both me and the
computer.

§3. A RECIPROCITY PROPERTY OF THE VERLINDE NUMBERS

The Verlinde formula for general rank n and trivial determinant bundle says that
dim HY(N, 10,0%) = D(g,n,k+n),
where

D(g,n,N)=n9"" (ﬂ !

)(ﬂ-l)(g-—l) Z H
9n Frrendne1>0 1<a<u<n (sin ,,mg_u)zg-z .

Jittiaca <N

In November 1992, A. Beauville wrote to me that “according to the physicists” one should have
k? D(g,n,k+n) =07 D(g,k, k+ n) (17)

9



and that he and Y. Laszlo had a “long and ugly” proof of this for k = 2 (the case k = 1 is easy).
Here is a simple proof for arbitrary & and n.

Write G for Z/NZ and s, for j; +---j,—1. Then

-AED(g,u N)= N — nnle-1) Z H !

n . 5,—a,\39-2
0=5,<53< <3 <N 1<u<r<n (2sin 725 )

N o 1
:—n—N(g 1) Z H——____-a ![gl'

SCe  stes |2sinmigt
|S)=n,0€S s-‘,ét

Since the product is invariant under translations § — S+ j, and the probability that an n-subset

. . N e .
of G contains 0 is N We can drop the condition “0 € §” and omit the factor —, so
. n

pomi= 3 (7 gasy) = & Mzsnr i3
ne §6res\ ies [2sinmigt SCG 2€S
|S]=n t#s ISl=n s'¢S
where we have used that N = ] |2 sinvr’—;,‘l for any s € G. The last expression is seen by
teG, t£s

interchanging S and G\ S to be symmetric under n & k:= N — n.

§4. ON THE HARDER-NARASIMHAN-ATIYAH-BOTT DIMENSION FORMULA

As stated in the introduction, a recursive formula for the Betti numbers of Ny, 4 in the
smooth case (n,d) = 1 was given by Harder-Narasimhan (implicitly, but made explicit by Desale-
Ramanan [DR]) and by Atiyah-Bott [AB]. The formula, expressed via a Poincaré polynomial,
is

11 ,
P4 if (n,d)=1 (18)

g,nd t) —ZdlIHH gnd) i W_g n,

where P, 4 = P, «(g,t) is the rational function of ¢t defined inductively by the requirement that

> ¥ D A (19)

k=1 np,...,ng >0 dy/n > >dk/1u
a ety =n dyt--tdg=d

for all n € Nand d € Z, where

(14 £)29(1 + 13)29 .. . (1 4 ¢2n—1)20

P = Pag,t) = (1= t2)2(1 — t4)2 .- (1 — (2n=2)2(] — g2n) (n€N) (20)

and

Ny(ny, oo g dy, oo di) = Z (d.-n_, dini+ (9 — )n; nJ) .
1<i<;<k

(The factor (14 ¢)29 in (18) is the Poincaré polynomial of the Jacobian of a curve of genus g and
would be absent if we had defined N, , 4 as the moduli space of all vector bundles of rank n and
degree d, rather than fixing the determinant line bundle.) Notice that the periodicity property
P atin = Pna (I € Z) follows immediately from (19) since we can replace each d; by d; + In;
without changing the inequalities dy/ny > ... > di/ny or the value of Ny(ny, ..., ngidy, ..., dg).
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Before giving the solution of the recursion (19) in the general case, let us look in detail at
the cases n = 1, 2, 3 and 4 (already computed in [DR], Theorem 2, p. 241). For n = 1 we have
immediately

Py=P g, Pig=P = ‘("_)s Bghaft) =1

as it should be. For n = 2 we find
t29—2+a

_ 2(dy ~dg)+29-2 -
Py=Pq+ Z (A =da)+20=2 py Py, = Pra+ T

dy+da=d, dy>dg

5

where a is 2 if d is odd and 4 if d is even. For d = 1 this gives the well-known formula

(14 t3)% £29 (140% (14329 - (t 4 t?)%

A-2)1-th) 1-0 (1-t2)  (1+B)2—(+e2)?

Bgaa(t) = (21)

(the second form of the result makes it clear that this expression is indeed a polynomial in ¢). For
n = 3 the calculation is already much messier, with several geometric series to be summed and
various case distinctions according to the values of the various d; modulo 2 or 3. The result for
d=11is :

$69-13
(1—1t4)?

By the time we reach n = 4 the calculation becomes really horrible. The result (for d = 1) is

£19-2(1 4 2

Pa= by - 20 ) PP, + P (22)

t5g—4 t89—4 thg-6(1+ t2)2 tlzg—ﬁ

Y T U ey T
hb-—gh+ (1 —t5)? Fh (1—t4)3

Py, =P - P (23)

1-1t4

That the right-hand sides of (22) and (23), divided by P, are polynomials in ¢, as they must be if
(18) is to hold, is not at all obvious. (A direct proof will be given at the end of the section, when
we rewrite these expressions in termns of a generating function.) More serious is that one cannot
see—or at least, /could not see—what the pattern in the coefficients in these two equations is. The
problem is that P, 4 ends up getting written as a linear combination of all products P --- Py,
with (ny,...,ng) running over all partitions of n, but the coefficient of each such product arises
as a sum of many terms coming from different parts of the recursive procedure. The surprising
solution turned out to be to ignore the fact that the expressions Py, 4, commute! That is to say,
we go back to the recursion (19) and calculate inductively in n, substituting at each stage for
Py a (n' < n) the formulas already obtained as polynomials in Pp,’s, but in doing so we do not
permit ourselves to change the order of multiplication. For n = 3 this procedure gives

Po=Pm o pp - 2 ppy o
3,1 — 3-‘1_:76.12._?:—!.?21-*--(-174)21

which is hardly any simpler than (22), but for n = 4 we find

Py =P Y opp -t pp - g v PIP,
wER TENh e T E Y o ma T
thg-4 thg—G 5 tl2g—6
— P PP PP - ——
BT E R Cu) U R R ey )

and now it already is becoming much ecasier to discern a pattern. Studying these formulas and the
corresponding results for P3 g, Py o and P, 3 (which are the only other cases of interest for n < 4,
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since P, 4 as a function of ¢ is even and periodic of period n), one finally discovers the general
formula given in the theorem below.

Before stating the result, we make one preliminary transformation to simplify the recursion.
Define new rational functions of ¢ by Q,(t) = =" =V P,(t) and Qnq(t) = t=" (=D P, 4(1).
Then, because (3 n;)? = 3. n? =23, . ninj, the explicit dependence on g in the recursion (19)
is eliminated, i.e., this recursion becomes

Qn = Z Z Z mN("l et i) Q'ﬂl Wy e ‘Qﬂb - (Vna d) (24)

k=1 ny,.., >0 dyfn >0 >de /o
it tne=n 44 ddy=d

where z = t? and

Nny, .o ngdyy oo di) = E (d;uj — djn‘-)
1<i<i<k

(= N1 in the previous notation). The solution of this recursive system is given by:

Theorem 2. Let Q, and Qpq4 (n € N, d € Z/nZ) be elements of a not necessarily commutative
algebra over the field of formal power series Q((z)) which are related by (24). Then for any n and
d, we have

n (—1)k1 pMny,.msd/n)
Qn,d=; Z.)o (l_mn1+ﬂ2)...(1—-3:“#-1'}'"*) in --'Qru ] (25)
= Ty yeee  PE
n+otng=n

where M{n,,...,ny; A} for n; € N and A € R is defined by

k-1

M(ny,...,ne A) = z(nj +njp1) (4 -+ nj)A).
i=1

Here (z) = 1+ [z]) — = for a real number z denotes the unique t € (0,1] with z +t € Z.

Corollary. For n and d coprime the Poincaré polynomial of Ny, 4 is given by

(_l)k—l 12Mg(ny,... ,nyid/n)

— p-1 ‘
Bg,n,d(t) - PI z Z (1 _ t2"l+2ﬂ2) . (1 — tznk-l‘l'znb) Pm . 'Pnb ? (26)

k=1 ny,.. >0
4t ng=n

with P, = Py (t) as in (20) and Mgy (1, ... i A) = M{(ny, ... n M) + (9 = 1) 204 nimy

Remarks. 1. The exponent M(ny,...,ng;d/n) in (25) is always an integer, since (z) = -z
(mod 1) and Y~ (n; + nj31)(n1 + - -+ n;)(d/n) = d(n — ng) is an integer.

2. The periodicity of Q4 in d is obvious from (25), since (z) is periodic in = of period 1.

3. Observe that, surprisingly, formula (25) is simpler than the recursion (24) of which it is the
solution: we have the same sum over (ordered) partitions of r, but no longer have the infinite sum
over partitions of d.

Proof. The proof of Theorem 2, not surprisingly, uses induction. However, to make this work we
have to generalize the theorem in a rather odd way, by introducing a real parameter with respect
to which we can perform an induction!

12



Theorem 3. Let the hypotheses be as in the previous theorem. Then the two quantities

n

;\n,d = Z Z E N(nl,... I Y. DI I | thdl . 'Qﬂn.dh (27)

k=1 ny,ee,ni >0 A>d /> >de frg
nitebne=n d1+ ~+dy=d
(_l)k-l gn—ne)(An—d)+M(ny,... ;ne;A)
"d— Z Z ni+ng gyt ng
k=1 ny,.,ne>0 (1-=2 ) (1-= )
ﬂ1+--~+ﬂn=n

ny "’Qm,a (28)

agree for every real number A > d/n.

Theorem 2 follows because for A = d/n the inner sum in {27) is empty unless k = 1, so Q,’:|d =Qnd-

Note also that the periodicity property now reads Q;\lti_n = Qﬁld (and similarly for R,)‘,'d).

Proof. We assume by induction that Q) ; = R}, ; for all 2’ < n (and all d and X). This
is normal enough. But then for a given n and d we will do a “downward induction over real
numbers,” showing that

(i) the theorem is true for the “initial value” A = oc

(i) if the theorem is true for A, then it is true for A — ¢ for sufficiently small £ > 0.
This peculiar induction works for the following reason. First, both Q;\.'d and Rﬁ'd are step functions
of A, jumping only at rational values with denominatorestrictly less than n. Indeed, Qf:”, jumps
at A only if A = d,/n, for some k-tuples (n,...,n;) € N¥, (d,...,ds) € Z* with Y_n; = n,
> di =d, and k cannot be be 1 for A > d/n. Similarly, Rﬁ‘d jumps only if (ny +---4+n;)Ais an
integer for some decomposition n = ny +---+ ng and some 1 < j < k. At a jump point A =¢/m
(0 < m < n), both Q) 4 and R .a take on the same value as they do slightly to the right. To prove
(ii), we will show (using the inductive assumption) that the differences AQn £ = Q;‘,'d - th‘_d and
AR} ;= R} ;- R} ; agree (here A~ denotes any value A — ¢ with € > 0 sufficiently small). This
shows that the difference Qn'd - Rﬁ'd is independent of A. The meaning of (i) is that Qﬁ’d and

Rﬁ‘d agree modulo z% for all N and A > Ag(N) sufficiently large. Combining these statements
shows that the two expressions agree (as power series in z) for all A.

We first prove (i). This is easy. As A — oo, there is no restriction in (27), so Qﬁ'd tends
z-adically to Q, by virtue of the relation (24). On the other hand, the exponent in the numerator

of the fraction in (28) tends to zero z-adically as A = oo in all cases except k = 1, so R} 4 also
has the limit Q,,.

We now compute the jumps of Q} .4 and R} n,a at rational values of A with denominator < n.

As already stated, the only terms of Qn'd which differ at A and at A~ are those with d;/n; = A.
Write m for ny, s0 0 < m < n, mA € Z. We have

k
N(ng, ..., ndy, ... Z Amn; — md;) + Z (din; — djn;)
2<i<i<k
=Am(n—m) — m(d—Am) + N(ng,... ,ng;da, ..., dg).

Hence, renaming £ — 1 and n;4y, diyy (i 2 1) as k and n;, d;, we find

AQ s= > " am @ mdoam - (29)

0<m<n, mAcZ

Now turn to R} 4 and look at a single summand (nl, ., ) in (28). Denote generically by J
those indices j € {1,...,k} for which mj :=n; + .-+ ny is a multiple of the denominator of A.
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Then M(ny, -+ ,ng; A) = M(ny, -, ng; A7)+ o (ng + 1), s0
J

:L-M(HIJ"-'"‘:A-) _ Ehf(nhu.,n,,;,\) - zA«!('nl'..-,'ru,;,\-) (1 _ mz;(ﬂ_y-{-ﬂ_r.n))

— ZJ:M(n'v"""";A_)+EJ‘<J(HJ'+"J'+1) (1 _ m("i‘i‘".}-{-l))

= ZIM(nl,..-,nJ;f\) (1 _ :r:(n_;+n_]+|)) 'mM(ﬂJ+1'-.-'k;A)

1

( z(n-n;)(«\n—d)-i—ﬂ’!(nl peer  TEEGA) 2:1‘\/1(111 pee 3 A)
(

— ZTm;(An d)
1 —zmtna). .. (1 — gre-1tm) 5 ' (1 = gmtn2) ... (1 = gri-rtns)

m(n—m; -—ng)(.\ﬂ—d]-{-M(ﬂJ.'.l . ,nﬁ;A)

C(1 = grontrsez) (1 — gra-it)

and hence, grouping together all terins by values of m = my,

™ An-d A
AR.“ d = Z ( ) Rm Am Rn—m,d—')\m .
0<m<n, mieZ

But R} Am = Q;'Am = Qm, m and Rz-m,d-.\m = QrAl-m,d—Am by induction (since m and n —m
are less than n), so the right-hand side of this agrees with (29). This completes the proof.

We end the section with some remarks on the polynomial nature of the functions occurring
on the right-hand side of (18). From (20) and (26) we see that the generating function of the
Poincaré polynomials By , 4(t) for fixed » and d has the form

> Bynalty X! =( > 4 XJ)/]'[ 1-Cr X) (30)

g1 0<i<p(n)

where p(n) is the number of partitions of n, A; = A;(t) is a rational function of ¢, and the product
is over the partition m = {n; < ... < ng, vy + -+ -+ ng = n}, with

Cnl,.. g = t" +t) -2 H({ n? 1+t3) (1+t2n,-—1)2) )

(This already follows fromn the general result on the shape of By, 4(t) given in [DR], Theorem 1.)
For any given n and d the finitely many coeflicients A4;(t) are calculable, and if they are all
polynomials then this exhibits the polynomial nature of all the By, 4(¢}. In particular, for » < 4
and d = 1 we find from (21) - (23}

- 1
> Boaa(H) X T -+ eeX) -1+ X)’

g1

S Byaa(t) X0 = 1+ 20+ )1 +EPA+1+3) X

921 P T (14RO ERX) (- A1+ 021+ 2)2X) (1- 5(1+1)4X)
S Boan(t) X°- LEAX 4 A X+ A X

& 941 T - CGX) 0= CiaX) (I - Coa X)(1 = Ciug X) (I = Cruna X)
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with

B+t +2)° (1 -t 437 -4 + 7t - 5t° + 106
—5t7 4+ 1068 — 587 4 7610 — 42 4 312 — 13 MYy,
Ag = =101+ 85 (1 +63)° (14+¢°) (1 — 4t 4 7t* — 11¢% + 16t — 20t°
+ 2488 — 2147 4 2415 — 2007 + 1610 — 1121 4 7e1? — 413 4 21
Az = =B (14" 1+ )5 (1452 (1 - 2t + 5t — 662 + 106" — 126° + 1745
—16t7 + 1968 — 1667 4+ 17610 — 12¢" 4 10612 — 6¢13 4 5e1 — 2415 4416y,

Ay

]

Thus the By, q(t) are polynomials for these values of n. However, we do not know an elementary
way to see this in general. Perhaps there is a “nice” closed formula for the rational function in (30)
as a sum of rational functions each of which has a sitnple numerator and a denominator consisting
of only a few (say, at most n) of the p(n} factors 1 — C» X, but we have not been able to guess
the general form of such an expression.

On the other hand, from @Q,(1/t) = —Qn(t) and the recursions one easily deduces that
Qn.a(1/t) = —Qn 4(t). Tt follows that t("z‘”(z-"‘z)Bg‘n,d(l/L) = By.a,d(t), so once we know that
By .4 is a polynomial we also know that it is monic of degree (n? —1)(2g — 2) and has symmetric
coefficients, corresponding to Poincaré duality for the smooth (n? —1)(g — 1)-dimensional manifold
Ny n,a- But even the special case By , 4(t) =1 (or Ag = 1) of this, which is geometrically obvious,

“is not at all obvious from the “explicit” formulas.

Finally, we remark that the expression (26) makes is easy to compute the Poincaré polyno-
mials on a computer. Ior instance, the Betti numbers of the 48-di:‘rlensional varieties Nz_s'l and
Na 52 (the first cases not covered by (21) - (23)) are

[1,0,1,4,3,8,11,20,32,44, 70, 100, 151,200, 281, 392, 511, 668,
841, 1064, 1283, 1496, 1680, 1828, 1918, 1828, 1680, . .. ,4,1,0, 1]

and

[1,0,1,4,3,8,11,20, 32,44, 71, 104, 158, 212, 305,432, 574,764,
977, 1256, 1532, 1792, 2031, 2212, 2304, 2212, 2031,. .. ,4,1,0,1],

respectively.
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