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The Dirichlet class number formula expresses the residue at s = 1 of the Dedekind zeta func-
tion ζF (s) of an arbitrary algebraic number field F as the product of a simple factor (involving
the class number of the field) with the determinant of a matrix whose entries are logarithms of
units in the field. On the other hand, if F is a totally real number field of degree n, then a
famous theorem by Klingen and Siegel says that the value ζF (m) for every positive even integer
m is a rational multiple of πmn. In [52] and [53], a conjectural generalization of these two re-
sults was formulated according to which the special value ζF (m) for arbitrary number fields F
and positive integers m can be expressed in terms of special values of a transcendental function
depending only on m, namely the mth classical polylogarithm function. These instances are
expected to form part of a much more general picture in which a special value of an L-series of
“motivic origin” is expressed in terms of some transcendental function. In this survey we collect
some pieces fitting into and illustrating this picture.

The paper is organized as follows.
In Part I we review the polylogarithm conjecture and survey some of the known results. The

case m = 2, which is related to volumes of hyperbolic manifolds and has a more geometric flavor,
is discussed in detail in §1. In the next two sections we formulate the conjecture for general m and
describe some of the numerical and theoretical evidence which supports it, while in §4 we discuss
a refinement involving a “lifting” from R to C /(2πi)mQ of the mth polylogarithm function. The
natural setting for all of this is algebraic K-theory and the conjectures about polylogarithms lead
to a purely algebraic (conjectural) description of the higher K-groups of fields.

In Part II we simultaneously generalize and specialize by considering partial zeta functions
ζF,A(s) (i.e. the analogue for m ≥ 1 of the famous Stark conjectures about values of L-series at
s = 1) but restricting our attention to the case where F is an imaginary quadratic field. This
case, which for m = 1 is the Kronecker limit formula, can be treated much more concretely than
the general case, both experimentally and theoretically. We describe experimental computations
for small m and results of Deninger and Levin for m = 2. An interesting aspect here is that
the existence of the above-mentioned “lifting” of the polylogarithms suggests that the partial

zeta-values D
m−1/2
F ζF,A(m) should also have a natural lifting to C /π2mQ . It turns out that this

“lifted” partial zeta-value really can be defined in a natural way (using Eisenstein series) and that
the natural conjecture “lifted zeta-value = lifted polylog value” is supported by the numerical
data (cf. §6). In this way the unproved polylogarithm conjecture leads to a definition of a new
invariant for ideal classes in imaginary quadratic number fields.

Finally, in Part III we describe the numerical and theoretical evidence for conjectures expressing
special values of L-series associated to elliptic curves in terms of “elliptic polylogarithm functions”
which are obtained by an averaging process from the classical polylogarithms. Again the natural
way to understand the results is in terms of algebraic K-theory, this time of the elliptic curve. We
also describe particularly interesting examples of the conjectural picture coming from the recent
work of Deninger, Boyd and Villegas on Mahler measures.

1Text based on the lectures given by D. Zagier at Banff
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Part I. Polylogarithms, zeta-values, and algebraic K-theory

1. Dilogarithms, hyperbolic manifolds, ζF (2) and K3(F )

Imaginary quadratic fields and Humbert’s formula. We first consider the case of an
imaginary quadratic field F = Q(

√
−d) of discriminant −d. The group SL2(OF ) acts as a

discrete group of isometries on the hyperbolic 3-space H3 , and it is well-known that

ζF (2) =
4π2

d
√
d

Vol
(
H3/SL2(OF )

)

(originally found by Humbert—modulo a gap which can be corrected [28]—in 1919, and nowadays
proved with the help of Tamagawa numbers or residues of Eisenstein series).

On the other hand, any hyperbolic 3-dimensional manifold can be triangulated, and we can
assume that the vertices of the tetrahedra are algebraic numbers. By a formula of Lobachevsky
(as given in detail in Thurston/Milnor [46]), the volume of a general hyperbolic tetrahedron can
be expressed as a combination of a fixed number (24, to be precise) of values of the Bloch-Wigner

dilogarithm

D(z) = ℑ
(
Li2(z) + log |z| log(1− z)

)
,

evaluated at arguments which are algebraic functions of the coordinates of the vertices; here Li2
is the dilogarithm function, which is given in the unit disk by

Li2(z) =
∑

n>0

zn

n2
, |z| < 1,

and can be extended analytically to a multivalued function on C − {0, 1}, while the modified
function D(z) turns out to be one-valued.

Combining these two facts, we can express ζF (2) in terms of D(z) with algebraic arguments z.
As an example, we give the case F = Q(

√
−7). Here various descriptions of the manifold H3/Γ

for some torsionfree subgroup Γ ⊂ SL2(OF ) (as a link complement, as a union of two hyperbolic
prisms, etc.) are given in [46]. We can use them to compute the volume and then, combining
with Humbert’s formula as given above, obtain e.g.

ζQ(
√
−7)(2) =

4π2/3

73/2
D(ξ7) , where ξ7 = 2

[1 +
√
−7

2

]
+
[−1 +

√
−7

4

]
. (1)

(Here and in the following we use the evident linear extension of a function on a set X to a
function on Z[X].)

For other fields the formulas quickly become rather complicated, e.g.

ζQ(
√
−23)(2) =

4π2/3

233/2
D(ξ23) , (2)

with

ξ23 = 21
[1 +

√
−23

2

]
+ 7 [ 2 +

√
−23 ] +

[3 +
√
−23

2

]
− 3
[5 +

√
−23

2

]
+ [ 3 +

√
−23 ] .
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General number fields. Now let F be a general number field of discriminant DF and
degree [F : Q ] = n = r1 + 2r2. If the number r2 of pairs of complex embeddings of F
equals 1, then a similar argument applies: we can associate to F a certain discrete subgroup
Γ ⊂ SL2(C ) and a manifold (now even compact) M = H3/Γ, with the property that Vol(M) ∼Q×

|DF |1/2π−2(n−1)ζF (2), where ∼Q× means that the term on the right is a non-zero rational mul-
tiple of the one on the left. (Take Γ to be the group of units of an order in a quaternion algebra
over F ramified at all real places.) We again deduce that |DF |1/2π−2(n−1)ζF (2) is a Q -linear
combination of values of D(x) with x ∈ Q .

For r2 > 1, we can get in the same way a discrete subgroup Γ of SL2(C )r2 such that the

quotient M :=
(
H3
)r2

/Γ has volume a rational multiple of |DF |1/2π−2(r1+r2)ζF (2). We then use
a lemma which asserts that such a quotient can be triangulated into a finite union of products
∆1 × · · · ×∆r2 where each ∆i is a tetrahedron in H3 ; the volume is therefore expressible as a
finite sum of r2-fold products of D’s with algebraic arguments. The details are given in [52].

The Bloch group. Any triangulation of a complete hyperbolic 3-manifold M provides,
together with the above-mentioned formula for the volume of a hyperbolic 3-simplex, an expression
for the volume of M in terms of dilogarithms,

Vol(M) =

N∑

i=1

D(zi)

for some zi ∈ C (we can assume the zi to actually lie in Q , considered as a subfield of C ).
An analysis of the triangulation yields that the zi occurring in the formula are always subject

to the algebraic condition ∑

i

zi ∧ (1− zi) = 0 ∈
∧2

C× . (3)

This follows, for example, from the combinatorial description of triangulations in [37] or from the
results of [18].

We reformulate this fact by stating that each pair (manifold, triangulation) produces an ele-
ment ξ ∈ A(Q ) with Vol(M) = D(ξ) , where we define for any field F

A(F ) =
{∑

ni[zi] ∈ Z[F ]
∣∣∣
∑

ni

(
zi ∧ (1− zi)

)
= 0

}

(here [1] and [0] are to be interpreted as belonging to A(F )) and the function D : C → R is
extended to Z[C ] by linearity as above. What happens when we change the triangulation? We
will get different zi’s and a different expression for the volume but the two expressions will be
obtained from one another by a finite number of applications of the five term relation

D(x) +D(y) +D
( 1− x

1− xy

)
+D(1− xy) +D

( 1− y

1− xy

)
. (4)

This relation, which was discovered many times in the 19th century (in the more complicated
version using Li2 rather than D), can be verified easily by differentiating it (w.r.t. x, say), since
the derivative of D(z) is an elementary function, but there is a prettier geometric way. The
value of a general hyperbolic tetrahedron, as already mentioned, is a sum of 24 D-values, but
the volume of an ideal tetrahedron

(
one with all its vertices in ∂H3 ∼= P1(C )

)
is equal to a single

value of D , namely D
(
r(a, b, c, d)

)
where a, b, c, d ∈ P1(C ) are the vertices and r denotes the

cross-ratio. Now if we take five points a1, . . . , a5 in P1(C ), then the “signed volume”

5∑

i=1

(−1)iVol
(
∆(a1, . . . , âi, . . . , a5)

)
=

5∑

i=1

(−1)iD
(
r(a1, . . . , âi, . . . , a5)

)
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vanishes, and this is equivalent to the five term relation. This is a special configuration, but
one can show that the effect on the volume formula of subdividing any hyperbolic simplex into
smaller pieces is also a consequence of the five term relation.

These considerations motivate defining, for any field F , the Bloch group B(F ) as the quotient

B(F ) =
A(F )

C(F )
,

where C(F ) is the group generated by the 5-term relation, i.e.

C(F ) =
{
[x] + [y] +

[ 1− x

1− xy

]
+ [1− xy] +

[ 1− y

1− xy

] ∣∣∣ x, y ∈ F, xy 6= 1
}
.

(The reader should check that C(F ) ⊂ A(F ) .) By (2), it is obvious that D is a well-defined
linear function from B(C ) to R. We have shown that to M there is associated a canonical element
ξM ∈ B(Q ), independent of the choice of triangulation, with Vol(M) = D(ξM ).

Algebraic K-theory. The discussion shows that if F is a number field with r2 = 1, then
ζF (2) equals |DF |1/2π2(n−1)D(ξ) for some ξ ∈ B(Q )⊗Q . However, much more is true: ξ actually
can be chosen to lie in the subgroup B(F )⊗Q , and there is a corresponding result also for fields
with r2 > 1. To see this, the geometric method with triangulations is inadequate and one must
use algebraic K-theory instead. To any ring R, there are associated algebraic K-groups K0(R),
K1(R) = R×, K2(R), K3(R), . . . The definition of these groups (which we will not use explicitly
and hence do not describe) is complicated and highly non-constructive. However, in the case
when R = F is a number field, Borel [9] showed that the higher K-groups, modulo torsion, are
free abelian groups of rank given by

dimQ

(
Kn(F )⊗Q

)
=

{
0, n ≥ 2 even,

n∓, n = 2m− 1 > 1, ∓ = (−1)m−1 ,

where n+ = r1+r2 and n− = r2 are the dimensions of the ±-eigenspaces of complex conjugation
on F ⊗Q R ∼= Rr1 × Cr2 . Furthermore, for each m > 1 there is a map regm : K2m−1(C ) → R

which is (−1)m−1-invariant w.r.t. complex conjugation on C , and the composite map

regm,F : K2m−1(F ) //
(
K2m−1(R)

)r1 ×
(
K2m−1(C )

)r2 regm
// Rn∓

maps K2m−1(F )/(torsion) isomorphically onto a cocompact lattice Regm,F ⊂ Rn∓ whose covol-

ume is a rational multiple of |DF |1/2ζF (m)/πmn± .
In the case n = 3, Bloch [5] gave a map between K3(F ) and B(F ), and it was shown later by

Suslin [44] that in fact the two groups are canonically isomorphic (at least up to torsion; in this
article we will consistently ignore torsion). Moreover, under this isomorphism the Borel regulator
map on K3 corresponds to the map D on B(F ), giving (the ∼ denotes an isomorphism up to
finite kernel and cokernel)

B(F )
∼ //

(D ◦ σ1, . . . ,D ◦ σr2) ""FFF
FF

FFF
K3(F )

reg2,F
{{ww

ww
ww

ww
w

Rr2

where σi : F →֒ C , i = 1, . . . , r2, denote the different complex embeddings (up to conjugation).
Together with Borel’s theorem, this yields in particular the
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Theorem. Let F be a number field with r1 real and r2 complex places. Then we have:

(1) The group B(F ) is finitely generated of rank r2.
(2) Let ξ1, . . . , ξr2 be a Q-basis of B(F ) ⊗ Q and σ1, . . . , σr2 a set of complex embeddings

(containing no pair of complex conjugate ones) of F into C . Then

ζF (2) ∼Q× |DF |1/2 · π2(r1+r2) · det
(
D
(
σi(ξj)

)
1≤i,j≤r2

)
.

It is this statement which we wish to generalize to higher zeta-values.

2. Formulation of the polylogarithm conjecture

Higher polylogarithms. We now turn to the conjectures relating K2m−1(F ) and ζF (m)
for higher values of m to the mth polylogarithm function Lim(z) =

∑
n>0 z

n/nm. The first step
is to have at our disposal a single-valued version Lm of this function generalizing the function
D =: L2. Ramakrishnan [38] showed that such a one-valued version exists, and explicit formulas
were given in [50], [54], [53]. We will use the function

Lm(z) = ℜm

(m−1∑

k=0

2kBk

k!
logk |z|Lim−k(z)

)
,

where ℜm denotes ℑ or ℜ according as m is even or odd and Bk is the kth Bernoulli number.
The series defining Lir converge exponentially for |z| < 1 and Lm(z−1) = (−1)m−1

Lm(z), so
we can easily compute Lm numerically to high accuracy. (A yet better method is indicated
in [13], Proposition 1.) Extensive experiments suggested a definition of higher Bloch groups
Bm(F ). The idea behind the definition was that, by analogy, Bm(F ) should be written as
a quotient Am(F )/Cm(F ) of a group Am(F ) of “allowable” elements (corresponding to the
condition

∑
ni

(
zi ∧ (1 − zi)

)
= 0 in the case m = 2) by a group Cm(F ) of “concrete relations”

coming from functional equations of the m-logarithm Lm (the relations in the case m = 2 being
induced by the five term relation).

Since Lm is (−1)m−1-symmetric with respect to complex conjugation, the map Lm defines
for any number field F a map Lm,F : Bm(F ) → Rn∓ and we expect the following diagram to
commute:

Bm(F )
�

�

//

∼
��

Lm,F

++WWWWWWWWWWWWWWWWWWWWWWWWWW

(
Bm(C )Σ

)
+
= Bm(R)r1 × Bm(C )r2

(
Lm,...,Lm

)

��
K2m−1(F )

regm,F

// Rn∓

Here Σ = ΣF denotes the set of embeddings F →֒ C and ( )+ the +-eigenspace with respect
to the joint action of complex conjugation on ΣF and Bm(C ), and ∓ is (−1)m−1. If this picture
is correct, then, by Borel’s theorem, the evident analogues of the above-stated theorem hold:
the vector space Bm(F ) ⊗ Q has dimension n∓ over Q , and if ξ1, . . . , ξn∓ is a basis of this

vector space, then the determinant of the matrix Lm

(
σi(ξj)

)
i,j

is a non-zero rational multiple of

|DF |1/2π−mn±ζF (m).

Definition of the higher Bloch groups. The only question is how to define the groups
Am(F ) and Cm(F ). We describe the conjectural answer which was found by numerical experi-
mentation and presented in [53]. For m = 2 the definition of Am(F ) = A(F ) can be written more
compactly as A2(F ) = ker β2, where

β2 : Z[F ]→ ∧2
F× , [z] 7→

{
z ∧ (1− z) , z 6= 1 ,

0 , z = 0, 1 .
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The next simplest case occurs for m = 3 and totally real F . Here we set A3(F ) = ker β3
where β3 is the map

β3 : Z[F ]→ F× ⊗∧2F× , [z] 7→
{

z ⊗
(
z ∧ (1− z)

)
, z 6= 1 ,

0 , z = 0, 1 .

For instance, if F = Q then, as the reader can easily check, the elements

ξ1 =
[1
2

]
, ξ2 = 2[3]− [−3] , ξ3 = 6

[2
3

]
+ 3
[3
4

]
− 3
[1
2

]
−
[8
9

]
− 2
[1
3

]
+
[
− 1

3

]

are in A3(Q), and one finds L3(ξ1) =
7
8ζ(3) , L3(ξ2) =

13
6 ζ(3) and L3(ξ3) =

67
24ζ(3) . Similarly,

if F = Q(
√
5) , then the elements [1] and

[
1+

√
5

2

]
belong to the kernel of β3 and one finds

(
L3(1) L3(1)

L3

(
1+

√
5

2

)
L3

(
1−

√
5

2

)
)

=

(
ζ(3) ζ(3)

1
10ζ(3) +

25
48

√
5L(3, χ5)

1
10ζ(3)− 25

48L(3, χ5)

)

which has determinant − 25
24

√
5 ζ(3)L(3, χ5) = − 25

24

√
5 ζF (3) .

(
Here L(s, χ5) denotes the L-

series of the quadratic character χ5 associated to Q(
√
5) .
)
We can instead choose a basis like

ξ+ =
[
1+

√
5

2

]
+
[
1−

√
5

2

]
and ξ− = [2−

√
5]− [2+

√
5]+3

([
1+

√
5

2

]
−
[
1−

√
5

2

])
, with ξ+ invariant and

ξ− anti-invariant under Gal(F/Q); then L3(ξ+) is a rational multiple (= 1
5 ) of ζ(3) and L3(ξ−)

a rational multiple (= 75
32 ) of

√
5L(3, χ5), and this choice of basis diagonalizes the matrix.

For general number fields the condition ξ ∈ ker(β3) turns out (experimentally) to be no longer
sufficient to make ξ land in a lattice with the desired properties, and in fact one needs a further
condition, as was pointed out by Deligne. Observe first that if ξ =

∑
ni[xi] ∈ ker(β3) , then for

every homomorphism φ : F× → Z the element ιφ(ξ) :=
∑

niφ(xi)[xi] ∈ Z[F ] belongs to A(F ) =
ker(β2). The needed extra condition is that ιφ(ξ) in fact belongs to the subgroup C(F ) ⊂ A(F ).
This is not a restriction for F totally real since then A(F )/C(F ) ∼= K3(F ) ∼= Zr2 = {0} , but in
the general case we obtain a group

A3(F ) :=
{
ξ ∈ Z[F ]

∣∣∣ ιφ(ξ) ∈ C(F ) for all homomorphisms φ : F× → Z

}

which is a proper subgroup of ker(β3).
We now make the analogous definition for all m, setting

Am(F ) :=
{
ξ ∈ Z[F ]

∣∣∣ ιφ(ξ) ∈ Cm−1(F ) ∀φ ∈ Hom(F×,Z)
}
. (5)

This inductive definition requires knowing the previous “C”-group. The subgroup Cm(F ) is sup-
posed to be the group generated by the functional equations of Lm, just as C(F ) was generated
by the five term relation. However, though one can give a formal definition based on this idea (see
“Functional equations” below), it is not effective since the functional equations of the higher poly-
logarithms are not known explicitly. We therefore give a practical (i.e. numerically computable)
definition of Cm(F ) for number fields F as

Cm(F ) :=
{
ξ ∈ Am(F )

∣∣∣ Lm

(
σ(ξ)

)
= 0 ∀σ ∈ ΣF

}
. (6)

We can then formulate the polylogarithm conjecture for arbitrary m:
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Conjecture. Let F be a number field. Then the image of the map

Lm,F : Am(F ) 7−→ Rn∓

is commensurable with the Borel regulator lattice Regm,F ⊂ Rn∓ . In particular,

(1) The group Bm(F ) := Am(F )/Cm(F ) is finitely generated of rank n∓.
(2) Let ξj (1 ≤ j ≤ n∓) be a Q-basis of Bm(F )⊗Q and σi (1 ≤ i ≤ n∓) run through Σ. Then

ζF (m) ∼Q× |DF |1/2 · πmn± · det
(
Lm

(
σi(ξj)

)
1≤i,j≤n∓

)
. (7)

We will discuss the evidence for this conjecture in §3. In the rest of this section we mention
some supplementary aspects of its formulation.

Functional equations. The definition of Cm(F ) which was given above leads to a for-
mulation of the polylogarithm conjecture which can be tested numerically, but is rather artificial
and works only for number fields. As already mentioned, Cm(F ) should really be defined as “the
group of all functional equations of the m-logarithm.” We explain here how to do this. The
new (and presumably equivalent) definition works for all fields and fits more naturally into a
cohomological framework.

It is easy to see by induction that Am(F ) defined above is always a subgroup of the kernel of
the map

βm = βm,F : Z[F ]→ Symm−2F× ⊗∧2F× , [z] 7→
{

z⊗(m−2) ⊗
(
z ∧ (1− z)

)
, z 6= 1 ,

0 , z = 0, 1 .

The “homotopic” definition of Cm(F ) is then

C∗
m(F ) =

{
ξ(1)− ξ(0)

∣∣ ξ(t) ∈ ker(βm,F (t))
}
.

One can show [53, Prop. 1, p. 411] that an element ξ(t) ∈ Z[F (t)] is in the kernel of βm,F (t)

if and only if the map t 7→ Lm

(
ξ(t)

)
is constant, so that the elements of C∗

m(F ) really are the
specializations to F of all functional equations of Lm. Clearly C∗

m(F ) ⊆ Cm(F ), but the equality
is known only for m = 2.

It is highly non-trivial to find functional equations for Lm. Kummer [30] gave special equations
for m = 3, 4, 5. Goncharov [23] found a functional equation in 3 variables for L3 which has a
beautiful geometric interpretation in terms of configurations and is believed to generate C ∗

3 (i.e.,
to play the same role for the trilogarithm as does the five term relation for the dilogarithm).
Examples of functional equations for higher m (up to m = 7) were given in [20]. A typical
example for m = 6 (cf. also [55]) is

∑

(a,b)∈T

na,b

µa,b

∑

w∈W
z∈Z

L6

((w
z

)a(1− w

1− z

)b)
= (independent of y) ,

where x and y are independent variables,

T =
{
(−2, 3), (−2, 1), (1,−2), (1, 1), (1, 0), (0,−1), (−1, 1)

}
,

W =
{
x(1− x),− (1− x)

x2
,− x

(1− x)2

}
, Z =

{
y, 1− y,

1

1− y
,

y

y − 1
,
y − 1

y
,
1

y

}
,

and the coefficients nab and µab are defined by
∑

(a,b)∈T

nab(aX + bY )5 = 0 ∈ Z[X,Y ] , µab = log2(1 + ab+ a2 + b2) .

For m > 7, however, only the “trivial” (distribution and inversion) relations are known.
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Goncharov’s complexes. The definition of Am(F ) can be written more elegantly as

Am(F ) = ker
(
Z[F ]

ι−→ F× ⊗ Z[F ]/Cm(F )
)
,

where ι : Z[F ]→ F×⊗Z[F ] maps [x] to x⊗ [x] and [0] to 0. The group Bm(F ) = Am(F )/Cm(F )

then becomes ker
(
Gm(F )

∂−→F× ⊗ Gm−1(F )
)
, where Gm(F ) = Z[F ]/Cm(F ) and ∂ is the map

induced by ι. More generally, Goncharov [23]
(
using the notation Rm(F ) for our Cm(F ) and

Bm(F ) for our Gm(F )
)
has defined for any field F the complex

Gm(F )
∂−→ F×⊗Gm−1(F )

∂−→ ∧2
F×⊗Gm−2(F )

∂−→ . . .
∂−→ ∧m−2

F×⊗G2(F )
∂−→ ∧m

F×

where ∂ maps x1 ∧ · · · ∧ xr ⊗ [x] to x1 ∧ · · · ∧ xr ∧ x ⊗ [x]
(
except in the last step, where

x1 ∧ · · · ∧xm−2⊗ [x] is mapped to x1 ∧ · · · ∧xm−2∧x∧ (1−x)
)
. The cohomology of this complex

at the first point is then Bm(F ), and Goncharov sharpens the conjecture of [53] to say that the
cohomology groups of the complex give the graded pieces of a certain natural filtration on the
algebraic K-groups, the Adams filtration. Of course, this only makes sense with the algebraic
definition of Cm(F ) in terms of functional equations, because the “practical” definition (6) applies
to number fields only. Since the Adams filtration in the case of a number field is trivial after the
first step, we can test Goncharov’s conjecture in this case by testing the exactness of the above
complex. The first non-trivial case is that

G4(F )
∂−→ F× ⊗ G3(F )

∂−→ ∧2
F× ⊗ G2(F )

should be exact. This has been checked experimentally for F = Q in [21], confirming the expected
result.

Connection to hyperbolic volumes for m > 2. The connection to hyperbolic volumes
in the case m = 2 does not simply extend to higher m. It is known by results of Schläfli that the
formula for the volume of a hyperbolic 2m-simplex reduces to the formula for dimension 2m− 1,
so the volume of a 4-dimensional simplex can be expressed in terms of D. For hyperbolic simplices
of dimension 5 and 6 it has been established that the volume can be expressed as a sum of values
of trilogarithmic expressions (Böhm [8] (implicitly), Müller [36] (in principle, but with missing
terms) and Kellerhals [29], cf. also Goncharov [24]). The volume of the 7-simplex, though, is
not expressible in terms of Li4 alone (Goncharov, private communication). However, Goncharov
conjectures [24] that the volume of any hyperbolic manifold of finite volume in dimension 2m− 1
or 2m should be expressible in terms of Lm.

3. Evidence for the conjecture

Numerical evidence. The conjecture in the form given in §2 can be tested experimentally.
Starting from m = 2, we inductively want at each stage that (i) the images under Lm,F of the
combinations found span a lattice, i.e. a discrete subgroup of Rn∓ of maximal rank, and (ii) the
covolume is a simple multiple of ζF (m). The discreteness means that we can check numerically
whether a given element of Am belongs to Cm (its coordinates with respect to a Z-basis of the
lattice are integers, so can be checked to vanish by a low accuracy calculation), and this is just
what we need to compute the next group Am+1(F ) and check that it again satisfies (i); and (ii)
then provides a further test of the conjecture if the value of the zeta function is known.

Note that for a given element ξ =
∑

ni[xi] ∈ Z[F×] there are only finitely many conditions
to be tested to determine whether ξ belongs to Cm(F ), since in (6) one can restrict to φ running
over a basis of Hom(G,Z), where G ⊂ F × is the group generated by the xi. More precisely, if we
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fix subgroups G ⊆ G′ ⊂ F× of ranks r and r′, respectively, and denote by X the set of all x ∈ G
with 1− x ∈ G′, then the number of conditions for an element ξ ∈ Z[X] to lie in Am(F ) is

(
r +m− 2

m− 1

)
r′ −

(
r +m− 1

m

)
+

m−2∑

k=1

(
r + k − 1

k

)
n(−1)m−k−1 , (8)

and the number of conditions for ξ to lie in Cm(F ) is given by the same expression but with the
sum starting at k = 0.

(
The first two terms give the rank of Symm−1(X)⊗X ′/Symm(X) which

is isomorphic to the target space of the map βm in Symm−2(X) ⊗ ∧2(X ′).
)
This expression is

polynomial in r and linear in r ′, and a theorem of Erdős–Stewart–Tijdeman ([19]; cf. also [53,
p. 425ff] or [55, p. 390ff]) guarantees that the cardinality of X grows much faster than this (at
least for F = Q , but experimentally for all number fields), so that in practice we can always find
enough elements to generate the full lattice and test the conjecture.

This inductive process has been successfully carried out numerically in thousands of cases.
Some examples will be described at the end of the section.

Compatibility with Galois descent. A consequence of the conjecture and the well-
known Galois descent for K-groups is the corresponding property for higher Bloch groups, i.e.
Bm(F ) = Bm(E)G for a Galois extension E/F with Galois group G, and this property, which is
highly non-trivial, can be checked in examples. For instance, consider F = Q(

√
−7) ⊂ E = Q(ζ7)

with G = Z/3Z. The element [ζ7] trivially belongs to Am(E), so its trace ξcyc = [ζ7]+[ζ27 ]+[ζ47 ] ∈
Bm(E)G should be equal to an element of Bm(F ), which can be checked experimentally by
computing its image in R under the map Lm. For m = 2 we can check explicitly that ξcyc is
equal modulo the five term relation to 4

7ξ7 with ξ7 as in (1). Other examples will be given in §5.

Compatibility with Lichtenbaum’s conjecture. Assuming both the conjecture above
and Lichtenbaum’s conjecture (which interprets the quotient of ζ-value and regulator in terms of
orders of K-groups) it is possible to not only verify inductively the above picture with computer
experiments but it also allows to conjecturally predict orders of higher K-groups (cf. [11], [22],
where the orders predicted agree with the few theoretical results known) and has moreover proved
useful to detect a mistake in a proof concerning Lichtenbaum’s conjecture.

Cyclotomic fields. Let F = Q(ζN ), N > 2. Here n+ = n− = 1
2φ(N) (Euler φ-function).

Take the ξj to be [ζ lN ] (1 ≤ l ≤ N/2, (l,N) = 1). Clearly ξj is in Am(F ) for all m (since ζ lN is
torsion in F×) and formula (7) is true in this case, as one sees by a standard calculation (cf. [53,
p. 421ff]) using three facts:

i) The Dedekind zeta function ζF (s) is the product of L(s, χ) with χ running over all primitive
Dirichlet characters of conductor dividing N ,

ii) For a primitive character χ of conductor f , we have

L(m,χ) =

∞∑

n=1

χ(n)

nm
=

1

G(χ̄)

∞∑

n=1

f∑

r=1

χ̄(r) e2πirn/f

nm
=

1

G(χ̄)

f∑

r=1

χ̄(r)Lim
(
e2πir/f

)
,

where G(χ̄) =
∑f

r=1 χ̄(r)e
2πir/f denotes the Gauss sum associated to χ̄.

iii) The Frobenius formula

det
(
tgh−1

)
g,h∈G

=
∏

χ∈Hom(G,C× )

∑

g∈G

χ(g)tg ,

valid for any finite abelian group G and complex numbers (tg)g∈G.

9



Abelian fields. If F is abelian, then one obtains a partial result. By the Kronecker-Weber
theorem, F is a subfield of some cyclotomic field E = Q(ζN ). The Dedekind zeta function of F
still splits as

∏
χ L(s, χ) where χ runs over a certain set of primitive characters

(
namely those

which are trivial on Gal(E/F ) ⊂ Gal(E/Q) = (Z/NZ)×
)
. The same calculation as for the

cyclotomic case then gives us a lattice contained in Bm(E)Gal(E/F ) of the expected rank n∓(F )
and which maps under Lm,F to a lattice in Rn∓ of the desired covolume.

General theoretical results. Finally, there are two main theoretical results in support of
the conjecture. First of all, Beilinson and Deligne [4] and, independently, de Jeu [17] have shown
that we can map the higher Bloch groups (in a somewhat different version than the one presented
here) to the corresponding higher K-groups, and that the Borel regulator map in K-theory really
is given by the polylogarithms. In particular, this suffices to show that there is a Q -linear relation
among the polylogarithms of any n∓+1 elements of the mth Bloch group. What is not known in
general is the surjectivity, hence the expressibility of ζF (m) as a determinant of polylogarithms.
In what is certainly the most important progress towards the general conjecture, Goncharov [23]
proved this surjectivity for the case m = 3. He also gave an explicit functional equation for
the function L3(z) with 22 terms in 3 variables which is believed to be the universal functional
equation describing the subgroup Cm(F ) in this case.

Examples. We illustrate the numerical procedure described at the beginning of the section.
Example 1. The statement of the conjecture is non-trivial even for F = Q , although

the mere expressibility of the zeta-value in terms of polylogarithms is uninteresting in this case
because ζ(m) is a rational multiple of πm for m even and equals Lm(1) for m odd. We illustrate
a non-trivial verification up to the level of the 7-logarithm. Choose G = 〈−1, 2, 3〉 and G ′ =
〈−1, 2, 3, 5, 7〉. On the one hand, there are (at least) 29 rational numbers x1 = 1

3
, x2 = − 1

3
,

x3 = − 1
9 , . . . x29 = − 2

243 satisfying x ∈ G and 1 − x ∈ G′. On the other hand, the number of
conditions imposed on A7(Q) by formula (8) with r = 2, r′ = 4, and m = 7 is 28, so we must
get at least one element ξ =

∑
ni[xi] in A7(Q). In fact, we find exactly one such combination

(the coefficients, given explicitly on p. 386 of [55], are integers of up to 12 digits), and evaluating
L7(ξ) we find to very high accuracy a (huge) integer multiple of 1

96ζ(7).

Example 2. A yet more impressive example is given in [13], where elements of the lattice
Am(F ) are computed up to m = 16 for a field F of degree 10, namely the field generated by
Lehmer’s famous Salem number α (the algebraic number of conjecturally minimal height). Here
the group G is taken to be the group of rank 1 generated by −1 and α (i.e., this example is a
so-called “ladder”), while G′ is a group of small rank (generated by the units and a few small
primes) which is chosen to contain many elements of the form 1± αi. At each stage, the (many)
elements in Am(F ) found give vectors in Rn∓ (with n+ = 6, n− = 4) lying, within an accuracy of
several hundred digits, in a lattice of the right rank. If we had missed a condition in the “correct”
definition of Am(F ), it is very likely that it would have shown up before the level m = 16. Very
recently, Bailey and Broadhurst [1] extended this example one level higher, to the 17-logarithm.

Example 3. The third example, another ladder, is simpler than the two previous ones and
will be used again later, so we give it in more detail. Let F = Q(θ), where θ3 − θ− 1 = 0, be the
cubic field of discriminant −23. Here r1 = r2 = 1. We denote by σj (0 ≤ j ≤ 2) the embeddings

F →֒ C sending θ to θ0 = 1.32471 . . . (the real root), θ1 =
θ0
2

(
− 1 +

√
−23

2θ0 + 3

)
, and θ2 = θ̄1,

respectively. Let G (=the group of units in F ) be the group generated by −1 and θ. The six
elements

x0 = 1, x1 = θ, x2 = −θ, x3 = θ3, x4 = −θ4, x5 = θ5

(and of course their inverses) have the property that both x and 1 − x belong to G. (We could
also include x6 = θ2, but because of the “distribution relation” 21−m

Lm(θ2) = Lm(θ) +Lm(−θ)
10



it would not add anything new.) Since G has rank 1, each xi ∧ (1 − xi) (1 ≤ i ≤ 5) vanishes
(up to torsion), giving 6 elements αi = [xi] (0 ≤ i ≤ 5) in A2(F ). The conjecture says that each
D(σ1(αi)) = D(σ1(xi)) should be a rational multiple of π−4233/2ζF (2), and in fact we find

D
(
σ1(αi)

)
= λi ·

3 · 233/2
8π4

ζF (2) , (λ0, . . . , λ5) = (0, 1,−2, 2, 1,−1) . (9)

(As already mentioned, polylogarithms can be computed rapidly using the formulas in [13]. We
will indicate in §5 how to compute ζF (s) to high accuracy. It is easy to check directly that αi

equals λiα1 in the Bloch group.)

At the next stage, the condition for
∑5

i=0 niαi∈B3(F ) is that the element
∑

niεiαi ∈ A2(F )
should map to 0 in B2(F ), i.e.

∑
niεiλi = 0, where ε0, . . . , ε5 = 0, 1, 1, 3, 4, 5 denote the exponents

in xi = ±θεi . This gives five non-trivial elements βj = [xj ]− λjεj [x1] in A3(F ). We find

L3

(
σ0(βj)

)
= µj ·

ζ(3)

3
+ νj ·

235/2

144π3

ζF (3)

ζ(3)
, L3

(
σ1(βj)

)
= µj ·

ζ(3)

3
− νj ·

235/2

288π3

ζF (3)

ζ(3)
,

with

(µj)j=0,2,...,5 = (3, 0, 3, 2, 1) , (νj)j=0,2,...,5 = (0, 3,−15,−13, 13) .

Thus, in accordance with the conjecture, the elements which we have found in B3(F ) lie in a
2-dimensional lattice Z ξ1 + Z ξ2 with ξ1 = β0 = [1], ξ2 = β5 − 4β2 = [x5]− 4[x2]− 3[x1] and

∣∣∣∣∣∣

L3

(
σ0(ξ1)

)
L3

(
σ0(ξ2)

)

L3

(
σ1(ξ1)

)
L3

(
σ1(ξ2)

)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ζ(3) ζ(3)
3 + 235/2

144π3

ζF (3)
ζ(3)

ζ(3) ζ(3)
3 − 235/2

288π3

ζF (3)
ζ(3)

∣∣∣∣∣∣
∼
Q×

π−3
√
23 ζF (3) .

We now have three linear combinations [x3]+5[x2]+4[x1]− [x0], 3[x4]+13[x2]+14[x1]−2[x0]
and [x5] + [x4] + [x1] − [x0] of the βj belonging to ker(L3,F ). In order to deduce elements in
A4(F ) from them, we first eliminate [x0] by taking appropriate linear combinations and then
formally replace [xi] by

1
εi
[xi] (“pseudo-integration with respect to θ”). We are left with γ4 =

9[x4]− 8[x3] + 36[x2] + 72[x1] and γ5 = [x5]− 4[x4] + 3[x3]− 46[x2]− 57[x1], which are mapped

by L4 ◦σ1 to
3

128

237/2

π4

ζF (4)

ζ(4)
and 0, respectively. Finally, by “pseudo-integrating” γ5, we obtain

the combination δ5 = 1
5 [x5]− [x4]+ [x3]− 46[x2]− 57[x1] ∈ A5(F )⊗Q , and the elements [x0] and

5(δ5 − [x0]) in A5(F ) map under L5,F to ζ(5) · (1, 1) and 1

128

239/2

π5

ζF (5)

ζ(5)
· (−2, 1), respectively.

4. The “enhanced” polylogarithm

The enhanced regulator lattice. The regulator map regm : K2m−1(C ) → R is known
to have a natural lift to C /Q (m), and one can show (cf. [3]) that also the polylogarithm map
Lm : Bm(C ) → R enjoys this property (here we adopt the usual notation Q(m) = (2πi)mQ).
We will call this lifted function, whose explicit definition will be described in this section, the

enhanced polylogarithm and denote it by L̂m. If F is a number field, then we can combine L̂m as

before with the embeddings F →֒ C to get a map L̂m,F from Bm(F ) to
(
C /Q (m)

)Σ
+
. Moreover,

the construction of L̂m is such that the indeterminacy on Bm(F ) has bounded denominator, i.e.

N · L̂m,F takes values in
(
C /Z(m)

)Σ
+

for some integer N = N(m,F ). Note that
(
C /Z(m)

)Σ
+

is

topologically the product of the Euclidean space Rn∓ with a torus
(
R/(2π)mZ

)n±
. The inverse
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image under the projection Rn = CΣ
+ →

(
C /Z(m)

)Σ
+

of the image of Am(F ) under N · L̂m,F is

then a cocompact lattice R̂m,F ⊂ Rn ;

0 → Z(m)n± −→ R̂m,F −→ N · L̂m,F

(
Am(F )

)
−→ 0

‖ ⋂ ⋂

0 → Z(m)n± −→ Rn −→ Rn∓ ×
(
R/Z(m)

)n± −→ 0

The regulator lattice Rm,F discussed in §2 had rank n∓. The new (“enhanced”) lattice R̂m,F

has rank n = n++n− and is (up to commensurability, as usual) the semi-direct product of Rm,F

by the lattice Z(m)n±. In particular, its covolume contains no new information since it is, up

to a rational factor, just πmn± times the covolume of Rm,F : The fact that the lattice R̂m,F

is a semidirect product means that the torus Rn/R̂m,F is a torus bundle over Rn∓ /Rm,F with

fibre
(
R/Z(m)

)n±
, and the volumes multiply. Equivalently, the matrix representing R̂m,F with

respect to the standard basis of Rn has the form

(
(2π)mIn± ∗

0 matrix of Rm,F

)
,

so the determinant is just (2π)mn± times the previous determinant. The enhanced lattice is
nevertheless of interest, for several reasons:

(1) It contains more information, as described by the off-diagonal block, whose elements are
in general non-trivial (see example below).

(2) It gives a more elegant formulation of the main conjecture since the covolume of R̂m,F is

now a rational multiple of |DF |1/2ζF (m), without the extra factor πmn± .
(3) One may sometimes have an independent construction of a candidate for the regulator

lattice, and if this candidate also has an enhanced version then one can study the stronger
conjecture that the enhanced lattices agree. We will see an example of this in §7.

Summarizing the above, we have

Using the mth enhanced polylogarithm on the Bloch group, we can associate to any number

field F of degree n a regulator lattice R̂m,F ⊂ Rn for every m ≥ 2 whose covolume is given (up

to a rational number) by the value |DF |1/2 ζF (m) .

Lifting the dilogarithm. We describe explicitly how to construct the enhanced polylog-

arithm L̂m in the case m = 2. The first observation is that the ambiguity of the many-valued
function

F (u) = Li2(e
u)− uLi1(e

u) , (u ∈ C )

is contained in Z(2) = (2πi)2Z. (Here Li2(e
u) and Li1(e

u) are to be defined by analytic contin-
uation along the same path.) This is because the derivative of F is the meromorphic function
u/
(
1− e−u

)
, which has only simple poles (at u = 2πin, n ∈ Z) with residue (= 2πin) in 2πiZ.

We can think of F as a holomorphic function on C −
(
2πiZ − {0}

)
with values in C /Z(2). It

satisfies the functional equations

F (u) + F (−u) =
π2

3
+

u2

2
(10)

(Proof: both sides have derivative u and equal
π2

3
at 0) and

F (u+ 2πi) − F (u) = 2πi log(1− eu) ∈ C /(2πi)2Z (11)
12



(Proof: both sides have derivative
2πi

1− e−u
and vanish at −∞). The well-definedness of F modulo

Z(2) says that the combination Li2(x) − log(x)Li1(x) becomes well-defined modulo Z(2) as
soon as we choose a branch of log(x) , i.e. a lift of x to the abelian cover {u ∈ C | eu 6= 1} of
C − {0, 1}, and hence that Li2 itself is well-defined modulo Z(2) on the maximal abelian cover
X = {(u, v) ∈ C2 | eu + ev = 1} of C − {0, 1}(=P1(C ) − {0, 1,∞}). Instead of Li2 we use the

function F̂ : X → C /Z(2) defined by

F̂ (u, v) = F (u)− 1

2
uv .

Its ambiguity with respect to changes of the logarithmic determinations u and v is given by

F̂ (u+ 2πir, v + 2πis) = F̂ (u, v) + πi(rv − su) + 2π2rs (r, s ∈ Z) . (12)

and its imaginary part is given by:

ℑ
(
F̂ (u, v)

)
= D(eu) +

1

2
ℑ(uv) , (13)

as one easily verifies.
If we now consider an element ξ =

∑
nj [xj ] of ker(β2), form the group G = 〈xj , 1−xj | j〉 and

choose an arbitrary lifting of each xj to X, i.e. choose a logarithm uj of xj and a logarithm vj of

1−xj for each j, then the complex values uj and vj all belong to the group Ĝ = {t ∈ C | et ∈ G},
a free Z-module of rank =rk(G) + 1. (Here, as earlier, G is the subgroup of C× generated by all
the xj and 1− xj .) The property

∑
nj

(
xj ∧ (1− xj)

)
= 0 now becomes

∑
nj (uj ∧ vj) = 2πi ∧A ∈ ∧2

(Ĝ) ,

with A ∈ Ĝ being well-defined modulo the subgroup 2πiZ ⊂ Ĝ. We define the “enhanced
dilogarithm” by

D̂(ξ) =
∑

njF̂ (uj , vj)− πiA ∈ C /2π2Z .

Notice that we have taken the range of D̂ to be C /2π2Z rather than C /4π2Z, because A is defined
only modulo 2πiZ. It is easily verified that replacing u j and vj by uj + 2πirj and vj + 2πisj for

some integers rj , sj changes A to A+2πi
∑

nj(rjvj −sjuj). Formula (12) then implies that D̂(ξ)

is independent of the chosen lifting (uj , vj) of xj , while formula (13) gives ℑ(D̂(ξ)) = D(ξ), since∑
nj ℑ(ujvj) = 0. The 5-term relation for D automatically remains valid for D̂. The function D̂

is then our desired lifting of D : B2(C ) → R to C /2π2Z.

If we look at an element ξ =
∑

nj [xj ] with all xj real, then D̂(ξ) is real by (13) and because
D(x) = 0 for x real. Modulo π2/2 it is given by

D̂(ξ) =
∑

j

nj R(xj) (mod π2/2) ,

where R : R → R is the Rogers dilogarithm function, defined by the formulas

R(x) =





Li2 +
1
2 log(x) log(1− x) if 0 < x < 1,

π2/3−R(1/x) if x > 1,

−π2/6 +R(1/(1 − x)) if x < 0,
13



together with the values R(0) = 0, R(1) = π2/6 dictated by continuity. We have R(−∞) =
−π2/6, R(+∞) = π2/3, so that R gives a continuous function from P1(R) = R∪{∞} to R/12π

2Z .
Thus, in the case of real arguments there is a version of the real part of the dilogarithm which is
defined modulo π2/2 even for single arguments x and we gain only a factor of 4 by considering
elements of A2(R), whereas in the complex case there is no lifting of individual dilogarithms at
all and it is only on the subgroup A2(C ) of Z[C ] that we get a lifting of the real part of the
dilogarithm to the quotient of R by a lattice of rank 1.

Example. We return to Example 3 of §3. There we gave six elements αi ∈ A2(F ), each of

which is mapped to 0 under D̂◦σ0 and to a rational multiple of π−4
√
23 ζF (2) under D̂◦σ1. Let us

consider the image of one of these elements, say α1 = [θ], under the enhanced dilogarithm. (The
other αj give nothing new since αj = λjα1 in the Bloch group.) Let t0 = log θ0 = 0.281199 . . . ,
t1 = log θ1 = −0.140599 . . . + 2.437734 . . . · i. We have 1 − θ = −θ−4, so for the real embedding
we can take u = t0, v = −4t0 + πi, obtaining

D̂
(
σ0(α1)

)
= F̂ (t0,−4t0 + πi) +

πit0
2

= F (t0) + 2t20 = R(θ0) = 2.10466 . . . ,

and similarly for the complex embedding

D̂
(
σ1(α1)

)
= F̂ (t1,−4t1 + πi) +

πit1
2

= −11.7444041862 . . . + 0.471353681388 . . . · i .

Note that the original regulator lattice R2,F ⊂ R is the rank 1 group generated by the real value

D(θ1) = ℑ(D̂(θ1)), whereas the new lattice R̂2,F ⊂ R × C is generated by the three vectors(
D̂(θ0), D̂(θ1)

)
, (π2, 0) and (0, π2), and (presumably) does not split over Q into the product of

sublattices of R and C , since the ratio of D̂(θ0) and π2 is (presumably) not a rational number.

(We do, however, have the relation D̂(θ0) + D̂(θ1) + D̂(θ2) = −13π2/6.)

Remark. We saw in §1 above that by triangulating a hyperbolic 3-manifold M one gets
a well-defined element ξM ∈ B(C ) whose image under D is the value of M . The enhanced

dilogarithm D̂ then gives us a finer invariant D̂(ξM ) whose imaginary part is the volume of M
and whose real part is a well-defined number in C /2π2Z. According to a suggestion of Thurston,
it should be (up to a normalizing factor) the Chern-Simons invariant of M . Cf. [47], [37], [51].

Lifting the polylogarithm. We begin by giving a different formula for the enhanced
dilogarithm which is less precise than the above (it is defined modulo π 2Q only instead of 2π2Z)
but is simpler and easier to generalize. For any complex number U congruent to log x modulo
2πiQ , we set

F(x,U) = Li2(x)− ULi1(x) = F (u)− (U − u)Li1(x) ∈ C /Q (2) ,

where u is any choice of logarithm of x. This is well-defined for a given choice of u because
U−u ∈ 2πiQ and the ambiguity of Li1(x) lies in 2πiZ, and it is independent of the choice of u by
(11). If now ξ =

∑
nj [xj ] is any element of ker(β2), and if Uj and Vj are any complex numbers

satisfying
Uj ≡ log xj (mod Q(1)) , Vj ≡ log(1− xj) (mod Q(1))

(rather than actual choices of log xj and log(1 − xj) like our previous uj , vj), and if we define
A ∈ C×/Q(1) by

∑
nj(Uj ∧ Vj) = 2πi ∧ A as before, then one checks immediately that the

expression

L̂2(ξ) :=
∑

j

nj

(
F(xj , Uj)−

1

2
UjVj

)
− πiA ∈ C /Q (2)

14



is independent of the choices of Uj and Vj and is the reduction modulo Q(2) of the previously

defined invariant D̂(ξ) ∈ C /12Z(2). The advantage of the new construction is that there is a
way of choosing Uj and Vj for which the number A automatically vanishes, leading to a simpler
definition. Let L be any homomorphism C× → C satisfying

L(x) ≡ log(x) (mod Q(1)) ∀x ∈ C× ,

i.e. L is any lift

C

��

C×

L

33hhhhhhhhhhhhh // C×/torsion oo
exp

∼
C /Q (1)

(Defining such a lift on all of C× would require the axiom of choice, but we will only ever be using
its restriction to a finitely generated subgroupG ⊂ C×—specifically, the group generated by the xj

and 1−xj for all xj occurring in some elements of the Bloch group of a number field—and then the
lift can be defined simply by splittingG as the sum of a free abelian and a finite group and choosing
arbitrary logarithms of the generators of the free part.) Then with the choices Uj = L(xj),

Vj = L(1− xj), we find immediately that the condition
∑

nj

(
xj ∧ (1 − xj)

)
= 0 ∈ ∧2

(C×)⊗ Q

implies A = 0, so we can define L̂2(ξ) simply as

L̂2(ξ) :=
∑

j

nj

(
F
(
xj ,L(xj)

)
− 1

2
L(xj)L(1− xj)

)
∈ C /Q (2) .

We can now generalize this to higher m. The function F (u) is replaced by

Fm(u) =
m−1∑

n=0

(−u)n

n!
Lim−n(e

u) ,

whose derivative
(−1)m

(m− 1)!

um−1

1− e−u
has residues in

1

(m− 1)!
Z(m− 1) and which therefore is a

well-defined holomorphic map from C to C
/ 1

(m− 1)!
Z(m− 1). Its change under u 7→ u+ 2πi is

given by

Fm(u+ 2πi) =
m−1∑

n=0

(−2πi)n

n!
Fm−n(u) ,

and using this we can check that the expression

Fm(x,U) =

m−1∑

n=0

(log x− U)n

n!
Fm−n(log x) ∈ C /Q (m)

(
U ∈ C , U ≡ log x (mod 2πiQ)

)
,

is independent of the choice of log x. In fact we can define Fm(x,U) directly, without choosing
log x at all.

Proposition 1. Let x ∈ C − {0, 1} and U ∈ C with U ≡ log(x)(mod Q(1)). Then the quantity

Fm(x,U) =

m−1∑

n=0

(−U)n

n!
Lim−n(x) ,

15



where all the polylogarithms Lim−n(x) are defined by analytic continuation along the same path,
is well-defined. The effect of changing U is given by the formula

Fm(x,U + λ) =

m−1∑

n=0

(−λ)n

n!
Fm−n(x,U)

(
λ ∈ Q(1)

)
. (14)

Proof: The polylogarithm can be written as

Lim(x) =
1

(m− 1)!

∫ ∞

0

tm−1dt

x−1et − 1

(Proof: for |x| < 1 expand
1

x−1et − 1
in a geometric series and integrate term by term), so

Fm(x,U) =
1

(m− 1)!

∫ ∞

0

(t− U)m−1dt

x−1et − 1
.

The many-valuedness of this comes only from the choice of path of integration from 0 to ∞, and
since the residues {(t−U)m−1 | et = x} of the integrand are all in Q(m−1), the ambiguity which
this produces is contained in Q(m), as asserted (and in fact with a controlled denominator: at
most Nm−1(m− 1)! if xe−U is an N th root of unity). The second statement of the proposition
is an immediate consequence of the integral representation. �

We now define the enhanced polylogarithm for ξ =
∑

nj [xj ] ∈ Am(C ) by

L̂m(ξ) =
∑

j

nj

(
Fm

(
xj ,L(xj)

)
− (−1)m

m!
L(xj)

m−1L(1− xj)
)
,

where L as before is any lift to C of the logarithm map C× → C /Q (1).

Proposition 2. Let ξ ∈ Am(C ), m ≥ 2. Then:

(i) The value of Lm(ξ) is independent of the choice of L .

(ii) ℜm

(
L̂m(ξ)

)
= Lm(ξ) .

(iii) Lm(ξ) = 0 if ξ ∈ Cm(C ) .

Proof: We prove only (i), the ideas for (ii) and (iii) being similar. We must show that the

number L̂
∗
m(ξ) obtained by replacing L by L∗ = L + λ, where λ is a homomorphism from C× to

Q(1), is equal to L̂m(ξ) (modulo Q(m)) for ξ ∈ Am(C ). We have

L∗(x)m−1L∗(1− x)− L(x)m−1L(1− x)

≡
m−2∑

n=0

(
m− 1

n

)
L(x)nλ(x)m−n−1L(1− x) +

m−1∑

n=1

(
m− 1

n

)
L(x)nλ(x)m−n−1λ(1− x)

=
m−1∑

n=1

(
m− 1

n

)
L(x)n−1λ(x)m−n−1

(
L(x)λ(1− x)− L(1− x)λ(x)

)

+

m−1∑

n=1

(
m

n

)
L(x)n−1λ(x)m−nL(1− x) ,
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where ≡ denotes congruence modulo Q(m) and in the second line we have used the identity(
m−1
n−1

)
+
(
m−1
n

)
=
(
m
n

)
. From this and (14) it follows that

L̂
∗
m(ξ)− L̂m(ξ) =

m−2∑

n=1

(−1)n

n!
L̂m−n

(∑

j

njλ(xj)
n[xj ]

)

− (−1)m

m!

m−1∑

n=1

(
m− 1

n

)∑

j

nj L(xj)
n−1λ(xj)

m−n−1
(
L(xj)λ(1− xj)− L(1− xj)λ(xj)

)
.

The first sum vanishes by inductive use of (iii) because
∑

njλ(xj)
n [xj ] ∈ Cm−n(C ), and the

second because
∑

nj [xj ] ∈ ker βm. �

The content of the proposition, and of this whole section, can be summarized by the following
diagram:

Cm(C ) ⊗Q
�

�

//

0 ''PPPPPPPPPPPP
Am(C ) ⊗Q

L̂m

��

�

�

// Q [C ]

Lm

��
C /Q (m)

ℜm // R

Example. Again, we take up Example 3 of §3 and compute the enhanced trilogarithm for
the elements βj of B3(F ) (j = 0, 2, . . . , 5). We need only consider σ1 since the imaginary part of

L̂3(ξ) changes sign under ξ 7→ ξ. Choosing L(θ1) = log(θ1) = −0.1405 . . .+2.4377 . . . i, we obtain

L̂3

(
σ1(βj)

)
= µj

ζ(3)

3
+ νj

(
− 235/2

288π2

ζF (3)

ζ(3)
+ f · i

)
+ ωj ·

(2πi)3

24

for a certain real number f = 15.13531974616481725314880543 . . . , where the integers µj and
νj are as in Example 3 of §3 and (ωj)j=0,2,... ,5 = (0, 0, 3, 19, 23) . If we choose instead L∗(θ1) =
L(θ1) − iπ, then we find the same formula with (ωj)j = 1

2
(0, 12,−15,−14, 11). The number

f can be considered as an “imaginary part” of − 235/2

288π2

ζF (3)

ζ(3)
, defined only modulo π3Q

(
or

more precisely,
π3

3
Z
)
. We will give an interpretation of this somewhat cryptic statement in the

following chapter.
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Part II. A higher Kronecker limit formula for imaginary quadratic fields

5. A conjectural higher Kronecker limit formula

Let E/F be an extension of number fields, which we may assume to be Galois. Then the zeta
function of E can be written as the product of so-called Artin L-series LF (s, ρ) associated to
an irreducible representation ρ of the Galois group G. In particular, the residue ress=1ζE(s)
is a product of ress=1ζF (s) and special values LF (1, ρ). On the other hand, the residue is the
covolume of the group of units O×

E on which G acts, which implies that O×
E (at least after

tensoring with C or Q ) decomposes as a direct sum of irreducible representations of G and
consequently that the regulator decomposes into a corresponding product of factors. Comparing
these two facts, one is led to the famous

Conjecture (Stark). The value LF (1, ρ) is expressible as a simple multiple (a power of π times
an algebraic number) of the determinant of a matrix whose entries are logarithms of units in E.

This conjecture which was formulated in far greater precision by Stark [43] is totally open
except in very special cases, but one can nevertheless generalize it to higher special values. The
number ζE(m) is both a product of special values of LF (m,ρ) and, by Borel’s theorem, the
covolume of the regulator lattice Regm,E on which G acts. Therefore it is natural to guess that
each special value LF (m,ρ) is the volume of one of the lattices into which the G-action splits
Regm,E. This conjecture, which was made by Gross in 1974 [27], combined with the conjectural
description of the Borel regulator map in terms of polylogarithms, gives the

Strengthened polylogarithm conjecture. The value at s = m of any Artin L-function
LF (s, ρ) is a simple multiple of the determinant of a matrix whose entries are polylogarithms
evaluated at elements in the higher Bloch group Bm(E).

Again, one can easily make this a little more precise, and could probably make a very detailed
analysis along the lines of the one given in [45] for m = 1 if one wished, but this seems pointless
as long as even the case m = 1 remains unapproachable.

A particularly interesting special case arises if we concentrate on abelian extensions of an
imaginary quadratic field K, where we can formulate a much more precise statement which in
the case m = 1 reduces to a famous classical theorem. For simplicity we restrict to the Hilbert
class field H of K . We first observe that the zeta function ζH(s) of H can be expressed as the
determinant of a matrix whose entries are the partial zeta functions of the quadratic field. This
follows easily from the well-known decomposition of ζH into L-series associated to ideal class
characters χ:

ζH(s) =
∏

χ:CℓK→C×

LK(s, χ) =
∏

χ

( ∑

A∈CℓK
χ(A) ζK,A(s)

)

= det
((

ζK,AB−1(s)
)
A,B∈CℓK

)
.

(Here CℓK denotes the ideal class group, LK(s, χ) =
∑

a
χ(a)N(a)−s the associated L-series

and ζK,A(s) =
∑

a∈A N(a)−s the partial zeta function associated to the ideal class A. The
final identity is a special case of the theorem of Frobenius about group determinants and can be
proved easily since conjugation by the matrix

(
χ(A)

)
χ,A diagonalizes the matrix of partial zeta
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functions.) But by the conjecture stated in §2 we expect ζH(m) (m = 2, 3, 4, . . . ) to be a multiple
of the determinant of an h× h-matrix, where h = #CℓK = [H : K] = n±(H) , whose entries are
polylogarithms evaluated at arguments in H. (If H were an arbitrary abelian extension of K
instead of the maximal unramified one, then CℓK would be replaced by a ray class group, but
the analysis would be otherwise identical.) The case s = 1 where the values of the partial zeta
functions can be written in terms of logarithms of units in F is a consequence of Kronecker’s limit
formula and the theory of complex multiplication, and the construction of units in the Hilbert
class field from special values of modular forms constitutes one of the high points of 19 th century
number theory.

It is therefore natural to guess that in fact the individual entries agree and that each partial
zeta-value ζK,A(m) is a linear combination of polylogarithm values, and in fact, numerical exam-
ples suggested its statement. We consider K as embedded into C . Then there is a distinguished
embedding of H into C as K

(
j(z1)

)
where j : H /SL(2,Z)→ C is the classical modular invariant

and z1 = D+
√
D

2 ∈ H , the upper half plane. The other embeddings of H into C are obtained
from this one by conjugating it with the elements of Gal(H/K) and with complex conjugation.
Moreover, by class field theory Gal(H/K) is isomorphic to CℓK via the Artin symbol. A fairly
precise formulation of the conjecture indicated above is then:

Conjecture. Let K be an imaginary quadratic number field and m > 1. Then there is an element
ξ = ξm,K ∈ Bm(H)⊗Q , where H is the Hilbert class field of K , such that

ζK,A(m) = 2
(−1)[

m−1
2 ] (2π)m

(m− 1)!
|DK | 12−m

Lm

(
σA(ξ)

)
(15)

for every ideal class A of K, where σA ∈ Gal(H/K) is the Artin symbol associated to A.

For m = 1 the statement must be modified because each ζF (m) has a simple pole, but
ζH(s)/ζK(s) =

∏
χ6=1 Lm(s, χ) is finite at s = 1 and can be expressed as a determinant of

values
(
ζK,A(s)− ζK,B(s)

)
|s=1 where A and B denote ideal classes in K, and the Kronecker limit

formula expresses each of these differences as the logarithm of a certain element in H defined by
complex multiplication theory.

Remarks. 1. ξm,K is unique if it exists (assuming the general polylogarithm conjecture),
since by specifying Lm

(
σ(ξ)

)
for all σ ∈ Gal(H/K) we have specified the image of ξ under the full

map Lm,H : Am(H) → Rh , and the polylogarithm conjecture says that this map is injective (up
to torsion). It also follows that c(ξm,K) = (−1)m−1ξm,K , where c ∈ Gal(H/Q) denotes complex
conjugation.

2. The partial zeta function ζK,A(s) in the case of an imaginary quadratic field K can also
be written as an Epstein zeta function: the norms of the integral ideals in A are just the values
attained by some quadratic form Q(x, y) = ax2+bxy+cy2 (a, b ∈ Z) with discriminant b2−4ac =
DK , so

ζK,A(s) = ζQ(s) =
1

2

∑′

x,y

1

Q(x, y)s
.

(Here the prime means that (x, y) = (0, 0) is to be omitted and the factor 1
2
takes care of the

automorphism (x, y) 7→ (−x,−y). If K = Q(i) or K = Q(
√
−3), it must be replaced by 1

4 or
1
6 , but we will ignore these cases since the conjecture is only interesting if h > 1.) Thus the
conjecture says in particular:

Let Q be any positive definite binary quadratic form with rational coefficients and let m ≥ 2.
Then |disc(Q)|−1/2π−mζQ(m) is a Q-linear combination of values of Lm(x) with x algebraic.
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3. The partial zeta function can also be written as a non-holomorphic Eisenstein series: if

Q(m,n) = am2 + bmn+ cn2 is a form in the class associated to A, and we set zQ = b+
√
DK

2a ∈ H ,

then Q(m,n) = |DK/4|1/2 |mzQ + n|2/ℑ(zQ), so

ζQ(s) = |DK/4|−s/2E(zQ, s) , (16)

where

E(z, s) =
1

2

∑′

m,n∈Z

ℑ(z)s
|mz + n|2s

(
z ∈ H , ℜ(s) > 1

)
,

is the non-holomorphic Eisenstein series of weight 0. This is useful because the Fourier expansion

of E(z, s) is explicitly known and converges with exponential rapidity (at least like
∑

e−nπ
√
3),

so that we can compute special values of partial zeta functions very easily.

Examples. 1. Let K = Q(
√
−23). The class number is 3 and the Hilbert class field is

H = K(θ) = K · F , where F = Q(θ) with θ3 − θ − 1 = 0 is the field considered in Example 3 of
§3. The class group CℓK consists of the classes A0 = {(λ)} (the principal class), A1 = {(λ)℘} and

A−1 = {(λ)℘̄} where ℘ =
(
2, 1+

√
−23
2

)
is one of the prime ideals dividing 2. The corresponding

zeta functions ζj(s) = ζK,Aj
(s) (j ∈ Z/3Z) are given by

ζ0(s) =
1

2

∑′

m,n

1

(m2 +mn+ 6n2)s
, ζ±1(s) =

1

2

∑′

m,n

1

(2m2 +mn+ 3n2)s
.

These partial zeta functions are related to the Dedekind zeta functions of K and F by

ζ0(s) + 2ζ1(s) = ζK(s) , ζ0(s)− ζ1(s) =
ζF (s)

ζ(s)
,

so by formulas (2) and (9) with i = 1, their values at s = 2 are expressible in terms of dilogarithms
as

ζ0(2) =
4π2

9 · 233/2
(
D(ξ23) + 24D(θ1)

)
, ζ1(2) =

4π2

9 · 233/2
(
D(ξ23)− 12D(θ1)

)
, (17)

where we have labelled the conjugates of θ as θj (j ∈ Z/3Z) as in §3. We can check these formulas
numerically since ζ0(2) and ζ1(2) can be computed rapidly using (16) and (24) below:

ζ0(2) =
π4

90
+

8π

23
√
23

(
1

2
ζ(3) +

∞∑

n=1

(−1)nσ−3(n)
(
1 + πn

√
23
)
e−πn

√
23

)

= 1.2192662262804613691002600581331744360615022454119 . . . ,

ζ1(2) =
π4

360
+

16π

23
√
23

(
1

2
ζ(3) +

∞∑

n=1

(−1)nσ−3(2n)
(
1 + πn

√
23
)
e−πn

√
23

)

= 0.5444665316326198108031691850861304122679869701278 . . . ,

where σ−3(n) =
∑

d|n d
−3. Equation (17) verifies the conjecture for this field and m = 2 with

ξ2,K =
1

18

(
[ξ23] + 12[σ(θ)]− 12[σ2(θ)]

)
, (18)

where σ is a generator of the (cyclic) Galois group Gal(H/K). Of course this above representation
as a sum of dilogarithms is not unique. We give a different expression which is more homogeneous
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with respect to the action of the Galois group. The unit group of H is generated by θ0, θ1 and
θ2 with the relation θ0θ1θ2 = 1. Then the elements

ξ
(j)
H,−23 = 8[−θ4j θ

2
j+1]− 5[−θ4j θ

3
j+1] + 21[−θ2j θj+1] (j ∈ Z/3Z) ,

satisfy

D(ξ
(j)
H,−23) = −3 · 233/2

2π2
ζj(2)

and are cyclically permuted by Gal(H/K), so that the element ξ2,K := − 1
12ξH,−23 has the prop-

erty required by the conjecture.
2. For other K = Q(

√
−d) with class number 3 we again find that the sum ζ0(2) + 2ζ1(2) =

ζK(2) has a complicated expression as a combination of dilogarithms of numbers in K, but that
the difference ζ0(2)− ζ1(2) = ζF (2)/ζ(2) equals 4π

2d−3/2D(σ1(ξF )) for some very simple element
ξF of the Bloch group of the totally real subfield F of the Hilbert class field of K, e.g.:

d F = Q(θ) ξF

23 θ3 − θ − 1 = 0 [θ]
31 θ3 − θ2 − 1 = 0 [θ]
59 θ3 − 2θ2 − 1 = 0 4[θ]− 2[−θ2]
83 θ3 − 2θ2 − 2θ − 1 = 0 6[θ]− 2[θ2]
107 θ3 − 4θ2 + 2θ − 1 = 0 8[θ]− [θ2]

In each of these cases, the conjecture is verified for m = 2 with ξ2,K = 1
3
ξK + 1

3

(
σ1(ξF )−σ2(ξF )

)
,

where ξK ∈ B2(K) is an element with D(ξK) = 4π2d−3/2ζK(2). There are also examples like

ξH,−23 above, e.g. the combination ξ
(j)
H,−31 = 19[−θ2j−1θj ]−3[−θ5j−1θ

3
j ]+8[θ3j−1]−8[θ3j ] for d = 31

with

D(ξ
(j)
H,−31) = −3 · 313/2

2π2
ζj(2) (j = 0, 1, 2) , θ3j − θ2j − 1 = 0 .

3. We can proceed similarly for higher polylogarithms. For instance, for d = 23 and the
trilogarithm we have

ζ0(3) + 2ζ1(3) = ζK(3) = L
(
3,
( ·
23

))
ζ(3) =

96π3

235/2
L3(1)

(which is much simpler than the corresponding formula (2) for m = 2, the reason being that for
odd m the group Bm(K) coincides up to torsion with Bm(Q)) and

ζ0(3)− ζ1(3) = ζF (3)/ζ(3) =
72π3

235/2

(
L3

(
σ0(β2)

)
− L3

(
σ1(β2)

))

by Example 3 of §3, and taking linear combinations, we obtain each partial zeta function ζ j(3)
as a combination of trilogarithms. A different element which exhibits the Galois equivariance
property stated in the conjecture above is ξ = [θ]− [θ2] + [θ5], for which we have

96π3

235/2
L3

(
σj(ξ)

)
= ζj(3) (j ∈ Z/3Z) ,

which is again much simpler than the corresponding formula for the dilogarithm.

4. We now consider examples with class number h > 3, for which the partial zeta functions
ζA(s) can not in general be expressed in terms of Dedekind zeta functions of subfields of H. For
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simplicity we restrict to d prime. Then h is odd and ζH(s)/ζK(s) is the square of the quotient
ζF (s)/ζ(s) which is a product of h−1

2 L-series associated to characters on Cℓ(F ):

ζH(s) = ζK(s)L(s)2 , ζF (s) = ζ(s)L(s) , L(s) :=
∏

χ∈X

LK(s, χ) ,

where X denotes a set of representatives for the non-trivial characters of CℓF modulo complex
conjugation. Again the expression for ζK(m), especially for m even, is typically more complicated
than the expressions for L(m), so we concentrate on the latter.

For simplicity we assume that CℓK = 〈A〉 is cyclic. Then, denoting by χ a generator of the
character group of CℓF and by ζj(s) the partial zeta function ζAj (s), we have ζH(s) = ζK(s)L(s)2 ,
ζF (s) = ζ(s)L(s) with

L(s) :=

(h−1)/2∏

j=1

LK(s, χj) = ± det
((

ζi−j(s)− ζi+j(s)
)
i,j=1,...,(h−1)/2

)
,

for instance, for h = 5 we have (denoting by ρ a primitive 5th root of unity)

L(s) =
2∏

j=1

(
ζ0(s) + (ρj + ρ−j)ζ1(s) + (ρ2j + ρ3j)ζ2(s)

)
=

∣∣∣∣
ζ0(s)− ζ2(s) ζ1(s)− ζ2(s)
ζ1(s)− ζ2(s) ζ0(s)− ζ1(s)

∣∣∣∣ .

A consequence of the conjecture is that there exist elements ξj = −ξ−j ∈ B2(F ) ⊗ Q such that

D(σi(ξj)) =
d3/2

16π2

(
ζi−j(2) − ζi+j(2)

)
for all i and j, where F is considered as embedded as a

subfield of C via the real embedding and σ is the generator of Gal(H/K) corresponding to A.

(Take ξj = σ−j(ξ)−σj(ξ) with ξ as in the conjecture; by the first remark following the conjecture,
this can also be written as (1 + c)σj(ξ) with c the generator of Gal(H/F ), and hence belongs to
B2(F ).) The conjecture is easier to check in this form than in the original one, because (as we
already saw in the h = 3 examples) the value of ζK(2) =

∑
j ζj(2) is typically much harder to

express in terms of dilogarithms than the differences ζi(2) − ζj(2).
As a numerical example (one of many we have computed), consider the field K = Q(

√
−47)

with class number 5. Its partial zeta functions are ζj(s) = ζK,Aj (s) = ζQj
(s), j = −2, .., 2, with

A =
[
2, −1+

√
−47

2

]
, A2 =

[
3, 1+

√
−47
2

]
, and

Q0(x, y) = x2 + xy + 12y2 , Q±1(x, y) = 2x2 ± xy + 6y2 , Q±2(x, y) = 3x2 ∓ xy + 4y2 .

The Hilbert class field of K is H = K(α), where α5+2α4+2α3+α2−1 = 0. Taking for α the real
root 0.5764 . . . gives the real embedding of the subfield F = Q(α). The other embeddings of F

into C send α to σ(α) = −1.105 . . .+0.5954 . . . i, σ2(α) = −0.1828 . . .+1.032 . . . i, σ3(α) = σ2(α)

and σ4(α) = σ(α), where σ is a generator of Gal(H/K). The group of units of F is generated
(up to torsion) by α and β := α+ 1, and the dilogarithms of the conjugates of the elements

ξ1 = −[α−1β]− [α3β2] , ξ2 = [α4β] + [α3β3]

in B2(F ) are related to the values at s = 2 of the partial zeta functions by
(
D(σ(ξ1)) D(σ2(ξ1))
D(σ(ξ2)) D(σ2(ξ2))

)
=

(
1.7702513872 . . . 0.2095840007 . . .
0.2095840007 . . . 1.5606673865 . . .

)

=
475/2

16π2

(
ζ0(2)− ζ2(2) ζ1(2) − ζ2(2)
ζ1(2)− ζ2(2) ζ0(2) − ζ1(2)

)
.
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6. Known results for m = 2

For m = 2 the conjecture described in §5 can be formulated in terms of K-theory, since we
know that the Bloch group B2(H) is isomorphic to K3(H) and that the dilogarithm regulator
map coincides with the Borel regulator. An abstract proof in this case has been given by Deninger
[15], [16], who showed the existence of an element of K3 whose regulator is given by the special
values at s = 2 of the partial zeta functions of K.

The problem of constructing explicit elements ξ ∈ B2(Q ) (though not necessarily in B(H))
with the required image under D was solved very recently by A. Levin. To each ideal a in the
ideal class A of K there is associated an elliptic curve E = C /a defined over H with complex
multiplication by OK . For any three points a, b, c ∈ E , Levin considers the quantity

γa,b,c =
℘a − ℘c

℘a − ℘b
.

Here ℘a = ℘E(a) is the value of the Weierstrass ℘-function of E at a. If a, b and c are torsion
points, then γa,b,c belongs to a certain abelian extension H ′ ⊇ H of K (a ray class field).

Proposition (Levin). Let a be an ideal class in the imaginary quadratic field K and λ ∈ OK ,
µ = 1− λ. Then the element

ξA,λ = 4N(λ)N(µ) [λ] +
∑

α∈λ−1
a/a−{0}

β∈µ−1
a/a−{0}

∑

l(mod N(λ))

m(mod N(µ))

[
γα,β,mα+nβ

]

of Z[H ′] belongs to B(H ′).

The key point in proving this is that γa,b,c and 1− γa,b,c have a factorization

γa,b,c =
σa−cσa+cσ

2
b

σa−bσa+bσ2
c

, 1− γa,b,c =
σb−cσb+cσ

2
a

σb−aσb+aσ2
c

in terms of the Weierstrass σ-function. Using this, one can write the image of each term in the sum
under β2 and show that the sum maps to 0. Moreover, from the theory of complex multiplication
one sees fairly easily that ξA,λ depends only on the ideal class A of a (as the notation suggests),
is invariant under Gal(H ′/H), and transforms under Gal(H/K) by σA(ξB,λ) = ξAB,λ. The
general polylogarithm conjecture now suggests that the image of ξA,λ under D is a multiple of
ζK,A(2). Numerical experiments suggested what the correct multiple should be, and the resulting
conjectural formula was then proved in [33].

Theorem (Levin). With the above notation,

D
(
ξA,λ

)
=
(
N(λ) + 1

)(
N(µ) + 1

)
· ζK,A(2) .

The proof depends on relating the value of the dilogarithms to the values of a certain “elliptic
(1,1)-logarithm” related to the elliptic polylogarithms which will be discussed in Part III. Nothing
in the construction of the element ξλ or the proof of the theorem depends in a really essential way
on the fact that m = 2, and it can be hoped that Levin’s construction will be generalized to give
explicit elements of Bm(H ′)Gal(H′/H) ⊗ Q whose values under the mth polylogarithm regulator
map are as given in (15).
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7. Enhanced partial zeta values and a new invariant for imaginary quadratic fields

A particular amusing consequence of the conjecture becomes apparent if we apply the “lifting”
of Lm as described in §3. Again, let K be imaginary quadratic with Hilbert class field H. By
the conjecture in §5 (or, for m = 2, the theorems of Deninger and Levin just quoted), we have
for each m a canonical element ξm,K ∈ Bm(H) satisfying (15). But from the discussion in §4 we
know that on the mth Bloch group there is a natural lifting of the function Lm to an enhanced

function L̂m with values in C /Q (m). It is then natural to ask the
Questions: 1. Is there a naturally defined invariant Im(A) belonging to C /Q (m) (or even
C /αmZ(m) for some αm ∈ Q independent of K) such that

ℜm

(
Im(A)

)
= ±|DK |m− 1

2 (m− 1)!

2(2π)m
ζK,A(m) ? (19)

2. If so, does the “enhanced higher Kronecker limit formula” L̂m(σA(ξm,K)) = Im(A) hold?
In this paragraph we show that the answers to 1. and 2. are “Yes” and “Experimentally, yes.”

Construction of the invariant Im(A). We had already observed that ζK,A(s) for imag-
inary quadratic K and an ideal class A in K is expressible in terms of the non-holomorphic
Eisenstein series E(z, s) of weight 0 by (16), where the argument z is the root in the upper half-
plane of az2+bz+c = 0 for some positive definite binary quadratic form Q(p, q) = ap2+bpq+cq2

corresponding to an ideal in the ideal class A. The above question can therefore be rephrased:
Can the value of π−m|D|(m−1)/2E(z,m) ∈ R (m = 2, 3, 4, . . . ) be lifted in a natural way to

C /Q (m) when z ∈ H /Γ is a CM-point of discriminant D?
To do this, we look at the holomorphic Eisenstein series

G2m(z) =
1

2
ζ(1− 2m) +

∞∑

n=1

σ2m−1(n)e
2πinz

of weight 2m on SL2(Z). (Here σν(n) :=
∑

d|n dν .) Its Eichler integral is any function

G̃2m(z) =
1

2
ζ(1− 2m) · (2πiz)

2m−1

(2m− 1)!
+

2m−2∑

j=0

ajz
j +

∞∑

n=1

σ1−2m(n)e2πinz (20)

(a0, . . . , a2m−2 for the moment arbitrary). From
( 1

2πi

d

dz

)2m−1

G̃2m = G2m and the modularity

of G2m it follows, as is well-known, that

(cz + d)2m−2G̃2m

(az + b

cz + d

)
= G̃2m(z) + Pm,γ(z) ∀ γ =

(
a b
c d

)
∈ Γ

for some polynomial Pm,γ of degree ≤ 2m− 2. The important point is that if we choose

a0 =
1

2
ζ(2m− 1), a1 = · · · = an−2 = 0

(this is not the only possible choice; see below), then the coefficients of the polynomials Pm,γ(z)
lie in Q(2m − 1) for all γ ∈ Γ.

We now apply to G̃2m the differential operator

Dm = ∂−2 ◦ ∂−4 ◦ · · · ◦ ∂2−2m =

m−1∑

ℓ=0

(m+ ℓ− 1)!

ℓ! (m− ℓ− 1)!

(
1

4πy

)ℓ(
1

2πi

d

dz

)m−1−ℓ

,
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where ∂k = 1
2πi

∂
∂z− k

4πy , which has the property of mapping modular forms of weight k to modular

forms of weight k + 2. The result is a new function

Em(z) = Dm

(
G̃2m(z)

)
(21)

which satisfies

Em(γz) = Em(z) + P ∗
m,γ

( 1

2iy
,
x

iy
,
|z|2
2iy

)
for all γ ∈ Γ ,

where P ∗
m,γ is a homogeneous polynomial of degree m − 1 with coefficients in Q(m). This has

two consequences:
(i) The real part of Em(z) is Γ-invariant. Using the explicit Fourier expansions, one shows that

ℜ
(
Em(z)

)
=

(m− 1)!

2πm
E(z,m) ( z ∈ H ) . (22)

(ii) If z satisfies a quadratic equation ax2 + bx + c = 0 with a, b, c ∈ Z and discriminant
D = b2 − 4ac < 0, then the image of D(m−1)/2Em(z) in C /Q (m) is unchanged under z 7→ γz,

γ ∈ Γ, because D(m−1)/2 P ∗
m,γ

( 1

2iy
,
x

iy
,
|z|2
2iy

)
= P ∗

m,γ(a, b, c) ∈ Q(m).

It follows from (i) and (ii) that the invariant

Im(A) = D(m−1)/2 Em(zA) , (23)

where zA is the image in H /Γ of zQ for any quadratic form Q in the class of A, is well defined
modulo Q(m) (and even modulo αmZ(m) for some αm ∈ Q independent of D) and satisfies (19).
Observe that by changing the choices of aj in (20) by elements of Q(2m−1) we change the cocycle
γ 7→ Pm,γ by a coboundary with coefficients in Q(m − 1); this does not affect the property that
the indeterminacy of Im(A) belongs to Q(m), but can change the specific lattice Z(m)αm.

Explicit formulas for Im(A). For m = 2 we have the Fourier expansions

E(z, 2) =
π4y2

90
+

πζ(3)

2y
+

π

y

∞∑

n=1

σ−3(n) (1 + 2πny) e−2πny cos(2πnx) , (24)

G4(z) =
1

240
+

∞∑

n=1

σ3(n) e
2πinz , G̃4(z) =

(2πiz)3

1440
+

ζ(3)

2
+

∞∑

n=1

σ−3(n) e
2πinz ,

E2(z) =
(2πiz)2(iz + 3y)

1440y
+

ζ(3)

4πy
+

∞∑

n=1

σ−3(n)
(
n+

1

2πy

)
e2πinz . (25)

The function E2(z) has real part
1

2π2
E(z, 2) and satisfies the modular transformation formulas

E2(z + 1) = E2(z) + π2 |z|2 + x+ 1/3

120iy
, E2(−1/z) = E2(z) −

π2x

72iy
(26)

(the proof of (26) will be indicated below). It follows that the invariant I2(Q) :=
√
D E2(zQ)

satisfies (19) and

I2
(
[a, b+ 2a, c+ b+ a]

)
= I2

(
[a, b, c]

)
+

π2

60

(
c− b

2
+

a

3

)
, I2

(
[c,−b, a]

)
= I2

(
[a, b, c]

)
− π2

72
b ,
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and hence that

I2(A) = I2
(
[Q]
)
∈ C

/ π2

360
Z is well-defined .

We can improve upon the number 360 in the denominator by choosing a slightly different nor-
malization:

E•
2 (z) = E2(z) +

iπ2

240

|z|2 + 5x/3 + 1

y

(
corresponding to replacing G̃4 by G̃4+

iπ3

120
(z2+ 5

3
z+1)

)
, which still has real part (2π2)−1E(z, 2)

but now transforms under SL2(Z) by

E•
2 (z + 1) = E•

2 (z) +
iπ2

120

|z|2 − 1

y
, E•

2 (−1/z) = E•
2 (z) ,

so that the invariant

I•2 (Q) :=
√
D E•

2

(b+
√
D

2a

)
= I2(Q)− π2

24

(
a+ c

5
− b

6

)

satisfies

I•2
(
[a, b+ 2a, c+ b+ a]

)
= I•2

(
[a, b, c]

)
+

π2(a− c)

60
, I•2

(
[c,−b, a]

)
= I•2

(
[a, b, c]

)

and hence gives a class invariant I•2 (A) = I•2 ([Q]) which is well-defined modulo
π2

60
Z.

For m > 2 the formulas are more complicated. We give only the Fourier expansion of the
function Em(z) :

Em(z) =
m−1∑

ℓ=0

(m+ ℓ− 1)!

ℓ!(m− ℓ− 1)!
(4πy)−ℓ

[
ζ(1− 2m)

2

(2πiz)ℓ+m

(ℓ+m)!
+

∞∑

n=0

nm−1−ℓ σ1−2m(n) qn
]
,

where σs(0) :=
1
2
ζ(−s). The modular transformation properties of this can be given explicitly,

but for m > 2 we do not know how to add a coboundary to get a function E•
m(z) with an optimal

denominator in its transformation law with respect to 27.
We explain briefly how to prove the transformation formulas (26). (The calculation for Em goes

the same way.) These formulas follow by applying D2 = ∂−2 to the transformation properties

G̃4(z + 1) = G̃4(z)−
π3i(3z2 + 3z + 1)

180
, z2G̃4(−1/z) = G̃4(z) +

π3iz

36
. (27)

The first of these equations is evident since G̃4 is the sum of a periodic function and a multiple of

z3. For the second, we observe that the difference z2G̃4(−1/z) − G̃4(z) is equal to a polynomial
of degree ≤ 2, Az2 + Bz + C. Interchanging the role of z and −1/z, one deduces immediately
C = −A. To compute the values, the easiest way is to notice that the function

g(y) =

∞∑

n=1

σ−3(n)e
−2πny = G̃4(iy)−

ζ(3)

2
+

π3

180
y3

satisfies the transformation law

g(y) = −y2g(1/y) +A−1y
−1 +A0 +A1y +A2y

2 +A3y
3

with A−1 = A3 =
π3

180
, A0 = A2 = A− 1

2
ζ(3) , A1 = −iB . The fact that g is exponentially small

at ∞ then implies that the Mellin transform g̃(s) =
∫∞
0

g(y)ys−1dy converges for all ℜ(s) ≫ 0
and has a meromorphic continuation with simple poles of residue Aν at s = −ν (ν = −1, . . . , 3)
and no other poles. But g̃(s) is easily computed to be (2π)−sΓ(s)ζ(s)ζ(s+3), and by comparing
the residues we find A = C = 0, B = iπ3/36.
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The enhanced conjecture. Now that we have defined the invariant Im(A), we can for-
mally state the conjecture which was suggested at the beginning of the section.

Conjecture. Let K be an imaginary quadratic field with Hilbert class field H, m ≥ 2. Then the

numbers Im(A) ∈ C /Q (m) are equal to the enhanced polylogarithmsL̂m(σA(ξ)) for some element
ξ ∈ Bm(H)⊗Q .

More precisely, we should have Nmξ ∈ Bm(H) and L̂m(ξ) ≡ Im(A) mod N−1
m Z(m) for some

positive integer Nm depending on m but not on K .

Examples. 1. We consider our usual example K = Q(
√
−23) and, for m = 2, the element

ξ = ξ2,K ∈ B2(K) constructed in Example 1 of §5. The real part of I2(A0) is a rational multiple

of π2 and hence not interesting (this follows either by substituting z0 = 1+
√
−23
2 into the Fourier

expansion of E2(z) given above or else by noting that I2(A−1) = −I2(A) modulo Q(2) for any
ideal class A). For A1 we find by (23) and (25)

I2(A1) ≡ α+
233/2

8π2
ζ1(2) · i (mod Q(2)) ,

with

α =
7π2

576
− 2

π

∞∑

n=0

(−1)nσ−3(2n+ 1)
(
1 + π(n+ 1

2 )
√
23
)
e−π(n+ 1

2 )
√
23

= 0.11703683929364456681742552529827002050121888426989 . . . .

The numbers ℜ(D̂(θ0)) = 2.10466 . . . and ℜ(D̂(θ1)) = −11.7444 . . . appearing in Example 3 of

§4 are equal (to high accuracy) to α+
29

144
π2 and −1

2
α− 341

288
π2 , respectively, and this verifies

the above conjecture with ξ as given in equation (18).

2. Similarly, for m = 3, we find that the invariants I3(Aj) are given by

I3
(
A0

)
≡ − 232

4π3
ζ0(3)−

N0

7560
π3 · i (mod Q(3)) ,

I3
(
A1

)
≡ − 232

4π3
ζ1(3) +

(
− 4 · f +

N1

3780
π3
)
· i (mod Q(3)) ,

where f = 15.1353 . . . is the number given in the example at the end of §4, N0 = 1021 and
N1 = 7319 to high accuracy. The proportionality of ζ0(3)− ζ1(3) with L3(β1) verified in §4 thus
lifts (experimentally) to the enhanced values, as predicted.
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Part III. Elliptic curves and elliptic polylogarithms

8. The elliptic dilogarithm conjecture

The elliptic dilogarithm and L(E, 2). The elliptic dilogarithm DE associated to the
elliptic curve E/C , as introduced by Bloch [6], is an “averaged” version of the Bloch-Wigner
dilogarithm D: more precisely one represents E(C ) as the Tate curve C×/qZ and averages D over
the action of Z on C× , i.e.

DE(P ) =
∞∑

l=−∞
D(qlx) ,

where P ∈ E(C ) is the image of x ∈ C× .
Since the series is invariant under x 7→ qx and converges absolutely, this is independent

of the choice of x. The series converges rapidly, so that DE(P ) is easily calculable. Another
representation of DE(P ) is given by writing E = C /Zτ + Z, τ ∈ H (so q = e2πiτ ) and P = z
(mod Zτ + Z) (and so x = e2πiz); then DE is given by the Kronecker-Eisenstein series

DE(P ) =
ℑ(τ)2
π

ℜ
( ∑′

m,n∈Z

exp(2πi(nξ −mη))

(mτ + n)2(mτ̄ + n)

)
(28)

where z = ξτ + η, as one shows by computing the Fourier expansion of the right-hand side with
respect to τ (cf. [6] or [54]).

The L-series of E at the point s = 1 is well-known to be linked with the height pairing on
the rational points of E. On the other hand, this pairing is given in terms of logarithms of theta
functions which can be seen as the elliptic analogue of the logarithm. It was Bloch’s idea that
L(E/Q , 2) might be linked to the elliptic dilogarithm, in the following way

L(E/Q , 2)
?
= π × rational linear combination of DE(Pi) , Pi ∈ E(Q ) .

This was proved by him for CM elliptic curves and by Beilinson [2] for modular curves (see below).
However, these authors considered only torsion points on E(Q ). This would be the analogue in
the number field case of considering values of polylogarithms only at roots of unity, which would
suffice to describe ζF (m) for all abelian F , but would not lead to the discovery of the higher
Bloch groups Bm(F ) and the corresponding conjectural description of K2m−1(F ).

This consideration suggests that one should look for conditions describing linear combinations
of points on E such that the elliptic dilogarithm evaluated on them gives a rational multiple of
the L-value. Numerical experiments carried out some 10 years ago with H. Cohen suggested that
one had ∑

i

niD
E(Pi) ∈ Z · RE , RE =

N

8π
L(E, 2) (29)

(N =conductor of E), whenever the divisor
∑

ni(Pi) satisfies the following conditions:

(i)
∑

niPi = 0 on E

(ii)
∑

ni(Pi)
3 = 0 in Sym3(E)

(iii)
∑

niλp(Pi)Pi = 0 on E for any prime p .
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Here λp(P ) is defined as the power of p dividing c, where c2 and c3 are the denominators of x(P )
and y(P ) in a minimal model of the curve E. Note that RE = 1

2π |L′(E, 0)| if E/Q is modular,
by the functional equation of L(E, s).

Example. The modular curve X∗
0 (37) has the minimal model E = E37 : y2 − y = x3 − x .

The Mordell-Weil group E(Q) is infinite cyclic with generator P = (0, 0). We have five multiples
of P which are integral

P = [0, 0], 2P = [1, 0], 3P = [−1, 1], 4P = [2, 3], 6P = [6,−14],

(as well, of course, as their negatives) and two further multiples which involve only the single
prime “2” in their denominators:

5P =
[1
4
,
5

8

]
, 10P =

[161
16

,
2065

64

]
.

For each k, the combination

ξk = (kP )− k(P )− k3 − k

6

(
(2P )− 2(P )

)

satisfies the conditions (i) and (ii) above. For k = 3, 4 and 6 the combinations

ξ3 = (3P ) − 4(2P ) + 5(P ) , ξ4 = (4P )− 10(2P ) + 16(P ) , ξ6 = (6P )− 35(2P ) + 64(P )

also satisfy (iii), since all the points involved are integral. The combinations ξ 5 and ξ10 do not
separately satisfy (iii) for p = 2, but the combination

ξ∗10 = ξ10 − 4ξ5 = (10P )− 4(5P ) − 85(2P ) + 180(P )

does, since λ2(5P ) = 1, λ2(10P ) = 2. Computing numerically to high precision, we find:

DE(ξ3) = 8RE , DE(ξ4) = 26RE , DE(ξ6) = 90RE , DE(ξ∗10) = 248RE , (30)

with RE =
37

8π
L(E, 2) = 0.561748914579...

In the general case, conditions (i)–(iii) are not quite correct, as was pointed out by Schappa-
cher–Rolshausen [40] and others. On the one hand, one needs an extra condition at certain
primes of bad reduction (namely for p of split multiplicative reduction such that the Néron model
is an N -gon with N > 1). On the other hand, (i) is not always necessary. For example (due to
K. Rolshausen in his thesis), if E is the curve y2 + y = x3 − 325x+6156 of conductor 4025, then
the combination 16(P )− 10(2P )+ (4P ) for P = (20, 87) satisfies (i)–(iii) above but fails to give a
rational multiple of the regulator, while 11(Q) + 2(2Q)− (3Q) for Q = (45, 287) does not satisfy
(i) but nevertheless maps under DE to 4025

8π
L(E, 2).

The right way is to replace λp(P ) in (iii) by hp(P ), the local height at p in P . Here hp denotes
the local height associated to the valuation p. In this form, it is independent of the model of E
used. For P of good reduction, this is just λp(P ) log p, so there is no change, and for certain p
of bad reduction (like p = 37 in the example above) the height condition at p reduces to (i) if all
the Pi are p-integral, which is why (i) often occurred. The corrected conditions are then

(a)
∑

ni(Pi)
3 = 0 in Sym3(E) ,

(b)
∑

nihp(Pi)Pi = 0 on E for any prime p ,

(c) some integrality condition at primes p of split multiplicative reduction.

(31)
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We then expect that (29) holds for any ξ =
∑

ni(Pi) ∈ Z[E(Q)] satisfying (a)–(c).
More generally, we expect the same thing to happen for divisors ξ =

∑
ni(Pi) ∈ Z[E(Q )] which

are defined over Q (i.e. are Gal(Q /Q)-invariant) but whose individual points Pi are defined only
over Q . (It is important to consider such more general divisors because there may not be enough
points in E(Q) to produce linear combinations satisfying (a)–(c). For instance, E(Q) might be
{0}.) We therefore define

A2(E/Q) =
{
ξ ∈

∑
ni(Pi) ∈ Z[E(Q )]Gal(Q/Q)

∣∣∣ ξ satisfies (a)–(c)
}

where the words “prime p” must be replaced by “archimedean or non-archimedean place v” in
(b) and by “non-archimedean place v” in (c). (Condition (a) implies that the sum over all v of
the expression in (b) vanishes, so that we can always omit one place; this is why in formulating
(b) for Q we could restrict attention to finite primes.) Then we expect:

Conjecture. The image of the map DE : A2(E/Q) → R is a lattice commensurable with Z ·RE.
Functional equations and the elliptic Bloch group. As for the case of the usual

dilogarithm, we want to find a subgroup C2(E/Q) of A2(E/Q) generated by some universal
relations of DE and to conjecture that the “elliptic Bloch group” B2(E/Q) = A2(E/Q)/C2 (E/Q)
maps isomorphically onto the regulator lattice.

Two special relations are evident: from the inversion relation D(x−1) = −D(x) of the usual
dilogarithm we obtain DE(P ) = −DE(−P ), and from the duplication relation D(x2) = 2D(x) +
2D(−x) we easily find that DE(2P ) = 2

∑
T∈E[2] D

E(P + T ). (Combine x, −x,
√
qx and −√

qx

in the definition of DE .) More interesting is Bloch’s relation [6], whose proof will be recalled in
§9, that DE also vanishes on the elements ηf = (f) ∗ (1 − f)− for all f ∈ Q(E). Here ξ ∗ η− is
defined for any two divisors ξ =

∑
ni(Pi), η =

∑
mj(Qj) as

∑
nimj(Pi − Qj). It is expected

that these form a full set of relations, so that if we set

C2(E/Q) =
〈
ηf , (P ) + (−P ) , (2P ) − 2

∑

T∈E[2]

(P + T )
〉
,

then the quotient
B2(E/Q) := A2(E/Q)/C2(E/Q)

should map isomorphically under DE to a lattice commensurable with Z ·RE .
As in the number field case, one can also write the group B2(E/Q) as the kernel of the

map (P ) 7→ (P ) ⊗ P from G3(E) to G2(E) ⊗ E, where G3(E) = Z[E]/C2 and G2 is the largest
quotient of Z[E] on which all the local heights vanish, and this is part of a larger complex

G3(E) → G2(E)⊗ E → E ⊗
∧2

E →
∧3

E. For details see [26].

Example: For the curve E37 : y2−y = x3−x investigated above, we find that the 4 functions

f1 = y , f2 = x+ y , f3 =
1 + y − 2x

4
, f4 =

x+ 2y − 1

2x

have (fi) and (1 − fi) with support in E(Q), the expressions ηi = ηfi being equal (up to the
“trivial” relation (x) + (−x) = 0) to

η1 = −(6P ) + (4P ) + 8(3P ) − 7(2P )− 8(P ) ,

η2 = (6P )− 5(4P ) + 5(3P )− 5(2P ) + 9(P ) ,

η3 = −η4 = (10P )− 3(6P ) − 4(5P ) − (4P ) + 6(3P ) + 6(2P ) + 2(P ) ,
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respectively, as the reader can check easily by computing the divisors of fi and 1−fi in each case.
Hence each identity in (30) implies the remaining three ones. (That η3 = −η4 is less surprising
than it looks, since any ηf would have to be a vector

∑
ni(iP ) ∈ Zη1+Zη2+Zη3 with

∑ |ni| ≤ 27
and there are very few such vectors.) In other examples, one can find many more such f . For
instance, for the curve y2 + xy+ y = x3 − x2 − 180x+1047 of conductor 350 with E(Q) = Z · P ,
P = [−1, 35], one finds 379 essentially different functions f (where “essentially different” means
up to the group generated by f 7→ 1/f and f 7→ 1− f) for which ηf ⊂ Z[E(Q)]; for each of these
the element ηf is (up to the relation (−nP ) = −(nP )) a linear combination of the 19 points (P ),
(2P ), . . . , (16P ), (18P ), (21P ), (22P ), but in fact the ηf lie in an 11-dimensional sublattice of
this 19-dimensional lattice and are all very short vectors in this sublattice, so that we obtain the
same relations among the numbers DE(nP ) in many different ways.

Remark. If we let q → 0, the Tate curve C×/qZ degenerates to Gm(C ) = C× . If f is
any rational function on P1 satisfying f(0) = f(∞), then the degeneration of the above condition
(f)∗(1−f)− = 0 still makes sense, with (P )+(Q) meaning simply (P ·Q), and the corresponding
relation ∑

a,b∈C×

orda(f) ordb(1− f)
[a
b

]
= 0

remains true in the Bloch group B2(C ). For the special function

f(t) =
(t− a)(t− a′)(t− bb′)

(t− b)(t− b′)(t− aa′)
, (a′ = 1− a, b′ = 1− b) ,

this reduces modulo the trivial relations [x] +
[
1
x

]
= 0 and [x] + [1 − x] = 0 to the five term

relation, which is thus seen to be in a certain sense a degeneration of its elliptic analogue.

9. The elliptic dilogarithm and the regulator map for K2(E)

In this section we explain some of the known theory behind the computations and conjecture
discussed in §8.

The regulator map for K2 of a curve. For any curve X/C , the Bloch-Beilinson regulator
pairing between K2(C (X)) and the space of holomorphic 1-forms on X is defined on symbols
{F,G}, F, G ∈ C (X)∗ , by

〈rX2
(
{F,G}

)
, ω〉 = 1

2π

∫

X(C)

log |F | d logG ∧ ω . (32)

To see that this is defined on K-theory we must check that the integral vanishes for F = 1−G.
This holds because log |F | d log (1− F ) is the sum of a holomorphic differential and of the exact
differential dΦ(F (z)), where Φ(z) = log |z| log |1 − z| − iD(z). If X is defined over Q , then the
group K2(X/Q) is defined as a subgroup of K2(Q(X)) generated by expressions α =

∑
{fi, gi}

(fi, gi ∈ Q(X)) satisfying certain local conditions (vanishing of the tame symbols) at the zeros
and poles of the fi and gi, and there is a still smaller subgroup K2(X/Z) ⊂ K2(X/Q) defined
by certain conditions on the symbols at primes of bad reduction of X. The Bloch-Beilinson
conjecture in the case of a curve X/Q predicts in this case that K2(X/Z) has rank g, where g
is the genus of X, and that the determinant of the g × g-matrix of its pairings with the lattice
of holomorphic 1-forms on X/Z (Néron differentials) is rationally proportional to an explicit
multiple of L(X/Q , 2) or of L(g)(X/Q , 0). Here L(X/Q , s) is the Hasse-Weil zeta function, which
conjecturally satisfies a functional equation under s → 2− s with Γ-factor AsΓ(s)g .
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The case of elliptic curves. In particular, if E is an elliptic curve, K2(E/Z) should
have rank 1 and the pairing of any element in this group with dz should be a simple multiple of
L(E/Q , 2). But in this case, writing E(C ) as C /Zτ + Z, we have Bloch’s formula

〈rE2 {F,G}, ω〉 = 1

π
DE
(
(F ) ∗ (G)−

)
(33)

where the pairing ξ∗η− of divisors ξ =
∑

ni(Pi), η =
∑

mj(Qj) is defined as
∑

i,j nimj(Pi−Qj).

(To prove this, write F and G as products of Jacobi theta series, replace the theta series by their
product expansion, and integrate them term by term. See e.g. [26], pp. 416-417.) One therefore
expects L(E/Q , 2) to be expressible in terms of special values of DE .

In the original formulation of Bloch and Beilinson, it was thought to be K2(E/Q) which should
have rank 1 and map under rE2 to a multiple of L(E/Q , 2). Computer experiments of Bloch and
Grayson [7] suggested that one has to consider the K-group of the Néron model EZ of E instead.
Schappacher and Scholl [41] gave a precise description of the necessary local conditions. On the
other hand, by studying the structure of the divisors

∑
(fi) ∗ (gi)− with

∑{fi, gi} ∈ K2(E/Q),
Goncharov and Levin showed

Theorem [26, Theorem 1.2]. For any elliptic curve E/Q the image of rE2 on K2(E/Q) is—up to
tensoring with Q—the same as the image of DE on Q-rational divisors satisfying the conditions
(a) and (b).

Now the extra condition by Schappacher and Scholl corresponds to the extra condition (c) above,
so that DE

(
A2(E/Q)

)
⊗Q coincides with rE2

(
K2(E/Z)

)
⊗Q and hence is conjecturally of rank 1.

The case of modular curves. Finally, we have to see why the generator of this regulator
lattice is related to L(E/Q , 2). If E has complex multiplication, this is easy, because the Hasse-
Weil zeta function of E is the Hecke L-series of a Grössencharacter for an imaginary quadratic field
and its value at s = 2 can be written more directly as a finite linear combination of Kronecker-
Eisenstein series (28) with P a torsion point ([6], [39]). Much less obvious is Beilinson’s theorem
that L(E/Q , 2) can be written as a combination of values of the function DE evaluated at torsion
points whenever E is modular. The idea of the proof is as follows. Let X = H /Γ be a modular
curve and choose F and G to be modular units (i.e. modular functions X → P1 with divisors
concentrated at the cusps) and ω = f(τ)dτ for some Hecke eigenform f ∈ S2(Γ). Then the
logarithmic derivatives of F and G are Eisenstein series of weight 2 on X and the integral on
the right of (32) can be computed by Rankin’s method as a special value of the convolution of
the L-series of f with the L-series of a weight 2 Eisenstein series. For a suitable choice of the
Eisenstein series, it equals L(f ⊗ χ, 1)L(f, 2) where χ is a Dirichlet character. If f corresponds
to the modular elliptic curve E (i.e., f(τ)dτ is the pull-back of dz with respect to a modular
parametrization X → E), then L(f ⊗ χ, 1) is an algebraic multiple (non-zero for suitable χ) of a
period of E and L(f, 2) = L(E/Q , 2). On the other hand, the regulator pairing between {F,G}
and ω = f(τ)dτ is the same as the pairing between the push-forward of {F,G} and dz, so by (33)
it follows that π−1L(E, 2) is expressed as a Q -linear combination of values of DE (with arguments
which are torsion points of E, since the divisors of F and G are torsion points in the Jacobian of
X0(N) by the Manin-Drinfeld theorem). Summarizing, we have:

Theorem (Beilinson). If E/Q is a modular elliptic curve, then there exists an element ξ of
Q [Etors ] with DE(ξ) = RE.

Connection with Mahler measure. We end this section by describing a beautiful rela-
tionship, brought to light by the work of Deninger [14], Boyd [10] and Villegas [48], between the
regulator map rE2 and the “Mahler measure” of certain polynomials.
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If P (x1, . . . , xn) is a polynomial in n variables, then the (logarithmic) Mahler measure of P is
defined by

m(P ) =

∫ 1

0

· · ·
∫ 1

0

log |P (e2πiθ1 , . . . , e2πiθn)| dθ1 · · · dθn .

For n = 1 and P (x) = (x − α1) · · · (x − αn), m(P ) is equal by Jensen’s formula to the measure∑
j log

(
max(|αi|, 1)

)
introduced by Lehmer [31] in 1928, which for irreducible P (x) ∈ Z[x] is

simply the logarithm of the height of the algebraic integer α1. The definition with an integral is
due to Mahler [34].

The original purpose of the Mahler measure was for results in transcendence theory and one
was only interested in the approximate size of m(P ), but a number of calculations suggested that
the actual value of m(P ) might in many cases be an interesting number, and in particular was
sometimes connected with special values of L-functions. In particular, C. Smyth [42] discovered
that the value of m(P ) for P (x, y) = x + y + 1 and P (x, y, z) = x + y + z + 1 are simple
multiples of the Dirichlet L-series value L(2, χ3) and the Riemann zeta-value ζ(3), respectively;
and T. Chinburg [12] observed that even in certain n = 1 examples the value of m(P ) is related
to the value of an Artin L-function at s = 1.

In 1990, Deninger [14] discovered that the Mahler measures of arbitrary polynomials with
algebraic coefficients are periods of mixed motives, and more specifically, that Mahler measures
of certain polynomials in two variables could be expressed in terms of the regulator map for
elliptic curves. This phenomenon was then studied experimentally in great detail by Boyd [10],
who discovered a number of families of examples of this type.

For k ∈ Z, k > 0, k 6= 4, let Pk(x, y) be the polynomial

Pk(x, y) = (x+ y)(xy + 1)− kxy .

Let Ek be the elliptic curve over Q defined by Pk(x, y) = 0. Then one finds numerically to high
precision

|L′(Ek, 0)| = Bk m(Pk) ,

with Bk ∈ Q . (Recall that |L′(E, 0)| = 2π−1RE = (2π)−2NE L(E, 2). We can compute L′(Ek, 0)

using standard number theory software packages and m(Pk) =
∫ 1

0
arccosh

(
1
2k − cos πx

)
dx by

numerical integration.) A small table of the experimentally obtained values of B k is as follows:

k 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 · · · 198 199 200

Bk 1 1 1
2

1
6

2 2 1
4

2 8 8 1
2

4 8 24 1
11

24 16 40 2 · · · 12416 23296 64

The explanation of Boyd’s examples was worked out by Villegas [48]. (All three papers—
Boyd’s, Deninger’s, and Villegas’s—are extremely interesting and are highly recommended to the
reader.) In a few words, it is as follows. The symbol {x, y} of the two generators x and y of
Q(E) satisfies the necessary conditions on the tame symbol and at primes of bad reduction to
define an element of K2(EZ), and then a calculation based on Jensen’s formula and integration by
parts reveals that the regulator 〈rE2

(
{f, g}

)
, ω〉, where ω as usual is the Néron differential of EZ,

is equal to the Mahler measure m(Pk). (The details are given in [48].) The conjecture described
above then implies that m(Pk) is a rational multiple of π−1L(Ek/Q , 2). We remark that in this
particular example the support of (x) ∗ (y)−, and hence the set of arguments at which DE is
evaluated to obtain the regulator, is contained in Etors, but that in other families introduced in
[10] and analyzed in [48], such as Pk(x, y) = y2 − x3 − kxy − 1, this is not the case.

In the last section of [48], Villegas shows how to interpret m(Pk) in modular terms: if we
think of k = k(τ) (where the elliptic curve defined by Pk = 0 is isomorphic to C /(Zτ + Z)) as a
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modular function, then m(Pk) is the real part of a holomorphic function in H whose derivative is
a modular form of weight 3.

10. The elliptic trilogarithm and L(Sym2(E), 3)

Mestre and Schappacher [35] (for torsion points), Goncharov [25] and Wildeshaus [49] (in the
general case) formulated conjectures expressing certain special values of the L-series of symmetric
powers of an elliptic curve over Q in terms of higher elliptic polylogarithms. In this section we
describe the conjecture briefly for the next case (i.e., the elliptic trilogarithm and Sym2(E)) and
provide a numerical example. A detailed exposition is given in [25].

The trilogarithmic picture. In this case, the general Beilinson conjecture says that
L(Sym2(E), 3) should be related to a 2-dimensional lattice, since the functional equation of
L(Sym2(E), s) shows that it has a double zero at s = 0. Similarly, the regulator is given by
two functions on divisors of E: the analogue of DE , defined by

L
E
3,1(x) =

∑

n∈Z

L3(q
nx) ,

and a second one (the analogue of Bloch’s Jq(x) averaging the function J(x) = log |x| log |1− x|)

L
E
3,2(x) =

∞∑

n=0

J3(q
nx) +

∞∑

n=1

J3(q
nx−1) +

log2 |x| log2 |q/x|
4 log |q| ,

where J3(x) = log2 |x| log |1− x| . This function satisfies LE
3,2(x) = L

E
3,2(qx) because

J3(x)− J3(x
−1) = − log3 |x| = log2 |qx| log2 |x| − log2 |x| log2 |q/x|

4 log |q| .

The functionsLE
3,1 and L

E
3,2 also have expressions, analogous to formula (28) forDE , as linear com-

binations of the Kronecker-Eisenstein series
∑

ω

χ(ω)

ω2ω̄2
and

∑
ω

χ(ω)

ωω̄3
, where ω runs over the lattice

L defining E = C /L and χ : L → S1 is the character corresponding to P . There are of course also
higher elliptic polylogarithms, relevant for the conjectural formula for L(Symm−1(E),m), which
can be expressed either as averages over qZ of higher classical polylogarithmic functions or else
as linear combinations of higher Kronecker-Eisenstein series

∑
χ(ω)/ωaω̄b. These functions, for

which explicit formulas can be found in [54], are the elliptic analogues of the one-valued poly-
logarithm functions Lm : C → R . There are also elliptic analogues of the original many-valued
polylogarithm function Lim, studied in detail in the beautiful paper [32] of A. Levin.

We would like to characterize the conditions on ξ =
∑

ni(Pi) that are needed in order for the

image of ξ under ~LE
3 = (LE

3 , J
E
3 ) to belong to the expected 2-dimensional lattice. Let us suppose

for convenience that we are looking at a curve E like E37 for which the conditions (i)–(iii) of §7
are the correct ones for DE

2 . Then we find (both experimentally and based on the conjectural
theory) that the conditions (i) and (ii) get replaced by

(i′)
∑

ni = 0 ∈ Z ,
∑

ni(Pi)
2 = 0 in Sym2(E) ,

∑
ni(Pi)

4 = 0 in Sym4(E) ,

and the condition (iii) by

(ii′)
∑

niλp(Pi) (Pi)
2 = 0 in Sym2(E) for every prime p .
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but there is a further condition, analogous to the one needed in the usual polylogarithm case.
Namely, (i′) and (ii′) imply that ιφ(ξ) =

∑
niφ(Pi)Pi belongs to A2(E/Q) for every homomor-

phism φ : E(Q) → Z; the further condition is then, that this element ιφ(ξ) maps to 0 in the Bloch
group B2 = A2/C2. All of the conditions together can be formulated more succinctly as saying
that ιφ(ξ) ∈ C2(E/Q) for all homomorphisms φ : E(Q ) → Q .

Example. We again take E37. We had found 4 elements ξ3, ξ4, ξ6 and ξ∗10 ∈ A2 and by
(30) three relations 4ξ4 − 13ξ3 , 4ξ6 − 45ξ3 , ξ

∗
10 − 31ξ3 in C2. “Pseudo-integrating”

(
i.e. replacing

∑
ni(iP ) by

∑
i 6=0

ni

i
(iP ) , cf. Example 3 in §3

)
and then adding a “constant of integration”

n0(O) to make the new divisor of degree 0 gives us three new elements

η4 = 3(4P ) − 13(3P ) + 18(2P ) − 3(P ) − 5(O) ,

η6 = 2(6P ) − 45(3P ) + 60(2P ) + 93(P ) − 110(O) ,

η10 = 3(10P ) − 24(5P ) − 310(3P ) + 585(2P ) + 750(P ) − 1004(O) ,

which satisfy all the above conditions and are linearly independent. If the theory is correct, then

the images of these three divisors under the map ~LE
3 should lie in a 2-dimensional lattice with a

covolume related to L(Sym2(E), 3). Evaluating L
E
3,1 and L

E
3,2 numerically, we get the values

~LE
3 (η4) = (−31.93647324246920545 . . . , 51.36032576407323769 . . . ) ,

~LE
3 (η6) = (−270.92487957661031873 . . . , 29.85229569612024863 . . . ) ,

~LE
3 (η10) = (−2374.45096970455445769 . . . , 165.95000973693576237 . . . ) ,

and indeed we find a linear combination η10 − 9η6 + 2η4 which maps under ~LE
3 to (0, 0) to many

decimal places. The determinant formed of the values of ~LE
3 for η4 and η6 is

Reg3(E) =

∣∣∣∣
L

E
3,1(η4) L

E
3,2(η4)

L
E
3,1(η6) L

E
3,2(η6)

∣∣∣∣ = 12961.41302992157 . . .

On the other hand, we can compute

L(Sym2(E), 3) = 1.526262007533073 . . .

(see below) and we find, within the precision of the calculation, the relation

Reg3(E) =
373

4
ℑ(τ)2 L(Sym2(E), 3) .

Computing the L-value. We end by explaining how to compute L(Sym2(E), 3). Let
f =

∑
anq

n ∈ S2(Γ0(N)) be the modular form corresponding to E. Define the Dirichlet series
L2(f, s) by

L2(f, s) := ζ(s− 1)L(Sym2(E), s) =

∞∑

n=1

bn
ns

,

where the coefficients bn can be obtained by

L2(f, s) = (1 +N1−s) ζ(2s − 2)

∞∑

n=1

a2n
ns

.
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(This formula is for the N = 37 case; for other f the Euler factors for the primes of bad reduction
might change.) The function L2(f, s) can be shown by Rankin’s method to have the functional
equation L∗

2(f, s) = L∗
2(f, 3 − s), where L∗

2(f, s) = (2π)−2sNsΓ(s)Γ(s − 1)L2(f, s). Hence, using
the integral representation of Γ(s)Γ(s−1) as the Mellin transform of the K-Bessel function K1(t)
and splitting up the resulting integral into two pieces in the usual way, we find

L2(f, 3) = C
(
A− A2

2

)
+

1

16

∞∑

n=1

bn
n3

G1

(
4π

√
nA

N

)
+

28π6

N3

∞∑

n=1

bn G2

(
4π

√
n

NA

)
,

for any A > 0, where C = 2π2N−1L(Sym2(E), 2) = 1.3296021859908 . . . and G1 and G2 are the
functions

G1(x) =

∫ ∞

x

t4K1(t)dt , G2(x) =

∫ ∞

x

t−2K1(t)dt ,

both of which are bounded by a power of x times e−x for x large. The numerical value of C can
be obtained either from this formula (by evaluating it for two different values of A or by taking
its derivative, e.g. at A = 1) or, by Rankin’s method, as a simple multiple (= (2π)3/N2) of the
covolume of the lattice corresponding to E. The function G1(x) can be expressed in terms of
Bessel functions by

G1(x) = (x4 + 8x2)K0(x) + (4x3 + 16x)K1(x)

and hence can be computed numerically using standard software packages. For G2(x) we can use
the rapidly convergent power series expansion

G2(x) =
1

2x2
− 1

4
log2(x)− 1

2

(
γ − log 2− 1

2

)
logx+ C0

− 1

4

∞∑

n=1

(x/2)2n

n (n+ 1)!n!

(
log

x

2
+ γ −

n∑

k=1

1

k
− 1

2n
− 1

2(n + 1)

)

(where γ is Euler’s constant and C0 = −0.3629591663513 . . . ) for reasonably small x and the
asymptotic expansion

G2(x) ∼
√

π

2x
e−x

( 1

x2
− 17

8x3
+

937

128x4
− · · · + rn

xn+2
+ . . .

)

(where r−1 = 0, rn +
(
n+ 3

2

)
rn−1 = (− 1

2
)nn!

(
1/2
n

)(−3/2
n

)
for n ≥ 0), for large x.
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37. Neumann, W. D.; Zagier, D., Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307–332.

38. Ramakrishnan, D., Analogs of the Bloch-Wigner function for higher polylogarithms, Applications of algebraic

K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math. 55

(1986), Amer. Math. Soc., Providence, R.I., 371–376.

39. Rohrlich, D.E., A modular version of Jensen’s formula, Math. Proc. Cambridge Philos. Soc. 95 (1984), 15–20.

40. Rolshausen, K.; Schappacher, N., On the second K-group of an elliptic curve, J. Reine Angew. Math. 495

(1998), 61–77.

41. Schappacher, N.; Scholl, A., The boundary of the Eisenstein symbol, Math. Ann. 290 (1991), 303–321.

42. Smyth, C., On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), 49–63.

43. Stark, H., Values of L-functions at s = 1. I-IV, Adv. in Math. 7 (1971), 301–343, 17 (1975), 60–92, 22 (1976),
64–84, 35 (1980), 197–235.

44. Suslin, A.A., K3 of a field, and the Bloch group, Galois theory, rings, algebraic groups and their applications,

Trudy Mat. Inst. Steklov 183 (1990), 180–199.

45. Tate, J., Les conjectures de Stark sur les fonctions L d’Artin en s = 0. (Lecture notes edited by D. Bernardi

and N. Schappacher), Progress in Mathematics 47 (1984), Birkhäuser Boston, Inc., Boston, Mass.
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