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TWO RESULTS IN NUMBER THEORY
WITH ELEMENTARY ASPECTS

DON ZAGIER

The talk consisted of two parts, entirely unrelated except that each had an “elementary
aspect”: in the first part, a theorem about heights in algebraic number fields is proved by
a completely elementary method (essentially calculus), while in the second part a more
difficult theorem about special values of Hecke L-series has as a corollary an elementary
identity of which I know no elementary proof. We give only a brief survey since both
results will appear shortly.

No ALGEB.RAIC NUMBER CAN BE CLOSE TO BOTH $0$ AND 1

If $\alpha$ is an algebraic number in an algebraic number field $K$ , then the height of $\alpha$ relative
to $K$ is defined by $H_{K}( \alpha)=\sum_{v}\log^{+}|\alpha|_{v}$ , where the sum runs over all places $v$ of $K$ (with

the valuations . $|_{v}$ normalized in the usual way, so $\prod|\alpha|_{v}=|N_{K/Q}(\alpha)|,\prod_{a11v}|\alpha|_{v}=1)$ and
$v|\infty$

$\log^{+}|x|$ denotes $\log(\max\{1, |x|\})$ . The absolute height $H(\alpha)$ is defined as $[K : \mathbb{Q}]^{-1}H_{K}(\alpha)$

and is independent of $K$ .
The height of $\alpha$ with respect to $\mathbb{Q}(\alpha)$ is the same as the logarithm of the “Mahler

measure” of the irreducible polynomial of $\alpha$ , and a still-open conjecture of Lehmer of 1933
says that this number has a positive universal lower bound for all $\alpha$ except roots of unity
(which by a theorem of Kronecker are the only numbers of height $0$ ). Specifically, the
conjecture is that $H_{\mathbb{Q}(\alpha)}(\alpha)\geq H_{\mathbb{Q}(\lambda)}(\lambda)=\log\lambda=0.1623\ldots$ , where A is the unique root
outside the unit circle of the polynomial $x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$ . The
absolute height is of course not bounded below in the same way, since $H(\sqrt[n]{2})=\underline{1}$ log2,

$n$

but a theorem of Schinzel of 1973 says that $H( \alpha)\geq C_{0}=H(\phi)=\frac{1}{2}\log\phi=0.2460\ldots$

for all totally real $\alpha$ , where $\phi=(1+\sqrt{5})/2$ is the golden ratio. Recently, Zhang proved
a theorem which says that $H(\alpha)+H(1-\alpha)$ has a positive universal lower bound for all
numbers for which it is positive (i.e., all except $0,1$ , or 6th roots of unity), as a consequence
of some difficult results about hermitian line bundles over arithmetic surfaces. We give a
very short and elementary proof of this theorem with a sharp estimate for the lower bound:

Theorem. For all $\alpha\neq 0,1,$ $\frac{1\pm\sqrt{-3}}{2}$ , we have $H(\alpha)+H(1-\alpha)\geq C_{0}=0.2460\ldots$ , With
equali$ty$ in exactly 8 cases $\alpha=\zeta_{10},1-\zeta_{10}$ ($\zeta_{10}=primitive$ 10th root of unity).

For the proof, one first proves the estimate
$\log^{+}|z|+\log^{+}|1-z|\geq C_{1}\log|z^{2}-z|+C_{2}\log|z^{2}-z+1|+C_{0}$ $(\forall z\in \mathbb{C})$ ,
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where $C_{2}= \frac{1}{2\sqrt{5’}}C_{1}=\frac{1}{2}-C_{2}$ . (To do this, one observes that the difference of the

right-and left-hand sides is harmonic off the circles $|z|=1$ and $|z-1|=1$ , so can attain
its extreme values only on these circles, and these can be found by writing $z$ or $1-z$ as
$x+i\sqrt{1-x^{2}}$ with-l $\leq x\leq 1$ and differentiating with respect to $x.$ ) This then gives

$\log^{+}|\alpha|_{v}+\log^{+}|1-\alpha|_{v}\geq C_{1}\log|\alpha^{2}-\alpha|_{v}+C_{2}\log|\alpha^{2}-\alpha+1|_{v}+C_{0}n_{v}$

for all places $v$ , where $n_{v}$ is 1 or 2 for $v$ real or complex and $0$ for $v$ non-archimedean. (The
proof in the latter case is obtained easily by looking separately at $|\alpha|_{v}\leq 1$ and $|\alpha|_{v}>1.$ )
Summing over all $v$ gives the assertion since $\sum_{v}\log|\alpha^{2}-\alpha|_{v}=\sum_{v}\log|\alpha^{2}-\alpha+1|_{v}=0$ .

References

S. Zhang, Positive line bundles on arithmetic surfaces, preprint, Princeton 1992
D. Zagier, Algebraic numbers close to both 0 and 1, to appear in Math. Comp.

CENTRAL VALUES OF HECKE $L$-SERIES

There is a general philosophy that certain (“critical”) values of certain (“motivic“)
L-functions arising in number theory, algebraic geometry, or the theory of automorphic
forms should be the product of a predictable transcendental number (the “period”) and
an algebraic number lying in a predictable number field; moreover, if tbe value in question
is at the symmetry point of the functional equation of the L-function, then the algebraic
number should be a square in the field in question. $J$

Particularly nice examples of motivic L-functions are Hecke L-series, since these belong
to all three fields mentioned: they are the L-series of Hecke characters of ideals in a
quadratic field, the Hasse-Weil zeta functions of one-dimensional abelian varieties with
complex multiplication, and the L-series of theta series associated to binary quadratic
forms. In 1980, Gross and I made some numerical computations for higher-weight Hecke
characters associated to a simple quadratic field and verified the conjecture on squares
mentioned above. Specifically, let $K=\mathbb{Q}(\sqrt{-7})$ and $\psi_{1}$ the grossencharacter defined by
$\psi_{1}(a)=\epsilon(\alpha)\alpha$ for $\mathfrak{a}=(\alpha)$ , where $\epsilon(\cdot)$ is the Legendre character $(_{\overline{7}})$ , extended to the

ring of integers $\mathcal{O}$ via the isomorphism $\mathcal{O}/\sqrt{-7}\cong Z/7$ . The Hecke L-series $L(\psi_{1}^{n}, s)=$

$\sum\psi_{1}(a)^{n}N(\alpha)^{-}$ has a functional equation sending $s$ to $n+1-s$ , so there is a central
critical point $s=k$ if $n=2k-1$ is odd. The corresponding value of the L-series vanishes
by the functional equation if $k$ is even, but for $k$ odd we found the numerical values

$L( \psi_{1}^{2k-1}, k)=2\frac{(2\pi/\sqrt{7})^{k}\Omega^{2k-1}}{(k-1)!}A(k)$ $( \Omega=\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{4\pi^{2}})$

with $A(1)= \frac{1}{4}$ $A(3)=A(5)=1,$ $A(7)=9,$ $A(9)=49,$ $\ldots,$ $A(33)=44762286327255^{2}$ ,
and we conjectured that all $A(k)$ with $k>1$ are integral squares. Recently, by generalizing
a beautiful result of Villegas giving the central values of weight one Hecke L-series as the
squares of certain sums of values of theta series at CM points, he and I were able to prove
this conjecture in the following explicit form:
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Theorem. Define polynomia $sa_{2n}(x),$ $b_{n}(x)\in \mathbb{Q}[x]$ by $a_{0}(x)= \frac{1}{4’}b_{0}(x)=\frac{1}{2}$ an$d$

$a_{n+1}(x)=\sqrt{(1-x)(1+27x)}(xa_{n}’(x)-(2n+1)a_{n}(x)/3)-n^{2}(1-5x)a_{n-1}(x)/9$,
21 $b_{n+1}(x)=(32nx-56n+42)b_{n}(x)-(x-7)(64x-7)b_{n}’(x)-2n(2n-1)(11x+7)b_{n-1}(x)$

for $n\geq 0$ . Then $A(2n+1)=a_{2n}(-1)$ and $A(2n+1)=b_{n}(0)^{2}$ for all $n\geq 0$ .
But no elementary proof that $a_{2n}(-1)=b_{n}(0)^{2}$ is known!

The proof of the theorem uses a general factorization formula for derivatives of theta
series generalizing the one found by Villegas for the values of theta series. Specifically, the
two identities of the theorem follow from the two identities

$L( \psi^{4n+1},2n+1)=\frac{(2\pi/\sqrt{7})^{2n+1}}{(2n)!}\Theta^{[2n]}(\frac{7+i\sqrt{7}}{14})$

and
$L( \psi^{4n+1},2n+1)=\frac{7^{n-1/4}}{2^{2n-2}(2n)!}|\theta^{[n]}(\frac{1+i\sqrt{7}}{2})|^{2}$ ,

where $\theta(z)$ and $\Theta(z)$ denote the theta-series

$\Theta(z)=\frac{1}{2}\sum_{m,n\in \mathbb{Z}}q^{m^{2}+mn+2n^{2}}=\frac{1}{2}+q+2q^{2}+3q^{4}+\cdots$ ,

$\theta(z)=\frac{1}{2}\sum_{n\in \mathbb{Z}+\frac{1}{2}}q^{n^{2}/2}=q^{1/8}(1+q+q^{3}+\cdots)$
$(q=e^{2\pi iz})$

and $f^{[n]}(z)$ denotes the nth non-holomorphic derivative of a real-analytic modular form

(defined by induction by $f^{[1]}(z)= \frac{1}{2\pi i}\frac{\partial f}{\partial z}-\frac{kf}{4\pi\propto s(z)}$ if $f$ has weight $k$ ; in our case, $\theta(z)$

and $\Theta(z)$ are modular forms of weight 1/2 and 1 on $\Gamma_{0}(2)$ and $\Gamma_{0}(7)$ , respectively).
Similar identities are proved for grossencharacters of other imaginary quadratic fields,

not necessarily of class number one.
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