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LINES ON THE DWORK QUINTIC PENCIL AND

ITS HIGHER DEGREE ANALOGUES

Don Zagier

To the memory of my friend and teacher Friedrich Hirzebruch,

who loved concrete examples in general and quintic hypersurfaces in particular.

Abstract

We give a reformulation of the recent results of Candelas et al.
[2] describing pencils of lines on the quintic threefold

{
(x1 : · · · : x5) ∈ P4(C)

∣∣ x51 + · · · + x55 = 5ψ x1 · · ·x5
}

in terms of the moduli space M0,5 of curves of genus 0 with 5
marked points, and a generalization to pencils of lines on the de-
gree n hypersurfaces

{
(x1 : · · · : xn) ∈ Pn−1(C)

∣∣ xn1 + · · · + xn
n
= nψ x1 · · ·xn

}

in Pn−1(C) in terms of the moduli space M0,n for any odd integer
n ≥ 5.

This note is a small addendum to the beautiful recent paper by Philip
Candelas, Xenia de la Ossa, Bert van Geemen, and Duco van Straten [2],
in which the authors, extending earlier work by Anca Mustaţă [5], de-
scribe the lines on the Dwork quintic threefold

Qψ =
{
(x1 : · · · : x5) ∈ P4(C)

∣∣ x51 + · · · + x55 = 5ψ x1 · · · x5
}

(ψ ∈ C),(1)

showing that there are 375 isolated lines
{
(u : v : αu : βv : 0) | (u : v) ∈ P1(C)

}
and permutations,

where α5 = β5 = −1,(2)

and two continuous families, each of which is parametrized by a curve

C̃ϕ of genus 626 that is a 125-fold cover of a curve Cϕ of genus 6. The
two curves Cϕ are given by the equations

(3) G(σ, τ) = ϕH(σ, τ)

in two variables σ and τ , where ϕ is one of the two roots of the equation

(4)
32

ψ5
= ϕ2 +

3

4
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and where G = G(σ, τ) and H = H(σ, τ) are the Laurent polynomials
in σ and τ given by

(5) G = 3 −
1

2

3∏

i=1

(σi+1) +

3∏

i=1

(σ2i −σi+1) , H =

3∏

i=1

(σi− 1) ,

with (σ1, σ2, σ3) = (σ, τ, 1/στ). The obvious action of S5 on Qψ corre-
sponds in this description with the rather less obvious birational action
of S5 on P2(C) generated by the two automorphisms

(6) (σ, τ) 7→
( 1

σ
,
1

τ

)
, (σ, τ) 7→

(
τ,

1− σ

1− στ

)

of order 2 and 5, respectively, with the even permutations in S5 preserv-
ing each of the curves Cϕ and the odd ones interchanging them. The
S5-invariant curve C0 ⊂ P2(C) had been discovered already in 1897
by Wiman [6] and the family of A5-invariant curves Cϕ ⊂ P2(C) by
Edge [3] in 1981. (Here Sn and An as usual denote the symmetric and
alternating groups on n letters.)

The starting point for this note is the observation that the space P2(C),
with the (birational) coordinates σ and τ and the action of S5 de-
scribed by (6), can be interpreted naturally as the moduli space of M0,5

of 5-tuples of points on a curve of genus 0 : this moduli space can be
parametrized by choosing the curve of genus 0 to be P1(C) and the
points to be 0, ∞, 1/τ , 1, and σ (or, in the slightly more symmetrical
σi-coordinates, by choosing the points to be 0, ∞, a, b, and c in P1(C)
where (cb−1, ba−1, ac−1) = (σ1, σ2, σ3)). The non-linear action (6) of S5

on (σ, τ) then corresponds simply to permuting the 5 points and ap-
plying an element of PGL(2,C) to put the image back into the form
(0,∞, 1/τ ′, 1, σ′). It turns out that by using this interpretation one can
rewrite the results of Candelas et al in a more natural and less computa-
tional way, intimately related to the classical invariant theory of binary
quintic forms. This is done in §§1–2, while §3 is devoted to describing
the equation of the hypersurface of degree 250 in P4(C) in which all of
the lines lie. Finally, in §4 we give the surprisingly easy generalization
to the higher-degree and higher-dimensional hypersurfaces

Q
(n)
ψ =

{
(x1 : · · · : xn) ∈ Pn−1(C)

∣∣ xn1 + · · · + xnn = nψ x1 · · · xn
}

(ψ ∈ C),(7)

with odd n ≥ 5, which contain (n−4)-dimensional pencils of lines related
in a natural way to M0,n.
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1. The moduli space M0,5 and invariants of binary quintics

The moduli space M0,5 of curves of genus 0 with 5 (distinct) marked
points is given by

M0,5 = PGL(2,C)
∖ {

z = (z1, . . . , z5) ∈ P1(C)5
∣∣ zi 6= zj for i 6= j

}

= GL(2,C)
∖ (

C2×5 r
⋃

i<j

{∆ij = 0}
) /

(C∗)5diag(8)

where C2×5 denotes the space of 2 × 5 matrices Z = (Z1 · · · Z5) =(
ξ1 · · · ξ5
η1 · · · η5

)
and ∆ij = |Zi Zj | = ξiηj − ξjηi (1 ≤ i, j ≤ 5, i 6= j), with

zi = ξi/ηi. As already stated in the introduction, we can coordinatize it
explicitly, though at the expense of obscuring the S5-symmetry, by

{
(σ, τ) ∈

(
P1(C)r {0, 1,∞}

)2
| στ 6= 1

} ∼
−→ M0,5 ,(9)

(σ, τ) 7→ (0, ∞, 1/τ, 1, σ) ,

in which case the S5-action becomes the one generated by the two
automorphisms (6). (Explicitly, these generators correspond to the per-
mutations (1 2) and (1 4 2 5 3), as one sees by applying to P1(C) the
fractional linear transformations z 7→ 1/z and z 7→ (1 − τz)/(1 − z),
respectively. The ordering of the five variables here has been chosen to
coincide with the one used in [2], to facilitate comparison of the results
of the two papers. A full description of the action of S5 can be found
in Table 1 of [2].) Then the Wiman-Edge function

(10) Φ(z) = Φ(σ, τ) =
G(σ, τ)

H(σ, τ)
,

with G and H defined as in (5), is invariant under even and anti-
invariant under odd elements of S5, as one checks by direct verification
for these two generating automorphisms (and as must in any case be
true to be compatible with the description of the lines on Qψ described
in the introduction). Using the above identifications, we can view Φ ei-
ther as a (PGL(2,C) × A5)-invariant function on the space of 5-tuples
of distinct points zi ∈ P1(C), or as a (GL(2,C)× ((C∗)5⋊A5))-invariant
function on the space of 5-tuples of pairwise non-proportional vectors
(ξi, ηi) ∈ C2.

Proposition 1. Up to scalars, Φ is the unique rational function on

M0,5 that is S5-invariant up to sign and whose only singularities in

P1(C)5 are simple poles along the diagonals zi = zj .

Proof. Any rational function on M0,5 can be written as a quotient
of two polynomials in the ∆ij’s that is homogeneous of degree 0 in
each Zi. If it has the other properties given, then its denominator must
be proportional to the function ∆ =

∏
i<j∆ij and its numerator an

element of the space H of S5-invariant polynomials in the ∆ij having
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degree 4 in each Zi. There are precisely 158 monomials in the ∆ij of
degree (4,4,4,4,4) in the Zi’s, forming seven orbits under the action of
S5, as follows:

Orbit Size Typical Monomial

1 1
∏
i<j∆ij

2 10 (∆12∆23∆31)
2∆4

45

3 12 (∆12∆23∆34∆45∆51)
2

4 15 ∆12∆13∆14∆15(∆23∆45)
3

5 30 ∆12∆13∆14∆15∆24∆35(∆23∆45)
2

6 30 (∆12∆13)
2∆24∆25∆34∆35∆

2
45

7 60 (∆12∆13)
2∆23∆24∆35∆

3
45

Hence if we let Fj (1 ≤ j ≤ 7) be the sum of the monomials in the jth
orbit, then H is spanned by F1, . . . , F7, so dimH ≤ 7. But when we
compute the polynomials Fj , we find that in fact they are all multiples

of F := F2 (explicitly, (F1, . . . , F7) = (0, 1, 1, 0, 12 , 1, 3)F ), so H is actu-
ally one-dimensional, and the computation also shows that the function
4F/∆ equals Φ. q.e.d.

The above proof of the proposition does not really explain why the
function Φ is unique, since there is no apparent reason, short of actu-
ally doing the computation, why the seven functions Fj should all be
multiples of one of them. In fact the 1-dimensionality of the space in
question is an old result, proved by Sylvester in 1846. To explain this,
we recall the basics of the classical theory of invariants of binary forms,
since we will need other parts of it afterward. A binary form of degree n
(or binary n-ic) is a homogeneous polynomial

(11) F (u, v) = A0u
n + A1u

n−1v + · · · + Anv
n

of degree n in two variables u and v with (for us) complex coefficients.
The group SL(2,C) acts on the right on the vector space of such forms by

defining F ◦
(a b
c d

)
as the form F (au+bv, cu+dv). An invariant of binary

n-ics is by definition a polynomial I(A0, . . . , Ad) in the coefficients of
the form (11) that is invariant under this action, an example being the
discriminant, which is an invariant of degree 2n− 2 for all n. The space
of all invariants, graded by degree, forms a graded C-algebra, known to
be finitely generated for all n. This was proved by Hilbert, long after
Sylvester, but for small values of n it was already worked out in great
detail in the 19th century. The generators for n ≤ 6 are as given in the
following table:
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

(none) I2 I4 I2, I3 I4, I8, I12, I18 I2, I4, I6, I10, I15

in which Id denotes an invariant of degree d and the invariants listed
generate the algebra of invariants freely in all cases except n = 5 and
n = 6, for which the square of the last generator listed is a polynomial
in the other ones. The result for n = 5 is due to Sylvester and includes
as its simplest corollary the statement that the invariant of binary quin-
tics of lowest degree has degree 4 and is unique up to a scalar multiple,
which is precisely the statement of Proposition 1 if we identify the space
of binary quintic forms up to scalars with M0,5 by setting F (u, v) =

A0
∏5
i=1(u − ziv) or F (u, v) = const

∏5
i=1(ηiu − ξiv) in the notation

of (8). Sylvester’s result also implies that the simplest SL(2,C)-invariant
rational function on the 5-dimensional projective space of binary quin-
tics (in the sense of having numerator and denominator of lowest degree)
is I24/I8, which is, up to a constant, the square of the function Φ. Thus
the only S5-invariant curves of degree ≤ 8 on this projective space are
the ones given by Φ2 = ϕ2 for some ϕ ∈ C, and the only A5-invariant
curves in M0,5 of degree ≤ 4 are the ones given by Φ = ϕ or G = ϕH
for some ϕ ∈ C, i.e., they are precisely the curves found by Wiman and
Edge.

In the above table we observe that there is always an invariant of
degree 2 when n is even. This is because the space of binary n-ic forms
has an SL(2,C)-invariant scalar product, given by

(F, G) =

n∑

ν=0

(−1)ν
(
n

ν

)−1

Aν Bn−ν

for F =
n∑

ν=0

Aν u
n−ν vν , G =

n∑

ν=0

Bν u
n−ν vν ,

giving the invariant

(12) I2(F ) = (F,F ) =

n∑

ν=0

(−1)ν
(
n

ν

)−1

Aν An−ν

of degree 2. (Of course I2 vanishes if n is odd.) This invariant will play
a role in §2 and §4.

2. Lines on the Dwork quintic

We now come to the parametrization of lines on the threefold Qψ
by certain points in M0,5. In the paper by Candelas et al, the line
parametrized by (σ, τ) ∈ Cϕ is obtained by setting

(x1 : x2 : x3 : x4 : x5) = (c1u : c2v : c3(τu− v) : c4(u− v) : c5(u− σv))
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with (u : v) running over P1(C), where c1, . . . , c5 are numbers whose
fifth powers are given (up to an irrelevant common factor) as explicit
rational functions of σ and τ . (Cf. equation (2.1) of [2] and the following
calculations.) In view of (9), that statement corresponds to:

Proposition 2. Any five distinct lines in C2 can be given by the

vanishing of five linear forms L1, . . . , L5 such that
∑5

i=1 L
5
i is a multiple

of
∏5
i=1 Li.

Proof. Let u, v be the coordinates on C2 and write the five given
lines as u = ziv or ηiu = ξiv (i = 1, . . . , 5) with zi ∈ P1(C) and
(ξi, ηi) ∈ C2, with the obvious interpretation of the equation u = ziv
as the equation v = 0 if zi = ∞. For notational convenience we will
ignore the last possibility (which is non-generic) and use the coordi-
nates zi rather than the homogeneous coordinates (ξi, ηi) to parame-
trize the lines in question. Then, similarly writing z for u/v, we can
rewrite the statement of the proposition as the statement that the poly-
nomials (z − z1)

5, . . . , (z − z5)
5 and (z − z1) · · · (z − z5) are linearly

dependent. Choosing the monomials (−1)ν
(5
ν

)
z5−ν (0 ≤ ν ≤ 5) as a

basis for the space of all polynomials of degree ≤ 5 in z, and writing∏5
i=1(z − zi) =

∑5
ν=0(−1)νσνz

5−ν =:
∑5

ν=0(−1)ν
(
5
ν

)
σ̃νz

5−ν , we can
rewrite this as the statement that the determinant of the matrix

(13) B5(z) = B5(z1, . . . , z5) =




1 · · · 1 1
z1 · · · z5 σ̃1
...

. . .
...

...
z51 · · · z55 σ̃5




is zero. But this is obvious, because the vector (σ5,−σ4, σ3,−σ2, σ1,−1)
B5(z) vanishes. q.e.d.

Remark 1. The kernel of the matrix B5(z) is always 1-dimensional,
because this matrix has an upper left principle minor that is a Van-
dermonde matrix with determinant ∆ =

∏
i<j(zi − zj) 6= 0, and hence

cannot have rank less than 5. This means that the forms L5
j in Propo-

sition 2 are always unique up to a common scalar factor, but of course
the forms themselves can be multiplied by any 5th root of unity with-
out affecting their defining property, so altogether there are 54 = 625
solutions up to common scalar factors.

Remark 2. The above proof was based on the useful principle that
a square matrix having a known element in its kernel must also have
a vector in the kernel of its transpose. In general this principle is non-
constructive and does not tell one how to get the second vector from
the first one. In our case, by direct calculation we can give the element
in KerB5(z), and hence the linear relation among the six fifth-degree
polynomials in question, explicitly. The result, which will be generalized
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to higher dimensions in §4, is as follows. For (z1, . . . , z4) ∈ C4, define

i2(z1, . . . , z4) = σ22 − σ1σ3 + 12σ4 ,

where σν = σν(z1, . . . , z4) is the νth elementary symmetric polynomial
in the zi. Up to a factor of 6, this is the value of the invariant I2 defined
at the end of §1 for the quartic form

∏4
i=1(u−ziv). (Here we are using the

inhomogeneous notation with zi ∈ P1(C) rather than the homogeneous
notation with (ξi, ηi) ∈ C2 for convenience, but of course if some zi
equals infinity we must replace the corresponding factor u − ziv by v;
we will not mention this minor point again.) Then the relation whose
existence is asserted in Proposition 2 for the lines u = ziv (i = 1, . . . , 5)
is given by

(14)

5∑

i=1

i2(z1, . . . , ẑi, . . . , z5)∏
j 6=i(zi − zj)

(u − ziv)
5 = 10

5∏

i=1

(u − ziv)
5 .

By taking the 5th roots of the five terms on the left of (14) as the
coordinates of a point x = (x1 : · · · : x5) in P4(C), we obtain the desired
description of the pencils of lines:

Theorem 1. For every point z ∈ M0,5 there are 54 = 625 lines

in P4(C) that have coordinates proportional to the coordinates of z and

that lie on some hypersurface Qψ. The values of ψ that occur are the

roots of the equation (4), where ϕ = Φ(z).

Proof. Given the point z = (z1, . . . , z5), we see from (14) that for each
of the 55 = 3125 choices of solutions a = (a1, . . . , a5) of the equations

(15) a5j =
i2(z1, . . . , ẑi, . . . , z5)∏

j 6=i(zi − zj)

we obtain a line

(16) ℓa =
{ (

a1(u− z1v) : · · · : a5(u− z5v)
) ∣∣ (u : v) ∈ P1(C)

}

in P4(C) that is contained in the hypersurface Qψ with ψ = 2/a1 · · · a5.
Then the product of 32/ψ5 with the discriminant D5 =

∏
i<j(zi−zj)

2 of

the form Fz(u, v) =
∏
i(u−ziv) is an expression

∏
i I2(z1, . . . , ẑi, . . . , z5)

that is obviously S5-invariant and by construction is an invariant of
the form Fz, easily seen to be of degree 8. By what we know about the
invariants of binary quintic forms, this expression is a linear combination
of I24 and D5, where I4 is the 4th degree invariant discussed in §1, so
32/ψ5 is a linear combination of Φ(z)2 and 1, with coefficients that are
easily verified to be those given in (4). Of course only 54 of the 55 lines
ℓa are distinct. q.e.d.
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3. The hypersurface swept out by the lines

Since M0,5 is a surface, the union of the lines in Theorem 1 is 3-
dimensional, so its closure L in P4(C) is a hypersurface, cut out by the
vanishing of some homogeneous polynomial F (x) in the variables x =
(x1, . . . , x5). The surface in the quintic hypersurface Qψ swept out by
the Mustaţă-Candelas-de la Ossa-van Geemen-van Straten lines is then
given by the same equation F (x) = 0, restricted to Qψ. In this section
we describe the polynomial F . In particular, we will show:

Theorem 2. The hypersurface L ⊂ P4(C) has degree 250.

Proof. Since L is invariant under the action of bothS5 (permutations
of the variables) and µµµ55 (multiplication of the variables by 5th roots of
unity), the polynomial F (x) can be expressed as a weighted homoge-
neous polynomial P (s1, . . . , s5) in the elementary symmetric functions

sj = σj(x
5
1, . . . , x

5
5) (j = 1, . . . , 5)

of the fifth powers of the components of x. We can therefore, for each
valueD = 1, 2, . . . , simply take the p5(D)-dimensional dimensional vec-
tor space (p5(D) = number of partitions of D into parts ≤ 5) spanned
by all monomials sa1s

b
2s
c
3s
d
4s
e
5 with a+2b+3c+4d+5e = D and look for

a linear relation among the values of these polynomials when s1, . . . , s5
are replaced by the elementary symmetric functions in the five terms
on the left-hand side of (14), for generic z1, . . . , z5, u, v ∈ C. We find
that there is no such relation for D < 50 and exactly one (up to a
scalar factor) if D = 50. The computation is quite complicated, even by
computer, because the number of monomials that one has to consider,
in the first case that succeeds, is rather large, namely p5(50) = 3765.
One can make things a little easier by working numerically rather than
algebraically, i.e., instead of thinking of s1, . . . , s5 as polynomials in
variables u and v with coefficients in Q(z1, . . . , z5), we simply evaluate
them all at a large number N (N > p5(D)) of randomly chosen points
(z1, . . . , z5, u, v) ∈ Q7 and then look for linear dependences of the result-

ing N vectors in Qp5(D). Even this becomes computationally difficult for
D as large as 50, so in practice we reduce everything modulo a mod-
erately large prime p (we used a “random” 19-digit prime) and look

for linear relations among vectors with coefficients in F
p5(D)
p . The first

value of D where even such a mod p relation is found is D = 50, corre-
sponding to degree 250 for the original polynomial F . We then lift the
numerically obtained polynomial P (mod p), suitably normalized, back
to Q, choosing the coefficients to be of small height (this actually turned
out to be very easy, since if we normalize P so that the coefficient of s501
is 1 then it turns out that all of the further coefficients are integers),
and check that this polynomial P ∈ Q[s1, . . . , s5] does indeed vanish
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when each sj is replaced by the jth elementary symmetric function of
the terms on the left of (14). q.e.d.

The polynomial P obtained by the above procedure is considerably
simpler than it might have been, since it actually turns out to involve
only 645 of the 3765 monomials of weighted degree 50, but it is still very
complicated and we were not able to find any conceptual description of
it. Because tabulating even 645 coefficients seems a bit excessive, we
will not write out the full equation here, but since we failed to find an
intrinsic description and hope that some reader may succeed (here and
then hopefully also for the higher-degree analogues treated in §4), we
will provide a partial table of coefficients and a list of various further
properties that we observed.

In the table below we list the first ten and last two of the coefficients
of P when considered as a polynomial in the variable s1. Since these
coefficients are typically divisible by large powers of 5, we have removed
these powers from the coefficient and presented the data in the form of
a table giving the coefficients C(M) of suitable monomials of the form
M = 5isa1.

a i Coefficient of 5isa1 in P (s1, . . . , s5)

50 0 1
49 0 0
48 0 0
47 4 − 2 s3
46 5 − 16 s4
45 5 2 s2s3 − 210 s5
44 8 2 s2s4 + s23
43 9 22 s2s5 + 26 s3s4
42 9 − 2 s2s

2
3 − 4 s22s4 + 1028 s3s5 + 173 s24

41 10 − 73 s22s5 − 75 s2s3s4 − 226 s4s5
...

...
...

1 50 − 221s65 (s
2
3s4 − s2s3s5 + s25) (s2s3s4 − s22s5 + 2 s4s5)

0 50 220s65 (s
2
3s4 − s2s3s5 + s25)

2

Here are some observations concerning these coefficients and the remain-
ing, unlisted ones:

1. The coefficients of P (normalized to begin with s501 ) are of course
all rational numbers, because the space of polynomials of this degree
vanishing on L is 1-dimensional and invariant under Gal(Q̄/Q), but in
fact they are all integral, and the coefficient of sa1 is divisible by 550−a

for all 0 ≤ a ≤ 50.

2. Although we were not able to find a rule describing completely which
645 of the 3765 possible monomials sa1s

b
2s
c
3s
d
4s
e
5 with a+2b+3c+4d+5e =



186 D. ZAGIER

50 occur in P , we did find a number of inequalities satisfied by their
exponents, some of which are listed in the following table

b+ 2c b+ 2d b+ e c+ d c+ e d+ e 2b+ 3c+ 4d

≤ 10 ≤ 10 ≤ 12 ≤ 5 (∗) ≤ 10 (∗) ≤ 10 ≤ 20

(and hence in particular b ≤ 10, c ≤ 5, d ≤ 5), where in each of the two
cases marked by an asterisk there is one exceptional pair of exponents,
namely (c, d) = (4, 2) and (c, e) = (5, 6), respectively, the terms having
these exponents being

525(9s51 + 50000s5)
5s43s

2
4s5 (6 monomials) and

− 22133545 s51s
5
3s

6
5 (1 monomial),

respectively. These inequalities, taking into account the seven excep-
tional monomials, cut down the number of possible monomials from
3765 to 751. But this still falls somewhat short of explaining why only
645 collections of exponents actually occur, and also we have no expla-
nation of the inequalities.

3. In several cases where the inequalities just given are sharp, the coeffi-
cient of the corresponding monomial in two of the five variables factors
non-trivially, as we just saw above for the coefficients of s43s

2
4 and of

s53s
6
5. Further examples are:

• For the extreme or near-extreme cases b ∈ {9, 10}, c = 5, d = 5,
and e = 10 we have
[
s102

]
(P ) = 530s201 s

2
5 ,[

s92
]
(P ) = −2 · 529s171 s

2
5 (3s

5
1 + 100000s5) ,[

s53
]
(P ) = 33 520s51s5 (s

5
1 − 3125s5)

2 (3s51 − 400000s5)
3 ,

[
s54
]
(P ) = 26 520 s51 (s

5
1 − 3125s5)

2 (3s51 − 400000s5)
3 ,

[
s105

]
(P ) = 220 530 .

• If b+2c = 10, then the coefficient of sb2s
c
3 in P equals 528λcs

2b
1 s

2
5(9s

5
1+

50000s5)
c if c ≤ 4, where (λ0, . . . , λ4) = (25,−50, 35,−10, 1). (The

value for c = 5 was already given above.)
• If b + 2d = 10, then the coefficient of sb2s

d
4 in P is divisible by

(3s51 − 400000s5)
d−2. (This assertion is non-empty only for 3 ≤

d ≤ 5, and was already given above for d = 5.)
• The coefficient of s3s

4
4 in P equals −24 ·3·520s61 (s

5
1−3125s5)

2(3s51−
400000s5)

3.

The last inequality 2b + 3c + 4d ≤ 20 in the table in 2 above is
especially interesting, because it can be restated as a + 5e ≥ 30 and
this tells us that if we restrict P (s1, . . . , s5) to s51 = ks5 for some
constant k, then it is divisible by s301 . (More explicitly, it factors as
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s301 P̃ (s1, . . . , s4; k) where the polynomial P̃ (s1, . . . , s4; k) has degree 10
in k, with leading coefficient (2s1)

20, and is weighted homogeneous of
degree 20 in s1, . . . , s4, where si has weight i.) But setting s51 = ks5
corresponds precisely to restricting to the Dwork quintic Qψ, where
k = (5ψ)−5, so this tells us that if we restrict the polynomial F to any
Dwork quintic, then its degree drops from 250 to 100. We state this as
a theorem.

Theorem 3. The subvariety swept out by the continuous families of

lines on any Dwork quintic is a hypersurface of degree 100.

4. Lines on the hypersurface Q
(n)
ψ in Pn−1(C)

We now consider what happens when we change the degree and num-
ber of variables in our variety. We first note that the analogue of Proposi-
tion 2 holds also with 5 replaced by 3, the identity corresponding to (14)
being

(17)
∑

i (mod 3)

(zi+1 − zi+2)
3(z − zi)

3 = 3
∏

i (mod 3)

(zi+1 − zi+2)(z − zi).

Surprisingly enough, it also holds with 5 replaced by any odd number n.

Proposition 3. Any n distinct lines, where n ≥ 3 is odd, can be

given by the vanishing of n linear forms L1, . . . , Ln such that
∑n

i=1 L
n
i

is a multiple of
∏n
i=1 Li .

Proof. Identical to the proof of Proposition 2, but with 5 replaced
by n everywhere. q.e.d.

Remark 3. Just as in the case of Proposition 2, the kernel of the
matrix Bn(z) is one-dimensional, so that the linear forms Lj whose
existence is asserted in Proposition 2 are unique up to nth roots of
unity and a common factor.

Remark 4. For n even the proposition is false, the matrix Bn(z) be-
ing invertible in this case. If we multiply Bn(z) on the left by the same
row vector v = (σn,−σn−1, . . . ,−σ1, 1) as used in the proof of Propo-
sition 3, then for general n we get (0, . . . , 0, I2(Fz)), where I2(Fz) =∑n

ν=0(−1)νσn−ν σ̃ν is the invariant of the binary n-ic form Fz(u, v) =∏n
i=1(u − ziv) defined at the end of §1. This invariant vanishes for n

odd, which is why Bn has a kernel in that case, but is non-zero for n
even, and one can show that the determinant of Bn(z) is the product of
∆ =

∏
i<j(zi − zj) and I2(Fz).

Remark 5. Just as in the case n = 5, one can write down explicitly
the linear relation among the polynomials (z−zi)

n and
∏
i(z−zi) whose
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existence is asserted by Proposition 3, namely
n∑

i=1

I2(z1, . . . , ẑi, . . . , zn)∏
j 6=i(zi − zj)

(u − ziv)
n =

2n

n+ 1

n∏

i=1

(u − ziv)
n .

Using Proposition 3, we can generalize the rest of the story given
in §2 for the quintic to the case of the hypersurface (7) of degree n
in Pn−1(C). Denote by M0,n the moduli space of curves of genus 0 with
n marked points, identified as in §1 with the left quotient by PGL(2,C)
of the space of n-tuples of distinct points z1, . . . , zn in P1(C).

Theorem 4. For every point z ∈M0,n there are nn−1 lines in Pn−1(C)
that have coordinates proportional to the coordinates of z and that lie

on some hypersurface Q
(n)
ψ .

Proof. Identical to that of the first statement of Theorem 1, but with
5 replaced by n. q.e.d.

Just as in the case n = 5, the fact that M0,n has dimension n − 3
implies that the union of the lines occurring in Theorem 4 is a hypersur-
face in Pn−1(C), and hence is given by a single homogeneous equation,
again necessarily of the form P (s1, . . . , sn) = 0 for some weighted ho-
mogeneous polynomial P = Pn in the elementary symmetric functions
sj of xn1 , . . . , x

n
n. In view of the complexity of this polynomial already

for n = 5, we did not even attempt to find it for higher values of n. But
if a conceptual description of the polynomial P5 discussed in §3 were to
be found, then one could hope to extend that description to arbitrary
odd values of n. The two specific questions of most interest here, in
analogy with Theorems 2 and 3 of §3, are: what is the degree of the
hypersurface in Pn−1(C) swept out by all the lines on the subvarieties

Q
(n)
ψ ⊂ Pn−1(C) as ψ varies? and what is the degree of the hypersurface

swept out by the lines on each individual variety Q
(n)
ψ ⊂ Pn−1(C) ?

Finally, we remark that the pencil of Dwork quintics is, of course,
famous above all in the context of mirror symmetry, which began in
1991 with the analysis of this pencil and of its associated Picard-Fuchs
differential equation by Candelas et al [1]. The higher-dimensional pen-
cils (7) were also studied in the context of mirror symmetry a few years
later by Greene et al ([4], esp. §3.1). It seems natural to wonder whether
there could be any connection between the mirror aspects of these va-
rieties, and in particular their Picard-Fuchs differential equations, and
the families of lines on them studied in [5], [2], and in this paper.
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