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DON ZAGIER 

The problem we want to discuss in this paper is the following: 

Construct on the modular curve Xo(N) explicit divisors of degree 
0 defined over Q, and relate their heights to the derivatives at (1) 
s = 1 of L-series of cusp forms of weight 2 and level N, 

We begin by recalling the definitions of the various terms occurring here and the 
motivation for the question. 

Let X be a curve defined over Q. By a divisor of degree 0 on X we mean 
a finite formal linear combination y = Y2inì{xì) ixì e X{Q)i ft* £ Z) with 
] [ \ m = 0. It is defined over Q if y°" = y for all a G Gal(Q/Q). The quotient of 
the abelian group of such divisors by the subgroup of principal divisors 

(/) = 2 ^ ordx(f)-(x) (f: X -+P1 a rational function defined over Q) 
x a zero or 
po le of / 

is (if X has a Q-rational point) the set Jx(Q) of rational points on a certain 
abelian variety Jx, the Jacobian of X, and is a finitely generated group by the 
Mordell-Weil theorem. The Néron-Tate theory associates to each y a real number 
ft(y) > 0, called its height (or canonical height), which depends only on the class 
of y in Jx(Q) and which defines a quadratic form on Jx(Q) , i-e., h(y) = (y,y) for 
a certain symmetric bilinear form ( , ) on Jx(Q) (the height pairing). Moreover, 
h is positive definite on the free abelian group Jx(Q)/torsion; i.e., h(f) vanishes 
only if y is of finite order in Jx(Q)- We will explain later how the height is 
defined. 

For J V G N , the modular curve XQ(N) is a curve defined over Q whose C-
rational points are given by 

X0(N)(C) =fi/T0(N) U (finite set of "cusps"); 

here f) = {z = x + iy\y > 0} is the upper half-plane and r 0 (N) the group of 
matrices (a

c
 b
d) G SL2(Z) with c = 0 (mod TV), acting in the usual way z \-> ^ j t ì 

on #. The points of X$(N) over a subfield fc C C parametrize pairs (E,C) 
consisting of an elliptic curve E and a cyclic subgroup C C E(C) of order 
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TV, both defined over fc. A cusp form of weight 2 and level AT is a holomorphic 
function / : ¥) —• C such that the differential form f(z) dz on fì is r 0 (TV)-invariant 
and satisfying f(z) — 0(y~l) in ft. The set of such forms is a finite-dimensional 
vector space which we will denote by Sï(N). Each / G S2(TV) has a convergent 
Fourier development 

oo 

The L-series of / is the associated Dirichlet series 
oo 

L(f,s) = 2>/(rO«~S (a EC); 
n = l 

it converges for Re(s) > | and has a holomorphic continuation to all s. The 
space S2(N) has a basis of special modular forms / (Hecke forms) whose L-series 
have Euler products (in particular, a/(l) = 1) and satisfy a functional equation 

^ 0 \ T(8)L(f, s) = wf h@f\ r(2 - s)L(f, 2 - a) 

with Wf = ± 1 . We will be particularly interested in the value of the derivative 
Lf(f, 1) for those Hecke forms with wj = —1 (and hence L(f, 1) = 0). 

The motivation for formulating the problem (1) comes from the conjecture of 
Birch and Swinnerton-Dyer. Given a Hecke form / whose Fourier coefficients 
af(n) are all rational integers, there exists an elliptic curve E defined over Q 
and related to / by 

af (p) + #E(Z/pZ) =p + l for all p \ TV 

(Eichler, Shimura); this curve is unique up to isogeny (Faltings). Conversely, 
it is conjectured that every elliptic curve over Q arises in this way (Taniyama, 
Weil). The Birch-Swinnerton-Dyer conjecture predicts that if L(f,l) vanishes 
(in particular, if Wf = —1), then E(Q) has infinite order and 

L'(f, 1) = h(P) • u for some P G E(Q) <g> Q, (2) 

where u is an explicitly specified positive real number (a certain period of E) and 
h : E(Q) —• R is the height function on E, identified with its own Jacobian via 
x H* (x) — (0). Now the point is that there is a nonconstant map (j>: Xo(N) —> E 
defined over Q. (Over C, <fi is given as follows; by the ro(TV)-invariance of 
f(z) dz, the function F(z) = £ ~ = 1 n-xaf(n)e^inz satisfies F(^z) = F(z) + c1 

for all 7 G To (TV); the c7 all lie in a certain 2-dimensional lattice A C C, with 
i£(C) = C/A, so F induces a map 0: S)/T0(N) —• £ ( C ) , and this map extends 
smoothly over the cusps.) Hence to any Q-rational divisor y = J2niixi) o n 

XQ(N), we can associate a Q-rational divisor ^ni((j)(xi)) and hence—since E is 
a group—a Q-rational point P = Ylni^{xi) o n ^ ^ n e heights of P and y being 
related in a simple way. In this way a solution of (1) can be used to prove (2). 
We now proceed to describe one such solution. 
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We must first construct a Q-rational divisor on Xo (TV). The construction is 
based on the theory of complex multiplication and is due to Heegner and Birch 
(cf. [1, 4]). We need an auxiliary piece of data. This will be an imaginary 
quadratic field K whose discriminant D is assumed to be prime to 2TV and 
congruent to a square modulo 4TV (equivalently, every prime divisor of TV should 
split in K). Then there are infinitely many T Eft satisfying a quadratic equation 

ar2 + br + c = 0, a, b, c G Z, 62 - Aac = D, N\a, 

but only finitely many modulo the action of To (TV), say r o f i , . . . ,TD,h £ fì/To(N) 
C Xo(TV)(C) (h is a certain class number). The theory of complex multiplication 
tells us that the TD,ì are algebraic in Xo(TV)(C) and are permuted by Gal(Q/Q), 
so the divisor of degree zero %D = J2i=iiTD,i) — h • (oo) is defined over Q (here 
"oo" denotes the cusp at infinity on Xo(TV), which is defined over Q). If D is —3 
or —4, we must divide this by 3 or 2 to get consistent formulas later, because of 
the presence of extra units in K\ the class of y^ is then in Jx0(N) (Q)®Q- We call 
y£> the Heegner divisor attached to K. If / is a Hecke form with integral Fourier 
coefficients associated to an elliptic curve E/Q and a map </>: Xo(N) —> E as 
above, then we get a point 

h 

PD = X > ( ^ ) e £(Q), 
i=l 

the Heegner point attached to K. A solution to (1) is then provided by the 
following theorem. 

THEOREM 1 [7, 9] . LetD,N be as above, h(-) the canonical height function 
for Xo(N) over Q. Assume TV is prime. Then 

ftfo>) = ^ E ìjTJpW' ! W- D ' Q> w 

where the sum runs over all Hecke forms f G ̂ (TV) with Wf = —1, | |/ | |2 denotes 
the Petersson scalar product ffH/r /N\ \f(z)\2 dxdy, and L(f,D,l) is the value 
at s = 1 of the "twisted L-seriesn 

00 / D\ 

L(f,D,s) = J2aÄn) [n)n~8 (Re(s) >> 0)' 
n = l ^ ' 

Actually, the theorem of [9] is proved for all TV, and we have assumed TV prime 
only for convenience in stating the result. (If TV is composite, there is an extra 
power of 2 in the formula (3) and one has to discuss new and old forms.) It 
is more general than Theorem 1 in two other respects. First, it gives not only 
the height pairing of yjr> with itself, but of the individual (TD,ì) ~ (oo) with one 
another (over their field of definition, the Hilbert class field of K). Secondly, it 
includes the action of the Hecke operators Tn (n G N, (n,N) = 1) on Xo(TV); 
specifically, the height pairing (TD-^T^O) is given by the same expression as in 
(3) but with an extra factor a/(n) in the / t h summand. This is important since 
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it allows us to use the action of the Hecke algebra on S2 (TV) to split up the sum 
and get a formula in terms of heights for each term L'(/ , l)L(f, D, 1) separately. 
In particular, if / is a Hecke form with Wf = — 1 corresponding to an elliptic 
curve E/Q and P& the Dth Heegner point on E as described above, then we 
get the formula 

h(pD) = !^)L
f(fìl)L(f,D,l), (4) 

where h(-) is now the height function on E(Q) and vol(E) the volume of a fun
damental parallelogram for a certain lattice A with E(C) = C/A. The product 
L'(f, l)L(f, D, 1) equals L'(E/K, 1), the derivative at s = 1 of the L-series of E 
over K. Equation (4) has several consequences, most notably: 

A. If L'(f, 1) ^ 0 (i.e., if the order of L(f, s) at s = 1 is one), then E(Q) has 
infinite order. 

B. The Birch-Swinnerton-Dyer formula (2) holds up to a nonzero rational 
number. 

C. One gets explicit examples of Hecke forms whose L-series have a zero of 
order > 3 at s = 1. 

The proof of A uses a theorem of Waldspurger [16], which guarantees the 
existence of a D with L(f,D, 1) ^ 0. The assertion C is of interest because, in 
combination with a deep result of Goldfeld [3, 12], it leads to an effective solu
tion of Gauss's problem of showing that there are only finitely many imaginary 
quadratic fields having a given class number. 

Formula (3) has the disadvantage that the values of L'( / , 1) in which we are 
interested do not occur alone, but always multiplied by a twisted L-series value 
L(f,D,l) for some auxiliary number D. Also, we get only partial informa
tion about the positions of the Heegner divisors y# in the Mordell-Weil group 
Jx0(N)(Q)i namely their lengths with respect to the height pairing metric on 
Jx0(N)(Q) ® R- To understand the dependence on D, we must be able to relate 
different discriminants, i.e., to compute the height pairing ($DI$D') for all D,Df, 
not just for D = Df. To state the answer, we recall that Shimura [13] defined a 
correspondence between modular forms of weight 2 and modular forms of weight 
I (or, more generally, weight 2fc and weight fc + \). If / G S%(N) is a Hecke 
form, we denote its image under this correspondence by gf and write its Fourier 
development as g/(z) = X)D<O Cf(D)e2™\D\z (z G $)). We do not recall the exact 
definition of forms of half-integral weight or of the Shimura correspondence here; 
roughly, gf satisfies 

« ( i T ^ ^ ^ W v ("c
 b

d)^m 

and the relation between gj and / is that for all n and D the ratio of Cf(n2D) to 
Cf(D) is given by a simple linear combination of the Fourier coefficients aj(d), 
d\n. The form gf is unique up to a scalar multiple and cannot be normalized 
in any canonical way, but it can be chosen to have all its coefficients algebraic 
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integers in the number field generated by the Fourier coefficients of / . We can 
now state 

THEOREM 2 [6]. Let TV be prime, D and D' discriminants of imaginary 
quadratic fields which are prime to TV and squares modulo 4TV. Then 

<fD,tD>) = £ E J^fL'^ l)«/(^)c/(^). (5) 

where the summation is the same as in Theorem 1. 

Again the result actually proved is for arbitrary TV but is more complicated 
to state in general, not only because the numerical factor 3/47T changes and one 
has to worry about old and new forms, but because one has to replace the theory 
of modular forms of half-integral weight by the theory of Jacobi forms [2] if one 
wants to get a complete result. The compatibility of Theorems 1 and 2 follows 
from a theorem of Waldspurger [14, 15], which states 

L{f,Dil)-^hA? | D | 1 / 2 

(actually, Waldspurger stated only the proportionality of Cf(D)2/\D\1/2 and 
L(f,D,l) for fixed / ; the constant was determined in [11, 10]). As before, 
one has a generalization of (5) involving Hecke operators (replace (ïDîVD') by 
(lD,TntD') and insert a factor af(n) before the / t h summand) and this can be 
used to separate the various Hecke forms and get a formula for each L'(f,l) 
separately. In particular, if / corresponds to an elliptic curve E/Q, we get the 
following 

COROLLARY. Let E/Q be an elliptic curve parametrized by a cusp form f 
of prime level and L(E/Q,s) = L(f,s) its L-series. If L(E/Q,s) has a simple 
zero at s = 1, then the space spanned by all Heegner points in E(Q) <g) Q is 
one-dimensional; more precisely, there is a nonzero point Po G E(Q) ® Q such 
that PD = Cf(D)Po for all D, where the Cf(D) are the Fourier coefficients of a 
form of weight | corresponding to f under the Shimura correspondence. There 
is an analogous result for f of composite level, involving coefficients of Jacobi 
forms. 

That all Heegner points lie on a line when ord s = i L(E/Q, s) = 1 would follow 
from—and hence provides additional support for—the Birch-Swinnerton-Dyer 
conjecture, which predicts that the entire Mordell-Weil group has rank one in 
this case. If orda =i L(E/Q, s) is not equal to one, of course, then all Heegner 
points vanish (up to torsion) by Theorem 1. 

• • • 

The Néron-Tate height is a sum of local contributions from all places of Q, and 
in the proof of Theorems 1 and 2 it is necessary to compute these local heights. 
In the second part of the talk we discuss some of the arithmetic questions which 
arise in this context. 
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We first briefly describe the local height theory. (A good reference is [5].) Let 
y = Ylni(xi) a n d 0 = Ylmj(.yj) be Q-rational divisors of degree 0 on a curve 
X/Q, sind suppose for simplicity that y and t) have disjoint supports (i.e., Xi ^ yj 
for all i,j). Then there is a decomposition 

(&*>) = te9)oo + X](ft*>)pi 
p 

where the summation runs over all prime numbers p but has only finitely many 
nonzero terms. Each (y, ï))v (v a place of Q) is a real number depending contin
uously on the Xi and yj in the u-adic topology; i.e., we can compute (y, t))oo to 
any degree of accuracy if we know sufficiently accurately the position of the Xi 
and yj on the Riemann surface X(C), and (y, \))p if we know the coordinates of 
the Xi and yj modulo a sufficiently large power of p. The local height pairing 
is bilinear and symmetric and satisfies the identity (y,ï))v = Y^ini^°z\f(xi)\v if 
t) = (f) is a principal divisor (notice that this implies (y, (/)) = 0 by the product 
formula for valuations, which is why the global height is well defined on Jx(Q))-
These properties characterize ( , )v uniquely, since the difference of two such 
symbols would be a continuous homomorphism of the compact group Jx(Qv)2 

to R. Moreover, one can find an explicit solution to these axioms by using in
tersection theory at finite places and potential theory at infinity. Specifically, 
(h 0)p = —n>p(h O) logp for p finite, where np(y,tj) is a rational number which 
is integral and nonnegative if X has good reduction at p and is then 0 unless 
some Xi and yj reduce to the same point modulo p. At infinity we have 

ih 5)oo = X ) nimjG(xi, yj), 

where G is a Green's function on X, characterized by the property 

G(-,y) is continuous and harmonic on X except for logarithmic 
singularities of residue +1 and —1 at y and yo, respectively. 

Here yo is a chosen basepoint on X(C), and by "logarithmic singularity of residue 
c at a point Pn we mean a function which looks like c log | z | 2 +0( l ) near P, where 
z is a local uniformizing parameter with z(P) = 0. (Notice that the function 
G(-,y) is well defined up to a constant for fixed choice of yo, since the difference 
of any two G's would be harmonic and finite on X(C), hence constant; this 
constant drops out in the sum defining {y,^)^ because J ^ n» = 0, and similarly 
the choice of yo is irrelevant because YLj mj = 0.) 

Applying this general theory to Heegner divisors on Xo(TV), we find 

h h' 

(to, to') = YI £ G(?DtUTD'f) -Y^n(D>D'iP)lo%P (7) 
iz=l i' = l p 

where G is an appropriate Green's function as above on Xo(TV)(C) (with yo = 00) 
and the n(D,Df,p) are rational numbers which can be calculated explicitly using 
the theory of complex multiplication and our knowledge of a model of Xo(TV) 
over Z. They turn out to be nonnegative and integral if p \ TV and to vanish 

(6) 
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unless p < DD1 /AN (more precisely, unless DD' = r2 + ANmp for some integers 
r and m > 0). 

What about Gl We need a function on ft X ft which is ro(TV)-invariant and 
harmonic in each variable and has logarithmic singularities along the diagonal 
of ($)/To(N))2 and at infinity. A natural attempt is to set 

G(z,zf)= £ fa!*') W 
ier0(N)/±i 

where g is a function which is invariant under the diagonal action of To (TV), 
harmonic, and logarithmically singular on the diagonal of ft2, and which drops 
off rapidly as the hyperbolic distance between z and z' tends to infinity. Such a 
function is 

g(z, z1) = log (z,zf eft). 
z — ; 

Unfortunately, it does not go to zero quite fast enough: the series (8) diverges 
like ^2 V n - Instead, we replace the harmonicity condition Ag = 0, where 

A = - ( — —) 
y1 \dx1 dy2 ) 

is the hyperbolic Laplacian, by Ag = eg with e > 0, obtain a function g for 
which (8) does converge, and then let e tend to zero. Specifically, set 

g3(z,z') = - 2 Q a _ ! f l + 2 , ) ( s € C,z,zf eft), 

where 

is the Legendre function of the second kind. It is invariant under the diagonal 
action of To (TV) (or even SL2(R)) on ft2, has a logarithmic singularity on the 
diagonal, and (because of the second order ordinary differential equation satisfied 
by Qs-i) satisfies Ag3 = s(s — l)gs. The following series converges absolutely 
for Re(s) > 1 and has the analogous properties on (^/r0(TV))2: 

Ga(z,z')= X ) 9s(znz'). (9) 
•Yer0(7V)/±i 

The desired Green's function G is obtained as 

G{z,z') = lim (Gs{z,z')-es(z,z')) 
8—*l 

where ea(z, zf) is a certain combination of Eisenstein series and elementary func
tions which we do not specify here. 

Now that we have a formula for the Green's function we obtain its value at 
Heegner points as a certain explicit infinite sum of Legendre functions. Supris-
ingly, analytic techniques from the theory of modular forms (specifically: the 
"Rankin-Selberg method" when D = Df, and the theory of modular forms of 
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half-integral weight or the theory of Jacobi forms, combined with the theory of 
Hilbert modular forms on the real quadratic field Q(y/DD'), when D ^ D') 
produce a different formula containing this same infinite sum. For D ^ D' and 
TV prime, for instance, one gets 

h h' 

YLYlG^rD^TD'^ = X^A^'^iogp 
» = l t ' = l P QQ) 

where, by a further miracle, the coefficients n(D,Df,p) are the same numbers as 
those occurring in (7) from the non-archimedean height computation. Together, 
of course, formulas (7) and (10) give a (highly nonconceptual) proof of Theorem 
2, and similarly for Theorem 1. 

It would, of course, be nice to have a more intrinsic proof of Theorems 1 and 
2, directly involving the global heights. However, breaking down the identity 
into local pieces as in (10) does have the advantage of making more structure 
visible than in the smoother identities (3) and (5). We discuss two aspects of 
this. 

First, consider the case TV = 1. Here Xo(N) has genus 0, so there are no 
cusp forms of weight 2 and the global height pairing is trivial (every degree zero 
divisor on P 1 is principal). Hence both Theorem 1 and Theorem 2 are empty. 
But for this very reason (10) now becomes interesting. The Green's function for 
P 1 is clearly log|z — y\2 (taking yo = oo in the definition (6)), so the Green's 
function for Xo(l) is log \j(z) — j(z')\2, where 

j(z) = e~2niz + 744 + 196884e2™ + • • • (zeft) 

is the classical modular function giving the isomorphism from 

X 0 ( l )= i5 /SL 2 (Z)U{oo} 

to P ^ C ) . Hence (10) becomes 

THEOREM 3 [8]. LetD,D' be coprirne discriminants of imaginary quadratic 
fields, h and h' their class numbers, and TD,ì (1 < i < h), TD'.ì' (1 < i' < h') the 
SL2(Z) -inequivalent roots in H of quadratic equations of discriminants D,D'. 
Then 

ft fl 1 ,̂0"^^^^ 
i=ii'=i p 

with explicitly given nonnegative integral exponents n(D, D',p) which are nonzero 
only for primes p dividing one of the finitely many integers (DD1 — r 2 ) /4 , \r\ < 
yfÏÏD1, r = DD1 (mod 2). 

The point is that one knows by the classical theory of complex multiplication 
that the numbers J(TD,ì) and J(TD',ì') are algebraic integers (in the Hilbert class 
fields of Q ( \ / J D ) and Q(\ZD*), respectively), and Theorem 3 gives an explicit 
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formula for the absolute norm of their difference. As a numerical example, take 
D = -163 and D' = - 4 . Here h = h1 = 1 and 

j ( 1 + 1 ^ 1 6 3 ) - j(i) = -262537412640768000 - 1728 

= -2636721121921272163 

in accordance with the theorem (the primes 11, 19, 127 and 163 divide 163 — n2 

for n = 3,7,6, and 0, respectively). 
Secondly, the fact that (10) is proved by purely analytic techniques from the 

theory of modular forms, rather that by height theory, means that one gets an 
analogous indentity for forms of higher weight. It takes the form (for TV = 1) 

(BD')'»-'>/J£èG»(l>.<.'»'.*> 

(fc = 3 ,5 , . . . ) (11) 

where Gk is the resolvent kernel function defined by (9) (with s = fc), the 
n/c(D,D /,p) are explicitly given integers which are zero unless p divides some 
positive integer of the form (DD1 — r2)/4, and the sum runs over all Hecke 
forms / G S2fc(SL2(Z)), the gf being the forms of weight fc+ ^ corresponding to 
the / and Cf(D) the \D\th Fourier coefficient of gf. This identity suggests two 
problems: 

(i) Find a "higher-weight height theory" which permits us to interpret (11) 
as a formula for V(f,k) in terms of heights. Motivated by the identity (11), 
Deligne and Brylinski have made some progress towards developing such a local 
height theory, the terms Gk(T,r') and n/clogp in (11) appearing as the local 
contributions from the places oo and p to the height pairing of some higher 
weight Heegner cycles. However, there is as yet no global height theory, so one 
neither knows that the height pairing of a cycle with itself is nonnegative nor 
has a criterion for the vanishing of the global height. 

(ii) In analogy with Theorem 3, prove that the individual numbers G/c(r, r') 
in (11) are logarithms of algebraic numbers when fc = 3,5, or 7 (so that the sum 
over / is empty). Then (11) could be interpreted in these cases as giving the 
prime decomposition of the absolute norms of these algebraic numbers, just as 
for the j-values above. The conjectured algebraicity of exp(Gfc(r, r')) for r and 
rf quadratic imaginary numbers would seem to be an interesting property of the 
resolvent kernel function, since it shows that G^ is a new transcendental function 
whose special values can be used to give algebraic extensions, in the spirit of 
complex multiplication theory and Kronecker's Jugendtraum. It is supported by 
the analogy with the case fc = 1, by the fact that (11) provides a proof whenever 
h = h' = 1, and by numerical evidence. (A numerical example for fc = 2, 
D = D1 = —23 is given at the end of [9].) The restriction to the handful of cases 

file:///D/th


698 DON ZAGIER 

with S2fc(TV) = {0} can be circumvented by replacing the Gk by appropriate 
linear combinations of their images under Hecke operators. 
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