
Appendix by D. Zagier 
The Eichler-Selberg Trace Formula on SLiZ) 

Throughout this appendix we let r=r(1)=SL2(Z). We let Fbe a fundamental 
domain for r in D. We fix a weight k even ~4. We write T(m) instead of Tk(m) 
for the Hecke operator on the space of cusp forms Sk = Mg. 

Let h(z, z') be a function of two variables z, z'in D, and assume that h as a 
function of each variable is a cusp form of weight k. If I E Sk then we define I * h 
as a function of z' by 

f dxdy 
(1) I*h(z') = I(z)h(z, -z)«Imzly' 

F 

Thus this operation is merely the Petersson scalar product of I and h, viewed as 
a function of the first variable z. The purpose of this appendix is to show that the 
Hecke operator T(m) can be represented by a kernel hm' and to give a formula 
for its trace on Sk' 

We let 11> ... , fr be a basis of eigenfunctions for the Hecke operators, and 
assume that they are normalized, i.e. 

<Xl 

(2) ;; = L a~q", a~ =1, T(m);;=a~;; . 
n=l 

Note that this basis of eigenfunctions is orthogonal for the Petersson scalar 
product. 

For each positive integer m we define 

(3) hm(z, z') = L (czz' +dz' +az+b)-k , 
ad-bc=m 

where the sum is taken over all integer matrices (~ ~) with determinant m. 

We may also write hm in the form 

(4) hm(z, z') = L (CZ+d)-k z' +--( aZ+b)-k 
ad-bc=m CZ + d 

The imaginary part of 
az+b 

z'+-­
cz+d 
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is >0, so this expression never vanishes, and each term of (4) is holomorphic in 
z, z'. It is easily verified that the series is absolutely convergent because k ~ 4. 
The function hm(z, z') is therefore holomorphic in z, z'. It is also immediate from 
(4) that it is a cusp form in each variable separately. 

Theorem 1. Let 

(5) 

(i) Thefunction C;;lmk-1hm(z, z') is a "kernef' for the operator 

In other words, for every f E Sk we have 

(6) 

(ii) We have the identity 

(7) 

(iii) The trace Tr T(m) is given by 

(8) f dxdy 
Tr T(m) = c;; 1 mk - 1 hm(z, - z) 1m (Z)k 7 . 

F 

Proof Suppose first that m = 1. If 

then from the definition of the operation [y Jk we get 

(CZ+d)-k f(z)/ = f(yz) 1m (YZ)k. 

From (4) we get 

f(z) h1(z, z')/ = L (? +YZ)-k f(yz) 1m (YZ)k 
YET 

and therefore 

f dxdy 
f * h1(z') = L (-z' + YZ)-k f(yz) 1m (YZ)k -2-· 

, YET Y 
F 
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Interchanging the integral and summation, and using the invariance of dx dy/y2 
with respect to r yields 

f dxdy 
(9) f * h1(z') = L (-z' + Z)-k f(z) 1m (Z)k -2-

y"r y 
yF 

00 00 

= 2 f f (x - iy - Z')-k f(x + iy)yk-2 dx dy. 

o -00 

This last equality comes from the fact that the upper half plane is equal to the 
union of transforms of the fundamental domain under r, disjoint except for 
boundary points of measure zero, and except for the fact that ±y give the same 
transform, whence the factor of 2. Cauchy's formula and the fact that f is holo­
morphic and sufficiently small at infinity imply that 

00 

f 2ni 
(x - iy - Z')-k f(x + iy) dx = (k _ I)! jlk-l) (2iy + z'). 

-00 

Therefore the right-hand side of (9) is 

co 

= yk-2 jlk-l) (2iy + z') dy 4ni f 
(k - I)! 

o 

00 

4ni f I k - 2 ,. , I 
= (k _ I)! (2ii- 2 (dldt) f (2lty + z) t=l dy 

o 

00 

4ni 1 k - 2 f ,. , I = (k _ I)! (2i)k-2 (dldt) f (2lty + z) dy t=l 

o 

4ni 2 (dldt)k-2 (- f.(Z'») I 
(k - I)! (2i)k 21t t=l 

= Cd(z'). 

This proves the desired formula (6) in case m = 1. The general case is a consequence 
of the case m = 1, because one easily sees that 

where T(m) opetates with respect to the first variable Z on the right-hand side. 
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Part (ii) now follows essentially from elementary linear algebra. The function 
hm being a cusp form with respect to each variable z, z' can be written in the form 

r 

hm(z, z') = L: Cij!i(Z)!j(z'). 
i,j= 1 

We apply Part (i) to a function h (one of the normalized eigenfunctions), and 
Part (ii) follows at once using the orthogonality. Part (iii) follows trivially from 
Part (ii). This proves the theorem. 

The second theorem will give an explicit expression for the trace. We need 
some definitions. 

We define a function H(n) for integers n first by putting 

H(n) = 0 ifn < 0 and H(O) = -1/12. 

If n > 0, we let H(n) be the number of equivalence classes with respect to SL2(Z) 
of positive definite binary quadratic forms 

ax2 + bxy + cy2 

with discriminant 

b2 - 4ac = -n, 

counting forms equivalent to a multiple of x 2 + y2 (resp. x2 + xy + y2) with 
multiplicity t (resp. 1)· 

If n == 1 or 2 (mod 4) then H(n) = O. We have the following table. 

n 0 3 4 7 8 11 12 15 16 19 20 23 24 

H(n) 1 1 1 1 1 1 4 2 3 I 2 3 2 -TI 3" "2 3" "2 

We also define a polynomial Pk(t, N) (k > 0 even) as the coefficient of Xk- 2 

in the power series development of 

We also have 
k-l -k-l P - p 

Pk(t, N) = _ 
p-p 

where 

p + p = t and pp = N . 

For instance P2(t, N) =' 1 and P4 (t, N) = t2 - N. 
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Theorem 2. (Frace Formula) let k ~ 4 be an even integer and let m be an 
integer >0. Then the trace of the Heeke operator T(m) on the space of cusp forms 
SIc is given by 

00 

Tr T(m) = -t L P,,(t, m)H(4m - t2 ) - t ?: min (d, d')"-l . 
t=-oo dd=m 

Note. The first sum is in fact finite, because H(4m - t2 ) = 0 for t > 2Jm. 
The second sum is taken over all factorizations of m as a product of two positive 
integers. 

Example. For k = 4 the only cusp forms are 0, so the right-hand side of the 
formula is o. This implies relations among the class numbers H(m). For instance 
for m = 5, we find: 

L(t2 - m)H(4m - t 2) = -5H(20 - 8H(19) - 2H(16) + 8H(1l) + 22H(4) 

= -10 - 8 - 3 + 8 + 11 = -2, 

Lmin(d,d')3 = 13 + 13 =2. 

The rest of this appendix is devoted to the proof of Theorem 2. 
In Theorem 1 we have proved the identity 

Tr T(m) = C;;1mk-l f L 2 I k dx ~y. 
ad-bc=m(clzl + dZ - az - b) y 

F 

The sum on the right-hand side is invariant under r (otherwise the integral would 
not be independent of the choice of fundamental domain F). Looking at the terms 
of this sum, we observe that replacing z by yz amounts to replacing the matrix 

(a b) 1(a b) c d by y- c d y. 

These two matrices have the same determinant and the same trace. Therefore 
we may decompose the sum into pieces which are r-invariant, characterized by 
the condition a + d = constant: 

00 

Tr T(m) = L J(m, t) , 
t= - 00 

where 

(10) l(m t) = C - 1 mk - 1 f I I dx dy . 
, k ad-bc=m (clzl 2 + d-z _ az _ b)k y2 

F a+d=t 
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We shall prove: 

(11) 

Mm, t) + f(m, -t)) - -Kltl ~ uf' 
o 

for t 2 - 4m < 0 

for t 2 - 4m > 0 
non-square 

49 

It is clear that these formulas imply the trace formula in Theorem 2. The numbers 

-- and --It+ul It-ul 
2 2 

play the role of d, d' in the trace formula. 
To study the integral (10), we first remark that there is a bijection between the 

matrices (: ~) with determinant m and trace t, and the set of binary quadratic 

forms 9 with discriminant 

The bijection is given by: 

(; ~) 'r-+g(u, v) = cu2 + (d - a)uv - bv2 

g(u, v) = IXU2 + puv + yv2 'r-+(t(t - P) ;-Y R). 
IX l-(t + ,,) 

For every form g(u, v) = IXU 2 + puv + yv2 and real t, Z = x + iyef" we put 

(12) 
k 

R (z, t) = y 
g (IX(X2 + y2) + px + y - ity)k 

Then 

(13) 
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where the sum is taken over all forms of discriminant t 2 - 4m. An element yer 
transforms a quadratic form 9 into a form yg having the same discriminant, and 
one verifies that 

(14) 

Therefore, for each discriminant D (i.e. for each integer D == 0 or 1 mod 4) we 
have the equality 

L Rg(z, t) = L L Ryg(z, t) 
Igl=D Igl=D yer!Tg 

modT 

L L Rg(yz, t). 
Igl=1,> yer!Tg 
modT 

The first sum is taken over a set of representatives for classes of quadratic forms 
with discriminant D, and the second sum is taken over right co sets of r with respect 
to the isotropy group rg of elements leaving 9 fixed. For D =F 0, the class number 
h(D) is finite, and therefore the first sum is finite, giving 

(15) f dx dy f dxdy L Rg(z, t)-2- = L Rg(z, t)-2-' 
Igl=D Y Igl=D Y 

F modT F. 

where 

is a fundamental domain for the operation of rg on~. The argument is the same 
as that used in the proof of Theorem 1. 

For D = 0 we can take as a system of representatives for the forms of dis­
criminant the forms gr (reZ), where gr(u, v) = rv2 • The isotropy group of gr is 
equal to r for r = 0, and is equal to 

for r =F O. In this case, we find 

(16) f dx dy f dx dy f dx dy L Riz, t)-2- = RgJz, t)-2- + L RgJZ·t)-2-' 
Igl=O Y Y r*O Y 

F F F~ 

where F 00 is a fundamental domain for the operation of roo on ~, say the strip 
between 0 and 1. Here we cannot interchange the order of integration and summa­
tion, since for instance 

f dxdy 
RgJz, t)~ = 0 for all r, 

F~ 

but the integral of the sum is =FO, as we shall see below. 
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There remains to compute the right-hand side of(15) and (16) for D = t 2 - 4m. 
We distinguish four cases. 

Case 1. D < o. 
In this case rg is finite for each form gin (15), (and one even can prove that its 

order is 1, 2, or 3). For a quadratic form 

g(u, v) = ~U2 + fJuv + yv2 

with discriminant D we therefore have 

(For this last equality, we used the substitution z ~(2z - fJ)/2~.) Let 1 denote 
the value of the integraL It depends only on D and t. The right-hand side of (15) 
is therefore equal to 

1 
I -, ,1= 2H(-D)J. 

Igl=D rg 
modT 

The factor 2 comes from the fact that in the definition of H(n) we counted positive 
definite forms, whereas here we count all forms, positive or negative. Finally, 
using the formula 

00 

f( X2 +A)-k dX = n: 11 .•. (k_l)A-k+1/2 
(k_l)!22 2 , 

-00 

obtained by differentiating k - 2 times with respect to A in the corresponding 
formula for k = 2, we obtain: 

00 00 

1 = f 1'-2 f (x2 + y2 - ity - iD)-k dx dy 

o -00 

00 

= (k ~ I)! t! ... (k - t) f (y2 - ity - iD)-k+ 1/21'-2 dy 

o 
00 

= (d/dtl- 2 (y2 _ ity - l.D)-3/2 dy n:ik - 2 f 
2(k - D! 4 

o 



52 Trace Formula 

00 

= nt'-2 (d/dt k-2 (4 Y - tit I) 
2(k - I)! ) t2 - DJy 2 - ity - iD 

o 

_ nt'-2 (d/dt)k-2( 4 1 ) 
- 2(k - I)! JfD[JiDl- it 

2n 1 1 
= 

k - IJfD[(JIDf - it)k-l 

Formula (13) then gives 

2n 1 1 
/I(m t) = C- 1mk- 1 2B(4m - t2) 

, k .j 2 .j 2· )k k - 1 4m - t ( 4m - t - zt 

-k-l 

= ~H(4m - t2), where p == t{t + iJ4m - t2). 
p-p 

This proves the first formula in (11). 

Case 2. D = 0 
We now use formula (16). The first term is equal to (-l)k/2n/6f, because 

j dXdY =?: 
y2 3· 

F 

The second term is equal to 
00 1 

ff yk - 2 I (r - ity)-k dx dy = ki~:), (d/dt)k-2 I (r - ity)-2 dy 
'E Z (. '''z 

00 ,*0 ,*0 

For t = ±2fm we get the value 

00 

_ z dt k-2 _ _ n d ·k-2 f( 1 2) 
- (k - 1)!(d/) t2y2 sinh2 my Y 

o 

= (/:21)! (d/dt)k-2(1;1) 

= (_I)(k-2)/2_n _lt l-k+l. 
k - 1 

l( t) = C-J k-J j " R ( ) dx dy _ k - 1 (k-2)/2 J (k-J)/2 m, k m £...., g z, t -2- - --m - 4m . 
Igl=O Y 24 

F 

This is precisely the second formula in (11). 
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Case 3. D = u2 and u > o. 
As in the case D < 0 there is only a finite number of classes of forms with 

discriminant D, and rg is a finite group, so in the right-hand side of (15) we 
should again be able to replace the integral over Fg by Wgl-1 times the integral 
of the same integrand over all of D. The problem is that the combination of 
integral and sum in (15) is not absolutely convergent, so that the interchange 
implicit in that equation is not necessarily justified and the left- and right-hand 
sides, though both absolutely convergent, do not have to be the same. In fact, we 
shall see that these two expressions, as they stand, differ by a factor -1 ! 

The correct way to interpret (15) is to consider the left-hand side as the limit 
as 8 -+ 0 of the same integral taken over the truncated fundamental domain 

F· ={ x + iy E Fly ~ 8-1 } . 

Then Fg must be replaced by a fundamental domain for the action of the finite 
group rg on the subset D. of D obtained by removing all points with imaginary 
part> 1 f 8 or lying in the interior of a circle of radius 8f c tangent to the real axis 
at any rational point d f c. This gives 

J dxdy. L Rg(z,t)-2- = lim HI. , 
igi=D y s ..... O 

F 
where 

and Is = J yk dx d y . 
(lzl2 - ity - .1 D)k y2 

~. 4 

We have H = u, because the groups r g are trivial in this case, and because there 
are u classes of quadratic forms with discriminant u2• In the integral defining Is, 
the only poles of the integrand are at z = ±!u, so we can shrink to 0 all discs in 
D \Ds except those tangent to the real line at these two points. Hence 

where 

and 
2e ±!u+V2ey_y2 

I£,±~u = J ( J (x2 + i - ity - i u2rk dx )l-2dY 

o ±!u-.j2ey_y2 

(integrals taken first over x with y fixed, then over y). For the first integral we 
obtain just as in the case D < 0 the value 
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but for D > 0 the expression in parentheses is equal to 

-4 1 

..;D..;D + It I 
and not 

4 1 

JiDT JiDT + it 
as before. 

(The fact that the integral here depends only on It I is due to the fact that the 

value of J y2 - ity - ! D for y = 0 depends on the sign of t, because we must 
choose the branch of the square root which has positive real part for y - 00.) 
We therefore have 

(17) 

To evaluate Ie+!u' we first make the substitution x = ±!u + Ga, y = eb, finding 
'-2 

2 v'2b-b2 J J bk-2 
I I = dadb, 
e'±Iu (±ua - itb + e(a2 + b2))k 

so o -v'2b-b2 

2 v'2b-b2 . J J bk
-

2 
lim Ie+!u = (. b)k da db e-O -2 ±ua - It 

o -v'2b-b2 

2 

= - k ~ 1 u-1 J { (uV2b - b2 - itb)-k+l + (uJ2b - b2 + itb) -k+1 }bk- 2 db 

o 
00 

2 -I J . -k+1 V dv = - k _ 1 u (uv + It) v2 + 1 ' 
-00 

where in the last line we have the substitution b = V2~1' The latter integral can 
be evaluated easily by contour integration (for example, if t > 0 then the only 
pole of the integrand in the upper half plane is at v = i) and equals the negative 
of expression (17), giving finally 

I(m,t) = -Ci:lmk-IHI = -!Ct l ~uy-I 

This proves the third formula in (11). 

Case 4. D > 0 and non-square 
Here we again have only a finite number of classes of quadratic forms, but the 

isotropy groups are infinite cyclic. Intuitively we have 
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and thus HI = O. We now assert that for each g of discriminant D, we in fact have 

(17) f dxdy f dxdy 
R,(z, t)-yr + Rg(z, -t)---yr- = o. 

Fg Fg 

Let g(u, v) = au2 + puv + 1'V2 be such a quadratic form, and let w> w' be the 
roots of the equation au2 + pu + l' = O. Then the matrix 

(w' -w) Y=(W_W')-1/2 I I eSL2(R) 

transforms g into yg, with 

1'g(u, v) = jD uv. 

The conjugate of r 9 by l' operates on the upper half plane as the infinite cyclic 
group generated by z 1-+ 82 z, where 8 > 1 is the fundamental unit of the order in 
Q(.JD) associated with g. We can therefore choose the fundamental domain Fg 
so that l' - 1 Fg is an annulus defined by 

Then 

f dx dy f -1 dx dy 
Rg(z, t)---yr- = Ryg(Y z, t)---yr- (by (14» 

Fg Fg 

= f f (jD x - ity)-kyk-2 dx dy . 

annulus 

We write z = x + iy in polar coordinates, Z = r ei6 to obtain 

'It £2ro 

= f f (JD cos 0 - it sin O)-k (sin O)k-2 ~r dO 

o ro 

7t 

= (log 82) f (.JD cos 0 - it sin O)-k (sin O)k-2 dO . 

o 
To prove (17) it suffices therefore to verify that 

'" f (JD cos 0 - it sin O)-k(sin O)k-2 dO = 0 , 

which is easily done by putting' = ei6 and using the residue theorem. 
The last formula in (11) follows easily from (13), (15) and (17). This concludes 

the proof of the trace formula. 


