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ON THE VALUES AT NEGATIVE INTEGERS

OF THE ZETA-FUNCTION
OF A REAL OUADRATIC FIELD

by Don Zagier 1)

§0. Introduction

In this paper we will be interested in the numbers ç K (b), where Kis a

real quadratic field and b a négative odd integer. It has been known for

some time [3] that thèse numbers are rational; indeed, this is true for K

any totally real number field [s], [9]. They are interesting on the one hand

because they generalize Bernoulli numbers (the spécial case K = Q) and

on the other because they reflect properties of the arithmetic of K. For

example, there is a conjecture of Bass, Birch and Tate relating Ç
K (— 1) to

the "déviation from the Hasse principle" of K (= order of Ker (K 2 K

-> Yl %2 K^), with K running over the complétions of K). The value of

Ci<: (b), and in particular the problem of estimating its denominator, is

related to formulas for the "Euler characteristic" of certain arithmetic

groups (see for instance [6]).

Our main object is to give an account of SiegePs formula for Ç
K (1 -2m)

for gênerai X, to describe the form it takes when K is quadratic, and prove
it in this spécial case by direct analytic methods. We hâve tried to keep

prerequisites to a minimum by reviewing the main facts about zêta functions
of fields (in §1) and the arithmetic of quadratic fields (in §2). We give an

exposition of Siegel's theorem and proof in Section 1.

When K is a quadratic field, it is very easy to obtain elementary formulas
for CK(I-2m)C

K (l- directly, using the décomposition Ç
K (s) = Ç(s)L(s,x)-

Thèse formulas are discussed in §2. In the simplest case, namely m = 1

x
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and K = Q (y/p) with p = 1 (mod 4) a prime number, the formula in

question reads

(1)

where 1 — I is the Legendre-Jacobi symbol.
\Pj

In §3 we return to the Siegel formula and specialize it to the case of real

quadratic fields. Because the arithmetic of quadratic fields is completely
known and very simple (the différent is a principal idéal ; the splitting of a

rational prime p dépends only on the value +1, 0, -1 of /(/?)), we can

completely evaluate the ternis of this formula, arriving at a formula for

Ç
K (l- not involving any notions of algebraic number theory. For

instance, in the case above (m = 1, discriminant of K a prime p), the

formula is

(2)

where the sum is over ail ways of writing pb 2 = b2b
2 + Aac with a, b and c

positive integers. We also discuss bounds for the denominator of Ç
K (1 — 2m)

(the importance of which was mentioned above) and give tables for m < 6,

discriminant of K < 50.

The elementary character of the right-hand sides of (1) and (2) suggests
the problem of proving their equality directly, by reasoning involving only
finite sums. This is probably impossible: it is not even easy to see a priori
why the sum in (2) must be divisible by sif p is a prime différent from 5.

However, it is possible to study the sum (2) by the methods of analytic
number theory. To do this, we observe that the right-hand side of (2) is

the coefficient of e
2nipz in the Fourier expansion of a function which is (up

to a factor) the product of a theta-function and an Eisenstein séries. This

function transforms in a known way under the action of the modular

group, and therefore one can describe its asymptotic behaviour as z tends

towards any rational point on the real axis. This is precisely the sort of

problem for which the Hardy-Littlewood circle method was designed.

When we apply it, we obtain a "singular séries" which approximates (2)

and which, on the other hand, can be explicitly summed to yield (1). How
ever,wedo not obtain a proof of (2) : there is a built-in error in the circle

method in this situation, and we cannot show that the singular séries really

sums to the expression in (2), but only that the error is of smaller order

than the main term (roughly the square root) as/? - 00. Indeed, in working



out the analogous formula for Ck (1 -2m), where m > 3, we find that there

really is a différence of this order between the Fourier coefficient we are

trying to evaluate and the value of the singular séries. The calculation of

the singular séries is carried out in Section 4.

Finally, in §5 we give conjectures concerning the Fourier coefficients of

a certain modular form of weight 4m related to the value of Ck (1 -2m).

§1. Siegel's Formula

In this section, we will state the formula of Siegel for the value of Ck (b)

where K is a totally real algebraic number field and b a négative odd integer.
We will also give a brief description of the proof.

We begin by reviewing the main properties of the zeta-function of a

field. Let K be an algebraic number field of degree n, and (9 the ring of

integers in K. For any non-zero idéal 31 of 090
9

the norm TV (31) is defined as

the number of éléments in the quotient 0/31. For m = 1, 2, ..., let i (m)

dénote the number of ideals of (9 with norm m. This number is finite for

each m and has polynomial growth as m -> 00, and so the séries

Im=i l ( m ) mm
~ s makes sensé and is convergent if sisa complex number

with sufficiently large real part. The function it defines can be extended

meromorphically to the whole and the function obtained is de

notedCk ( s )- Thus we hâve the two représentations.

(1)

(2)

provided that Re (s) is large enough. The sum in (1) is to be taken over ail

non-zero ideals of 0, and the product in (2) (Euler product) over ail prime
ideals. The function obtained by analytic continuation has a simple pôle
at s = 1 and is holomorphic everywhere else.

Moreover, the function Ck satisfies a functional équation relating Ck ( s )

and Ck (1 ~s)- In the case of a totally real field K (i.e. K = Q (a) where a

satisfies a polynomial of degree n with n real roots), this takes the form

(3)

where

(4)



(Hère D is the discriminant of K.) In particular, we hâve

(5)

(6)

It is thus équivalent to give the values of Ç
K (s) at s = 2 ,4, 6, ... or at

s = -1, -3, -5, ...; we shall prefer writing our formula for the latter
values since, as it turns out, they are always rational numbers. For instance,
if K = Q is the field of rational numbers, then w=l 5 D=1,0 = Z3Z

3
and

the only ideals are (r) with r = 1, 2, ..., so

(7)

is the ordinary Riemann zeta-function ; in this case (6) says

(8)

(9)

where B
t

is the z'-th Bernoulli number (B o
= 1, B± = - 1/2, B2B

2
= 1/6,

B3B
3 = 0, 2?

4 = -1/30, ...) and is always rational.
We now proceed to describe Siegel's formula. We first need some

preliminary notation. Recall the définition of the différent b of K: b is the

inverse of the fractional idéal

(10)

(hère tr (z) = z(1)z
(1) + ... + z

{n) dénotes the trace of zeK). The idéal bis
intégral, and its norm is related to the discriminant D of K by.

ai)

Next, for r=o,l, 2, ... we define

(12)

to be the sum of the r-th powers of the positive divisors of n. (This is standard

notation.) We generalize this définition to number fields by setting

(13)



Hère the sum is over ail ideals 23 of (9 which divide (i.e. contain) 31. If

£ = Q, 0 = Z, 21 = («), this agrées with (12).

Finally, for /, m = 1, 2, ..., we define

(14)

The sum extends over ail totally positive (i.e. ail conjugates positive)

éléments of the fractional idéal (10) with given trace / (there are only

finitely many such éléments). Such a v need not be intégral, but the product

of the principal idéal (v) with the différent b will be an intégral idéal, and

therefore c 2c
2m -i (00 &) i s defined.

We can now state Siegel's formula.

Theorem (Siegel [9]). Let m = 1,2, ... be a natural number, K a

totally real algebraic number field, n = [K:Q], and h = 2mn. Then

(15)

The numbers r> 1 and b
1 (h), ...,

b
r (h) gQ dépend only on h. In par

ticular,

(16)

where 2R
;j

is the space of modular forms of weight h; thus by a well-known

formula

(17)

where [x] dénotes the greatest integer <x.

(We hâve given a table of the coefficients b
t (h) on page 60, if for no

other reason than to emphasize that they really only dépend on the integer
h and not on the field. The values for h even, 4 < h < 24, were taken from
Siegel [9] ; the values for 4 | h < 40 were calculated on the System 370 compu
terat Bonn.)

Proof of theorem (sketch) : Recall that one can define a modular form
of weight 2m by the Eisenstein séries

(18)



Table 1.

The Siegel coefficients b, (h)



(zes = upper half-plane, i.e. zeC and 7m(z)>o). Since G
2m (z) has

period 1, it has a Fourier expansion as a power séries in q = e
2înz

,

(19)

valid as z -» ? oo (i.e. q -+ 0). Then clearly

(20)

and an easy calculation gives

(21)

In an entirely analogous way, for the field K one can construct a modular

form of weight 2m in n variables z l9 ..., z
n e§ (the Hecke-Eisenstein séries)

and calculate its Fourier coefficients. By setting z 1
= ... = z

n
= z, we

obtain a modular form G§
m (z) in one variable, of weight 2mn = /z, with a

known Fourier expansion, namely

(22)

with

(23)

(24)

On the other hand, since the space $Jl
h

of modular forms of weight h has

finite dimension r, there must be a linear relation among the first r + 1

coefficients in the Fourier expansion of any such form, i.e. there must exist

numbers ch)o,c

h)0 ,
c h)U ..., c hr depending only on h such that

(25)

Siegel then shows that choisc

h0
is non-zero for ail h, so we can set

(26)

to obtain from (25) the relation

(27)

expressing the constant term of a modular form of given weight as a linear
combination of finitely many of the other coefficients of its Fourier ex
pansion.Substituting (23) and (24) into (27) gives



(28)

which in view of the fimctional équation (6) is équivalent to the assertion
of the theorem.

Since the numbers o r (21) and hence s* (2m) are clearly (rational) integers,

we deduce from (15) not only that t,
K (1 -2m) is rational, but also that its

denominator is bounded by a number depending only on h, i.e. only on the

number 1 — 2m and the degree of the field K.

We now juggle the terms in the Siegel formula somewhat to rewrite it

in a suggestive form. If we substitute the définitions (14) and (13) into

équation (15) and invert the order of summation, we obtain

(29)

where the sum is over ail non-zero intégral ideals 23 and the "weight
w (23) is defined by

(30)

The sum in (30) is always finite and is empty for ail but finitely many ideals

23 (because b
x

(h) = 0 for / > r) so the sum (29) is in fact finite. Equation
(29) is a rather amusing formulation of Siegel's theorem, for if we had just

mechanically substituted s = 1 - 2m into (1) without regard for conver

gence,we would hâve obtained

(31)

which is of course nonsense, but then équation (29) tells us that it is ail

right after ail, if we just insert "fudge factors" w (23) to weight the summands :

thus one really can evaluate Ç
K (1 -2m) by adding up (2m- l)- powers of

norms of ideals.

In this connection, it is perhaps worthwhile to observe that the weights

w (23) are not unique. Indeed, given h, we can choose any r' > r and find

coefficients b[ (/z), ...,b'r , (h) expressing the constant term of any form

feW h
in terms of the next r' coefficients (such collections b' will form an

affine space of dimension r' - r). Then Siegel's theorem is valid with the



b'i in place of the b
l9

and similarly using the b\ in (30) would give other

weights making (29) hold.

Finally, for completeness' sake we should mention that Siegel gave a

somewhat more gênerai formula than the one stated. If A dénotes any

idéal class of the field X, then restricting the ideals A in the sum (1) to

ideals in the class A gives rise to another meromorphic function, denoted

C (s, A). This function also takes on rational values at négative odd integers,

and Siegel's formula for thèse rational numbers is identical to (15) except

that one must modify the définition of a r (31) by only allowing those idéal

divisors 33 in (13) that lie in the class A. In the formulation of Siegel's

resuit just given, this can be simply stated

(32)

with the same weights w (33) as before.

§2. Zeta-functions of Quadratic Fields

We now specialize to quadratic fields. A totalîy real quadratic field can

be written uniquely as Q (d 1/2 ) with d>la square-free integer. Then it

is easy to check that

d)

and

(2)

i.e. the différent is a principal idéal. The décomposition of rational primes
in the ring of integers (9 is described in terms of the primitive character
X (mod D) defined by

(3'

(hère x is completely multiplicative, and given on primes by: x(p) = 0 if

p | D; for pJf 2D, x (p) is ± 1 according as D is or is not a quadratic residue
(mod/?); for p = 2 and D = d odd, / (2) = (-i)^-DM) as follows: if

p = 2, 3, 5, ... is a rational prime, then the idéal (p) c 0 décomposes into
prime ideals according to the value of y (p) —



(4a)

(4b)

(4c)

Substituting this into the Euler product 1 (2) gives (for Re (s) sufficiently
large)

(5)

where £ (s) is defined in 1 (7) and

(6)

is the L-series associated to the character x- Again, (6) is convergent only
for Re (s) large enough, but the function L (s, x) it defines can be extended

to the whole i'-plane (and (5) is then true everywhere). L (s, x) is holo
morphiceverywhere.

Since we know the values of C (2m) (équation 1 (9)), we only need

calculate L (2m, x)- But x ( n ) is periodic with period D and satisfles

x( n ) =X (~ n )> so we nave

(7)

where

(8)

This last sum can be evaluated in ternis of elementary functions :

(9)

where



(10)

Thus

(H)

This gives a finite and elementary expression for L (2m, x). ït can be sim

plifiedyet further by observing that/ m
f— lis periodic in a with period D,

and therefore has a finite Fourier expansion as a sum Iy n
e

2nlna/D
. The

coefficients y n are easy to compute and are rational. If we then put ail this

into (7), we finally obtain the formula

(12)

where B
r (x) dénotes the r-th Bernoulli polynomial :

(13)

If we substitute (12) and 1 (9) into équation (5) and apply the functional
équation 1 (6), we obtain finally

(14)

That is, for quadratic fields it is possible to give a completely elementary
formula, derived in a completely elementary way, for the value of Ç

K (l—2m).
As an illustration, we take m = 1

. Since

(15)

one gets (after some trivial manipulations)

(16)

For example, with K = Q (yfï) we get

(17)



whilefori^ = Q Ul3)

(18)

For a more complète discussion of the formulas treated in this sec

tion, see Siegel [B].

§3. The Siegel Formula for Quadratic Fields

In this section we shall exploit the simple arithmetic of quadratic fields

to evaluate in elementary form the various terms entering into Siegel' s

formula, thus arriving at an expression for Ç
K (1 -2m) which is elementary

in the sensé that it involves only rational integers and not algebraic numbers

or ideals.

We hâve to evaluate s^ (2m), and to do so we must first know how to

compute c r (51) for any idéal 91.

Lemma. Let 91 be any idéal ofthe ring of integers (9 of a quadratic field
[D\

K. Let D be the discriminant of K and x(j) = ( — 1 the associated charac

ter(as in §2). Then, for any r > 0,

(i)

where N— N (91) is the norm of 91, the function a
r on the right-hand

side is the arithmetic function of 1 (12), and the sum is over ail positive

integers j dividing 91 (i.e. v/jeO for every ve 91; clearly this implies
j2j

2 I N, so équation (1) makes sensé).

Proof: It is very easy to check that both sides of (1) are multiplicative
fonctions, i.e. a r (9123) = a r (91) o r (S) for relatively prime ideals 91 and S,

and similarly for the expression on the right-hand side of (1). It therefore

suffices to take 91 to be a power ty"
1 of a prime idéal $. Write N ($) =pl



where p is a rational prime and i = 1 or 2. Then we can evaluate the left

hand side of (1) :

(2)

To evaluate the right-hand side of (1), we must distinguish three cases,

according to the value of x (p)>

Case 1. x(p) = 1, (p) = W ($' = conjugate of $). Then iV(3I)
= TV(*J3) m = p

m
. Clearly j|3l =>y =1, for y can only be a power of p

(since y | TV(ST)) and cannot be divisible by p (because <$' \p 9
Hence

the sum in (1) has only one term a r
(TV) =ar (p m ), in agreement with (2).

Case 2. x(p) =0, (p) = $
2

. Again y can only be a power of p, and

since x (p) = 0, the only term in (1) that does not vanish is the term j = 1,

namely a
Y

(TV). Since TV == N (^P) m = /?
m and / = 1, this again agrées with (2).

Cos-e 3. x(p) = - 1, (p) = Now 51 = m= (/?
m

), so j can take on

the values l,p,p 2

, ...,p
m

, with x <jf) =(- l) w

. Hère i=2 and TV = N(W
= 2m

, so we must prove

(3)

This is just an exercise in summing géométrie séries.

The lemma enables us to calculate the generalized sums-of-powers
functions a r (91) in terms of the ordinary function a r (m). It remains to see

what ideals 51 occur in Siegel's formula. Recall that

(4)

and that

(5)

for a quadratic field. Furthermore, the ring of integers of K is

(6)

We can now describe explicitly the v occurring in the sum (4). Write such

a v as a + p^J D with a and p rational. Then



(7)

(8)

(9)

From (6), (7) and (9) we then get fj = bj2D, where b is a rational integer

satisfying

(10)
and (because of (8)) also

(11)

Then (v) ô is the principal idéal

(12)

An integer j can divide this only if y|b andy |/ and (b/j)
2

= (I/j) 2 D (mod 4),

so by the lemma

(13)

We now substitute this into (4), where the summation in (4) is now to be

taken over ail integers b satisfying (10) and (11), and obtain finally

(14)

where the arithmetic function e r (n) is deflned by

(15)

(r = 0, 1, 2, ...; n a positive integer, not a perfect square). Then (15) is a

finite sum (empty, if n = 2 or 3 (mod 4)), and so is (14), so that we hâve

completely evaluated »yf (2m) in elementary terms. Then Siegel's theorem

states

(16)

with r = [m/3] and the coefficients b
{ (4m) computable rational numbers

tabulated on p. 60 for 1 < / < 10.



Using the values of b
l (4m) and équation (14), we can write out the

first few cases to illustrate (16): m = 1. Hère r = 1, b
x (4) = 1/240, and

so (16) reduces to

(17)

Thus for K=Q (y/ S) we find

(18)

in agreement with 2 (17), and similarly for K = Q (>/13)

(19)

in agreement with 2(18) (but notice how many fewer ternis!), m = 2.

Hère again r = 1
,

and the formula is just as simple :

(20)

Thus with K = Q (,/l3) we find

(21)

w^_3. Hère r = 2 and the formula is more complicated :

(22)

Hère for K = Q C>/l3) we get

(23)



Table 2.

The Siegel formulas for quadratic fields

K—Q (v^) ' &== discriminant, x ( m ) =(—I->
\m)



Values

of
Ç

K(lK

(l
—

2m)

for

quadratic

fields

Z,

=

60Ç

K(-l).K

(-l).

Z3Z
3

=

120C

K(-3).K

(-3).

Z5Z

5

=

49140

Ç
K

(-

5).

Z7Z
7

=

36720

Ç
K

(-

7).

Z9Z
9

=

9900Ç

K(-9).K

(-9).

Z
u

=

13104000C

K(-ll).K

(-ll).

(K

=

Q(y/D),

D

=

discriminant)

Tatitf

T



In Table 2we write out in full the formula for Ç
K (1 -2m) (1 <m <6)

in terms of the arithmetical functions e
r (n). In Table 3 we give the values

of Ck (1 —2m) for 1 < m < 6 and K a quadratic field with discriminant at

most 50. Since it is more convenient to tabulate integers, we in fact give
the values of

(24)

where t (m) is the bound implied by (16) for the denominator of Ç
K (1 -2m),

namely

(25)

Because the question of the denominator of £
>K (\—2m) is important

(namely, a prime p divides this denominator whenever the /?-adic analogue
of Ç

K (s) has a pôle at s = 1 - 2m), it is worthwhile to try to sharpen (25).

To do this, we use the resuit of §2, namely

(26)

where BrisB

r
is the r-th Bernoulli number and

(27)

Set

(28)

For 0 <r < 2m, 2a (m) BrisB

r
is an integer, by von Staudt's theorem, and

since fi r (D) =0 (mod 4), -a (m) B
r

DD r ~1~ 1

£ 2m _ r (Z>) is an integer for r>l.
There remains the term r = 0 of (26). If Z) is divisible by an odd prime p

but D p, then (writing D= pD\ with /? D')

(29)

and the inner sum is 0 for D f

> 1. One also checks easily that f} 2m (D)

always even, is divisible by 8 if D = 0 (mod 4) and is divisible by 16 if

D=o (mod 8). Therefore p 2m (B)ID is an even integer, unless D=pis
a prime (= 1 (mod 4)). In that case,

(30)



if 2m + is not divisible by p-1. Finally, if 2m + — - — is divisible

by p - 1, then (p- 1) | 4m and hence p = 4m + 1 or /? < 2m + 1. There

forea(m)p lm (D)ID is an even integer hère also, except in the one case

D = 4m + 1 = prime. Thus, if we set

5 ( m ) =a (m) • denom (B 2 J2m
2

) •em ,
(31)

(32)

then s (m) (K(l-(

K (l-2m) will be an integer for ail quadratic fields K, and

indeed (s (m)/s m
) £ x (1 -2m) will be an integer for ail fields except

Q(^/4m + l). We hâve tabulated the two bounds t (m) and s (m) for
1 <m< 17 in Table 4, putting the factor e

m
of .s (m) in brackets because

it only occurs in the denominator of CK(I-2m)C

K (l-2m) for a single exceptional
field K. It will be seen that in gênerai neither of .s (m), t (m) divides the other,

so that

(33)

gives a better bound than is provided by either the Siegel or the elementary
method alone. From the table of values of u (ni) one sees that, for instance,

(34)
and that

(35)

Ail of thèse congruences can be verified in Table 3. Indeed, Table 3 suggests
that (34) can be improved to

(36)

and that, as well as the congruences (35), one has

(37)

Ail of thèse are spécial cases of the following

Conjecture ([6], p. 164). For any totally real X,

(38)

where the integer w
m (K) is defined as

(39)



Boundsfor

the

denominator

of

K
{l

—

2m),

K

quadratic

Table

4.



Define an integery (m) for m=l, 2, ... by

(40)

Thus

Then it is easy to check that, for K a quadratic field, w m (K) =j (m)

(independent of Kl) unless K is one of the finitely many fields Q (y/p) with

p a prime such that (/?-l)|4m, (p-\))(2m, in which case w m (K)

pv+lp

v+1 j (m), where/? v is the largest power of^? dividing m. This is interesting
because the numbers y (m) occur in topology: it is known (now that the

Adams conjecture has been proved) that j (m) is precisely the order of the

group J(S 4m
). This may be just a coïncidence, of course, but could conceiv

ablyreflect some deeper connection between the values of zeta-functions
and topological i^-theory (the conjectured connection between thèse values

and algebraic X-theory was mentioned in the introduction).

§4. The Circle Method and the Numbers $e
_{2m -1} (n)$

In §3 we defined

(1)

where r and n are positive integers and, for b a positive integer, a r (b) is

defined as the sum of the r-th powers of the positive divisors of b. Since (1)

was only needed for n not a perfect square, we are still at liberty to define

a r (0) ; we set

(2)

This defines a
r (b) for b=o,l, 2, ...; we extend the définition to ail real b

by setting a r (b) = 0 if b < 0 or b $ Z. Then (1) can be rewritten

(3)

We were led to consider thèse numbers by Siegel's theorem, which, for
real quadratic fields X, expresses the value of Ç x (2m) or (x(l-(

x (l- in

terms of the numbers e lm - 1 (n) with K = Q(Jn). In this section we



follow a différent course, and study the numbers (3) directly by the tech

niquesofanalytic number theory — specifically, by means of the Hardy-
Littlewood circle method. This will lead to the following formula for

Theorem 1
. Let m and n be positive integers, n not a perfect square.

If n = 2 or 3 (mod 4) then e2e

2m _ 1 (n) = 0. If n = 0 or 1 (mod 4),

write

(4)

with

(5)

Then

(6)

where % is the character associated to K (cf. §2) and T 2m (/) is the multi

plicativefonction given by

(7)

(8)

(fi (à) dénotes the Môbius function) .

Note that the flrst term in (6) really is of bigger order than the error

term, since one easily checks that T\ m (/) > c 1 f Arïn ~1~ 1 and K (\—2m)
> c 2

jD 2m ~1/2~ 1/2 with constants c u c 2 > 0, and hence the flrst tenn is

>cn 2m ~1~ 1 ? 2
.

Before turning to the proof of this theorem by means of the Hardy-
Littlewood method, we consider its relationship to the results discussed in

Sections 1 and 3. We saw in §1 that the Hecke-Eisenstein séries Gf
m (z) of

K has the Fourier expansion

(9)

with

(10)

(H)

where k
m

= (2n) 4m D~ 2m+l/2 / (2m- 1) !
2

. Since GG
K
2m (z) is a modular

form of weight 4m, the form G\
m (z) -a0 G

4m (z) / 21, (4m) is a cusp form



of weight 4m, where G 4m (z) is the ordinary Eisenstein séries (we hâve used

1 (20)). But a very well-known theorem of Hecke asserts that the it-th

Fourier coefficient of a cusp form of weight 2k is 0 (n
k

). Therefore (using

1 (21) for the Fourier coefficients of G
4m )

where in the last line we hâve used the functional équations of Ç
K and Ç.

Substituting (11) and inverting gives

(12)

(13)

and this is essentially the same as (6) — indeed with a better error terni
0 (<) rather than 0 (rc

m+ 1/4 ).

Nevertheless, there is some point to proving Theorem 1 by the circle

method. First of ail, it provides a direct proof of the relationship between

the arithmetic function e2e

2m -i ( n ) an<^ tne value ai s=2mof the zeta

functionof Q (Jri). Secondly, the évaluation of the "singular séries"—
which yields the first term of eq. (6) — involves an évaluation of certain
Gauss sums and of a Dirichlet séries with such Gauss sums as coefficients
which are of interest in their own right. Namely, we will prove the following
two theorems.

Theorem 2. For positive integers a and c, let

(14)



where (-](q odd) is the Legendre-Jacobi symbol and i ajl = e
nialAr

. Thus
W

X (a, c) is 0 if a and c hâve a common factor or are both odd, and is an

Bth root of unity otherwise ; furthermore, y (a, c) is periodic in a with

period 2c. We define a Gauss sum y c (ri) by

(15)

Then X
c (ri) is given as follows

If c is odd, write c= ld 2 with l square-free. Then

(16)

If c is even, write c= 2r2 r
c t with c x odd, r>l. Then

(17)

where

(18)

Theorem 3. Let n be a non-zero integer and define a Dirichlet séries

E
n

{s) by

(19)

(i.e. E
n

(s) =Zam m' s with a m =- (?»(«) + y2»(n))y

2 »(n)) for m odd,

a
m =- y 2 jn) for m even. Clearly |yc (ri) \< 2c 1/2

, so the séries in (19)

converge for Re s > f; in fact, y c
(ri) = 0 (1) as c ->• oo by Theorem 2.



so they even converge for Re s> 1). Let K=Q (y/ ri), D= discriminant

of K, x = character of K, L (s, x) = L-series of % (if n is a perfect

square, % (m) = 1 for ail m and L (s, x) = C (s)). Then

(20)

while, if n = 0 or 1 (mod 4), then

(21)

As corollaries to Theorem 3, we see that E
n

(s) has a meromorphic
continuation to the whole .s-plane, and that E

n (s) possesses an Euler

product whose /?-factor is 1+ x(p)P~ s
PX n an d is a polynomial in p~ s

in any case.

We will now show how the Dirichlet séries (19) arises in connection
with the numbers e lm -i (ri), deferring to the end of the section the proofs
of the two theorems on Gauss sums just enunciated.

Let G
2m (z) be the Eisenstein séries of weight 2m, defined in 1 (18),

and 9 (z) the thêta séries

(22)

where § is the upper half-plane {z e C | Im z > o}.

We define

(23)

Clearly F
m (z +2) = F

m (z), so F
m (z) has a Fourier expansion. From (22)

and the Fourier expansion of G 2m (eqs. 1 (19)- (21)), together with

eq. (3) and the functional équation of C (s), we obtain

(24)



Thus the numbers e lm -i (n) are precisely the Fourier coefficients of F
m (z).

By Cauchy's theorem, therefore,

(25)

for any s > 0.

The idea of the Hardy-Littlewood method is to replace the integrand
in the neighbourhood of each rational point of the interval [0, 2] by an

elementary function, integrate this function, and then sum up the contri
butionsobtained in this way from ail rational points; this sum, the so-called
;

'singular séries," should then be an approximation to the intégral. To

apply this to (25), we first use the transformation laws of the thêta and

Eisenstein séries under modular transformations to obtain

(26)

(27)

as y — 0 with Re (v) > 0, where - is a rational number in lowest terms.
c

Therefore

(28)

as y -> 0, where a and c are relatively prime and (c, 2) is the greatest

common divisor of c and 2. To obtain the contribution from the rational

point a/c to the singular séries, therefore, we replace F
m by the first member

of (28) and integrate over y. Since

(29)

(this is just the standard intégral représentation for l/F (s)), we obtain as

the contribution from ajc

(30)

with



(31)

a

Summing this over ail rational points - e [0, 2), we obtain the following
c

formula for the singular séries :

(32)

(33)

where E
n

(s) is the Dirichlet séries of Theorem 3.

We wish to estimate the différence between e2e

2m -i («) and e2e
2m ~1~ 1 («)•

To do this, we defîne a function having the same behaviour in the neighbour
ci

hood of each rational point - as that described by the leading term of (28):
c

(34)

The séries is convergent for ze§, and

(35)

for z = — h iy ,y->O. On the other hand, F
m (z) is evidently periodic

c

with period 2, and one easily finds (using the Cauchy intégral for the

Fourier coefficients and the contour intégral (29)) that its Fourier expansion
is

(36)

with e 2m - 1 («) given by (32). The analysis given by Hardy [2] now permits
us to deduce from (35) that

(37)

as n -»• 00 . We will not reproduce this analysis hère, since our main interest
is not in a rigorous proof of (6) with error term (in any case, as pointed out



above, this error tenn is not best possible) but in the évaluation of the

singular séries obtained in the Hardy-Littlewood approach. To see that

(37) and (6) are the same, we use équation (33) and Theorem 3 to get

(38)

where in the last line we hâve used (7) and the functional équations of £

and Ck-

It remains to prove Theorems 2 and 3.

Proof of Theorem 2: We first suppose c is odd. Then the standard

Gauss sum

(39)

is related to y c («) by

(40)

as one sees by setting a = 2b. If c is square-free, then the value of (39) is

well known to be

(41)

or

(42)

Therefore y c (n) =(-]ifcis square-free, in agreement with (16) (since in

this case d = 1,1 = c). Now let c = ld 2 with / square-free. Then



where \i (j) is the Môbius function, so

(43)

where we hâve written b = jk. Since I - J only dépends on k (mod /), the

inner sum in (43) equals

(44)

c

Write t for d/j, so — = dt. Then, substituting (44) into (43), we find that

x
c (ri) = 0 if dX n

>
while if d| «

Since / is square-free, we can now use (42) to get

(45)

/-2\The factor preceding the sum is precisely cl/2lc
1/2 l ) i (c 1)/ since

V c /
c = Id 2 = l (mod 8), so combining (45) and (40) yields precisely équation
(16).



Now suppose that c is even, c = 2r2 r
c I (r> l

i
c 1 odd). For a odd, we

hâve

(46)

where we hâve used the law of quadratic reciprocity. The factor in square

fa\brackets has period 8 and the factor —) has period c t , so

W
(47)

It follows easily that y c (n) is 0 unless e
Bninc i^ c equals 1, i.e. unless 2r2

r 2

divides n (this condition is empty if r = 1). Write

(48)

with v an integer. Then

(49)

Now write

(50)

where

(51)

(e.g. y = (1 -Ci)/8). Then a = j (mod c^) and a = k (mod 8), so a runs

over ail odd residue classes (mod Se
x

) wheny runs over the values 1, 2, ..., c 1

and k over the values 1, 3, 5, 7. Therefore (46) and (49) give

(52)

The first sum is tclt

c1 (-vy), and by virtue of (51), (48) and (40).

(53)

The second sum in (52) is



Putting this ail into (52), we obtain

(54)

Clearly this is 0 if r = v (mod 2), while if v = r — 1 (mod 2) we obtain

(55)

If r is even, therefore, v must be odd, and then the cosine in (55) is 0 if

v s 3 (mod 4) and (-l)^" 1 )/ 4 if v s 1 (mod 4). Thus for r even, y c (n)

is 0 unless n= 22 r ~2~ 2
m with m=l (mod 4) and is then 2r2

r ' 2 (-l)^- 1 » 4

x y ci (n). If ris odd, then vis even, say v = 2m, and then the cosine in (55)

= (-l) m(m - 1)/ c 1 )/ Thus for r odd, y c
(n) is 0 unless n= 2r2

r - l
m

and is then 2
(
-

r ' 1) ' 2 (-î)»*'"- 1 )/ 2
y ci(n) . This proves équation (18).

Proof of Theorem 3. According to eq. (17), we can write

(56)
with

(57)

and

(58)

We first evaluate (57). Substituting (16) gives

(59)



Now let r2r

2 be the largest odd square dividing n, and write n= Nr 2

. Then
1 1 r, and N and D differ by an even power of 2, so for any odd /

where x is the character of i£ =Q (^/«). Also (—j is 1 or 0 depending

whether / is or is not relatively prime to r/t. Therefore (59) can be rewritten

(60)

where the final product extends over primes p not dividing the even integer

2rjt. Let u = - ,
e = - then

(61)

We now evaluate the factor (58) of E
n

(s) corresponding to the prime 2.

Comparing (61) and (20), (21), we see that it remains to prove

(62)

where in the latter case we hâve set/ = 2q2 q
r, r odd.

The first line of (62) follows immediately from (18), since we see that

(63)

We thus suppose n =f2 D, f = 2q2 q
r, r odd. We distinguish two cases,

according to the parity of D :



Case L D = 0 (mod 4), % (2) = 0. Then either D = Sd with rf odd or

D = 4d with rf = 3 (mod 4). In either case, we deduce easily from (18)

that Q
r {ri) =oif r is even or if r is odd and greater than 2q +3, that Q

r {ri)

= 2 (r - 1)/ if ris o dd and less than 2# +3, and that g 2g
2 , +3 («) = -2q+l.2 q+l

.

Therefore

in agreement with (62); in this calculation we hâve set x=2 s+ * for
convenience.

Case 2. D = 1 (mod 4), x (2) = (- 1) (D " 1)/ In this case, équation (18)

tells us that Q
r {ri) = 2{2 {r ~1)/~ 1)/2 if r is odd and 1 <r <2q + 1, that

82 î+ 2W = 2?+li2 ?+1 i (2), and that Q
r {ri) = 0 for ail other values of r. There

fore

This proves (62) in this case also, and complètes the évaluation of E
n {s).



§5. CONGRUENCES FOR THE HECKE-EISENSTEIN SERIES

For K a totally real number field and m > 1, define

(1)

where n= [K:Q] and G\
m (z) (as in §1) is the restriction to the diagonal of

the Hecke-Eisenstein séries of weight 2m. Then Gf
m

is a modular form of

weight h = 2mn whose Fourier expansion (cf. eqs. (22), (23), (24) and (6)

of §1) is

(2)

with jf (2m) g Z.

In the space ÏR^ of ail modular forms of weight h, let

be the set of modular forms whose Fourier coefficients, apart from the

constant term, are ail intégral. Then 9Mjf is a free Z-module of rank

r = dim c m h
and Wt

h
= Wlf ® z C. Write

for the map sending a modular form f(z) = Ia n
e

2mnz to its constant

term aO.a

0 . Then

for some coprime integers M h and N h ,
and N h

is then a universal bound for

the denominators of the constant terms of forms in 9Jîjf and in particular
of Gf

m ,
i.e.

(3)

This is the essence of SiegePs theorem as discussed in §1.

But we know that (3) is not the best possible bound for the denomi

natorofÇ K (1 - 2m) (cf. the remarks at the end of §3), and this means that

the modular forms Gf
m must be contained in some smaller lattice than



2RJf
. For example, if Kis a real quadratic field, then Serre's bound for the

denominator of -(x (1 -2m), at least for K not in the set
4

(4)

is the number j (m) defined in §3, eq. (40), and this is always smaller than

#/, = Nt m (for m= 1,2, 3,4,5 the values of N 4m are 24.3.5,2
4 .3.5, 25.3.5,2

5 .3.5,
24.2

4 .3 2 .5.7.13, 26.3.5.172

6 .3.5.17 and 24.3.2
4 .3.5 2

.11, whereas those of j (m) are

23.3,2

3
.3, 24.3.5,2

4 .3.5, 23.2
3

.3 2
.7, 25.3.52

5 .3.5 and 23.3.11).2

3 .3. 11). Therefore, if AT is not one of

the finitely many exceptional fields (4), the modular form Gf
m

lies in the

proper sublattice

(5)

of SOtJn,. We want to describe some numerical évidence that, although

j(m) is the best possible bound for the denominator of- Ç
K (1 —2m), the

modular forms Gf
m are contained in a much smaller sublattice than (5).

This means that the coefficients s* (2m) satisfy congruences (modulo certain

powers of certain primes) above and beyond those required to obtain the

correct bound for the denominator of Ç.

For m=lorm=2, 9ft 4m
is one-dimensional, so a modular form is

completely determined by its constant term and (5) is best possible. Consider

m=3.A basis for $Rl2R
12 is given by Q and R 2

,
where

(Ramanujan's notation). The lattice 9ftf 2 nas the basis g 3,g

3

,

(—23 + ttttt i^ 2
)

. We conjecture, however, that for ail real quadratic

fields K différent from Q (Jï), Q (^5) and Q (^l3), the modular form

Gg lies in the sublattice generated by —Q3 and R2R
2 Le. that if wewrite

24 504



Table 5

27*emodular form Gg (z)

K = Q (y/D), D = discriminant of K

then the coefficients x and y will be intégral for ail quadratic fields K except
the three mentioned. Some numerical évidence for this is presented in

Table 5 (x and y were calculated for much larger discriminants and were



always integers). Similar data for m=4 and m=s leads to the con

jectures

Thèse assertions imply highly non-trivial congruences for the coefficients

,sf (2m) of the Hecke-Eisenstein séries, since (for example) the lattice

147 5

generated by Q5Q
5 and Q2Q

2 R 2 has index 7,938,000 in 2Rf 0 (whereas
8 264

pftfo : SCRfS] is only 50). This leads to the following

Conjecture. For each m>l, de/me f/ze "Hecke-Eisenstein lattice"
yjl^n as the sublattice of 9Jïf

m generated by the modular forms Gf
m ,

w/z<?n?

K runs over ail real quadratic fields not in the finit e set (4). Then

(i) mlfn hasfinite index in 2Rf
m .

(ii) //" we replace (4) ôj; a/73; large? finite set in the définition of SER^m, we

oZ?/ the same lattice (in other words, the only fields which are excep
tionalwith respect to the congruence properties of their Hecke-

Eisenstein séries are those for which the denominator of CK(I-2ra)C

K (l-2ra)
is exceptionally large).

(iii) For m < 5, SRj^ w&y gfvew /« Table 6.

(iv) SJl^ has a basis consisting of monomials in Q and R.

(v) For m>2, the primes dividing [9Jl 4m
: SR^f] are : ail primes <2m

an d 4m + 1 (if the latter is prime) .

It would be of interest to hâve numerical data on Gf
m

for m > 5 and

for [K :Q] > 2, especially to test the somewhat rash conjecture (iv).

Particularly interesting would be to ûx a prime p and study the behaviour
at p of the sublattice ÎR^ for varying m, since this could give information
about the /?-adic analogue of the zeta-function of K.



Table 6

The "Hecke-Eisenstein lattice" for m < 5

(In the table, Q = E4E
4 (z), R = E6E

6 (z). The data for m = 3, 4, 5 is con
jecturalonly.)

Afterword

The original version of this paper was written three years ago. To

bring it up to date, we must comment on two developments which hâve

occurred in the intervening time.

1. The conjecture of Serre quoted at the end of Section 3 is now (almost)
a theorem. In the original paper [6], Serre proved the partial resuit that,



n

for any totally real field K and positive integer n9n
9 Yl w

m (X) £k (1 -2m)
m = l

is an integer (the product occurs when one calculâtes the "Euler charac

teristic"of the discrète group Sp ln (9, (9 = ring of integers of K). For the

case of abelian totally real fields (and thus in particular the case of quadratic

fields), the conjecture is much easier, since it can be reduced to the évalu

ationof 1,-series, and it was proved independently by several people (e.g.

J. Fresnel, "Valeurs des fonctions zêta aux entiers négatifs", Séminaire de

Théorie de Nombres, 1970-1971, Bordeaux). In [7], Serre obtained better

bounds than 3 (25), still by using Siegel's idea, but studying in more détail

the /7-adic behaviour of the coefficients sf (2/??) of the Hecke-Eisenstein

séries. Finally, Deligne, using /?-adic modular forms in several variables

and a strengthened version of Mumford's results on compactifications of

modular schemes (of which the détails hâve apparently not yet been checked

completely), proved Serre's conjecture for arbitrary totally real fields

modulo the question of the irreducibility of a certain /?-adic représentation,
and this question was resolved affirmatively by K. Ribet.

Related to the question of the denominator of Ç
K (1 - 2m) is the question

of its exact fractional part (resolved for K = Q by the theorem of von

Staudt). In connection with his work on the Hilbert modular group
{L'Enseignement Mathématique (3-4) 19 (1973) 183-283). Hirzebruch
found formulas for the fractional part of l k (— 1), Ka real quadratic field,
in terms of the class numbers of certain imaginary quadratic fields. This

formula has been generalized to arbitrary totally real fields by Brown ("Euler
characteristics of discrète groups and G-spaces", Inv. Math. 27 (1974), 229

264),using the methods of [6], and by Vignéras-Guého ("Partie fractionnaire
de Ç

X (- 1)", C. R. Acad. Sciences, Paris (10) 279 (1974), 359-361, "Nombres
de classes d'un ordre d'Eichler et valeur au point - 1 de la fonction zêta

d'un corps quadratique réel", l'Ens. Math., 21 (1975) 69-105) using a

formula of Eichler for class numbers of orders in totally definite quaternion
fields.

2. The aim of Section 4, namely to explain without the use of modular
forms in two variables Siegel's formula for Ç

K (1-2/??), can now be achieved
in another way, both simpler and more enlightening than the application
of the circle method outlined in §4. In that section, we observed that the

number



is the coefficient of e ninz in the Fourier expansion of a function F
m (z)

(eq. 4 (23)) which is up to a factor the product of the ordinary thêta séries

9 (z) and the Eisenstein séries G
2m (2z). The function F

m (2z) (at least if

7?2 >I)isa modular form of weight 2m H — for T
o (4) in the sensé of

Shimura's paper "Modular functions of half intégral weight", (Modular
Functions of One Variable I, Lecture Notes 320, Springer Verlag, Berlin/
Heidelberg/New York 1973, pp. 57-74). In this paper, Shimura discusses

how to set up for such forms a theory of Hecke operators with many of the

usual properties but with the essential différence that there are now Hecke

operators T
n only for n a perfect square. He also shows that the two Eisen

steinséries of weight 2m -i — for F o (4) hâve n-th Fourier coefficients

related to Cqc-y/tï) (1 ~2/?7). In fact, one can check that there is a Hnear

combination of thèse two Eisenstein séries whose n-th. Fourier coefficient
is precisely the number

which arose in our §4 as the sum of the singular séries for e lm -i («). The

identities of Siegel expressing e lm -\ (n) as a linear combination of

00

can now be interpreted as saying that the modular form £ ë
2m -i (n) e

2ninz

n = 0

of weight 2m H — can be expressed as a linear combination of the function

F
m (2z) and its images under the Hecke operators T49T

49 T
9 , ..., T r2 . Thèse

ideas hâve been worked out by Cohen in three papers,

Cohen, H. Sommes de carrés, fonctions L et formes modulaires. C. R.

Àcad. Sel Paris (A) 277 (1973), 827-830.

Variations sur un thème de Siegel et Hecke. To appear in Acta Arithm.
30 (1975).

Sums involving the values at négative integers of L-functions of

quadratic characters. Math. Annalen 217 (1975), 271-285,



especially the last, in which he studies an arithmetic function H (r, N)

which is related to our function by

However, despite thèse new approaches to Siegel's formula, I hâve

retained Section 4 because the calculations of the Gauss sums y c
(ri) and of

the Dirichlet séries J]y c (n)c~ s (Theorems 2 and 3 of §4) are often useful

to hâve (for example, the calculation of the Fourier coefficients of the

Eisenstein séries of weight 2m -\ — ,
of which is not carried out in détail in

Shimura's paper, dépends on them) and also because the application of the

circle method in the context of forms of half-integral weight seemed novel.
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