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Abstract: A conjectural formula for the k-point generating func-
tion of Gromov–Witten invariants of the Riemann sphere for all
genera and all degrees was proposed in [11]. In this paper, we give
a proof of this formula together with an explicit analytic (as op-
posed to formal) expression for the corresponding matrix resolvent.
We also give a formula for the k-point function as a sum of (k−1)!
products of hypergeometric functions of one variable. We show that
the k-point generating function coincides with the ε → 0 asymp-
totics of the analytic k-point function, and also compute three more
asymptotics of the analytic function for ε → ∞, q → 0, q → ∞,
thus defining new invariants for the Riemann sphere.
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1. Statements of the main results

1.1. Gromov–Witten invariants of P1

Let Mg,k(P1, β) be the moduli space of stable maps from algebraic curves of
genus g with k distinct marked points to P1, of degree β ∈ H2(P1;Z)

Mg,k(P1, β) =
{
f : (Σg, p1, . . . , pk) → P1 ∣∣ f∗ ([Σg] ) = β

}
/ ∼ .

Here, (Σg, p1, . . . , pk) denotes an algebraic curve of genus g with at most
double-point singularities and with the distinct marked points p1, . . . , pk, and
the equivalence relation ∼ is defined by isomorphisms of Σg → P1 identical
on P1 and on the markings. Let Li be the ith tautological line bundle on
Mg,k(P1, β), and ψi := c1(Li), i = 1, . . . , k. Denote by evi : Mg,k(P1, β) → P1

the ith evaluation map.
The genus g, degree β Gromov–Witten (GW) invariants of P1 are integrals

of the form

∫
[Mg,k(P1,β)]virt ev∗

1(φα1) · · · ev∗
k(φαk

)ψi1
1 · · ·ψik

k =: 〈τi1(φα1) · · · τik(φαk
)〉g,d .

(1)

Here, α1, . . . , αk ∈ {1, 2}, i1, . . . , ik ≥ 0, φ1 = 1, φ2 = ω ∈ H2(P1;C) nor-
malized by

∫
P1 ω = 1, and

[
Mg,k(P1, β)

]virt denotes the virtual fundamen-
tal class [24, 1, 2, 25]. In the right-hand-side of equation (1), the “degree”
β ∈ H2

(
P1;Z

)
has been replaced by an integer d through d :=

∫
β ω. The

GW invariant 〈τi1(φα1) · · · τik(φαk
)〉g,d vanishes unless the degree–dimension

matching holds: 2g − 2 + 2d + 2k =
∑k

�=1 i� +
∑k

�=1 α�.
For k ≥ 1 and i1, . . . , ik ≥ 0, α1, . . . , αk ∈ {1, 2}, denote

〈τi1(φα1) · · · τik(φαk
)〉 = 〈τi1(φα1) · · · τik(φαk

)〉(ε, q)

:=
∞∑
g=0

∞∑
d=0

ε2g−2qd 〈τi1(φα1) · · · τik(φαk
)〉g,d .

We will call 〈τi1(φα1) · · · τik(φαk
)〉 the k-point P1 correlator, and

〈τi1(φα1) · · · τik(φαk
)〉g,d the k-point P1 correlator of genus g and degree d.

Due to the degree–dimension matching, ε2〈τi1(φα1) · · · τik(φαk
)〉(ε, q) is a ho-

mogeneous polynomial of ε2, q. More precisely,
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〈τi1(φα1) · · · τik(φαk
)〉(ε, q)

=
∑
g,d≥0

2g+2d−2=
∑k

�=1
(i�+α�−2)

ε2g−2qd〈τi1(φα1) · · · τik(φαk
)〉g,d .

Note that this expression vanishes if
∑k

�=1(i� + α�) is odd.

Definition 1. The free energy F is defined as the following generating series
of P1 correlators
(2)
F = F(T; ε, q) :=

∑
k≥0

1
k!

∑
1≤α1,...,αk≤2

i1,...,ik≥0

Tα1
i1

. . . Tαk
ik

〈τi1(α1) · · · τik(αk)〉(ε, q) ,

where T = (Tα
j )α=1,2, j≥0. The partial k-point correlation functions are the

power series

〈〈
τi1(φα1) · · · τik(φαk

)
〉〉

(x; ε, q) := ∂kF(T; ε, q)
∂Tα1

i1
. . . ∂Tαk

ik

∣∣∣∣
Tα
i = δα1 δi0 x

.

Clearly,
〈〈
τi1(φα1) · · · τik(φαk

)
〉〉

(0; ε, q) = 〈τi1(φα1) · · · τik(φαk
)〉(ε, q). In

this paper, we consider in particular the partial correlation functions of the
form 〈〈τi1(ω) · · · τik(ω)〉〉(x; ε, q), and consider the following generating se-
ries [11], called the k-point function (k ≥ 1):

Fk(λ1, . . . , λk;x; ε, q)(3)

:= εk
∑

i1,...,ik≥0

(i1 + 1)! · · · (ik + 1)!
λi1+2

1 . . . λik+2
k

〈〈
τi1(ω) · · · τik(ω)

〉〉
(x; ε, q) .

Here λ1, λ2, . . . are indeterminates. The dependence on q in
Fk(λ1, . . . , λk;x; ε; q) can be recovered from Fk(λ1, . . . , λk;x; ε; 1) by rescal-
ing:

(4) Fk(λ1, . . . , λk;x; ε, q) ≡ q−k/2Fk

(
q−1/2λ1, . . . , q

−1/2λk; q−1x; q−1/2ε; 1
)
,

where k ≥ 1. In particular,

Fk(λ1, . . . , λk; 0; ε, q) ≡ q−k/2Fk

(
q−1/2λ1, . . . , q

−1/2λk; 0; q−1/2ε; 1
)
.
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1.2. The k-point function in terms of matrix resolvents

The matrix resolvent (MR) approach of computing logarithmic derivatives
of tau-functions of continuous integrable systems was introduced in [3, 4,
5]. It was further extended in [10] to discrete integrable systems. The Toda
conjecture (now a theorem) [8, 19, 20, 29, 7] says that eF is the tau-function
of a particular solution (which will be called the GW solution) to the Toda
Lattice Hierarchy. So we can apply the MR approach [10] to the computation
of the P1 correlators.

Definition 2 ([10, 11]). Let Un(λ; ε) =
(
ε n + ε

2 − λ 1
−1 0

)
. Define the matrix

resolvent Rn(λ; ε) for the GW solution of the Toda Lattice Hierarchy as the
unique formal solution to the following problem

Rn+1(λ; ε)Un(λ; ε) − Un(λ; ε)Rn(λ; ε) = 0 ,(5)
trRn(λ; ε) = 1, detRn(λ; ε) = 0 ,(6)

Rn(λ; ε) =
(

1 0
0 0

)
+ O

(
λ−1) , λ → ∞ .(7)

This solution Rn(λ; ε) belongs to Mat2
(
Z[n, ε

2 ]
[[
λ−1]]). Define R(λ;x; ε) :=

Rx/ε(λ; ε).

Theorem 1. The formal series (3) with k ≥ 2 have the expressions

F2(λ1, λ2;x; ε, 1) = tr [R(λ1;x; ε)R(λ2;x; ε)] − 1
(λ1 − λ2)2

,(8)

Fk(λ1, . . . , λk;x; ε, 1)(9)

= −
∑

σ∈Sk/Ck

tr
[
R(λσ(1);x; ε) . . .R(λσ(k);x; ε)

]
∏k

i=1(λσ(i) − λσ(i+1))
, k ≥ 3 .

Here Sk and Ck are the symmetric group and standard cyclic subgroup, with
σ(k + 1) = σ(1) for σ ∈ Sk.

The proof, based on the Toda conjecture, uses a simple observation [11] and
the MR approach [10]. The idea of the proof has been explained in [11]; we
provide the details in Section 2.4 of the current paper.

The following property, proved in Section 3, is related to the concept of
bispectrality (see e.g. [16]).
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Theorem 2. The matrix-valued formal series R(λ;x; ε) depends only on ε
and λ− x.

In other words, R(λ;x; ε) has the form

(10) R(λ;x; ε) = M
(λ− x

ε
; 1
ε

)
for some M(z; s), which is a formal power series in z−1. On the other hand,
from its definition, R(λ;x; ε) satisfies

R(λ;x + ε; ε)
(
x + ε

2 − λ 1
−1 0

)
−

(
x + ε

2 − λ 1
−1 0

)
R(λ;x; ε) = 0 ,

which in terms of M(z; s) becomes

(11) M(z − 1; s)
(
z − 1

2 −s
s 0

)
=

(
z − 1

2 −s
s 0

)
M(z; s) .

Similarly, from equations (6) and (7) we deduce that M(z; s) also satisfies

(12) trM(z; s) = 1 , M(∞; s) =
(

1 0
0 0

)
.

We call (11) the topological difference equation, which is an analogue of the
topological ODE [4, 5].

Proposition 1. There exists a unique element M∗ in M2
(
C(s)

[[
z−1]]) sat-

isfying equations (11)–(12). Moreover, M∗ belongs to M2
(
Q[s]

[[
z−1]]), and it

satisfies detM∗ = 0.

See Section 3 for the proof. Proposition 1 will be used to prove Theorem 2,
with M = M∗ (see equation (10) above).

The following theorem, which was conjectured in [11], gives an explicit
formula for the matrix M(z; s). We will prove it in Section 2.4. (A different
proof was given recently by O. Marchal [27].)

Theorem 3. The matrix-valued power series M = M(z; s) has the following
explicit expression

(13) M =
(

1 + α Q− P
Q + P −α

)
,
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where α = α(z; s), P = P (z; s), Q = Q(z; s) ∈ Q[s]
[[
z−1]] are given by

α(z; s) = 2
∞∑
j=0

1
z2j+2

j∑
i=0

s2i+2 1
i!(i + 1)!

i∑
�=0

(−1)�
(
i− � + 1

2
)2j+1

(
2i + 1

�

)
,

(14)

P (z; s) =
∞∑
j=0

1
z2j+1

j∑
i=0

s2i+1 1
i!2

i∑
�=0

(−1)�
(
i− � + 1

2
)2j[(2i

�

)
−

(
2i

�− 1

)]
,

(15)

Q(z; s) = −1
2

∞∑
j=0

1
z2j+2

j∑
i=0

s2i+1 2i + 1
i!2

(16)

i∑
�=0

(−1)�
(
i− � + 1

2
)2j[(2i

�

)
−

(
2i

�− 1

)]
.

1.3. Explicit formulas in terms of hypergeometric functions and
Bessel functions

Define a meromorphic matrix-valued function B = B(z; s) by

(17) B(z; s) = 1
2

⎛⎜⎝1 + G
(
z, s

) 4s
1−2z G̃

(
z − 1, s

)
4s

1+2z G̃
(
z, s

)
1 −G

(
z, s

)
⎞⎟⎠ , z ∈ C− Zodd , s ∈ C ,

where G(z; s) and G̃(z; s) are the (generalized) hypergeometric functions

G(z; s) = 1F2
(1

2; 1
2 − z,

1
2 + z;−4s2

)
=

∞∑
m=0

(
2m
m

)
s2m

(z −m + 1
2)2m

,

(18)

G̃(z; s) = 1F2
(1

2; 1
2 − z,

3
2 + z;−4s2

)
=

∞∑
m=0

(
2m
m

)
z + 1

2
(z −m + 1

2)2m+1
s2m .

(19)

Here, ( )k is the increasing Pochhammer symbol, i.e. (x)k := Γ(x+k)/Γ(x) =
x(x+ 1) · · · (x+ k− 1). Note that the series in (18), (19) converge absolutely
and locally uniformly away from z ∈ Z+ 1

2 so that the product cos(πz)B(z; s)
extends to a (matrix-valued) holomorphic function on all of C2.
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Theorem 4. For fixed s ∈ C, the asymptotic expansion of B(z; s) in all
orders as z → ∞ at a bounded distance from Z+ 1

2 coincides with the formal
power series M(z; s), i.e., B(z; s) ∼ M(z; s).
The proof will be given in Section 3. Here and throughout this paper, we
use ∼ for a full asymptotic expansion: e.g. “f(ε) ∼ g(ε) as ε → 0” means that
the asymptotic expansions of f and g agree as power series in ε to all orders.

We now define analytic k-point functions Hk(z1, . . . , zk; s) (k ≥ 2; the
case k = 1 will be treated later) by

H2(z1, z2; s) :=
tr
[
B(z1; s)B(z2; s)

]
− 1

(z1 − z2)2
= −1

2 tr
[
B(z1; s) −B(z2; s)

z1 − z2

]2
,

(20)

Hk(z1, . . . , zk; s) := −
∑

σ∈Sk/Ck

tr
[
B(zσ(1); s) · · ·B(zσ(k); s)

]
∏k

i=1(zσi − zσi+1)
.

(21)

Then equation (88) and Theorem 4 imply that the full asymptotic expan-
sion of Hk

(
λ1
ε , . . . ,

λk

ε ; 1
ε

)
coincides with Fk(λ1, . . . , λk; ε) as λi → ∞ at a

bounded distance away from εZ + ε
2 , i = 1, . . . , k. Notice that this state-

ment is not entirely trivial, since the presence of poles in (20) and (21) when
two zi’s coincide means that a priori we must order the |λi|’s in order to
obtain an asymptotic expansion. However, the following proposition (which
will be proved in Section 3) implies that the asymptotics are the same for all
orderings of the |λi|’s.
Proposition 2. The functions Hk(z1, . . . , zk; s), k ≥ 2 are analytic along the
diagonals zi = zj , i 
= j (as above it is assumed that none of z1, . . . , zk is a
half-integer).

The next point is very nice. Normally, even if one knows a closed formula
for a collection of 2 × 2 matrices, it is not easy to compute the trace of
their product. Here, however, there is a nice simplification which lets us write
the above traces as products. The reason is that, since detB(z; s) = 0 by
Proposition 1 and Theorem 4, the matrix B(z; s) must factor as the product
of a column vector and a row vector. This factorization, given explicitly in
the following proposition, will immediately lead us to a factorization formula
for the traces.
Proposition 3. The matrix valued function B has the following expressions

(22) B(z; s) = u(z)u(−z)T = πs

cos(πz)V (z)V (−z)T ,
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where

u(z) = u(z; s) =
(

jz(s2)
s

z+ 1
2
jz+1(s2)

)
,

V (z) = V (z; s) =
(
Jz− 1

2
(2s)

Jz+ 1
2
(2s)

)
= sz−

1
2

Γ(z + 1
2)

u(z; s) .

Here Jν(y) denotes the standard Bessel function [33] and ja(X) a modified
Bessel function:

(23) ja(X) :=
∑
n≥0

(−X)n

n!2
(n+a−1/2

n

) , Jν(y) := (y/2)ν

Γ(ν + 1) jν+ 1
2
(y2/4) .

Now define two analytic functions D(a, b; s) and D∗(a, b; s) by

(24)

D(a, b; s) = u(−a, s)T u(b, s)
a− b

=
j−a(X) jb(X) + X

( 1
2−a)( 1

2+b)j1−a(X) j1+b(X)

a− b
,

D∗(a, b; s) = V (−a, s)T V (b, s)
a− b

=
J−a− 1

2
(2s) Jb− 1

2
(2s) + J 1

2−a(2s) J 1
2+b(2s)

a− b

= sb−a−1

Γ(1
2 − a) Γ(1

2 + b)
D(a, b; s) ,

where X = s2. Then from Proposition 3 and the fact that tr(A1B1 · · ·AkBk)=
tr(B1A2 · · ·BkA1), we find that the trace in (88) factorizes as a product of
the one-variable functions D or D∗, and we obtain:

Theorem 5. The analytic functions Hk, k ≥ 2 have the expressions

Hk(z1, . . . , zk; s) = −
∑

σ∈Sk/Ck

k∏
i=1

D
(
zσ(i), zσ(i+1); s

)
− δk,2

(z1 − z2)2
(25)

or alternatively
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Hk(z1, . . . , zk; s)(26)

= − πk sk∏k
i=1 cos(πzi)

∑
σ∈Sk/Ck

k∏
i=1

D∗(zσ(i), zσ(i+1); s
)
− δk,2

(z1 − z2)2

with D(a, b; s) and D∗(a, b; s) as in (24).
Example 1. The function H2 has the expression:

H2(z1, z2; s) = −D
(
z1, z2; s

)
D
(
z2, z1; s

)
− 1

(z1 − z2)2
.(27)

Next, we note that, although the original definition (24) would give a
complicated formula for D(a, b; s) as a double infinite sum, in fact it simplifies
to a single infinite sum (hypergeometric series):
Proposition 4. The function D(a, b; s) has the following explicit expression

(28) D(a, b; s) =
∞∑
n=0

(a− b− 2n + 1)n−1

n! (−a + 1
2)n (b + 1

2)n
s2n ,

where in the first term (a− b + 1)−1 := 1/(a− b). Equivalently,

D(a, b; s) = 1
a− b

2F3
(b− a

2 ,
b− a + 1

2 ; 1
2 − a ,

1
2 + b , b− a + 1; −4s2

)
.

Proof. This follows from a product formula for Bessel functions given on
p. 147 of [33].

1.4. One-point functions

In the above we looked at k-point functions with k ≥ 2. We now consider
the case k = 1. Define two meromorphic functions H1(z, s) and H∗

1 (z, s) as
modified limiting functions of D(a, b; s) and D∗(a, b; s), namely

H1(z, s) = − lim
b→z

(
D(z, b; s) − 1

z−b

)
,(29)

H∗
1 (z, s) = − π s

cos(πz) lim
b→z

(
D∗(z, b; s) − cos(π z)

π s (z−b)

)
.(30)

From the definition it follows immediately that the functions H1 and H∗
1

are related by

(31) H∗
1 (z; s) = H1(z; s) + log s − ψ

(1
2 + z

)
,
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where ψ denotes the digamma function. Using equations (24) and Proposition
4 along with l’Hospital’s rule we get the following explicit expressions:

H1(z; s) =
∑
n≥1

(2n− 1)! s2n

n!2(z − n + 1
2)2n

,

(32)

H∗
1 (z; s) = π s

cos(πz)

(
J− 1

2−z(2s)
∂J− 1

2+z(2s)
∂z

+ J 1
2−z(2s)

∂J 1
2+z(2s)
∂z

)
.

(33)

From (32) one observes that s∂H1(z;s)
∂s = G(z; s) − 1.

Theorem 6. The formal series (3) with k = 1 has the expression

(34) F1(λ;x; ε, 1) = 1
ε

(
H∗

1

(λ− x

ε
; 1
ε

)
+ log λ − x

λ

)
,

where the RHS is understood as its asymptotic expansion as λ → ∞.

Alternatively, using (32) and (31), we can write (34) explicitly as

F1(λ;x; ε, 1)

(35)

= 1
ε

∑
j≥2

xj

j λj
+

∑
j≥2

εj

j (λ− x)j
∞∑
i=0

ε−1−2i

i!2
2i∑
�=0

(−1)�
(

2i
l

)
Bj

(
i− � + 1

2
)
,

which can also be written as a pure power series in λ−1 as

F1(λ;x; ε, 1) =
∑
j≥2

εj

j λj

∞∑
i=0

ε−1−2i

i!2
2i∑
�=0

(−1)�
(

2i
�

)
Bj

(
x
ε + i− � + 1

2
)
.(36)

Here, Bj(u) denotes the jth Bernoulli polynomial (the unique polynomial
solution to

∫ v+1
v Bj(u)du = vj).

Note that the internal sum in (35) or (36) is simply the (2i)th backward-
difference of the polynomial Bj

(
i+ 1

2
)

or Bj

(
x
ε + i+ 1

2
)
, respectively, and since

the nth difference of a polynomial of degree < n vanishes, we can replace the
sum

∑∞
i=0 by

∑[j/2]
i=0 in both equations. Also, since Δ2i

−1
(
Bj

(
x
ε + i + 1

2
))

=
Δ2i−1

−1
(
Δ−1

(
Bj

(
x
ε + i+ 1

2
)))

= j Δ2i−1
−1

((
x
ε + i− 1

2
)j−1), we have the following
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more elementary expressions

F1(λ;x; ε, 1)

=
∑
g≥1

ε2g−1

(λ− x)2g

(
1 − 22g−1)B2g

22g g
+ 1

ε

∑
j≥2

xj

j λj

+
∑
j≥2

εj

(λ− x)j
[j/2]∑
i=1

ε−1−2i

i!2
2i−1∑
�=0

(−1)�
(

2i− 1
�

)(
i− �− 1

2
)j−1

,

F1(λ;x; ε, 1)

=
∑
j≥2

εj−1

j λj
Bj

(
x
ε + 1

2
)

+
∑
j≥2

εj

λj

[j/2]∑
i=1

ε−1−2i

i!2
2i−1∑
�=0

(−1)�
(

2i− 1
�

)(
x
ε + i− �− 1

2
)j−1

,

where the first sum in each case corresponds to the digamma term in (31),
and Bj := Bj(0) is the jjh Bernoulli number.

1.5. Four asymptotics

We already know that Fk(λ1, . . . , λk; 0; ε, 1) contains all GW invariants of P1

in the stationary sector for all genera and all degrees. (The dependence on
q can be recovered by rescalings). This suggests the possibility of studying
the ε → ∞ or q → ∞ limit using the analytic k-point functions. Namely,
we study the functions Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
, k ≥ 1 and their four asymptotic

behaviours: ε → 0, ε → ∞, q → 0, q → ∞.
For any fixed k ≥ 1, introduce the grading operator gr := ε ∂

∂ε + 2q ∂
∂q +∑k

i=1 λi
∂

∂λi
. Obviously, grHk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
= 0. We begin with the ε → 0

limit. The condition λi/2
√
q > 1 in the following theorem may look strange

at first. It comes from the fact that the asymptotics of Jν(νx) as ν → ∞
with x > 0 fixed are different according as x < 1, x = 1, or x > 1. (See [33],
p. 225.)

Theorem 7.A. Fix k ≥ 1. For q, ε, λ1, . . . , λk satisfying 0 <
2√q

λi
< 1, λi

ε > 0,
i = 1, . . . k, as ε → 0 (with fixed λ1, . . . , λk, q), we have expansions of the form

Hk

(λ1

ε
, . . . ,

λk

ε
; q

1/2

ε

)
∼

∑
g≥0

ε2g−2+2kH
[g]
k (λ1, . . . , λk; q) (k ≥ 2) ,(37)



164 Boris Dubrovin et al.

H∗
1

(λ
ε
; q

1/2

ε

)
∼ log q1/2 − log λ +

∑
g≥0

ε2gH
∗,[g]
1 (λ; q) ,(38)

where H [g]
k for k ≥ 2 are rational functions of q, λ1, . . . , λk satisfying grH [g]

k =
(2 − 2g − 2k)H [g]

k ; while for k = 1 we have H
∗,[0]
1 = log 2λ

λ+(λ2−4q)
1
2

and

H
∗,[g]
1 (g ≥ 1) has the form

(39) λ2g H
∗,[g]
1 (λ; q) =

Pg

( q
λ2

)
(
1 − 4q

λ2

) 6g−1
2

, Pg(0) = 2 (2g − 1)! (1 − 22g−1)B2g

4g (2g)!

with Pg(x) being a polynomial with rational coefficients of degree 2g−1. More-
over, the sum∑

g≥0
ε2g−2+kH

[g]
k (λ1, . . . , λk; q) (k ≥ 2) or

∑
g≥0

ε2g−1H
∗,[g]
1 (λ; q) (k = 1)

coincides with Fk(λ1, . . . , λk; 0; ε, q) as a formal power series in λ−1
1 , . . . ,λ−1

k ,q.
The proof will be given in Section 5. Theorem 7.A tells that the ε → 0 limit
gives GW invariants of P1. We remark that even the simple consequence of
(37) that Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
= O(ε2k−2) as ε → 0 already seems to be quite

non-trivial. The first few H
[g]
k (or H

∗,[g]
1 ) are given by

H
∗,[1]
1 = − λ (λ2 − 16q)

24 (λ2 − 4q) 5
2
,

H
∗,[2]
1 = λ (7λ6 − 94qλ4 + 8256q2λ2 + 18432q3)

960 (λ2 − 4q) 11
2

,

H
[0]
2 =

λ1λ2 −
√
λ2

1 − 4q
√
λ2

2 − 4q − 4q

2(λ1 − λ2)2
√
λ2

1 − 4q
√
λ2

2 − 4q
,

H
[1]
2 = q

4
(
λ2

1 − 4q
) 7

2
(
λ2

2 − 4q
) 7

2

(
λ3

1λ
3
2
(
λ2

1 + λ2
2
)

+ 4qλ1λ2
(
4λ4

1 + 5λ3
1λ2 − λ2

1λ
2
2 + 5λ1λ

3
2 + 4λ4

2
)

− 16q2λ1λ2
(
10λ2

1 + 17λ1λ2 + 10λ2
2
)

+ 64q3(2λ2
1 + 11λ1λ2 + 2λ2

2
)
+ 768q4

)
,

H
[0]
3 = q

λ1λ2λ3 + 4q(λ1 + λ2 + λ3)
(λ2

1 − 4q) 3
2 (λ2

2 − 4q) 3
2 (λ2

3 − 4q) 3
2
.
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The next is to look at the ε → ∞ limit of Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
.

Theorem 7.B. Fix k ≥ 1. ∀λ1, . . . , λk, q ∈ C, the following asymptotic holds
true: as ε → ∞,

(40) Hk

(λ1

ε
, . . . ,

λk

ε
; q

1/2

ε

)
∼

∑
g≥0

ε−2gHk,[g](λ1, . . . , λk; q) ,

where Hk,[g] ∈ Q[λ1, . . . , λk, q], and grHk,[g] = 2g Hk,[g].

We note that the sum in the RHS of (40) converges if
|ε| > 2 max

{
|λ1|, . . . , |λk|

}
.

Thirdly we look at the q → 0 limit.

Theorem 7.C. Fix k ≥ 1. For λi /∈ εZ + ε
2 , i = 1, . . . , k, as q → 0,

(41) Hk

(λ1

ε
, . . . ,

λk

ε
; q

1/2

ε

)
∼

∑
d≥0

qdHk,d(λ1, . . . , λk; ε) ,

where Hk,d(λ1, . . . , λk; ε) are rational functions of λ1, . . . , λk, ε with poles only
at λi = mε/2 with |m| < 2d odd, and grHk,d = −2dHk,d. The q → 0
asymptotic of H1 has the explicit expression

(42) H1
(λ
ε
; q

1/2

ε

)
∼

∞∑
d=1

qd
(2d− 1)!

d!2
∏d

j=1
(
λ2 − (2j−1)2

4 ε2
) .

The proof is in Section 5. The first few rational functionsHk,d(λ1, . . . ,λk, q)
are listed here:

H2,1 = ε2
1

(λ2
1 − ε2

4 )(λ2
2 − ε2

4 )
,

H2,2 = ε2
3λ2

1 + 2λ1λ2 + 3λ2
2 − 9ε2

(λ2
1 − ε2

4 )(λ2
2 − ε2

4 )(λ2
1 − 9ε2

4 )(λ2
2 − 9ε2

4 )
,

H2,3 = ε
2 10λ4

1 + 8λ3
1λ2 + 12λ2

1λ
2
2 + 8λ1λ

3
2 + 10λ4

2 − ε2(110λ2
1 + 68λ1λ2 + 110λ2

2) + 325ε4

(λ2
1 − ε2

4 )(λ2
2 − ε2

4 )(λ2
1 − 9ε2

4 )(λ2
2 − 9ε2

4 )(λ2
1 − 25ε2

4 )(λ2
2 − 25ε2

4 )
,

H3,1 = ε4
1

(λ2
1 − ε2

4 )(λ2
2 − ε2

4 )(λ2
3 − ε2

4 )
.

Finally we look at the q → ∞ limit.
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Theorem 7.D. Fix k ≥ 2. As q → ∞, with fixed ε, λ1, . . . , λk and∣∣arg (q1/2/ε)
∣∣ < π,

( k∏
i=1

cos πλi

ε

)
Hk

(λ1

ε
, . . . ,

λk

ε
; q

1/2

ε

)
∼

∑
d≥0

q−
d
2 Hd,0

k (λ1, . . . , λk, ε)(43)

+
∑
d≥1

q−
d
2

min{d,k}∑
m=1

[
Hd,m

k (λ1, . . . , λk, ε) cos
(
4mq1/2

ε

)

+ H̃d,m
k (λ1, . . . , λk, ε) sin

(
4mq1/2

ε

)]
,

where Hd,m
k (λ1, . . . , λk, ε) and H̃d,m

k (λ1, . . . , λk, ε) are elements in the ring

Q(λ1, . . . , λk, ε)
[
sin πλ1

ε
, cos πλ1

ε
, . . . , sin πλk

ε
, cos πλk

ε

]
.

For k = 1 and
∣∣arg (q1/2/ε)

∣∣ < π, as q → ∞ (with fixed ε, λ), the following
asymptotic holds

cos
(λ
ε
π
)
H∗

1

(λ
ε
; q

1/2

ε

)
(44)

∼ −π

2 sin
(πλ

ε

)
+ sin

(πλ
ε

)∑
d≥0

(2d− 1)!!
∏d

j=−d(λ− εj)
(2d + 1) d! 23d+1 qd+

1
2

+ cos
(
4q

1/2

ε

)∑
d≥1

q−
d
2H∗ d

1 + sin
(
4q

1/2

ε

)∑
d≥1

q−
d
2 H̃∗ d

1

where εd−2H∗ d
1 , εd−2H̃∗ d

1 are elements in Q[λ, ε], and grH∗ d
1 = dH∗ d

1 ,
gr H̃∗ d

1 = d H̃∗ d
1 .

1.6. Organization of the paper

In Section 2 we review the matrix resolvent approach and prove Theorem 1.
In Section 3 we prove Proposition 1, Theorems 2–4. In Section 4 we prove
Propositions 2–4 and Theorems 5–6. In Section 5 we prove Theorems 7.A–7.D.
Further remarks are in Section 6.

2. Matrix resolvent approach to the Toda Lattice Hierarchy

The matrix resolvent approach for computing tau-functions of the Toda Lat-
tice Hierarchy was developed in [10]. Let us give a short review. Let L denote
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the following difference operator

(45) L = Δ + vn + wn Δ−1

where Δ denotes the shift operator, i.e. Δ : ψn → ψn+1. The Toda Lattice
Hierarchy is defined by

∂L

∂ti
= 1

(i + 1)!
[
Ai , L

]
, i ≥ 0 ,(46)

Ai =
(
Li+1)

+ .(47)

One observes that the normalization used here for the time variables
t0, t1, t2, . . . is not the standard one [10], but the one suitable for the study
of GW invariants of P1.

2.1. Toda conjecture

We begin with a brief recall of the Toda conjecture, now a theorem:

Theorem ([29], [15]). Denote F s = F s(x, t; ε) := F
(
T 1
j = x δj,0, T

2
j =

tj , j = 0, 1, . . . ; ε; q = 1
)

with t = (t0, t1, t2, . . . ). Let Z := eF
s . Define u, v by

v = v(x, t; ε) := ε
∂

∂t0
log Z(x + ε, t; ε)

Z(x, t; ε) ,(48)

u = u(x, t; ε) := log Z(x + ε, t; ε)Z(x− ε, t; ε)
Z2(x, t; ε) .(49)

Then u, v satisfy the Toda Lattice Hierarchy with the first equation being

∂v(x, t; ε)
∂t0

= 1
ε

(
eu(x+ε,t;ε) − eu(x,t;ε)

)
,(50)

∂u(x, t; ε)
∂t0

= 1
ε

(
v(x, t; ε) − v(x− ε, t; ε)

)
.(51)

The Toda conjecture was formulated in [8, 19, 20], and was later proved
by Okounkov–Pandharipande [29]; an extension [15] of this conjecture to the
full generating function (2) requires an introduction of the extended Toda
hierarchy [7] in terms of a suitably defined logarithm of the difference operator
L (45); see also [30]. A slightly stronger version of this conjecture was also
confirmed in the above proofs, namely, Z is a particular tau-function (in
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the sense of [15, 14, 10]) of the Toda Lattice Hierarchy. This property along
with the string equation

(52)
∞∑
i=1

ti
∂Z

∂ti−1
+ x t0

ε2
Z = ∂Z

∂x

uniquely determines Z up to a constant factor only.

2.2. Matrix resolvent

Denote by Z[v,w] the ring of polynomials with integer coefficients in the
infinite set of variables v = (vn), w = (wn), n ∈ Z. The (basic) matrix
resolvent Rn(λ) associated with L is defined as the unique solution to the
following problem [10]

Rn+1(λ)Un(λ) − Un(λ)Rn(λ) = 0 ,(53)
trRn(λ) = 1, detRn(λ) = 0 ,(54)

Rn(λ) =
(

1 0
0 0

)
+ O

(
λ−1) ∈ Mat

(
2,Z[v,w][[λ−1]]

)
,(55)

where Un(λ) :=
(
vn − λ wn

−1 0

)
. Write

Rn(λ) =
(

1 + αn(λ) βn(λ)
γn(λ) −αn(λ)

)
, αn(λ), βn(λ), γn(λ) ∈ O(λ−1) .

Then the above equations (53)–(54) become a series of recursive relations for
αn, βn, γn:

βn = −wn γn+1 ,(56)
αn+1 + αn + 1 = (λ− vn) γn+1 ,(57)
(λ− vn) (αn − αn+1) = wn γn − wn+1 γn+2 ,(58)
αn + α2

n + βn γn = 0 .(59)

Along with the initial values (55) one can find αn, βn, γn in an algebraic
way [10]. Indeed, write

γn =
∑
j≥0

cn,j
λj+1 , αn =

∑
j≥0

an,j
λj+1 .
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Substituting these expressions into (56)–(59) we obtain

cn,j+1 = vn−1 cn,j + an,j + an−1,j ,(60)
an,j+1 − an+1,j+1 + vn [an+1,j − an,j ](61)

+ wn+1 cn+2,j − wn cn,j = 0 ,
an,� =

∑
i+j=�−1

[
wn cn,i cn+1,j − an,i an,j

]
,(62)

an,0 = 0, cn,0 = 1 .(63)

We shall call (53)–(55), or (56)–(59), or (60)–(63) the matrix-resolvent recur-
sive relations for the Toda Lattice Hierarchy. It should be noted that these
recursive relations are valid for an arbitrary solution

(
vn(t), wn(t)

)
to the

Toda Lattice Hierarchy; moreover, the form of matrix-resolvent recursive re-
lations as well as equation (63) do not depend on the solution.

2.3. From matrix resolvent to tau-function

For an arbitrary solution
(
vn(t), wn(t)

)
of the Toda Lattice Hierarchy, there

exists a unique (up to multiplying by exponential of an arbitrary linear func-
tion in n, t0, t1, . . . ) function τn(t) satisfying [10]

∑
i, j≥0

∂2 log τn(t)
∂ti ∂tj

(i + 1)!(j + 1)!
λi+2μj+2 = trRn(λ; t)Rn(μ; t) − 1

(λ− μ)2 ,(64)

1
λ

+
∑
i≥0

∂

∂ti
log τn+1(t)

τn(t)
(i + 1)!
λi+2 = γn+1(λ; t) ,(65)

τn+1(t)τn−1(t)
τ 2
n(t) = wn .(66)

Here, Rn(λ; t) := Rn(λ)|vn=vn(t), wn=wn(t). We call τn(t) the tau-function of
the solution

(
vn(t), wn(t)

)
. Indeed, by interpolating using x = nε, we know

that the Toda Lattice Hierarchy is a tau-symmetric integrable system of
Hamiltonian PDEs within the normal form of [14], and the identification be-
tween τn(t) and the tau-function of [14, 7, 15] is made in [10]. By a straightfor-
ward residue computation (comparing coefficients of μ−2 in (64)), we obtain

(67)
∑
i≥0

(i + 1)!
λi+2

∂2 log τn(t)
∂t0∂ti

= αn(λ; t) .
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Theorem A ([10]). Generating series of logarithmic derivatives of τn(t) have
the following expressions

∑
i1,...,ik≥0

∂k log τn(t)
∂ti1 · · · ∂tik

k∏
�=1

(i� + 1)!
λil+2
�

(68)

= −
∑

σ∈Sk/Ck

tr [Rn(λσ1 ; t) · · ·Rn(λσk
; t)]∏k

i=1(λσi − λσi+1)
, ∀ k ≥ 3 .

We are ready to give the proof of Theorem 1.

2.4. Proof of Theorem 1

The first step is to give the initial value of the GW solution.

Lemma 1. The initial value of the solution (48), (49) of the Toda Lattice
Hierarchy is given by

u(x, t = 0; ε) = 0 ,

v(x, t = 0; ε) = x + ε

2 .

Proof. The string equation (52) can be written equivalently as

(69)
∞∑
i=1

ti
∂F s

∂ti−1
+ x t0

ε2
= ∂F s

∂x
.

Differentiating both sides of (69) w.r.t. t0 we obtain
∑∞

i=1 ti
∂2Fs

∂ti−1∂t0
+ x

ε2 =
∂2Fs

∂x∂t0
. Taking t1 = t2 = · · · = 0 in this equation gives ∂2Fs

∂x ∂t0
(x, t0, 0, 0, . . . ; ε) ≡

x
ε2 . In particular, ∂2Fs

∂x∂t0
(x, 0, 0, . . . ; ε) = x

ε2 . Therefore using (48) we have

v(x, 0, 0, . . . ; ε) = eε∂x − 1
ε∂x

ε2
∂2F s

∂x∂t0
(x, 0, 0, . . . ; ε) = x + ε

2 .

We now look at the initial value of u. Since

u(x, 0, 0, . . . ; ε) = F s(x + ε, 0, 0, . . . ; ε) + F s(x− ε, 0, 0, . . . ; ε)
− 2F s(x, 0, 0, . . . ; ε) ,

we only need to find coefficients of xn in the Taylor expansion of
F s(x, 0, 0, . . . ; ε). The degree-dimension matching implies 2g−2+2d+n = 0.
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So the only possible choices are (g, d, n) = (0, 0, 2), (0, 1, 0), (1, 0, 0). The con-
stant terms do not contribute to u(x, 0, 0, . . . ; ε). The quadratic term cannot
appear because of the well-known expression of the genus zero primary po-
tential (the potential of the corresponding Frobenius manifold) is

F =
(
ε2F s)

ε=0 = 1
2(v1)2v2 + ev

2
, with v1 = v|ε=0, v2 = u|ε=0.

Clearly, after restricting to v2 = 0 and v1 = x, there is no x2 term.

We now proceed to the proof of Theorem 1. Recall the interpolation for-
mula x = n ε. Then the above Lemma 1 implies that, for the particular
solution (48)–(49) to the Toda Lattice Hierarchy

un(t = 0; ε) = 0 ,(70)

vn(t = 0; ε) = ε n + ε

2 .(71)

Substituting (70)–(71) into (56)–(59) we obtain the following recursive rela-
tions for the entries of the initial (basic) matrix resolvent

αn+1 + αn + 1 =
(
λ− ε n− ε

2
)
γn+1 ,(72) (

λ− ε n− ε

2
)

(αn − αn+1) = γn − γn+2 ,(73)

αn + α2
n − γn γn+1 = 0 .(74)

Here, “initial” means at t = 0. The theorem is then proved by taking t = 0
in (68) and (64).

As before, write

(75) γn = γn(λ; ε) =
∑
j≥0

cn,j
λj+1 , αn = αn(λ; ε) =

∑
j≥0

an,j
λj+1 .

Then equations (72)–(74) become

cn,j = ε
(
n− 1

2
)
cn,j−1 + an,j−1 + an−1,j−1 ,(76)

an,j − an+1,j +
(
ε n + ε

2
)

(an+1,j−1 − an,j−1)(77)

+ cn+2,j−1 − cn,j−1 = 0 ,

an,j =
j−1∑
i=0

(
cn,i cn+1,j−1−i − an,i an,j−1−i

)
(78)
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together with the initial data for the recursion

(79) an,0 = 0, cn,0 = 1 .

The first several terms of αn, γn are given by

αn = 1
λ2 + 2nε

λ3 +
3n2ε2 + ε2

4 + 3
λ4 + 4n3ε3 + n(ε3 + 12ε)

λ5 + · · · ,(80)

γn = 1
λ

+
nε− ε

2
λ2 +

n2ε2 − nε2 + ε2

4 + 2
λ3 + · · · .(81)

3. Solving the matrix-resolvent recursive relations of P1

The goal of this section is to solve equations (5)–(7). We start with proving
Proposition 1.

3.1. Proof of Proposition 1

Write M(z, s) =
(

1 + a(z, s) b(z, s)
c(z, s) −a(z, s)

)
. The topological difference equa-

tion (11), i.e., M(z − 1; s)
(
z − 1/2 −s

s 0

)
=

(
z − 1/2 −s

s 0

)
M(z; s), writ-

ten in terms of a, b, c reads as follows:

b(z) + c(z − 1) = 0 ,(
z − 1

2
)
b(z) + s

(
1 + a(z − 1) + a(z)

)
= 0 ,

s b(z − 1) + s c(z) +
(
z − 1

2
) (

a(z − 1) − a(z)
)

= 0 .

Here, a(z), b(z), c(z) are short notations for a(z, s), b(z, s), c(z, s); below we
keep using these notations when no confusion will occur. It follows from these
equations that

(82) c(z) = s
1 + a(z) + a(z + 1)

z + 1
2

, b(z) = −s
1 + a(z − 1) + a(z)

z − 1
2

.

Moreover, the topological difference equation is reduced to the following 3rd
order linear difference equation (with a parameter s) for a:

s2
(1 + a(z) + a(z + 1)

z + 1
2

− 1 + a(z − 2) + a(z − 1)
z − 3

2

)
(83)
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+
(
z − 1

2
) (

a(z − 1) − a(z)
)

= 0 .

Write a(z, s) =
∑

k≥0 Ak z
−k−1. Then equation (83) is equivalent to the

following equations:

− 8(k + 2)Ak+1(84)
= − 16 s2 δk,0 − 3

(
1 + 4s2)Ak−1 + 2

(
1 + 4s2)Ak

+
∑

k1,n≥0
k1+n+1=k

Ak1

(
(−1)n+112 s2 − 2n+2s2 + (3 − 4s2)

)(1 + k1

n

)

+
∑

k1,n≥0
k1+n=k

Ak1

(
(−1)n8 s2 − 2n+3s2 − 2(1 + 4s2)

)(1 + k1

n

)

− 12
∑

k1≥0,n≥1
k1+n=k+1

Ak1

(
1 + k1

n

)
+ 8

∑
k1≥0,n≥2
k1+n=k+2

Ak1

(
1 + k1

n

)
.

Here k ≥ −1 and it is understood as A−2 = A−1 = 0. Together with (82), this
recursion proves the existence and uniqueness of a solution M∗ of the form

M∗ =
(

1 0
0 0

)
+
∑

k≥1 M
∗
k z

−k. Moreover, the fact that each entry of M∗
k is a

polynomial of s can be seen easily from this recursion (for Ak). Finally, taking
the determinants of both sides of (11) we have

s2 detM∗(z − 1) = s2 detM∗(z) ⇒ detM∗(z − 1) = detM∗(z) .

It is easy to see that detM∗(z) ∈ z−1Q[s][[z−1]]. Noting that A0 = 0 we find
that the coefficient of z−1 in detM∗(z) also vanishes. Therefore, detM∗(z)
vanishes. The proposition is proved.

3.2. Proof of Theorem 2

In this subsection, we prove Theorem 2. The proof is similar with the one
given in [5] (see the “Key Lemma” i.e. Lemma 4.2.3 therein).

Proof of Theorem 2. Define R∗
n(λ; ε) = M∗(λ

ε −n; 1
ε

)
. It is easy to check that

R∗
n(λ; ε) satisfies (5)–(7). Since Rn(λ; ε) is the unique solution to (5)–(7),

we have Rn(λ; ε) = R∗
n(λ; ε). By definition, R(λ;x; ε) = Rx/ε(λ; ε). Hence

R(λ;x; ε) only depends on λ− x and ε. The theorem is proved.
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3.3. Proof of Theorem 3 and Theorem 4

To prove Theorems 3 and 4, we must show two things:

i) Prove that the entries of the matrix-valued meromorphic function
B(z; s) defined by equations (17)–(19) have asymptotic expansions as
power series in z−1 (for |z| → ∞ at a bounded distance away from half
integers) given by the RHS of (13).

ii) Show that the function B(z; s) satisfies the properties (11)–(12) with
M replaced by B.

For step i), we must look at the asymptotics of G(z; s) and G̃(z; s) as
|z| → ∞ with s bounded, say |s| ≤ S. We consider only the case of G, since
the case of G̃ is exactly similar. We claim first that

G(z; s) :=
∞∑

m=0

(
2m
m

)
s2m(

z −m + 1
2
)
2m

=
N−1∑
m=0

(
2m
m

)
s2m(

z −m + 1
2
)
2m

+ O
(
z−2N)(85)

for any fixed N ∈ N as z → ∞ at a bounded distance from Z + 1
2 . Indeed,

the terms with N ≤ m ≤ 1
2 |z| in (85) are individually bounded by 22mS2m

(|z|/2)2m
(because each factor in the Pochhammer symbol in the denominator has ab-
solute value ≥ 1

2 |z|), so their sum is ≤ ∑∞
m=N

(4S
|z|
)2m = O

(
z−2N)

. The terms
with m > 1

2 |z| are individually bounded by 22ms2m

δ m! (m−1)! , where δ is the distance
from z to Z+ 1

2 , so their sum is smaller than any fixed negative powers of |z|
as |z| → ∞ with δ fixed. Now using a partial fraction development in each
summand in (85), we find

G(z; s) = 1 + 2
N−1∑
m=1

s2m

m! (m− 1)!

2m−1∑
�=0

(−1)�
(2m−1

�

)
z −m + � + 1

2
+ O

(
z−2N)

= 1 + 2
2N−1∑
r=1

1
zr

∑
0≤�<2m≤r

(−1)�s2m

m!(m− 1)!

(
2m− 1

�

)(
m− �− 1

2

)r−1 + O
(
z−2N) ,

where we have removed the terms with 2m > r because the (2m − 1)st
(backwards) difference of a polynomial of degree r − 1 vanishes identically
if 2m > r. We also note that the terms with r odd give zero (replace � by
2m − 1 − �), so we can set r = 2j + 2, m = i + 1 to recover the expression
given in (14), proving that G(z; s) ∼ 1 + 2α as claimed.
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Now we do step ii). The explicit expression for M given in the statement

of Theorem 3 clearly has the form M =
(

1 0
0 0

)
+

∑
k≥1 Mk z

−k. Therefore

using Proposition 1 we only need to show that M(z, s) satisfies (11)–(12).
Then due to Proposition 4 it suffices to show that B(z, s) satisfies (11)–(12)
for z ∈ C−Zodd. Identity (12) is obvious for B(z, s). Identity (11) is equivalent
to

G̃(z; s) = G(z; s) + G(z + 1, s)
2 ,(86)

G̃(z + 1
2 , s)

z + 1 − G̃(z − 3
2 , s)

z − 1 = z

2s2

[
G
(
z + 1

2 , s
)
−G

(
z − 1

2 , s
)]

.(87)

Identity (86) is true since G(z; s) + G(z + 1, s) =
∑∞

i=0
(2i
i

)[
s2i

(z−i+ 1
2 )2i

+
s2i

(z−i+ 3
2 )2i

]
= 2 G̃(z; s). Similarly, we find that identity (87) is true.

Note that the k-point function Fk(λ1, . . . , λk; 0; ε, 1) (k ≥ 2) can be ex-
pressed in terms of M by

Fk(λ1, . . . , λk;x; ε, 1)(88)

= −
∑

σ∈Sk/Ck

tr
[
M

(
λσ(1)−x

ε ; 1
ε

)
· · ·M

(
λσ(k)−x

ε ; 1
ε

)]
∏k

i=1
(
λσ(i) − λσ(i+1)

) − δk,2
(λ1 − λ2)2

.

The validity of this identity is understood in the formal power series ring
Q
[[
x, λ−1

1 , . . . , λ−1
k

]]
.

Proposition 5. For any k ≥ 2, the following formula holds true

εk
∑

i1,...,ik≥0

(i1 + 1)! · · · (ik + 1)!
λi1+2

1 · · ·λik+2
k

∑
m,g,d≥0

2g+2d−2+2m=
∑

i�

qd

m!ε
2g−2〈τi1(ω) · · · τik(ω)τ0(1)m

〉
g,d

(89)

= −
1
k

∑
σ∈Sk

tr
[
R
(
q−1/2λσ1 ; q−1; q−1/2ε

)
. . .R

(
q−1/2λσk

; q−1; q−1/2ε
)]∏k

i=1
(λσi

− λσi+1 )
−

δk,2

(λ1 − λ2)2
.

Proof. Use Proposition 1, (10), as well as (4).

Remark. R. Pandharipande [32] proves that the numbers
〈
τ1(ω)2g−2+d

〉
g,d

coincide with the classical Hurwitz numbers Hg,d defined by Hurwitz [23].
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A polynomial algorithm of computing these numbers has been obtained very
recently [12] based on Pandharipande’s equation [32, 12]. Although the for-
mula (88) for Fk with k = 2g−2+d contains the numbers Hg,d, the algorithm
designed from (88) is not of polynomial-time (note that however (88) contains
much more information than Hg,d).

3.4. Proof of Proposition 2

The main observation is that for any k ≥ 3, we have

Hk(z1, . . . , zk)

= −
∑

σ∈Sk/Ck

tr
[
B(zσ(1), s) . . . B(zσ(k), s)

]
∏k

i=1(zσi − zσi+1)

= −
k−1∑
j=1

∑
σ∈Sk−1/Ck−1

tr
[
B(zσ(1), s) . . . [B(zk, s), B(zσ(j), s)] . . . B(zσ(k−1), s)

]
(zk − zσ(j))

∏k−1
i=1 (zσi − zσi+1)

.

So Hk is analytic along zk = zi for i 
= k away from the half-integer points.
Note that Hk(z1, . . . , zk) is totally symmetric w.r.t. permutations of z1, . . . , zk.
Therefore Hk is also analytic along zj = zi for i 
= j (for any j). The case
k = 2 follows immediately from the second equality in (20).

4. Proof of the factorization formulas

We begin by giving the proof of Proposition 3 of Section 1.3, giving an explicit
factorization of the rank 1 matrix B(z, s) as the product of a column vector
and a row vector.

Proof of Proposition 3. We have to prove the following three identities for
hypergeometric 1F2-functions as sums of products of Bessel functions:

1 + G(z; s)
2 = πs

cos(πz)Jz−
1
2
(2s) J−z− 1

2
(2s) ,(90)

1 −G(z; s)
2 = πs

cos(πz)Jz+
1
2
(2s) J−z+ 1

2
(2s) ,(91)

s

z + 1
2
G̃(z; s) = πs

cos(πz)Jz+
1
2
(2s) J−z− 1

2
(2s) .(92)

Indeed,
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RHS of (92)

= πs

cos(πz)
1

Γ(z + 3
2)Γ(−z + 1

2)
∑
n≥0

(−1)n s2n

n!2
(n+z+ 1

2
n

) ∑
n≥0

(−1)n s2n

n!2
(n−z− 1

2
n

)
= s

z + 1
2

∑
n≥0

s2n ∑
n1+n2=n

(−1)n

(n1!)2 (n2!)2
(n1+z+ 1

2
n1

)(n2−z− 1
2

n2

) = LHS of (92) .

Similarly one proves (90), (91). The factorization B = u(z)u(−z)T can also
be verified directly.

Proof of Theorem 5. For k ≥ 2 we have

tr (B(z1) . . . B(zk))

= tr
(
u(z1)u(−z1)Tu(z2)u(−z2)T . . . u(zk)u(−zk)T

)
= tr

(
u(−z1)Tu(z2) . . . u(−zk)Tu(z1)

)
=

k∏
i=1

(
u(−zi), u(zi+1)

)
(indices modulo k). Hence each summand in the trace-product formulas (20),
(21) has the form

tr
(
B(z1, s) . . . B(zk, s)

)∏k
i=1(zi − zi+1)

= εk
k∏

i=1
D
(
zi, zi+1; s

)
,

where we recall that D(a, b; s) = u(−a, s)T u(b, s)/(a− b), as claimed.

Formula (28) implies the following asymptotic formula for a, b /∈ Z + 1
2 ,

as a, b → ∞:

D(a, b; s) − 1
a− b

∼
∑
p,q≥0

(−1)q+1

ap+1bq+1

∑
n≥1

s2n

n!(93)

∑
1≤i,j≤n

(−1)i+j (i + j − 2n)n−1
(
i− 1

2
)p(

j − 1
2
)q

(i− 1)!(j − 1)!(n− i)!(n− j)! .

Proposition 2 can be alternatively proved by using this formula.

Proof of Theorem 6. Differentiating both sides of (69) w.r.t. tj (j ≥ 1) we
obtain

∂F s

∂tj−1
+

∞∑
i=1

ti
∂2F s

∂ti−1∂tj
= ∂2F s

∂x∂tj
.
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Setting t0 = t1 = · · · = 0 in this equation yields 〈〈τj−1(ω)〉〉(x; ε, 1) =
〈〈τ0(1)τj(ω)〉〉(x; ε, 1). Note that equation (65) implies

1
λ

+ ε2
∞∑
i=0

(i + 1)!
λi+2

eε∂x − 1
ε∂x

〈〈
τ0(1)τi(ω)

〉〉
(x; ε, 1) = γn+1 , x = nε.

So 1
λ + ε2

λ2

(
x
ε2 + 1

2ε

)
+ ε2

∑∞
i=1

(i+1)!
λi+2

eε∂x−1
ε∂x

〈〈
τi−1(ω)

〉〉
(x; ε, 1) = γn+1. Therefore,

−ε
eε∂x − 1
ε∂x

∂F1(λ;x; ε, 1)
∂λ

= γn+1 −
ε2

λ2

( x

ε2
+ 1

2ε
)
− 1

λ
.

Hence we have

− ∂F1(λ;x; ε, 1)
∂λ

=
∑
j≥2

1
λj+1

∞∑
i=0

ε−1−2i

i!2
2i∑
l=0

(−1)l
(

2i
l

) j∑
m=0

(
j

m

)
Bm εm

(
x + ε i + ε

2 − ε l
)j−m

.

Identity (36) follows immediately from the above formula. The equivalence
between this identity and the statement of the theorem has already been
explained in Section 1.4. The theorem is proved.

5. Four asymptotics

We have studied several analytic properties of Hk(z1, . . . , zk; s). Motivated
by the GW theory, in this section, we will investigate further the func-
tions Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
. It should be noted that the function W (λ, ε, q) :=

B
(
λ
ε ;

√
q

ε

)
satisfies the following set of equations:

W (λ + ε, ε, q)
(
λ− ε

2 −√
q√

q 0

)
=

(
λ− ε

2 −√
q√

q 0

)
W (λ, ε, q) ,(94)

trW (λ, ε, q) = 1 , det W (λ, ε, q) = 0 ,(95)

W (λ, ε, q) =
(

1 0
0 0

)
+ O

(
λ−1) , λ → ∞ .(96)

5.1. The ε → 0 asymptotic. Proof of Theorem 7.A

First we consider k ≥ 2.
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Lemma 2. For 0 <
2√q

λ < 1 and λ
ε > 0, the following asymptotic formula

holds true as |ε| → 0 :

1
2G

(λ
ε
;
√
q

ε

)
− 1

2 ∼
∞∑

m=0
εmam(λ; q) ,

√
q

λ + ε
2
G̃
(λ
ε
;
√
q

ε

)
∼

∞∑
m=0

εmcm(λ; q) ,

where am , cm are algebraic functions of λ,√q. Moreover, for k,m ≥ 0, the
functions a2k+1(λ; q) vanish, and a2k, cm satisfy the homogeneity conditions:
gr a2k = −2k a2k, gr cm = −mcm.

The first several a2k, cm are given explicitly by

a0 = λ

2(λ2 − 4q) 1
2
− 1

2 , a2 = qλ(λ2 + 16q)
4(λ2 − 4q) 7

2
,

a4 = qλ(λ6 + 247qλ4 + 2848q2λ2 + 3072q3)
16(λ2 − 4q) 13

2
,

c0 =
√
q

(λ2 − 4q) 1
2
, c1 = −

√
q λ

2(λ2 − 4q) 3
2
, c2 =

√
q (λ4 + 6qλ2)
4(λ2 − 4q) 7

2
,

c3 =
√
qλ(λ4 + 42qλ2 + 96q2)

8(λ2 − 4q) 9
2

.

Lemma 2 can be proved either by studying the analytic functions (18)–(19),
or by the following lemma regarding the large-order asymptotics of the Bessel
functions [33].
Lemma 3. For any fixed valued ζ ∈ (0, 1), the following asymptotic holds
true: as ν → +∞,

(97) Jν− 1
2
(ν ζ) ∼

(
ν − 1

2
)ν− 1

2

Γ
(
ν + 1

2
) eV , V = ν V0 + V1 + V2

ν
+ V3

ν2 + . . . ,

where Vm, m ≥ 0 are functions of ζ with the first few given by

V0 = −1 +
√

1 − ζ2 + log ζ − log
(
1 +

√
1 − ζ2) ,

V1 = 1
2 + 1

2 log
(
1 +

√
1 − ζ2)− 1

2 log ζ − 1
4 log(1 − ζ2) ,

V2 = −1
6 + 1

4
1

(1 − ζ2) − 5
24

1
(1 − ζ2) 3

2
,
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V3 = − 1
48 + 1

4
1

(1 − ζ2) 3
2
− 1

4
1

(1 − ζ2)2 − 5
16

1
(1 − ζ2) 5

2
+ 5

16
1

(1 − ζ2)3 .

For m ≥ 2, Vm belongs to Q
[(

1 − ζ2)− 1
2
]

having degree 3m− 3.

Note that Lemma 3 implies that as ν → +∞,

(98) jν
(ν2ζ2

4
)

∼
(
2 − 1

ν

)ν− 1
2 eU , U = ν U0 + U1 + U2

ν
+ U3

ν2 + . . . ,

where ζ ∈ (−1, 1) is fixed, and

U0 = −1 +
√

1 − ζ2 − log
(
1 +

√
1 − ζ2) ,

U1 = 1
2 + 1

2 log
(
1 +

√
1 − ζ2)− 1

4 log(1 − ζ2) ,

Um = Vm (m ≥ 2) .

It is also easy to see that for � ≥ 1, U2�+1+ 1
�(2�+1)22�+2 belongs to

(
1−ζ2)− 2�+1

2 ·
Q
[(

1 − ζ2)− 1
2
]
. We omit further details of the proof of Lemma 2.

Due to Lemma 2, am(λ, q), cm(λ, q) can be identified with their formal
expansions in √

q. (Indeed, these series are convergent for 2|√q| < |λ|). There-
fore, the large λ asymptotic of M(λε ;

√
q

ε ) could be identified with the ε → 0
(double scaling) asymptotic (identification between elements in
Q[[λ−1, ε,

√
q]]). Theorem 7.A then follows from Lemma 2. In particular, the

identity
∑

g≥0 ε
2g−2+kH

[g]
k (λ1, . . . , λk; q) = Fk(λ1, . . . , λk; ε, q) is understood

as an equality between formal power series in ε,
√
q, λ−1

1 , . . . , λ−1
k .

To show the statement for k = 1, observe that

H∗
1 (z, s) = 1 + G(z; s)

2
∂ log Jz− 1

2
(2s)

∂z
+ 1 −G(z; s)

2
∂ log J 1

2+z(2s)
∂z

where we used (90)–(91). Then the theorem follows from Lemma 3 and
Lemma 2.

We remark that, due to Lemma 3 the asymptotic formula (93) can also
be viewed as an ε → 0 limit, with a = λ1

ε , b = λ2
ε and s =

√
q

ε .
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5.2. The ε → ∞ asymptotic. Proof of Theorem 7.B

First consider k ≥ 2. For |ε| > 2|λ| we have

1
2G

(λ
ε
;
√
q

ε

)
− 1

2 =
∞∑
k=0

A2k(λ, q)ε−2k ,(99)

√
q

λ + ε
2
G̃
(λ
ε
;
√
q

ε

)
= √

q
∞∑

m=0
Cm(λ, q) ε−m ,(100)

where A2k, Cm are polynomials in q, λ. Note that the right-hand-sides are
also the ε → ∞ asymptotics of the left-hand-sides. The polynomials A2k, Cm
satisfy the following homogeneity conditions:

grA2k = 2kA2k , gr Cm = (m− 1) Cm .

The first several of these polynomials can be read off from

1
2G

(λ
ε
;
√
q

ε

)
− 1

2

= −4q
ε2

− 16q
(
λ2 − 1

3q
)

ε4
− 64q

(
λ4 − 10

27λ
2q + 2

45q
2)

ε6
+ . . . ,

1
λ + ε

2
G̃
(λ
ε
;
√
q

ε

)
= 2

ε
− 4λ

ε2
+

8(λ2 − 2
3q)

ε3
− 16(λ3 − 2

9λq)
ε4

+
32(λ4 − 20

27λ
2q + 2

15q
2)

ε5
− 64(λ5 − 20

81λ
3q + 2

75λq
2)

ε6
+ . . . ,

where |ε| > 2|λ| is assumed. Theorem 7.B follows from (99)–(100) and the
definition of Hk. The k = 1 statement easily follows from (32) and (31). The
theorem is proved.

5.3. The q → 0 asymptotic. Proof Theorem 7.C

By definition,

1
2G

(λ
ε
;
√
q

ε

)
− 1

2 = 1
2

∞∑
i=0

(
2i
i

)
qi∏2i−1

�=0
[
λ + (�− i + 1/2)ε

] − 1
2 ,

√
q

λ + ε
2
G̃
(λ
ε
;
√
q

ε

)
= √

q
∞∑
i=0

(
2i
i

)
qi∏2i

�=0
[
λ + (�− i + 1/2)ε

] .
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So the definition itself gives the q → 0 asymptotic of the entries of M(λε ;
√
q

ε );
the coefficients are clearly rational functions of λ, ε. Theorem 7.C then follows
from the definition of Hk, k ≥ 2. For the case k = 1, the definition of H1
automatically gives the q → 0 asymptotic, which simplified to (42).
Corollary 1. ∀ k ≥ 2, the following formulas hold true∑

d≥0
qdHk,d(λ1, . . . , λk; ε) =

∑
g≥0

ε2g−2+2kH
[g]
k (λ1, . . . , λk; q) ,∑

d≥0
qdHk,d(λ1, . . . , λk; ε) =

∑
g≥0

ε−2gHk,[g](λ1, . . . , λk; q) .

Moreover, the following two identities hold true in the corresponding for-
mal series rings:

∞∑
d=1

qd
(2d− 1)!

d!2
∏d

j=1
(
λ2 − (2j−1)2

4 ε2
) =

∑
g≥0

ε2gH
[g]
1 (λ; q) ,

∞∑
d=1

qd
(2d− 1)!

d!2
∏d

j=1
(
λ2 − (2j−1)2

4 ε2
) =

∑
g≥0

ε−2gH1,[g](λ; q) .

This corollary indicates that the q → 0 limit connects the ε → 0 and the
ε → ∞ limits.

5.4. The q → ∞ asymptotic. Proof of Theorem 7.D

Recall from [33] that for any fixed value of ν, as |y| → ∞ in a sector |arg y| ≤
π − δ, the following asymptotic holds true:

Jν(y) ∼
√

2
πy

(
cos

(
y − π

2 ν − π

4
) ∞∑
m=0

(−1)m (ν − 2m + 1
2)4m

(2m)! (2y)2m

(101)

− sin
(
y − π

2 ν − π

4
) ∞∑
m=0

(−1)m (ν − 2m− 1
2)4m+2

(2m + 1)! (2y)2m+1

)
.

For k ≥ 2, using (101) and (90) we have
Lemma 4. For z fixed and |s| → ∞ with

∣∣arg s
∣∣ ≤ π − δ, we have the

asymptotic expansions

G(z; s) ∼ cos(4s)
cos(πz)

∞∑
r=0

d2r(z)
s2r + sin(4s)

cos(πz)

∞∑
r=0

d2r+1(z)
s2r+1
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− tan(πz)
∞∑
r=0

(2r
r

)∏r
j=−r(z + j)

24r+1 s2r+1 ,

s

z + 1
2
G̃(z; s) ∼ sin(4s)

cos(πz)

∞∑
r=0

e2r(z)
s2r + cos(4s)

cos(πz)

∞∑
r=0

e2r+1(z)
s2r+1

− tan(πz)
∞∑
r=0

(2r
r

)∏r
j=1−r(z + j)

24r+1 s2r ,

with explicitly known polynomials dr(z) ∈ Q[z2], er(z) ∈ Q[z(z + 1)].

The rest of Theorem 7.D follows from the definition of Hk as well as
elementary trigonometric identities. In a similar way, one proves statement
for k = 1.

Remark. We would like to mention the following formal solution W to equa-
tions (94)–(95):

(102) W =
(

1
2 −

√
−1w1(λ, ε, q)

√
−1w2(λ− ε, ε, q)

−
√
−1w2(λ, ε, q) 1

2 +
√
−1w1(λ, ε, q)

)

where

w1(λ, ε, q) =
∞∑

m=0

(2m− 1)!!
∏m

j=−m(λ + εj)
23m+2 m! qm+1/2 ,

w2(λ, ε, q) =
∞∑

m=0

(2m− 1)!!
∏m

j=−(m−1)(λ + εj)
23m+1 m! qm .

Clearly, W belongs to Q[λ, ε][[q−1/2]]. However, analytic aspect of this formal
solution is unclear to us. For example, we do not know if there exists an
analytic solution satisfying (96) and with the large q asymptotic given by W .
We will consider this problem in a subsequent publication.

6. Further remarks

6.1. Bispectrality

Bispectrality is an interesting and rare phenomenon in the theory of inte-
grable systems. Let

(
un(t), vn(t)

)
be a solution to the Toda Lattice Hierar-

chy, and Rn = Rn(λ; t) its matrix resolvent. Denote R(λ;x, t; ε) = Rx/ε(λ; t),
also called the matrix resolvent. We say that the matrix resolvent has bis-
pectrality if there exists a non-zero scalar function g(λ; ε) and an invertible
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matrix-valued function A(λ; ε) such that g(λ; ε)A(λ; ε)R(λ;x,0; ε)A(λ; ε)−1

is a function of h(λ, x) and ε only for some scalar function h. This type of
bispectrality can be defined analogously to other integrable system (where
in most cases ε can be taken to be 1 for simplicity). For the Toda Lattice
Hierarchy, one might guess that the GUE [10] and the P1 cases are essentially
(modulo some group actions) two only possible cases possessing bispectrality
of the above type, but there are not enough evidences for supporting this
guess. So classifying this type of bispectrality for the Toda Lattice Hierarchy
seems still to be an open question. Also, bispectrality looks still mysterious.
Indeed, we do not know its origin. We call the solution has the type-I bispec-
trality if the function h(λ, x) = λ−x. Conjecturally, the so-called “topological”
solution to an integrable system always has the type-I bispectrality. We hope
to study criterion of bispectrality beyond type-I in a future publication (the
method given in [16] might be helpful).

Conjecture. Let M be a semisimple (calibrated) Frobenius manifold. Assume
that the integrable hierarchy of topological type of M [8, 14, 22] admits a Lax
pair formalism. Then, a solution of this integrable hierarchy is topological iff
its matrix resolvent possesses bispectrality of Type I. The same statement is
valid for the Hodge hierarchy [9] of M .

Note that validity of the Main Conjecture for GW invariants of P1 is
confirmed in this paper.

Proposition 6. The Conjecture is true for ADE singularities.

Proof. The necessity part is precisely the Lemma 4.2.3 of [5] where it is called
the Key Lemma. The sufficiency part follows from the uniqueness theorem of
topological ODEs [10], i.e. the space of solutions regular at infinity is equal
to the rank of the simple Lie algebra.

6.2. Dual topological ODE

The topological difference equation for P1 can be written as

(103) M(z − 1; s)A − AM(z; s) = z M(z − 1; s)B − z BM(z; s)

with

(104) A =
(

1
2 s
−s 0

)
, B =

(
1 0
0 0

)
.
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Definition 3. The dual topological ODE for the Toda Lattice Hierarchy
associated with the solution corresponding to the GW invariants of P1 (within
the stationary sector) is defined by

(105) ey M̃ A − AM̃ = ey
(
M̃ + dM̃

dy

)
B − B

dM̃

dy

where M̃ = M̃(y; s) is a matrix-valued function in y, and s is an arbitrary
parameter.

Topological and dual topological equations (11), (105) are related via a
Laplace type transform, i.e.

M̃(y; s) = 1
2πi

∫
γ
ez y M(z; s) dz

where γ is an appropriate contour on the complex z plane.

6.3. Analytic invariants of P1

We have already seen that the formal series ε Fk(λ1, . . . , λk; 0, ε, q), defined
as the generating series of the GW invariants 〈τi1(φα1) · · · τik(φαk

)〉g,d of P1

(in full genera and of all degrees) is not convergent as a series of ε, or as a
(multi-)series of λ−1

1 , . . . , λ−1
k . However, as a power series of q, it does con-

verge, which gives the motivation of defining the analytic k-point functions
Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
, such that the GW invariants are the coefficients in the

full asymptotic of the double scaling limit ε → 0 (or of the q → 0 limit) of
Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
. The definition of Hk is certainly natural, and provides

the non-perturbative version of topological quantum field theory for P1. We
refer to the coefficients in the ε → ∞ asymptotics (or again in the q → 0
asymptotic but with |ε| � |λi|, i = 1, . . . , k), and in the q → ∞ asymp-
totics of Hk

(
λ1
ε , . . . ,

λk

ε ; q1/2

ε

)
as analytic invariants of P1. These invariants

are counterparts of the GW invariants. For example, the first few Hk,[g] are

H1,[0] = 0 , H1,[1] = −4q , H1,[2] = −16qλ2 + 8
3q

2 ,

H1,[3] = −64qλ4 + 320
27 q2λ2 − 128

135q
3 ,

H2,[1] = 16q , H2,[2] = 64q
(
λ2

1 + λ2
2
)
− 256

9 q2 ,

H2,[3] = 256q
(
λ4

1 + λ2
1λ

2
2 + λ4

2
)
− 256

81 q2(37λ2
1 − 2λ1λ2 + 37λ2

2
)
+ 53248

2025 q3 ,
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H3,[1] = −64q , H3,[2] = −256q
(
λ2

1 + λ2
2 + λ2

3
)

+ 6656
27 q2 ,

H3,[3] = − 1024q
(
λ4

1 + λ4
2 + λ4

3 + λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1
)
,

+ 4096
243 q2

(
59(λ2

1 + λ2
2 + λ2

3) − (λ1λ2 + λ2λ3 + λ3λ1)
)

− 13027328
30375 q3 ,

where we recall that Hk,[g] are defined in the expansion (40). These are the
counterparts for ε → ∞.

We also list the first several Hd,m
k and H̃d,m

k for k ≥ 2:

H0,0
2 = = ε2

1
2 − C1 C2 − S1 S2

(λ1 − λ2)2
, H1,0

2 = 0 ,

H1,1
2 = −ε2

S1 − S2

4 (λ1 − λ2)
, H̃1,1

2 = 0 ,

H2,0
2 = 1

32
[
ε2 − 2 ε2 S1 S2 − 2 (λ1 + λ2)2

]
, H2,1

2 = 0 ,

H̃2,1
2 = ε

(
ε2 − 2λ2

1
)
S2 −

(
ε2 − 2λ2

2
)
S1

16 (λ1 − λ2)
,

H2,2
2 = ε2

32 , H3,0
2 = 0 ,

H3,1
2 =

(
ε4 − ε2

(
λ2

1 + 2λ2
2
)
+ λ4

2
)
S1 −

(
ε4 − ε2

(
2λ2

1 + λ2
2
)
+ λ4

1
)
S2

32 (λ1 − λ2)
,

H̃3,1
2 = 0 , H3,2

2 = 0 , H̃3,2
2 = ε

ε2 − (λ2
1 + λ2

2)
64 ,

H0,0
3 = 0 , H1,0

3 = −ε2
(λ2

2 − λ2
3)S1 + (λ2

3 − λ2
1)S2 + (λ2

1 − λ2
2)S3

4 (λ1 − λ2)(λ2 − λ3)(λ3 − λ1)
,

H1,1
3 = 0 , H̃1,1

3 = ε3
(λ1 − λ2)S1 S2 + (λ2 − λ3)S2 S3 + (λ3 − λ1)S3 S1

4 (λ1 − λ2)(λ2 − λ3)(λ3 − λ1)
.

Here, C1 = cos
(
πλ1
ε

)
, C2 = cos

(
πλ2
ε

)
, S1 = sin

(
πλ1
ε

)
, S2 = sin

(
πλ2
ε

)
, S3 =

sin
(
πλ3
ε

)
. For k = 1, we have

H∗,1
1 = 0 , H∗,2

1 = 2λ2 − ε2

16 ,

H∗,3
1 = 0 , H∗,4

1 = −2λ6 − 16ε2λ4 + 32ε4λ2 − 9ε6

384ε2 ,
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H̃∗,1
1 = ε

4 , H̃∗,2
1 = 0 , H̃∗,3

1 = −λ4 − 3ε2λ2 + ε4

32ε , H̃∗,4
1 = 0 .

Here, Hd,m
k and H∗ d

1 are defined in (43) and (43), respectively, which give the
counterparts for q → ∞. It will be interesting to study the Stokes phenomenon
of the GW invariants by investigating the asymptotic of

Hk

(
λ1

ε
, . . . ,

λk

ε
; q

1/2

ε

)
as ε goes to 0 within different sectors.

Acknowledgements

We would like to thank Anton Mellit and Mattia Cafasso for discussions. One
of the authors D.Y. is grateful to Youjin Zhang for his advice.

References

[1] Behrend, K. (1997). Gromov–Witten invariants in algebraic geometry.
Inventiones Mathematicae, 127 (3), 601–617. MR1431140

[2] Behrend, K., Fantechi, B. (1997). The intrinsic normal cone. Inven-
tiones Mathematicae, 128 (1), 45–88. MR1437495

[3] Bertola, M., Dubrovin, B., Yang, D. (2016). Correlation func-
tions of the KdV hierarchy and applications to intersection numbers over
Mg,n. Physica D: Nonlinear Phenomena, 327, 30–57. MR3505204

[4] Bertola, M., Dubrovin, B., Yang, D. (2018). Simple Lie algebras
and topological ODEs. IMRN, 2018 (5), 1368–1410. MR3801466

[5] Bertola, M., Dubrovin, B., Yang, D. (2016). Simple Lie alge-
bras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions.
Preprint arXiv:1610.07534v2.

[6] Brézin, E., Hikami, S. (2017). Random matrix theory with an external
source (Vol. 19). Springer. MR3822737

[7] Carlet, G., Dubrovin, B., Zhang, Y. (2004). The extended Toda
hierarchy. Mosc. Math. J., 4 (2), 313–332. MR2108440

[8] Dubrovin, B. (1996). Geometry of 2D topological field theories. In In-
tegrable Systems and Quantum Groups (Montecatini Terme, 1993). Ed-
itors: Francaviglia, M., Greco, S. Springer Lecture Notes in Math.
1620, 120–348. MR1397274

http://www.ams.org/mathscinet-getitem?mr=1431140
http://www.ams.org/mathscinet-getitem?mr=1437495
http://www.ams.org/mathscinet-getitem?mr=3505204
http://www.ams.org/mathscinet-getitem?mr=3801466
http://arxiv.org/abs/arXiv:1610.07534v2
http://www.ams.org/mathscinet-getitem?mr=3822737
http://www.ams.org/mathscinet-getitem?mr=2108440
http://www.ams.org/mathscinet-getitem?mr=1397274


188 Boris Dubrovin et al.

[9] Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y. (2016). Hodge in-
tegrals and tau-symmetric integrable hierarchies of Hamiltonian evolu-
tionary PDEs. Advances in Mathematics, 293, 382–435. MR3474326

[10] Dubrovin, B., Yang, D. (2017). Generating series for GUE correlators.
Letters in Mathematical Physics, 107 (11), 1971–2012. MR3714772

[11] Dubrovin, B., Yang, D. (2019). On Gromov–Witten invariants of P1,
Mathematical Research Letters, 26, 729–748

[12] Dubrovin, B., Yang, D., Zagier, D. (2017). Classical Hurwitz num-
bers and related combinatorics. Moscow Mathematical Journal, 17 (4),
601–633. MR3734655

[13] Dubrovin, B., Yang, D., Zagier, D. (2018). On tau-functions for
the KdV hierarchy. arXiv:1812.08488.

[14] Dubrovin, B., Zhang, Y. (2001). Normal forms of hierarchies of
integrable PDEs, Frobenius manifolds and Gromov–Witten invariants.
Preprint arXiv:math/0108160 [math.DG].

[15] Dubrovin, B., Zhang, Y. (2004). Virasoro symmetries of the extended
Toda hierarchy. Comm. Math. Phys., 250 (1), 161–193. MR2092034

[16] Duistermaat, J.J., Grünbaum, F.A. (1986). Differential equations
in the spectral parameter. Comm. Math. Phys., 69, 177–240. MR0826863

[17] Dunin-Barkowski, P., Mulase, M., Norbury, P., Popoli-

tov, A., Shadrin, S. (2014). Quantum spectral curve for
the Gromov–Witten theory of the complex projective line. Jour-
nal für die reine und angewandte Mathematik (Crelles Journal).
doi:10.1515/crelle-2014-0097. MR3641659

[18] Eguchi, T., Hori, K., Yang, S.-K. (1995). Topological σ-models and
large-N matrix integral. International Journal of Modern Physics A, 10,
4203–4224. MR1357567

[19] Eguchi, T., Yang, S.-K. (1994). The topological CP 1 model and
the large-N matrix integral. Modern Physics Letters A, 9 (31), 2893–
2902. MR1301737

[20] Getzler, E. (2001). The Toda conjecture. In: Symplectic Geometry
and Mirror Symmetry (KIAS, Seoul, 2000). World Scientific, Singapore,
pp. 51–79. MR1882327

http://www.ams.org/mathscinet-getitem?mr=3474326
http://www.ams.org/mathscinet-getitem?mr=3714772
http://www.ams.org/mathscinet-getitem?mr=3734655
http://arxiv.org/abs/arXiv:1812.08488
http://arxiv.org/abs/arXiv:math/0108160
http://www.ams.org/mathscinet-getitem?mr=2092034
http://www.ams.org/mathscinet-getitem?mr=0826863
http://dx.doi.org/10.1515/crelle-2014-0097
http://www.ams.org/mathscinet-getitem?mr=3641659
http://www.ams.org/mathscinet-getitem?mr=1357567
http://www.ams.org/mathscinet-getitem?mr=1301737
http://www.ams.org/mathscinet-getitem?mr=1882327


Gromov–Witten invariants of the Riemann sphere 189

[21] Getzler, E., Okounkov, A., Pandharipande, R. (2002). Multi-
point series of Gromov–Witten invariants of CP 1. Letters in Mathemat-
ical Physics, 62 (2), 159–170. MR1952124

[22] Givental, A. B. (2001). Gromov–Witten invariants and quantization
of quadratic Hamiltonians. Moscow Mathematical Journal, 1 (4), 551–
568. MR1901075

[23] Hurwitz, A. (1891). Ueber Riemann’sche Flächen mit gegebe-
nen Verzweigungspunkten. Mathematische Annalen, 39 (1), 1–
60. MR1510692

[24] Kontsevich M., Manin, Yu. (1994). Gromov–Witten classes, quan-
tum cohomology, and enumerative geometry. Comm. Math. Phys., 164,
525–562. MR1291244

[25] Li, J., Tian, G. (1998). Virtual moduli cycles and Gromov-Witten in-
variants of algebraic varieties. Journal of the American Mathematical
Society, 11 (1), 119–174. MR1467172

[26] Manin, Yu. (1999). Frobenius manifolds, quantum cohomology, and
moduli spaces (Vol. 47). AMS. MR1702284

[27] Marchal, O. (2017). WKB solutions of difference equations and re-
construction by the topological recursion. Nonlinearity, 31 (1), 226–
262. MR3746636

[28] Norbury, P., Scott, N. (2014). Gromov–Witten invariants of P1

and Eynard–Orantin invariants. Geometry & Topology, 18 (4), 1865–
1910. MR3268770

[29] Okounkov, A., Pandharipande, R. (2006). Gromov–Witten theory,
Hurwitz theory, and completed cycles. Annals of Mathematics, 163 (2),
517–560. MR2199225

[30] Okounkov, A., Pandharipande, R. (2006). The equivariant
Gromov–Witten theory of P1. Annals of Mathematics, 163 (2), 561–
605. MR2199226

[31] Okounkov, A., Pandharipande, R. (2009). Gromov–Witten theory,
Hurwitz numbers, and matrix models. In Proceedings of Symposia Pure
Mathematics. Editors: D. Abramovich et al., Vol. 80, pp. 325–414.
AMS. MR2483941

[32] Pandharipande, R. (2000). The Toda equations and the Gromov–
Witten theory of the Riemann sphere. Letters in Mathematical Physics,
53 (1), 59–74. MR1799843

http://www.ams.org/mathscinet-getitem?mr=1952124
http://www.ams.org/mathscinet-getitem?mr=1901075
http://www.ams.org/mathscinet-getitem?mr=1510692
http://www.ams.org/mathscinet-getitem?mr=1291244
http://www.ams.org/mathscinet-getitem?mr=1467172
http://www.ams.org/mathscinet-getitem?mr=1702284
http://www.ams.org/mathscinet-getitem?mr=3746636
http://www.ams.org/mathscinet-getitem?mr=3268770
http://www.ams.org/mathscinet-getitem?mr=2199225
http://www.ams.org/mathscinet-getitem?mr=2199226
http://www.ams.org/mathscinet-getitem?mr=2483941
http://www.ams.org/mathscinet-getitem?mr=1799843


190 Boris Dubrovin et al.

[33] Watson, G. N. (1944). A treatise on the theory of Bessel functions.
2nd edition. Cambridge University Press. MR0010746

[34] Witten, E. (1991). Two-dimensional gravity and intersection theory
on moduli space. In Surveys in Differential Geometry (Cambridge, MA,
1990), pp. 243–310. Lehigh Univ., Bethlehem, PA. MR1144529

[35] Zhang, Y. (2002). On the CP 1 topological sigma model and the
Toda lattice hierarchy. Journal of Geometry and Physics, 40 (3), 215–
232. MR1866989

[36] Zhou, J. (2015). Emergent geometry and mirror symmetry of a point.
Preprint arXiv:1507.01679.

Boris Dubrovin
SISSA
via Bonomea 265, Trieste 34136, Italy
E-mail: dubrovin@sissa.it

Di Yang
Max-Planck-Institut für Mathematik
Vivatsgasse 7, Bonn 53111, Germany
Current address: School of Mathematical Sciences
University of Science and Technology of China
Jinzhai Road 96, Hefei 230026, P.R. China
E-mail: diyang@ustc.edu.cn

Don Zagier
Max-Planck-Institut für Mathematik
Vivatsgasse 7, Bonn 53111, Germany
E-mail: dbz@mpim-bonn.mpg.de

http://www.ams.org/mathscinet-getitem?mr=0010746
http://www.ams.org/mathscinet-getitem?mr=1144529
http://www.ams.org/mathscinet-getitem?mr=1866989
http://arxiv.org/abs/arXiv:1507.01679
mailto:dubrovin@sissa.it
mailto:diyang@ustc.edu.cn
mailto:dbz@mpim-bonn.mpg.de

	Statements of the main results
	Matrix resolvent approach to the Toda Lattice Hierarchy
	Solving the matrix-resolvent recursive relations of P1
	Proof of the factorization formulas
	Four asymptotics
	Further remarks
	Acknowledgements
	References

