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Strichartz estimates with broken symmetries

Felipe Gonçalves and Don Zagier

Abstract. In this note we study the eigenvalue problem for a quadratic form asso-
ciated with Strichartz estimates for the Schrödinger equation, proving in particular
a sharp Strichartz inequality for the case of odd initial data. We also describe an
alternative method that is applicable to a wider class of matrix problems.

1. Introduction

In this paper we study the eigenvalue problem associated with the quadratic form

Q.f / D
p
12

Z
R

Z
R
juf ..y; y; y/; t/j

2 dy dt(1.1)

restricted to the subspace of functions f 2L2.R3/with some prescribed parity. (The
p
12

normalization factor has been included here for aesthetic reasons only.) Here uf WR3 �
R! C denotes the solution of the Schrödinger equation

(1.2) @tu.x; t/ D i�u.x; t/ ; u.x; 0/ D f .x/

with initial data f and we say that f .x1; x2; x3/ has parity " 2 ¹˙1º3 if it is even with
respect to the xi with "i D 1 and odd with respect to the xi with "i D �1. Enforcing such
parity constraints on the initial data breaks the fundamental symmetries associated with
the Schrödinger equation (for instance Galilean invariance). The study of such quadratic
form is motivated by its intrinsic relation with Strichartz estimates, as it was used in [2,8]
to produce sharp bounds for the space-time L6-norm of uf in one space dimension. For a
more general overview of how results of this sort are used, we refer to the recent survey [4].

Since the form Q is invariant under permutation of the coordinates, we can restrict to
the case where "i is �1 for i � � and C1 for i > � for some � 2 ¹0; 1; 2; 3º, i.e., to the
subspace L2�.R

3/ � L2.R3/ of functions that are odd with respect to the first � variables
and even with respect to the others. It turns out, as we will show, that the eigenvalues
associated to the restriction of Q to each L2�.R

3/ are all rational and can be given expli-
citly as the coefficients of certain algebraic generating functions (which was amusing and
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unexpected for the authors). Specifically, define four power series G�.w/ 2 QŒŒw�� by
(1.3)0BBB@
G0.w/

G1.w/

G2.w/

G3.w/

1CCCA D
0BBB@
1 3 3

w 1 �1

1 �1 �1

w �3 3

1CCCA
0BBB@

1
4.1�w2/

1

8
p
1� 23wCw

2

1

8
p
1C 2

3wCw
2

1CCCA D
0BBB@

1C 7
27
w4 C 32

81
w6 C � � �

1
3
w C 4

27
w3 C 1

3
w5 C � � �

1
3
w2 C 20

81
w4 C 49

243
w6 C � � �

5
9
w3 C 91

243
w7 C 1760

6561
w9 C � � �

1CCCA
and denote by ƒ� � ZŒ1=3� the multiset of coefficients of G�.w/, counted with multipli-
city. Since1 Œwn�.G�/ D 1=4CO.n

�1=2/ for n � � .mod 2/ (see Figure 1) and vanishes
otherwise, the only non-zero limit point of ƒ� is 1=4 and this is also the only value that
can have infinite multiplicity2. Our main result is the following.
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Figure 1. First 501 nonzero power series coefficients of G0 (left) and G1 (right).

Theorem 1.1. For each � D 0; 1; 2; 3, there is an orthogonal decomposition

L2�.R
3/ D

M
�2ƒ�

V�.�/ ;

that diagonalizes Q such that Q.f / D �kf k2
L2.R3/

for f 2 V�.�/. In particular, the
largest eigenvalue ˛�Dmax.ƒ�/ of Q onL2� is given explicitly by ˛0D1, ˛1D˛2D1=3,
and ˛3 D 5=9. The eigenspaces V�.˛�/ corresponding to these largest eigenvalues are
given explicitly by

V0.1/ D ¹f 2 L
2.R3/ W f .x/ D g.jxj/º;

V1.1=3/ D ¹f 2 L
2.R3/ W f .x/ D x1g.jxj/C x1P.x1; x2; x3/h.jxj/º;

V2.1=3/ D ¹f 2 L
2.R3/ W f .x/ D x1x2g.jxj/º;

V3.5=9/ D ¹f 2 L
2.R3/ W f .x/ D x1x2x3g.jxj/º;

where P.x1; x2; x3/ D x41 � 5.x
2
2 C x

2
3/x

2
1 C 15.x

4
2 � 5x

2
3 x

2
2 C x

4
3/.

1Here we use the standard notation Œwn�.F / D cn if F.w/ D
P1
nD0 cnw

n.
2This could happen only if 1=4 occurred infinitely often as a Taylor coefficient of G� . In fact, numerical

computations up to n D 105 suggest that it never occurs at all, but we could not prove this.
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The proof will actually identify the set of eigenvalues of Q on L2� with ƒ� as a
multiset, in the sense that each V�.�/ is a module over the set V0.1/ of radial L2-functions
of rank equal to the multiplicity of � inƒ� (and hence finite for � different from 0 and pos-
sibly 1=4). The fact that V1.1=3/ looks “larger" than the other three V�.˛�/ is then simply
a reflection of the fact that 1=3 appears twice as a coefficient in the power series G1.w/.

Theorem 1.1 gives not only the largest eigenvalue, but the whole spectrum for each �.
In particular, one can check by a numerical computation (Lemma 2.5 below) that the
second largest eigenvalue ˇ� of Q on L2� is given by

.ˇ0; ˇ1; ˇ2; ˇ3/ D
�8320
39

;
469136

313
;
232

36
;
221312

312

�
:

Note that ˛� > ˇ� for � D 0; 1; 2; 3. From Theorem 1.1, we establish a generalised ver-
sion of a conjecture of the first author (Conjecture 1 in [6]) and, by restricting to tensor
products, we also produce a sharp trilinear inequality.

Corollary 1.2. Let � D 0; 1; 2; 3. We have

p
12

Z
R

Z
R
juf ..y; y; y/; t/j

2 dy dt � ˛�

Z
R3

jf .x/j2 dx � .˛� � ˇ�/ dist.f; V�.˛k//2

for every f 2 L2�.R
3/, with ˛� , ˇ� and V�.˛�/ as above. Moreover, the constants ˛� and

˛� � ˇ� above are optimal. Furthermore, if f D g1 ˝ g2 ˝ g3, then

p
12

Z
R

Z
R

ˇ̌
ug1.y; t/ug2.y; t/ug3.y; t/

ˇ̌2 dy dt � ˛�

3Y
jD1

Z
R
jgj .x/j

2 dx

with equality if .and only if / gj .x/D bjxe�ax
2

for j � � and gj .x/D bj e�ax
2

for j > �
for some a; bj 2 C with Re a > 0.

Here we have used the fact that the function g1 ˝ g2 ˝ g3 belongs to V�.˛k/ if and
only if each gj .x/ or gj .x/=x, depending whether gj is even or odd, is a multiple of the
same Gaussian for j D 1; 2; 3. (We leave the details to the reader.)

By setting g1 D g2 D g3 in Corollary 1.2 for an odd function g1, we obtain the fol-
lowing sharp inequality for odd initial data.

Corollary 1.3. Let f 2 L2.R/ be an odd function and let uf WR � R ! C solve the
Schrödinger equation (1.2) with initial data f . Then

kuf kL6.R�R/ � 12�1=12 .5=9/1=6 kf kL2.R/ ;(1.4)

with equality if and only if f .x/ D bxe�ax
2

with a; b 2 C and Re a > 0 .

We add a few more remarks to clarify the relation of the results here to earlier ones in
the literature. Ozawa and Tsutsumi proved inequality (1.4) with no parity condition on g
and optimal constant 12�1=12, which is attained by Gaussians. Foschi [3] provided an
alternative proof that also characterized Gaussians as the only extremizers. Corollary 1.3
is a sharpening of this inequality when the initial data is odd.
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One may wonder if our techniques can be adapted to the case k D 2 in (1.5) below.
After tensorization, this leads us to consider the quadratic form

Q2.f / D 4

Z
R

Z
R2

juf .x1; x2; x1; x2; t /j
2 dx1 dx2 dt

for f WR4 ! C, and we can ask about the spectral decomposition of such quadratic form
under parity constraints on f (this was first considered in Conjecture 2 of [6] in the even
case). By applying the general form of Lemma 6 in [2], this quadratic form can be iden-
tified as the L2.R4/-norm of the projection of f onto the subspace of functions invariant
under rotations preserving the directions .1; 0; 1; 0/ and .0; 1; 0; 1/. The complication
arises since the the restriction of such projection to a parity space is no longer diagonal,
but only block diagonal and we could not recognize the eigenvalues of such blocks in
explicit analytic form. We leave this question to future work. Nevertheless, the first author
has investigated the quadratic form Q2 in [6] under the constraint that f .x1; x2; x3; x4/
depends only on x21 C x

2
2 and x23 C x

2
4 . Indeed, using the method of Section 3 one can

reprove Theorem 3 in [6] (with  D 3=4 as it was conjectured; we omit the details).

1.1. Background

For a given f 2 L2.Rk/, we denote by uf .x; t/ the solution of the Schrödinger equa-
tion (1.2) with initial data f . The Strichartz inequality (see Theorem 2.3 in [10]) states
that there exists A > 0 such that

(1.5) kuf kLp.Rk�R/ � A kf kL2.Rk/ ;

where p D 2 C 4=k. It is conjectured that Gaussians are the only maximizers of this
inequality, that is, letting A be the best possible constant, the inequality is attained if and
only if f .x/ D c exp.�ajxj2 C bx/, where c; a 2 C, b 2 Ck and Re a > 0. In lower
dimensions k D 1; 2, this conjecture was solved by Foschi [3], and alternative approaches
were given in [1, 2, 5, 6, 8, 9]. The results of [2] are of special interest to this paper. By
embedding the problem into a higher dimensional version and using the delta calculus
tool, Carneiro proved (Lemma 6 in [2]) the following useful representation3.

Proposition 1.4. If uf WRd � R ! C solves Schrödinger’s equation with initial data
f 2 L2.Rd /, then

(1.6) cd

Z
R

Z
R

ˇ̌
uf ..y; : : : ; y/; t/

ˇ̌2 dy dt D
Z

Rd

ˇ̌
PE .wd yf /.x/

ˇ̌2 dx ;

where E � L2.Rd / is the subspace of functions invariant under rotations fixing the dir-
ection 1 D 1p

d
.1; : : : ; 1/, PE is the orthogonal projection onto E,

wd .x/ D
�
jxj2 � .x � 1/2

�.d�3/=4
;

3Generalizing the work of [8].
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yf is the Fourier transform of f defined by

yf .�/ D .2�/�d=2
Z

Rd

f .x/ e�i��x dx ;

and
cd D

p
d 2d�2 �.d�3/=2 �..d � 1/=2/ :

Notice that when d D 3 and f .x/D g.x1/g.x2/g.x3/ for some function g 2 L2.R/,
we have uf ..y; y; y/; t/ D ug.y; t/3, w D 1 and cd D

p
12, and thus we obtain

p
12

Z
R

Z
R
jug.y; t/j

6 dy dt D
Z

R3

jPE . yf /.x/j
2 dx �

Z
R3

j yf .x/j2 dx

D

� Z
R
jg.x/j2 dx

�3
:

This is the sharp Strichartz inequality (1.5) for k D 1. Note that equality is attained if
and only if yf 2 E, which in turn is equivalent to g being a Gaussian4. Also note that the
left-hand side of (1.6) for d D 3 is the quadratic form Q.f / defined in (1.1).

2. Proofs

In this section we collect the necessary facts to prove our main result. Since in most part
our techniques are general, we will work with a higher dimensional analogue of Q and
later on specialize to dimension 3.

Let Hn denote the space of spherical harmonics of degree n on the .d�1/-dimensional
unit sphere Sd�1 (i.e., the restrictions to Sd�1 of degree n homogeneous polynomials
annihilated by �). Let also

Hn ˝ Radial D
®
f 2 L2.Rd / W f .x/ D Yn.x=jxj/ g.jxj/ and Yn 2 Hn

¯
:

It is well known that
L2.Rd / D

M
n�0

Hn ˝ Radial;

where the sum is orthogonal, that is, any function f 2 L2.Rd / can be expanded in the
form

(2.1) f .x/ D
X
n�0

Yn.x=jxj/ gn.jxj/ .Yn 2 Hn/ :

Lemma 2.1. We have

PEf .x/ D
X
n�0

Yn.1/

C
d=2�1
n .1/

C d=2�1n

� x
jxj
� 1
�
gn.jxj/;(2.2)

4This is the proof method of [8] in a nutshell, which was later generalized by Carneiro [2].
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if f 2 L2.Rd / is expanded as in (2.1), where C d=2�1n .z/ is the Gegenbauer polynomial
defined by

.1 � 2zw C w2/1�d=2 D
X
n�0

wn C d=2�1n .z/:(2.3)

Proof. Firstly, it is not hard to realize that

PEf .x/ D

Z
G

f .�x/ dG.�/;

where G is the subgroup of SO.d/ that fixes the vector 1 and dG its induced G-invariant
Haar probability measure. Secondly, note that the function

! 2 Sd�1 7!

Z
G

Yn.�!/ dG.�/

still is an spherical harmonic of degree n that depends only on ! � 1, and must therefore
be a multiple of the zonal harmonic C d=2�1n .! � 1/. We conclude thatZ

G

Yn.� !/ dG.�/ D
Yn.1/

C
d=2�1
n .1/

C d=2�1n .! � 1/ .! 2 Sd�1/;

which proves the lemma. �

In what follows we let

(2.4) L2�.R
d / D

®
f 2 L2.Rd / W f is odd in x1; x2; : : : ; x� and even in x�C1; : : : ; xd

¯
for � D 0; 1; : : : ; d . We also let P� denote the orthogonal projection onto L2�.R

d / and set
T� D P�PE . Abusing notation, we use the same symbol T� to denote the restriction of T�
to Hn; this is justified since T� D zT� ˝ Id on Hn ˝ Radial, and we identify zT� with T� .
Using the fact that

P�.Y /.!/ D
1

2d

X
"2¹˙1ºd

"1 � � � "� Y."1!1; : : : ; "d!d /;

we can apply (2.2) to obtain the following lemma.

Lemma 2.2. We have

T�.Yn/.!/ D
Yn.1/

C
d=2�1
n .1/

Pd;�;n.!/

for every Yn 2 Hn, where, for all n � 0, we set

Pd;�;n.!/ D
1

2d

X
"2¹˙1ºd

"1 � � � "� C
d=2�1
n

�! � "
p
d

�
.! 2 Sd�1/ :
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In particular, T� leaves each subspace Hn invariant and rank.T� jHn
/ � 1, with equality

if and only if the eigenvalue

�d;�;n D
1

2dC
d=2�1
n .1/

X
"2¹˙1ºd

"1 � � � "� C
d=2�1
n

�"1 C � � � C "d
d

�
is nonzero, in which case Pd;�;n is the unique associated eigenvector of T� in Hn.

The next lemma gives part of the structure of the eigenvalues �d;�;n.

Lemma 2.3. We have �d;�;n D 0 if 0 � n < � or if n � � is odd. Moreover,

�d;�;� D
2� kŠ.d=2 � 1/�

d �.d � 2/�
�

Proof. Since
P
"2¹˙1ºd "1 � � � "� vanishes for 1 � � � d , it follows that

(2.5)
1

2d

X
"2¹˙1ºd

"1 � � � "� ."1 C � � � C "d /
m
D

1

2d

X
m1C���CmdDm
m1;:::;md�0
m1;:::;m� odd

m�C1;:::;md even

mŠ

m1Š � � �md Š
;

which implies that (2.5) vanishes if 0 � m < � or if m � � is odd. Since C d=2�1n .z/ is an
even or odd polynomial depending whether n is even or odd, we conclude that �d;�;n D 0
if 0 � n < � or if n � � is odd. Finally, if m D n D �, then (2.5) equals �Š, so we obtain

�d;�;� D
�Š � leading coefficient of C d=2�1� .z/

C
d=2�1
� .1/

D
2� kŠ .d=2 � 1/�

d � .d � 2/�
: �

We conjecture that �d;�;� D max¹�d;�;nºn�0 for all d � 4 and � D 0; 1; 2; 3, but
we could not prove that. Note that we have completely diagonalized the quadratic form
on (1.6); however, �d;�;� is only bounded for d D 3, which is exactly the case when the
weight wd .x/ � 1 in Proposition 1.4. We now restrict our attention to the 3-dimensional
case.

Lemma 2.4. For 0 � � � 3, the series G�.w/ D
P
n�0 �3;�;nw

n is given by (1.3).

Proof. Using the generating function (2.3) of the Gegenbauer polynomials5 for d D 3, we
obtain

G�.w/ D
1

8

X
"2¹˙1º3

"1 � � � "�
X
n�0

wnC 3=2�1n

�
! � "
p
3

�
D
1

8

X
"2¹˙1º3

"1 � � � "�q
1 � 2

3
."1 C "2 C "3/w C w2

;

which is easily seen to be equivalent with (1.3). �

5Note that if d D 3 then C 1=2n .z/ is the Legendre polynomial and C 1=2n .1/ D 1.
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Lemma 2.5. Let ˛� and ˇ� be the two largest eigenvalues in ƒ� D
S
n�0¹�3;�;nº. Then

˛0 D �3;0;0 D 1 > ˇ0 D �3;0;10D
8320
19683

D0:4226997 : : : ;(2.6)

˛1 D �3;1;1 D �3;1;5 D
1
3

> ˇ1 D �3;1;15D
469136
1594323

D0:2942540 : : : ;(2.7)

˛2 D �3;2;2 D
1
3

> ˇ2 D �3;2;8 D
232
729

D0:3182441 : : : ;(2.8)

˛3 D �3;3;3 D
5
9

> ˇ3 D �3;3;13D
221312
531441

D0:4164375 : : :(2.9)

Proof. One can check that the coefficient ofwn in .1� 2
3
wCw2/�1=2 is bounded in abso-

lute value by .3=�n
p
2/1=2D 0:82172 : : : � n�1=2, and from this it follows that �3;�;n<ˇ�

for all n > 1000 with ˇ� as in the lemma. Then by explicitly computing the first 1000
eigenvalues �3;�;n, we can find the first and second biggest eigenvalues and their multipli-
cities exactly. �

Proof of Theorem 1.1. Note that if f 2 L2�.R
3/, then yf 2 L2�.R

3/. We then use (1.6) to
obtain

Q.f / D

Z
R3

jPE . yf /.x/j
2 dx D

Z
R3

T�. yf /.x/ yf .x/ dx:

We can now apply Lemmas 2.1, 2.2 and 2.4 and Plancherel’s theorem to obtain the desired
orthogonal decomposition. To finish, Lemmas 2.5 and 2.2 tell us what the largest eigen-
values are and how to compute their associated eigenspaces, and direct computation then
gives

P3;0;0.x/ D 1 ; P3;1;1.x/ D
1p
3
x1 ;

P3;1;5.x/ D
1

6
p
3
x1
�
�x41 C .5x

2
2 C 5x

2
3/x

2
1 C .�15x

4
2 C 75x

2
3 x

2
2 � 15x

4
3/
�
;

P3;2;2.x/ D x1x2 ; P3;3;3.x/ D
5p
3
x3x2x1 :

This finishes the proof. �

3. A more general eigenvalue problem

There is another approach to our problem, though rather more technical than the one
presented above, by using Laguerre polynomials as the basis of L2�.R

3/ (as in [6]) to
reduce Theorem 1.1 to a statement about a specific sequence of matrices of increasing
size, with entries defined by certain power series and with the property that the eigenvalues
of the larger matrices contain the eigenvalues of the smaller ones. In this section we give
a more general matrix problem and its rather simple solution, since this can potentially be
used for other problems. The application to our original problem is described at the end.

General problem

To any power series F.w1;w2;w3/ 2 CŒw1;w2;w3�, we associate an endomorphism ˆF
of the vector space V D CŒŒu; v��, defined on monomials by

(3.1) ˆF

h�S
a

�
ua vS�a

i
D

SX
bD0

�S
b

�
RS .a; b/ u

b vS�b .0 � a � S/ ;



Strichartz estimates with broken symmetries 1717

where

(3.2) RS .a; b/ D Œw
a
1w

S�a
2 wb3 �.F / .0 � a; b � S/ :

In this section we want to explicitly compute the eigenvalues of ˆF . Note that ˆF pre-
serves the space VS of homogeneous polynomials of degree S for every integer S � 0, and
that RS D .RS .a; b//0�a;b�S is the matrix representation of the restriction of ˆF to VS
with respect to the basis ¹

�
S
a

�
ua vS�aº0�a�S . We will call F special if the mapˆF com-

mutes with multiplication by .uC v/. If this holds, then by considering the action of ˆF
with respect to the basis ¹ui .uC v/n�iº0�i�S of VS it is easy to deduce that the matrixRS
has the eigenvalues .e0; e1; : : : ; eS /, where en is independent of S and is given by

en D ˆF Œu
n�.1;�1/ D

nX
bD0

.�1/n�b
�n
b

�
Rn.n; b/(3.3)

D Œwn1w
n
3 �
�
.1 � w3/

nF.w1; 0; w3/
�
:

We remark that any endomorphism ˆ of CŒŒu; v�� that commutes with the Euler
operator u @

@u
C v @

@v
preserves each VS and hence gives rise via (3.1) to a sequence

of .S C 1/ � .S C 1/ matrices RS , and via (3.2) to a power series F.w1; w2; w3/ DP
a;b;c�0RaCc.a; b/w

a
1w

c
2w

b
3 with ˆF D ˆ. (For example, if ˆ is the identity then F is

.1 � w2/
�1.1 � w1w3/

�1.) Equation (3.3) gives a very simple formula for the eigenval-
ues of the matrix RS if the power series F is special. The next proposition tells us how
to recognize when F is special and gives an alternative way to compute the eigenvalues
of ˆF in (3.3).

Proposition 3.1. Let F 2 CŒŒw1; w2; w3��. Then the following are equivalent.

(i) F is special, i.e., ˆF commutes with multiplication by .uC v/ .

(ii) F satisfies the first order linear differential equation

(3.4) .1 � w1/
@F

@w1
C .1 � w2/

@F

@w2
C w3.1 � w3/

@F

@w3
D .1C w3/ F :

(iii) F has the form

(3.5) F.w1; w2; w3/ D
1

.1 � w2/.1 � w3/
H
�w1 � w2
1 � w2

; w3
1 � w2

1 � w3

�
for some power series H.x; y/ 2 CŒŒx; y�� .

If these conditions hold, then the eigenvalues of ˆF are given by

(3.6) en D Œx
nyn�.H/ .n � 0/ :

Example: The H corresponding to ˆ D Id is .1C y � xy/�1, with en D 1 for all n.

Proof. For a; b; c � 0, set R.a; b; c/ D Œwa1w
b
2w

c
3�.F / D RaCb.a; c/. Then both condi-

tions (i) and (ii) translate to the same recursion

.aC1/R.aC1;b; c/C.bC1/R.a;bC1;c/D cR.a;b; c�1/C.aCb�cC1/R.a;b; c/;
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as one checks by an easy direct calculation. This proves the equivalence of (i) and (ii).
For that of (ii) and (iii), we use the inverse isomorphisms CŒŒx; y; z�� Š CŒŒw1; w2; w3��
given by

H.x; y; z/ 7! F.w1; w2; w3/ D
1

.1�w2/.1�w3/
H
�w1�w2
1�w2

; w3
1�w2

1�w3
; w2

�
;(3.7)

F.w1; w2; w3/ 7! H.x; y; z/ D
.1 � z/2

1C y � z
F
�
x C z � xz; z;

y

1C y � z

�
:(3.8)

Under this correspondence, the differential equation (3.4) is sent to @H
@z
D 0 . Finally,

if (3.5) holds with H.x; y/ D
P
i;j�0 hijx

iyj , then

ˆ
�
un
�
D

nX
bD0

�n
b

� �
wn1w

b
3

�� X
i;j�0

hij
wi1w

j
3

.1 � w3/jC1

�
ubvn�b

D

X
0�j�b�n

�n
b

� � b
j

�
hnj u

bvn�b D

nX
jD0

�n
j

�
hnj u

j .uC v/n�j ;

and therefore equation (3.3) gives en D hnn as claimed. Note that this proof shows that the
matrix RS is conjugate to the triangular matrix R�S with entries R�S .a; b/ D

�
a
b

�
hab . �

In the remainder of this section we will explain how Proposition 3.1 can be applied to
the problem described in the introduction and whose solution was given in Theorem 1.1.
For n 2Z�0 and " 2 ¹˙1º, we defineQ"

n 2L
2.R/ byQ"

n.x/D x
rL

.�"=2/
n .�x2/ e��x

2=2,
where " D .�1/r with r 2 ¹0; 1º and L.�"=2/n .z/ is the Laguerre polynomial of degree n
and parameter �"=2. These functions can be defined by the generating series identity

Q".xI t / D

1X
nD0

Q"
n.x/ t

n
D

xr

.1 � t /rC1=2
exp

�
�
�

2

1C t

1 � t
x2
�
:

The easy calculationZ 1
�1

Q".xI t1/Q
".xI t2/ dx D

��1=2 �.r C 1=2/

.1 � t1t2/rC1=2

implies that the Q"
n are orthogonal with kQ"

nk
2
L2.R/

D
�.nCrC1=2/
�.1=2/nŠ

. In particular, these
functions are orthogonal bases for L2".R/, and for each integer 0 � � � 3, the multivariate
functions

Qn.x/ D Q
.�/
n .x/ D

Y
1�j��

Q�nj .xj /
Y

�<j�3

QCnj .xj / .n 2 Z�0/

form an orthogonal basis of the parity � space L2�.R
3/ as defined in (2.4). Instead of

appealing to Proposition 1.4, we can then deal directly with the quadratic form (1.1) by
applying Lemma 11 of [5] to this orthonormal basis ofL2�.R

3/. This leads after some com-
putations to the problem of computing the eigenvalues of the sequence of

�
SC2
2

�
�
�
SC2
2

�
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matrices MS D .. zQm; zQn/L2.R//jmjDjnjDS , where zQ 2 L2.R/ is defined by zQ.x/ D
Q.x 1/, with 1 D 1p

3
.1; 1; 1/. In the rest of this section we show how to solve this prob-

lem.
The first point is that MS has the same non-zero eigenvalues (with multiplicities) as

a much smaller matrix. To see this, we observe that MS factors as A�SAS , where AS is
the map defined by Q 7! zQ from the

�
SC2
2

�
-dimensional subspace VS D hQnijnjDS of

L2.R3/ to the .S C 1/-dimensional space of L2.R/

zVS D
˝
x�C2ne��x

2=2
˛
0�n�S

:

Hence MS has the same non-zero eigenvalues as the endomorphism zMS D ASA
�
S of zVS .

To compute them, we will actually consider zMS acting in the larger subspace

zzVS D
˝
Q"
n

˛
0�n�SC�=2

;

where " D .�1/� (i.e., we consider AS W VS !
zzVS and take its adjoint A�S in the larger

subspace zzVS ). Then we will show that the matrix representation of zMS is of the form (3.2)
for some special power series F D F� , but with S replaced by S C Œ�=2�.

To do this we use kernel functions. The two 3-variable generating series

(3.9) P ".x; yIw/ D
e��

1Cw
1�w

x2Cy2

2

p
1 � w

�

8<: cosh
�2�xypw

1�w

�
if " D C1;

1p
w

sinh
�2�xypw

1�w

�
if " D �1

are the kernel functions for the multiplication maps on L2".R/ sending Q"
n to wnQ"

n for
all n � 0. We can see this either by using formula 8.976-1 of [7] to write

P ".x; yIw/ D

1X
nD0

Q"
n.x/Q

"
n.y/

kQ"
nk
2

wn ;

or else directly by using the algebraic identity

1C w

1 � w

x2 C y2

2
�
2xy
p
w

1 � w
C

1C t

1 � t

y2

2

D
1C wt

1 � wt

x2

2
C

1 � wt

.1 � w/.1 � t /

�
y �

x.1 � t /
p
w

1 � wt

�2
to get (setting p D Œ�=2�; r D � � 2p; " D .�1/r D .�1/�)Z 1

�1

P ".x; yIw/Q".yI t / dy

D
w�r=2 e��

1Cwt
1�wt

x2

2

p
1 � w .1 � t /rC1=2

Z 1
�1

yr e
�� 1�wt

.1�w/.1�t/

�
y�

x.1�t/
p
w

1�wt

�2
dy

D
w�r=2 e��

1Cwt
1�wt

x2

2

p
1 � w .1 � t /rC1=2

r
.1 � w/.1 � t /

1 � wt

�x.1 � t /pw
1 � wt

�r
D Q".yIwt/ :(3.10)
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(We have given this second proof because a more complicated form of the same calcula-
tion will be used in a moment.) It follows that the product

P .�/.x; yIw/ D
Y

1�j��

P�.xj ; yj Iw/
Y

�<j�3

PC.xj ; yj Iw/

is the multivariate kernel function for the multiplication mapQ.�/
n 7!wjnjQ

.�/
n onL2�.R

3/

and hence that the coefficient of wS in its diagonal restriction

zP .�/.x; yIw/ D P .�/.x 1; y 1Iw/ D PC
� x
p
3
;
y
p
3
Iw
�3��

P�
� x
p
3
;
y
p
3
Iw
��

is the kernel function of the endomorphism zMS of zzV S . From (3.9) we get the explicit
formula

zP .�/.x; yIw/ D
e��

1Cw
1�w

x2Cy2

2

w�=2 .1 � w/3=2

X
m2¹˙3;˙1º

C .�/m e
2�mxy

p
w

3.1�w/ ;

where C .�/m are defined by cosh3��x sinh�x D
P
C
.�/
m emx , or explicitly by C .�/

˙3 D

.˙1/�=8 and C .�/
˙1 D .˙1/

�.3 � 2)̨=8.

To compute the action of zMS on zzV S we must compute the scalar product of zP .�/.x; � /

and Q"
n, which we again do by using generating functions and a Gaussian integral calcu-

lation. The calculation is exactly similar to the one given in (3.10): using the algebraic
identity

1C w

1 � w

x2 C y2

2
�
2mxy

p
w

3.1 � w/
C

1C t

1 � t

y2

2

D
1C zm

1 � zm

x2

2
C

1 � wt

.1 � w/.1 � t /

�
y �

mx.1 � t /
p
w

3.1 � wt/

�2
;

where

(3.11) zm D w
1 � wt �m2.1 � t /=9

1 � wt �m2w.1 � t /=9
D

´
wt if m D ˙3;

1 � .1�w/.1�wt/

1� 89wt�
1
9w

if m D ˙1;

we find Z 1
�1

P .�/.x; yIw/Q".yI t / dy D
X

m2¹˙3;˙1º

C .�/m I .�/m .xIw; t/

with

I .�/m .xIw; t/ D
w��=2 e��

1Czm
1�zm

x2

2

.1 � w/ .1 � t /rC1=2

Z 1
�1

yr e
�� 1�wt

.1�w/.1�t/

�
y�

mx.1�t/
p
w

d.1�wt/

�2
du

D
w�p e��

1Czm
1�zm

x2

2

1 � w

.mx=3/r

.1 � wt/rC1=2
D
w�p .m=3/r

1 � w

�1 � zm
1 � wt

�rC1=2
Q".xI zm/ :
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Now replacing each Q"
b
.y/ by ub to keep track of the matrix coefficients, inserting the

values of C .�/m and noticing that the resulting series is a power series in w;u and T D wt ,
we find

(3.12) zMS .a; b/ D ŒT
awSCp�aub�.F�/

for 0 � a; b � S C p, where

(3.13) F�.T; w; u/ D
1

4

�1 � z3
1 � T

�rC1=2 1

1 � z3u
C
3 � 2�

4

�1 � z1
1 � T

�rC1=2 .1=3/r

1 � z1u
�

But this function is special because it has the form (3.5) with .w1; w2; w3/ D .T; w; u/
and

H�.x; y/ D
1

4

1

1 � y.x � 1/
C

3 � 2�

4 � 3r

.1 � 8
9
x/1=2�r

1 � 8
9
x � y.x � 1/

�

Therefore Proposition 3.1 gives the eigenvalues of zMS as

e.�/n D Œx
nyn�.H�/ D Œx

n�
� .x � 1/n

4

�
1 C

3 � 2�

3r .1 � 8x=9/nCrC1=2

��
D
1

4
C

1

4

3 � 2�

3r
Œvn�

�
1p

1C14v=9Cv2

�
1CvC

p
1C14v=9Cv2

2

�1=2�r �
;

where in the second line we have used the substitution v D x 1�8x=9
x�1

and the residue
theorem, and it is easily checked that this equals the coefficient of w2nCr in the series
G�.w/ defined in equation (1.3). It is also possible with this method to characterize the
eigenspaces associated with the largest eigenvalues, but this requires a bit more work
(especially in the case � D 1 where the space V�.˛�/ D V1.1=3/ has rank 2) and is not
carried out here.
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