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Introduction by the Organisers

The workshop Explicit Methods in Number Theory was organised by Karim Be-
labas (Talence), Hendrik W. Lenstra (Leiden), and Don B. Zagier (Bonn), and
it took place July 12–18, 2009. Five previous workshops on the topic had been
held in 1999, 2001, 2003, 2005 and 2007. The goal of the meeting was to present
new methods and results on concrete aspects of number theory. In several cases,
this included algorithmic and experimental work, but the emphasis was on the
implications for number theory. There were two ‘mini-series’ highlighting impor-
tant recent developments: one of three hours, by Henri Darmon, on cycles on
modular varieties and on rational points on elliptic curves via a generalisation of
Heegner points; and one of three hours by Bjorn Poonen, on rational points on
higher-dimensional varieties and on obstructions to weak approximation and to
the Hasse principle. Some of the other themes were:

• Automorphic forms
• Rational and integral points on curves and higher-dimensional varieties
• Class numbers of number fields and of other rings
• Solving specific diophantine equations
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• Computations of Tate-Shafarevich groups and of Selmer groups.

As always in Oberwolfach, the atmosphere was lively and active, providing an ideal
environment for the exchange of ideas and productive discussions. The meeting
was well-attended, with 50 participants from a variety of backgrounds, including a
large number of younger researchers. There were 35 talks of various lengths, and
ample time was allotted to informal collaboration.
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Abstracts

Perfect Powers Expressible as Sums of Two Cubes

Samir Siksek

(joint work with Imin Chen)

Let p, q, r ∈ Z≥2. The equation

(1) ap + bq = cr

is known as the Fermat–Catalan equation with signature (p, q, r). As in Fermat’s
Last Theorem, one is interested in integer solutions a, b, c. Such a solution is called
non-trivial if abc 6= 0, and primitive if a, b, c are coprime. Let χ = p−1+q−1+r−1.
The parameterization of non-trivial primitive solutions for (p, q, r) with χ ≥ 1
has now been completed ( [4], [11]). The Generalized Fermat Conjecture [3] is
concerned with the case χ < 1. It states that the only non-trivial primitive
solutions to (1) with χ < 1 are

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072, 338 + 15490342 = 156133.

The Generalized Fermat Conjecture has been established for many signatures
(p, q, r), including for several infinite families of signatures: Fermat’s Last The-
orem (p, p, p) by Wiles and Taylor [17], [16]; (p, p, 2) and (p, p, 3) by Darmon and
Merel [10]; (2, 4, p) by Ellenberg [12] and Bennett, Ellenberg and Ng [2]; (2p, 2p, 5)
by Bennett [1]. For an exhaustive survey see [4]. All these infinite cases have been
established through the same steps as Wiles’ proof of Fermat’s Last Theorem, or
some strengthening of this approach. We call this approach via the modularity of
Galois representations of elliptic curves and Ribet’s Level-Lowering Theorem, the
modular approach.

In this talk we are concerned with the following special case of the Generalized
Fermat Conjecture.

Conjecture. Let n ≥ 3. The equation

(2) a3 + b3 = cn

does not have any non-trivial primitive solutions.

We attack the conjecture (with only partial success) using a combination of
the modular approach, together with an obstruction to solutions that is of the
Brauer–Manin type.

Equation (2) has been studied by Kraus [13], Bruin [6] and Dahmen [8]. In-
deed, Kraus studies this equation using Frey curves and Galois representations
and deduces a practical criterion for proving the conjecture for a particular prime
exponent n ≥ 17. Kraus also used a computer program to check his criterion for
prime exponents 17 ≤ n < 104. Bruin [6] proved the conjecture for n = 4, 5, using
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descent and Chabauty. Dahmen [8, Section 3.3.2] strengthens Kraus’ argument
to prove the conjecture for n = 5, 7, 11, 13. Of course, for n = 3, the result is
classical (a special case of Fermat’s Last Theorem). Thus combined, the results
of Kraus, Bruin and Dahmen show that equation (2) does not have non-trivial
primitive solutions for 3 ≤ n ≤ 104.

In this talk we give a partial explanation of the proof of the following theorem.

Theorem 1. (Chen–Siksek) Let n ≥ 3. Suppose n is divisible by some positive
integer d satisfying any of the following congruences,

(I) d ≡ 2, 3 (mod 5),
(II) d ≡ 17, 61 (mod 78),
(III) d ≡ 51, 103, 105 (mod 106),
(IV) d ≡ 43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295, 313,

367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583, 589, 601, 619, 637,
691, 697, 709, 727, 745, 799, 805, 817, 835, 853, 907, 913, 925, 943, 961,
1015, 1021, 1033, 1051, 1069, 1123, 1129, 1141, 1159, 1177, 1231, 1237,
1249, 1267, 1285 (mod 1296).

Then equation (2) has no non-trivial primitive solutions.

It follows that the set of prime exponents n that satisfy the conditions of the
theorem has Dirichlet density 28219

44928 ≈ 0.628. It also follows that the set of positive
integers n satisfying the conditions of the theorem has natural density 1.

The proof of Theorem 1 relies in part on Kraus’ earlier work. Roughly speaking,
for any prime ℓ 6= 2, 3, Kraus’ method gives congruences modulo ℓ for unknowns
a, b in (2). The proof also uses ideas from the work of Bright and Siksek [5].
Indeed the non-trivial primitive solutions to (2) give rise to rational points on the
hyperelliptic curve

(3) δ2 +
1

27
= 4ǫn.

For odd exponent n, the function f = ǫ−1 on this hyperelliptic curve has a divisor
which is a norm from the quadratic extension Q(

√
321). In [5] (see also [15]) it is

shown how a function on a curve whose divisor is a norm from an abelian extension
can give rise to an obstruction to weak approximation (that is of Brauer–Manin
type). In layman’s terms, this merely means that we obtain congruence restrictions
on the rational points of the curve. The congruence restrictions are obtained
through an application of the Law of Quadratic Reciprocity; this is explained in
a less conceptual but more elementary way in [14]. Combining these congruence
restrictions with the congruences for a, b obtained via Kraus’ modular approach
shows that equation (2) has no non-trivial primitive solutions if the exponent n is
divisible by some positive integer d ≡ 51, 103, 105 (mod 106). This is a part of
Theorem 1.

To obtain the remaining results of Theorem 1 we needed to consider two other
hyperelliptic curves associated to (2) defined over K = Q(ω) where ω is a primitive
cube root of 1. The functions we employ are defined over Q(ζ) and K(ζ) for various
roots of unity ζ, and we employ the Law of Quadratic Reciprocity over number
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fields. Again the congruences obtained here are combined with the congruences
from the modular approach and this is used to deduce the remainder of Theorem 1.
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Some classical p-adic analysis

Fernando Rodriguez-Villegas

In [1] D. Zagier solves the Monthly problem: prove that

(1) v3

(
n−1∑

k=0

(
2k

k

))
= v3

(
n2

(
2n

n

))
,

where vp denote the p-adic valuation. He does this by proving that there is a
continuous function f : Z3 −→ −1 + 3Z3 which interpolates the values

(2) f(n) =

∑n−1
k=0

(
2k
k

)

n2
(
2n
n

) , n ∈ N.
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The talk was a description of a general form of these facts.
Define formally

(3) H(n, t) :=
1(
2n
n

)
n−1∑

k=0

(
2k

k

)
(t+ 4)n−1−k, n ∈ N,

where t is a variable.

Proposition 1. The following identity holds

(4) H(n, t) =
n∑

k=1

1(
2k
k

)
(
n

k

)
tk−1.

Fix once and for all a prime p > 2. Let t ∈ Zp with |t|p < 1. Then the Mahler
series

(5) H(x, t) :=
∑

k≥1

1(
2k
k

)
(
x

k

)
tk−1, x ∈ Zp

converges since the valuation vp(
(
2k
k

)
) grows at most logarithmically with k. By

proposition 1 the continuous function H(·, t) interpolates the values H(n, t) of (3).
In fact, the function H is analytic in the unit disk in Cp. Expanding (5) formally

as a power series we find

(6) H(x, t) =
∑

n≥0
bn(t)x

n,

where

(7) b0 = 0, bn(t) =
∑

k≥n

tk−1

k!
(
2k
k

) cn,k, n ∈ N,

for certain integers cn,k obtained from
(
x

k

)
=

1

k!

∑

n≥0
cn,k x

n.

We have the following analogue of (1)

Theorem 2. For u ∈ Cp such that vp(u − 4) ≥ 2/(p− 1) we have

(8)

∣∣∣∣∣

n−1∑

k=0

(
2k

k

)
un−1−k

∣∣∣∣∣
p

≤
∣∣∣∣n
(
2n

n

)∣∣∣∣
p

, n ∈ N.

1

Zagier proved that H3(x, 1) is actually divisible by x2 and hence gained an extra
power of n in the right hand side of the theorem.

To see how this comes about it will be convenient to give t and u in terms of
another variable w as follows:

(9) t = (w − 1/w)2, u := t+ 4 = (w + 1/w)2.
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For example, if w = ζ3, a primitive cubic root of unity, then t = (w−w−1)2 = −3
and u = (w + w−1)2 = 1.

We have

(10) b1(t) :=
H(x, t)

x

∣∣∣∣
x=0

=
∑

k≥1

(−1)k−1

k
(
2k
k

) tk−1.

Proposition 3. The following identity of formal power series in the variable z
holds

(11)
1

w2 − w−2
logw2 =

∑

k≥1

(−1)k−1

k
(
2k
k

) (w − w−1)2(k−1), w = 1− z.

We now consider (11) p-adically for |z|p < 1 (so that also |w − w−1|p < 1 with
w = 1− z) to obtain

b1(t) =
1

w2 − w−2
logw2, |1− w|p < 1, t = (w − w−1)2.

As a special case we find

Corollary 4. Let ζp ∈ Cp be a primitive p-th root of unity. Then

(12) b1((ζp − ζ−1p )2) = 0.

Combining Theorem 2 with the above corollary we obtain a closer generalization
of the original Monthly problem (1).

Theorem 5. For p > 2 and ζp ∈ Cp a primitive p-th root of unity we have

(13)

∣∣∣∣∣

n−1∑

k=0

(
2k

k

)
(ζp + ζ−1p )2(n−1−k)

∣∣∣∣∣
p

≤
∣∣∣∣n

2

(
2n

n

)∣∣∣∣
p

, n ∈ N.

The equality typically does not hold for all n but will, in fact, hold except for
n’s in some excluded congruence classes modulo p.

2

It is not hard to show that

(14) bn(t) =
1

2(n− 1)!

∫ 1

0

logn−1(1 + tz(1− z))

1 + tz(1− z)
dz.

Manipulating the integral we find

log(t+ 4) log

(
γ+

γ−

)
+

n−1∑

k=0

(
n− 1

k

)∫ γ+

γ−

logk(1− v) logn−k−1 v
dv

v

where

γ± := 1
2 (1 ± γ), γ :=

√
t

t+ 4
.

The individual integrals in this sum are essentially what are know as Nielsen
polylogarithms and can be expressed in terms of multi-polylogarithms. We can
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express these multi-polylogarithms in terms of the usual polylogarithms for n =
2, 3. Here is the result for n = 2.

Proposition 6. For |t| < 1 we have

(15) b2(t) =
γ2 − 1

2γ

[
1
2 log

2(γ+)− 1
2 log

2(γ−) + Li2(γ
+)− Li2(γ

−)
]
.

Alternatively, we also have for n ∈ N

(16) bn(t) =
1

(t+ 4)

∑

0≤j1<j2<···<jn

( t
t+4 )

jn

(j1 +
1
2 )(j2 +

1
2 ) · · · (jn + 1

2 )
.

In Zagier’s case p = 3, t = −3 and hence γ± are the primitive cubic roots of
unity. The above expressions suggest a relation between b2(−3) with ζ3(2). Indeed,
we find numerically that they are related up to a simple factor in Q. Thanks to
work done during the Oberwolfach workshop with H. Gangl and D. Zagier the
proof of this fact seems reasonably close.

In general it seems that the higher coefficients bn(−3) are also related to values
of 3-adic L-series at least up to n = 6; including the apparent equality b3(−3) = 0,
noticed by Zagier. It is not inconceivable that all of these could be proved in the
near future. These identities should be part of the general picture of relations
between periods and special values of L-functions in a p-adic context.
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An elliptic AKS test

Jean-Marc Couveignes

(joint work with R. Lercier and T. Ezome)

The following primality criterion is essentially due to Berrizbeitia [4] and Cheng [5]

Theorem 1. Let n > 3 be an integer and set R = Z/nZ. Let S = R[x]/(xd − α)
where d > 2 divides n − 1. (Berritzbeitia case) or the case d a prime (Cheng
case). Set n− 1 = dm and assume ζ = αm has exact order d in R∗. Assume the
congruence

(1) (x− 1)n = ζx− 1 mod (n, xd − α) .

holds true in S.
If

(2) 2d > n⌊
√
d⌋,

then n is a prime power.
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This criterion leads to a primality test which is a variant of the AKS test [1]. It
is much faster than any other variant of the AKS test, but it is not deterministic.
In this form, it can only be used for integers n such that n − 1 has a factor d of
the appropriate size: large enough to fulfill equation (2) but not too large, so that
congruence (1) can be tested efficiently. Avanzi, Bernstein and Mihailescu [2, 4]
found a variant of this criterion which makes use of a factor d of nf − 1 instead.
This leads to a general primality test.

We follow a different track: we first try to understand the exact role played by
the ring R[x]/(xd − α) in theorem 1. We then propose a variant using a residue
ring of a different kind.

Here is a context free primality criterion in the style of Berrizbeitia:

Theorem 2. Let n > 2 be an integer and set R = Z/nZ. Let S ⊃ R be a free
étale algebra of rank d over R. Let σ be an R-automorphism of S. Let G be the
group generated by σ. Assume S is a free R[G]-module of rank 1 : there exists an
element ω in S such that (ω, σ(ω), . . . , σd−1(ω)) is an R basis of S. Let θ be a
unit in S such that θn = σ(θ). Let p be a prime divisor of n. Assume θ mod p

generates a subgroup of order at least n⌊
√
d⌋ in (S/pS)∗. Then n is a power of p.

This criterion is of little interest unless we can find an R-algebra S and an
element θ in S that generates a large subgroup modulo a prime divisor of n. It it
difficult in general to prove that a unit has a large order in a finite ring. In the
case of theorem 1 this is proved by a geometric argument: the ring S is the residue
ring at a fiber of the multiplication-by-d isogeny

[d] : Gm/R → Gm/R,

and the element θ is a residue class of a function with small degree on Gm having
its polar divisor contained in the kernel of the isogeny [d].

If we replace the multiplicative group Gm by an elliptic curve E over R we
obtain a much more amenable primality criterion (due to the extra freedom in the
choice of E).

See the arxiv [6] preprint for details.
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Torsors under tori and Néron models

Martin Bright

Let K be a finite extension of a p-adic field Qp, with ring of integers O and residue
field k. Let T be a torus over K. Given a smooth variety X over K and an
X-torsor Y → X under T , we can consider the map X(K) → H1(K,T ) which
associates to each point P of X(K) the isomorphism class of the fibre YP .

For example, take K = Qp with p odd, let L = Qp(
√
p), and let T be the

norm torus for L/K, which is the variety defined by {x2 − py2 = 1} ⊂ A2
K .

Then H1(K,T ) = K×/NL×, and the latter group is isomorphic to k×/(k×)2, the
isomorphism being essentially reduction modulo p. Now any X-torsor under T is
given locally by an equation of the form {u2 − pv2 = f} ⊂ A2

K ×X , where f is
a non-zero rational function on X . If X has good reduction, we can see that the
isomorphism class of the fibre above a point P depends only on the value of f(P )
modulo p, and hence only on the residue class of P . Moreover, the isomorphism
class of the fibre at P depends on whether f(P ) is a square modulo P : we see that
the problem of evaluating an X-torsor under T has turned into one of evaluating
a torsor on the reduction of X under Z/2Z.

Our main result is the following, which generalises the above situation.

Theorem 1. Let X be a smooth variety over K, and let X/O be a smooth (but not
necessarily proper) model of X. Let T be a torus over K split by a tame extension
of K. Then, if Y is any X-torsor under T, the evaluation map X(K) → H1(K,X)
fits into a commutative diagram as follows.

X(K)0 −−−−→ X (k)

Y

y
yφ

H1(K,T )
∼=−−−−→ H1(k,Φ(T ))

Here X(K)0 denotes the subset of X(K) consisting of points which extend to an
O-point of X ; Φ(T ) is the group of components of the Néron model of T ; and φ is
the map coming from an Xk-torsor under Φ. In particular, the isomorphism class
of the fibre YP at a point P ∈ X(K)0 depends only on the residue class of P .

We will not describe the proof of Theorem 1 in any detail. The main ingredient
is a result of B. Brahm [1], which shows that, for T a K-torus split by a tamely
ramified extension, we have R1j∗T = 0, where j : (SpecK)sm → (SpecO)sm is the
map of smooth sites induced by the inclusion SpecK → SpecO.

As an example of the application of Theorem 1, we deduce a well-known fact
about torsors over cubic surfaces.

Application. Let X be a smooth cubic surface over K, and suppose that X has
a smooth proper model X/O. Let T be a torus over K split by a tamely ramified
extension, and let Y be an X-torsor under T . Then the evaluation map X(K) →
H1(K,T ) is constant.
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Proof. The special fibre Xk is again a smooth cubic surface, so has geometric Picard
group which is a finitely generated, free Abelian group. Therefore H1(Xk̄,Φ(T )) =
0, and so the Hochschild–Serre spectral sequence shows that any torsor under Φ(T )
on Xk is constant. Applying Theorem 1 gives the result. �
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Degenerations of Hypersurfaces

Alan G. B. Lauder

Let f0 ∈ Q[x0, x1, . . . , xn+1] be homogeneous of degree d and define f1 := xd0 +
· · · + xdn+1. Consider the pencil of hypersurfaces of degree d and dimension n
defined by the equation

(1 − t)f0 + tf1 = 0.

The fibres in this pencil are generically smooth but they degenerate to a possibly
singular projective hypersurface at t = 0 defined by the equation f0 = 0. Given
a suitable prime number p, we define, and describe a method for computing to
any desired precision, a pair of matrices (F,N) such that F has entries in the
p-adic field Qp and N is a nilpotent matrix with entries in Q such that NF =
pFN . We conjecture that the polynomial det(1−TF |kerN ) has integer coefficients,
and has all reciprocal roots of complex absolute value pi/2 for 0 ≤ i ≤ n. This
conjecture follows from a stronger (but vaguer) one: that the polynomial is the
middle Weil polynomial of some natural “semistable” limit at t = 0 of the family
when “reduced” modulo p.

We give examples for the following: degeneration of a quartic curve to a double
conic (p = 5); degeneration of a quartic curve to a 3-cuspidal quartic (p = 13);
degeneration of a quintic curve to a non-reduced union of hyperplanes (p = 31);
degeneration of a sextic curve to a sextic curve with an ordinary double point
(p = 7); degeneration of a quartic (K3) surface to a quartic surface with two
ordinary double points (p = 5); degeneration of a quartic surface to a quartic
surface with an A2 singularity (p = 5, 13); degeneration of a cubic 3-fold to a
cubic 3-fold containing a pencil of planes (p = 19).
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On the expected result for the second moment of twisted L-functions

Guillaume Ricotta

The fourth moment of Dirichlet L-functions is

M4(q) :=
∑

χ∈X∗(q)

|L(χ, 1/2)|4

where X∗(q) stands for the set of primitive Dirichlet characters of modulus q
whereas the second moment of twisted L-functions is

M2,f (q) :=
∑

χ∈X∗(q)

|L(f × χ, 1/2)|2

where f is a fixed holomorphic primitive cusp form of level Df > 1 coprime with
q, nebentypus ψf of modulus Df satisfying ψf (−1) = (−1)kf and integer weight
kf > 1 (see appendix [RiRo] for the automorphic background). Note that

card (X∗(q)) := ϕ∗(q) = q
∏

p||q

(
1− 2

p

)∏

p2|q

(
1− 1

p

)2

according to [IwKo, Equation (3.7) Page 46]. Finding an asymptotic formula for
M4(q) as q → +∞ with a power saving in the error term should be philosophically
as difficult as the corresponding question for M2,f (q) since

M4(q) =M
2,(∂E(1/2,.)

∂s )(1/2)(q)

where E(z, s) is the real-analytic Eisenstein series on the modular curve X0(1)
associated to the cusp ∞. Note that M4(q) is itself the q-analog of the fourth
moment of the Riemann zeta function in the t-aspect (see [In] and [Hb2]) but this
analogy will not be developed here. D. Heath-Brown ( [HB]) for M4(q) and T.
Stefanicki ( [St]) for M2,f(q) proved the following analogous results.

Theorem. If q goes to infinity then

M4(q) =
1

2π2

∏

p|q

(1 − p−1)3

(1 + p−1)
log4 (q)ϕ∗(q) +O

(
2ω(q)q log3 q

)

where ω(q) stands for the number of prime divisors of q and

M2,f(q) =
6(4π)kf

πΓ(k)
||f ||2

∏

p|q

(1− p−1)2

(1− p−2)

(
1− λf (p

2)− 2

p
+

1

p2

)
log (q)ϕ∗(q)

+O
(
2ω(q)q logδ q

)

where ||f || stands for Petersson’s norm of f and 0 < δ < 1 is any real number
satisfying

∀ε > 0,
∑

p6x

|λf (p)| 6 (δ + ε)
x

log x
.

Remark 1. It is possible to choose δ = (
√
2 + 3

√
3)(5

√
2)−1 according to [Ra].
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Remark 2. The formula forM4(q) is an asymptotic formula for almost all integers
but it turns out that if ω(q) > log−1 2 log2 q then the error term is not smaller

than the main term. Similarly, if ω(q) > (1 − δ) log−1 q log2 q then the error term
in M2,f (q) is not smaller than the main term such that the formula for M2,f(q) is
an asymptotic formula only for a set of integers of zero density according to [HR].

These results have been improved by K. Soundararajan ( [So]) for M4(q) and
in [GKR] for M2,f (q) as follows.

Theorem. If q goes to infinity then

M4(q) =
1

2π2

∏

p|q

(1− p−1)3

(1 + p−1)
log4 (q)ϕ∗(q)

(
1 +O

(
log
−1/2
2 (q)

))

and if ω(q) ≪ exp
(
300−1 log2 q log

−1
3 q

)
then

M2,f(q) =
6(4π)kf

πΓ(k)
||f ||2

∏

p|q

(1− p−1)2

(1− p−2)

(
1− λf (p

2)− 2

p
+

1

p2

)
log (q)ϕ∗(q)

×
(
1 +O

(
log−12 (q)

))
.

M. Young ( [Yo]) got an asymptotic formula with a power saving in the error
term for M4(q) in the prime modulus case.

Theorem. If q goes to infinity among the prime numbers then

M4(q) = P (log q)ϕ∗(q) +O
(
ϕ∗(q)q−

1
80+

θ
40

)

where P is an explicit polynomial of degree 4 and θ = 7/64.

Remark 3. Note that −1/80 + θ/40 < 0. The same result should hold without
the restriction q prime but it remains an open question so far. It should be very
difficult to extend this result to any integer following the proof given in [Yo] since
many technical difficulties would occur if q is composite.

Remark 4. This particular value of θ is the best currently known approximation
towards Ramanujan-Petersson-Selberg’s conjecture in GL(2) according to [Ki] and
[KH].

It turns out that the analogous result for M2,f(q) is still an open question and
the purpose of this note is to identify the underlying analytic issue, which occurs
in the second question. Let us state the expected result.

Expected Result. There exists some absolute constant α > 0 such that if q goes
to infinity then

M2,f(q) = P (log q)ϕ∗(q) +O
(
ϕ∗(q)q−α

)

where P is an explicit polynomial of degree 1.

Proving this requires some new input in order to solve unbalanced shifted convo-
lution problems. Such new input would have many other interesting applications.
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Diagonal quartic surfaces

Alexei Skorobogatov

The aim of this report is to explain how to get some numerical evidence for the
following conjecture.

Conjecture The Brauer–Manin obstruction is the only obstruction to the Hasse
principle and weak approximation on K3 surfaces over number fields.

This conjecture has been discussed for some time, but probably was not taken
seriously enough for lack of evidence, either numerical or theoretical. Papers [2],
[13], [9] establish the Hasse principle for certain elliptic K3 surfaces, diagonal
quartic surfaces, and Kummer surfaces, respectively, under specific technical con-
ditions. These results assume the finiteness of the Tate–Shafarevich groups of
elliptic curves, and the first two of these papers also assume Schinzel’s Hypothe-
sis. The author is not aware of any results on weak approximation for K3 surfaces
with a rational point. We still do not know if the existence of a rational point
always implies that their set is Zariski dense, or even whether it is infinite. The
methods of Bogomolov and Tschinkel often allow one to prove the Zariski density
of rational points over a finite extension of the ground field. In some particularly
good cases, this can be achieved without enlarging the ground field, see [5]. This
paper also contains results on the density of rational points in the real analytic
topology.

Let X be a K3 surface over a number field k. The precise statement of the
above conjecture is the density of X(k) in the Brauer–Manin set

( ∏

all v

X(kv)
)Br ⊂

∏

all v

X(kv),

where the product over all completions kv of k is equipped with the product
topology, each space X(kv) having its natural local topology. The superscript Br
means that we only consider the families of local points (Pv) with the zero sum of
local invariants of A(Pv) ∈ Br(kv), for all A ∈ Br(X), see [12] for details. Recall
the notation

Br0(X) = Im[Br(k) → Br(X)], Br1(X) = Ker [Br(X) → Br(X)].

The sum of local invariants of A ∈ Br0(X) is always zero, so the obstruction
depends only on the elements of Br(X)/Br0(X).

Theorem [10] Let X be a K3 surface over a field k finitely generated over Q.
Then Br(X)/Br0(X) is finite.

As a consequence we see that the Brauer–Manin set is open in
∏

all vX(kv).
Most of the difficulties in computing, or at least estimating the order of the

Brauer group Br(X), come from its so called ‘transcendental’ part Br(X)/Br1(X).
Let k be an algebraic closure of k, and Γ = Gal(k/k). We have a natural injective
map Br(X)/Br1(X) →֒ Br(X)Γ, where X = X ×k k. As an abelian group Br(X)
is isomorphic to (Q/Z)22−ρ, where ρ = rk PicX ≤ 20.
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We have a good understanding of the Galois module Br(X) in the case when X
is the (desingularized) Kummer surface associated with an abelian surface A, i.e.
obtained by blowing-up the 16 double points on the quotient of A by the antipodal
involution x 7→ −x. In [11] we prove that Br(X) and Br(A) are isomorphic as Γ-
modules. Next, for any integer n > 1 we show that Br(X)n/Br1(X)n is a subgroup
of Br(A)n/Br1(A)n, and that this inclusion is an equality for odd n. If A = E×E′
is a product of two elliptic curves, then

Br(A)n/Br1(A)n = HomΓ(En, E
′
n)/
(
Hom(E,E

′
)/n
)Γ
.

This can be used to prove that Br(X) = Br(Q) for the Kummer surface X over Q
given by the following affine equation:

(1) z2 = (x3 + 1)(y3 + 6y + 2),

and also for some other Kummer surfaces with ρ = 18 or ρ = 19.
Now let D ⊂ P3

Q be the quartic surface

x40 + a1x
4
1 + a2x

4
2 + a3x

4
3 = 0,

where a1, a2, a3 ∈ Q∗. Using the results about the Brauer group of Kummer sur-
faces [11] described above, and Evis Ieronymou’s thesis [3] we prove the following

Theorem [4] The group Br(D)/Br1(D) is a subgroup of (Q/Z)2 killed by 212 ·3 ·5.
Let HD ⊂ Q∗ be the subgroup generated by −1, 4, a1, a2, a3 and the 4-th powers
Q∗4. If {2, 3, 5} ∩HD = ∅, then Br(D) = Br1(D).

The full list of possible values of the finite abelian group Br1(D)/Br0(D) can
be found in the thesis of M. Bright [1], in particular, |Br1(D)/Br0(D)| divides 25.

Our proof is based on the crucial observation that the Fermat quartic surface
X ⊂ P3

Q given by

x40 + x41 + x42 + x43 = 0

is a Kummer surface, at least after an appropriate extension of the ground field.
This was first observed with some surprise in 1971 by I.R. Shafarevich and I.I.
Piatetskii-Shapiro as an application of their global Torelli theorem for complex K3
surfaces [8]. In his thesis [6] (see also [7]) Masumi Mizukami constructed an explicit
isomorphism between X and the Kummer surface associated with a certain abelian
surface A over Q. The isomorphism itself is defined over Q(

√
−1,

√
2) = Q(µ8).

This result allows us to control torsion of odd order in Br(D)/Br1(D). The 2-
primary torsion subgroup of Br(D) was studied in the thesis of Evis Ieronymou.
The result that concerns us here is [3, Thm. 5.2] which states that if 2 /∈ HD, then
the 2-primary subgroup of Br(D)/Br1(D) is trivial.

As an application of our results we exhibit diagonal quartic surfaces over Q
with trivial Brauer group. By [1], Appendix A (case A161 and its subcases) we
have Br1(D) = Br(Q) for the following diagonal quartics Dc:

(2) x40 + 4x41 + cx42 − cx43 = 0,
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where c is any non-zero rational number. By combining this with our result we
see that Br(Dc) = Br(Q) for many values of c, e.g. c = 1 or c = 9. The surfaces
(2) have obvious Q-points, so it is natural to test weak approximation on them.

During the workshop Martin Bright computed that any Q2-point of D1 can
be approximated by a rational point modulo 16 (note that 2 is the only prime of
bad reduction of D1). Similarly, any Q2-point of D9 can be approximated by a
rational point modulo 8, and any Q3-point of D1 can be approximated modulo 9
(note that 2 and 3 are the only primes of bad reduction of D9). It is also possible
to do simultaneous approximations modulo 8 and 3. Similar experiments were
done for the Kummer surface (1). I would like to thank Martin for his help.
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Rational points on higher-dimensional varieties

Bjorn Poonen

This extended abstract is based on a three-lecture miniseries given on July
14–16, 2009.

1. Existence of rational points

Throughout this article, k denotes a fixed number field, though much of what
we say holds for global function fields as well. Varieties over X may be specified
by giving a finite number of affine patches and explicit gluing data.
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Question 1. Does there exist an algorithm that takes as input a k-variety X, and
outputs YES or NO according to whether X has a k-rational point?

The answer to Question 1 is not known for any number field k. (But for every
global function field, it is known that no such algorithm exists [23], [27], [29], [9].)
See [25] for a discussion.

Question 1 is equivalent to the following variants:

(1) The same question for affine k-varieties. Proof: To answer the question
for any arbitrary variety, it suffices to answer it for the affine patches.

(2) The same question for affine hypersurfaces f(x1, . . . , xn) = 0 over k. Proof:
This is equivalent to the previous question because one can combine equa-
tions: if a is any nonsquare in k, then the system f = g = 0 is equivalent
to the single equation f2 − ag2 = 0.

(3) The same question for smooth affine k-varieties. Proof: Any variety is a
union of locally closed smooth affine subvarieties.

(4) The same question for nice k-varieties, where nice means smooth, pro-
jective, and geometrically integral. Proof: This time, the equivalence is
nontrivial: see [24].

It is not known whether these are equivalent to the corresponding question for
smooth affine hypersurfaces, or the question for nice hypersurfaces.

The question for affine hypersurfaces is a restatement of Hilbert’s tenth problem

over k, the analogue for k of the original Hilbert’s tenth problem over Z, which
asked for an algorithm for deciding whether a multivariable polynomial equation
f(x1, . . . , xn) = 0 with integer coefficients has a solution in integers. Work of
M. Davis, H. Putnam, and J. Robinson [8] and Yu. Matiyasevich [18] showed that
over Z there is no such algorithm.

Remark 2. B. Poonen and A. Shlapentokh showed in 2003 that a negative answer
to Hilbert’s tenth problem for the ring of integers of any fixed number field would
follow from the negative answer for Z together with a statement about elliptic
curves. The latter statement, that for every cyclic extension of number fields L/K
there exists an elliptic curve E over K with rankE(K) = rankE(L) = 1, has been
proved by B. Mazur and K. Rubin assuming the finiteness of Tate-Shafarevich
groups of all elliptic curves over number fields, or at least the weaker statement
that dimF2 X(E)[2] is even for all elliptic curves over number fields.

2. Local-global principle and weak approximation

Definition 3. Let X be a variety over a number field k. In the products below,
v ranges over all nontrivial places of k.

• To say that X satisfies the local-global principle means that the implication∏
vX(kv) 6= ∅ =⇒ X(k) 6= ∅ holds. (This is also called the Hasse

principle, but we will use the more descriptive terminology.) Although the
implication has a truth value for each individual X , one usually speaks of
the principle holding or not for varieties in a certain class.
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• To say that X satisfies weak approximation means that X(k) is dense in∏
vX(kv), where the latter is equipped with the product of the v-adic

topologies, and X(k) is embedded in it diagonally.

Although weak approximation is a stronger condition, it is often (but not al-
ways) the case that when the local-global principle is satisfied by all varieties in a
certain class, weak approximation holds too.

For more details on weak approximation, D. Harari’s survey article [11] is highly
recommended.

2.1. Examples and counterexamples. The conditions tend to hold only for
varieties that are “geometrically very simple”, such as the following:

• Pn;
• quadrics, i.e., degree 2 hypersurfaces (Hasse, Minkowski);
• smooth intersections of two quadrics in Pn with n ≥ 8;
• Châtelet surfaces associated to y2 − az2 = P (x) with P (x) irreducible of
degree 4;

• nice degree d hypersurfaces in Pn where n≫ d (circle method);
• norm form equations NL/k(x1e1 + · · ·+ xnen) = c; where (e1, . . . , en) is a

basis for L/k and c ∈ k× (Hasse); and
• simply connected semisimple affine algebraic groups.

On the other hand, counterexamples, even to the local-global principle over Q, can
be found among

• curves of genus at least 1;
• cubic surfaces;
• intersections of two quadrics in P4; and
• Châtelet surfaces.

(See [11] for references.)

2.2. Known techniques. Recently there has been an almost total “grand unifi-
cation” of the diverse techniques used to construct counterexamples to the local-
global principle and weak approximation. We can now say that all known coun-
terexamples have been explained by some combination of just two methods!

The first of these is the descent obstruction (Fermat, Chevalley & Weil, Colliot-
Thélène & Sansuc [4], [5], Harari & Skorobogatov [12]), which subsumes the
Brauer-Manin obstruction (Manin [17]). For an introduction to these cohomo-
logical obstructions, see [28], and for recent work relating them see either [26] or
the extended abstract by the author in the February 1–7, 2009 Oberwolfach report.

The second of these is the p-adic analytic method of C. Chabauty [2], which
was an abelian variety analogue of an earlier idea of T. Skolem in the context of
integer points on tori. A nonabelian generalization has been proposed by M. Kim
[13], [14], [15], [16].

But it is expected that there are many counterexamples to the local-global
principle and weak approximation that cannot be explained by any combination
of these techniques. More ideas are needed!
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3. Example: nice hypersurfaces in projective space

Let X be a nice degree d hypersurface f(x0, . . . , xn) = 0 in PnQ, where f is a
homogeneous polynomial of degree d with integer coefficients. How do rational
points on X behave?

There is a well-known crude heuristic that suggests an answer. If a0, . . . , an are
integers with gcd 1, and P := (a0 : · · · : an) ∈ Pn(Q), then define the height of
P as H(P ) := maxi |ai|. The number of points in Pn(Q) of height exactly B is
∼ Bn, where we use f ∼ g to denote that f/g has a positive finite limit as B → ∞.
For each such point, the integer f(a0, . . . , an) is O(Bd), so heuristically one can
predict that it equals 0 with probability ∼ 1/Bd. The previous two sentences
together predict that there are ∼ Bn−d rational points of height B on X . So the
total number of rational points on X should be ∼∑B≥1B

n−d. Thus the behavior
should depend on how n− d compares to −1. The heuristic suggests:

• If d < n + 1 (and maybe also if we are in critical case d = n + 1), then
X(Q) is infinite.

• If d > n+ 1, then X(Q) is finite.

But this is often wrong! For instance, X can fail to have points over R even
if d ≪ n. Also, one really should take into account congruences, to incorporate
p-adic information for every prime p. Nevertheless, the crude heuristic motivates
many conjectures about the behavior of rational points, even for varieties more
general than hypersurfaces. We turn to some of these conjectures next.

4. Behavior of rational points in general

We have already considered the question of existence of rational points. When
the set of rational points is nonempty, what questions can one ask to describe it?

4.1. Zariski density. First of all, one can ask whether X(k) is finite or infinite.
For nice plane curves, the crude heuristic gives the right answer to this question

when there are no local obstructions to rational points (i.e., when
∏
v X(kv) 6= ∅),

except that in the critical case of plane cubic curves, finiteness holds for some
curves and fails for others.

For nice curves in general, the genus g plays the role played by the degree.
Namely:

• If g = 0, and
∏
vX(kv) 6= ∅, then X(k) is infinite (and in fact, X ≃ P1

k).
• If g = 1, then X(k) may be infinite, finite, or empty, even if

∏
vX(kv) 6= ∅.

• If g > 1, then X(k) is finite (possibly empty). This is known as the Mordell
conjecture or Faltings’ theorem [10].

For nice hypersurfaces of higher dimension, X(k) can be infinite even when d≫
n: for example, the nice surface x170 +x171 +x172 +x173 = 0 in P3

Q has infinitely many
rational points, because there are already infinitely many on the line x0 + x1 =
x2 + x3 = 0, for instance. This suggests that perhaps the correct generalization of
finiteness is “constrained to a lower-dimensional variety”. One says that rational
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points on a k-variety X are Zariski dense if there is no closed subvariety Z $ X
containing X(k).

What should be the higher-dimensional analogue of the condition g > 1?
E. Bombieri and S. Lang suggested that a sufficient condition should be that
of being of general type: a nice variety X is of general type if the canonical sheaf
ωX is such that the sections of ω⊗nX for sufficiently positive n determine a rational
map X 99K PN mapping X birationally to its image.

Conjecture 4 (Bombieri, Lang). If X is a nice variety of general type and
dimX > 0, then X(k) is not Zariski dense in X.

Remark 5. A nice hypersurface of degree d in Pn has ωX ≃ OX(d − n − 1), so
X is of general type if and only if d > n+ 1. So the Bombieri-Lang conjecture is
compatible with the crude heuristic.

Question 6. Can one generalize the crude heuristic so that it predicts the Bombieri-
Lang conjecture for all varieties of general type?

4.2. Potential density. Some varieties that are not of general type also fail to
have X(k) Zariski dense in X . Thus the most naive converse of the Bombieri-Lang
conjecture is wrong. To formulate a possibly correct converse, it is convenient to
introduce a “stable” version of Zariski density:

Definition 7. Let X be a nice variety over a number field k. Say that rational
points on X are potentially dense if there exists some finite extension L of k such
that X(L) is Zariski dense in X .

The potential density property depends only on the base extension of X to
an algebraic closure of k, so one might hope that it corresponds to some simple
geometric condition on X . For example, for a nice curve X of genus g, rational
points are potentially dense if and only if g ≤ 1.

The property of being of general type is unchanged by field extension, so the
Bombieri-Lang conjecture predicts that positive-dimensional varieties of general
type are among the varieties for which rational points are not potentially dense.
But there are others.

If X 99K Y is a dominant rational map of nice k-varieties, then potential density
for X implies potential density for Y (obviously), and the converse holds if X → Y
is a finite étale morphism. So if X dominates a positive-dimensional variety of
general type, or has a finite étale cover that dominates a positive-dimensional
variety of general type, then again rational points on X should not be potentially
dense, according to the Bombieri-Lang conjecture.

Example 8 ( [6]). Let E be an elliptic curve. Let H be a hyperelliptic curve of
genus greater than 1. Let iE : E → E be translation by a 2-torsion point. Let
iH : H → H be the hyperelliptic involution. Let i = (iE , iH); this is a fixed-
point-free involution of E ×H . Let X = (E ×H)/〈i〉. Then X has a finite étale
cover (namely, E × H) that dominates a positive-dimensional variety of general
type (namely, H), so rational points on X are not potentially dense (we can say
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this unconditionally, because of Faltings’ theorem for H). On the other hand, one
can show that X is not of general type, and that X does not even dominate any
positive-dimensional variety of general type.

Alternatively, this situation can be understood as follows. The degree 2 map
H → P1 factors through the stack quotient [H/iH ], and X dominates [H/iH ].
Moreover, [H/iH ] behaves as if it were of general type: it consists of P1 with
2g + 2 points replaced by 1

2 -points, so its Euler characteristic is 2 − (2g + 2)12 ,
which is negative, like the Euler characteristic of a curve of genus greater than 1.

The fact that X dominates [H/iH ] manifests itself in the fact that each compo-
nent of a fiber of the composition X → [H/iH ] → P1 above any one of the 2g + 2
branch points of H → P1 has multiplicity divisible by 2 (in fact, equal to 2).

Campana made the observation that when a variety X admits a morphism to
P1 such that a fiber has two components, of multiplicity 2 and 3, then X does not
map to a stacky P1 in the usual sense (since gcd(2, 3) = 1), but heuristics related
to the abc conjecture predict that its rational points should behave as if the P1

had only a 1
min{2,3} -point below that fiber. He formulates a notion of “orbifold”

(not the usual notion) generalizing the notion of stack, and says that X dominates
the orbifold. Then he conjectures that for a nice variety X , rational points are
potentially dense if and only if X does not dominate an “orbifold of general type”.
See [1].

4.3. Topological closure. We have discussed weak approximation already, but
one can also ask about the closure of X(k) in the topological space X(kv) for a
single place v. For instance, B. Mazur has conjectured the following statement [19].

Conjecture 9 (Mazur). Let X be a Q-variety. Then the closure of X(Q) in X(R)
with respect to the usual analytic topology has at most finitely many connected
components.

This holds for curves (by Faltings’ theorem) and abelian varieties (because
any closed subgroup of a compact Lie group has only finitely many connected
components), but only a few other cases are known. If true, the conjecture would
rule out certain approaches to proving a negative answer to Question 1: see [7].

There are also related conjectures for number fields beyond Q and for nonar-
chimedean places: see page 257 of [20].

4.4. Counting points of bounded height. One can define a height function
H : Pn(k) → R generalizing the definition given above for k = Q. Then, for a
variety X embedded in Pnk , one can define a counting function

N(X ;B) := #{P ∈ X(k) : H(P ) ≤ B}.
For certain varieties X , V. Batyrev and Yu. Manin have formulated conjectures
about the asymptotic rate of growth of N(X ;B) as B → ∞ in terms of arithmetic
and geometric properties of X . So far, for every k-variety X for which X(k) is
nonempty and the asymptotic behavior has been determined, it has turned out
that N(X ;B) ∼ Ba(logB)b for some a ∈ Q and b ∈ 1

2Z (recall that we are ignoring
constant factors). For more on these conjectures, see [22].
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l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885.
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Visibility of Sha in abelian surfaces

Nils Bruin

(joint work with Sander Dahmen, Kevin Doerksen)

We consider Mazur’s [1] concept of visibility of Shafarevich-Tate groupsX(E/k)
in abelian varieties A, in the situation where E is an elliptic curve over a number
field k and A is an abelian surface. In this situation, one can essentially restrict
to the situation where A = E × E′/∆, where E and E′ are elliptic curves with
isomorphic n-torsion, and ∆ is the graph of the isomorphism λ : E[n] → E′[n].

We recall some standard facts that relate Galois cohomology to the arithmetic
properties of covers. Suppose that η ∈ X(E/k)[n] ⊂ H1(Gal(k/k), E). From the

cohomology of the short exact sequence 0 → E[n] → E
[n]→ E → 0, we deduce that

we can represent η using δ ∈ H1(Gal(k/k), E[n]). Such a class δ also represents
a degree n2 cover Cδ → E, which over k is isomorphic to the multiplication-by-n
map [n] : E → E. Many of the properties of η can be recovered from Cδ. We have
that η is trivial if and only if Cδ has a rational point. The fact that η ∈ X(E/k)[n]
corresponds to Cδ having points everywhere locally.

Mazur suggests the following construction to arrive at a relatively explicit model
of Cδ. Suppose one can find another elliptic curve E′ with an isomorphism λ :
E[n] → E′[n], such that Cλ∗(δ) does have a rational point. We can construct A as
above. The quotient B = A/E is isogenous to E′ and Cδ will occur as a fibre of
A→ E′ above a rational point of E′.

Mazur also proved [2] that for n = 3, one can always find a suitable elliptic
curve E′. It is classical that in this case, any Cδ with points everywhere locally
admits a smooth plane cubic model. There is a linear family of plane cubics that
share the nine flexes of Cδ. These are exactly the Cλ∗(δ) referred to above. One can
simply pick a rational point in the plane and choose the cubic that goes through
that point and the nine flexes.
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The elliptic curves E′ obtained this way have isometric 3-torsion. This means
that the isomorphism λ preserves the Weil-pairing. This means that the abelian
varieties obtained this way are generally not principally polarized overC and hence
not jacobians of genus 2 curves. We prove the following result.

Theorem. Any 3-torsion element of X(E/k), where E is an elliptic curve over
a number field k, can be made visible in the jacobian of a curve of genus 2.

The situation changes drastically for n = 4. Since the modular curveX(4) is still
of genus 0, there is still an ample supply of elliptic curves E′ with isometric or anti-
isometric 4-torsion. Let s be a parameter for the appropriate twist XE(4), let E

′
s

be the universal elliptic curve over XE(4) and let Cδ,s → Es be the corresponding
cover. Over k, the curves Cδ,s describe a K3-surface. Therefore, the fact that a
fibre of it over XE(4) has points everywhere locally, does not guarantee rational
points on the surface (although in many practical cases, there are points).

If one is interested in making X(E/k)[4] visible in a jacobian, a novel obstruc-
tion arises. Given E, one obtains an elliptic curve with anti-isometric 4-torsion by
twisting with the discriminant of E. As it turns out, in order to obtain a suitable
model of Cλ∗(δ) in this case, one needs to find a solution to a certain quartic norm
equation that becomes a square upon adjuction of the square root of the discrim-
inant of E. Such solutions turn out to generally not exist. This means that order
4 elements of X(E/k) are almost never visible in jacobians of curves of genus 2.
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The reflection principle for 4–ranks of class groups

Jürgen Klüners

(joint work with Étienne Fouvry)

Let d ∈ Z be not a square number. We denote by Cd the narrow class group of
the field Q(

√
d). For a prime number p the p–rank of Cd is denoted by rkp(Cd) :=

dimFp(Cd /C
p
d). Furthermore we denote by rk4(Cd) := rk2(C

2
d) the 4–rank of Cd.

In 1932 Scholz proved the Spiegelungssatz for 3–ranks:

Theorem 1 (Scholz, 1932 [7]). Assume d > 1. Then

rk3(Cd) ≤ rk3(C−3d) ≤ rk3(Cd) + 1.

In the same spirit we get the corresponding result for 4–ranks:

Theorem 2 (Damey-Payan, 1970 [2]). Assume d > 1. Then

rk4(Cd) ≤ rk4(C−4d) ≤ rk4(Cd) + 1.
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Note that C−4d = C−d. There are also reflection theorems for p ≥ 5, but in
those cases the reflected field of a quadratic extension is not quadratic. We are
interested in the following question:

How often is rk4(Cd) = rk4(C−d) ?
We can also ask the corresponding question for the 3–rank. These questions

are closely related to the behavior of the class groups of quadratic number fields.
There are well know conjectures of Cohen and Lenstra how these class groups
should behave. E.g. in [3] it was shown that the reflection principle and Conjecture
3 for 3–ranks are compatible.

We will cite the version in [1,6] concerning the density of fundamental discrim-
inants D such that rkℓ(C

2
D) = r for a given integer r ≥ 0.

Conjecture 3. Let ℓ be a prime and r ≥ 0. Then the density of fundamental
discriminants D such that rkℓ(C

2
D) = r is equal to

• ℓ−r
2

η∞(ℓ)ηr(ℓ)
−2 for negative D’s,

• ℓ−r(r+1)η∞(ℓ)ηr(ℓ)
−1ηr+1(ℓ) for positive D’s,

where we define

ηk(t) :=
k∏

j=1

(1− t−j) for k ∈ N or k = ∞.

We proved the following theorem in [4].

Theorem 4. Let ℓ = 2. Then Conjecture 3 is true all r ≥ 0. Furthermore we get
the same densities when we restrict the discriminants to the congruence classes a
mod q, where (a, q) ∈ {(1, 4), (4, 8), (0, 8)}.

By applying this theorem, we are able to completely answer the above ques-
tion for the 4–rank. Let us denote by A−(X) the set of negative fundamental
discriminants D bounded by X , i.e. −D < X . Then we can prove:

Theorem 5.

lim
X→∞

#{D ∈ A−(X) | rk4(CD) = rk4(C−D) = r}
#{D ∈ A−(X) | rk4(CD) = r} = 2−r.

Note that in the above theorem D is negative and −D is positive. We are also
able to derive the following result:

Theorem 6.

lim
X→∞

#{D ∈ A−(X) | rk4(CD) = rk4(C−D)}
#{D ∈ A−(X)} =

∞∑

r=0

2−r2−r
2

η∞(2)/ηr(2)
−2.

We remark that the number on the right hand side is about 0.61032. The proofs
of these results can be found in [5].



Explicit Methods in Number Theory 1871

References

[1] H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields, In: Num-
ber theory, Noordwijkerhout 1983, volume 1068 of Lecture Notes in Math., pages 33–62.
Springer, Berlin, 1984.

[2] P. Damey and J–J. Payan, Existence et construction des extensions galoisiennes et non–
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Cycles on modular varieties and rational points on elliptic curves

Henri Darmon

This is a summary of a three-part lecture series given at the meeting on “Explicit
methods in number theory” that was held in Oberwolfach from July 12 to 18, 2009.
The theme of this lecture series was the explicit construction of algebraic points
on elliptic curves from cycles on modular varieties. Given a fixed elliptic curve E
over Q, the goal is to better understand the group E(Q̄) of algebraic points on E
by focusing on the following question:

Which points in E(Q̄) can be accounted for by a “modular construction”?

Heegner points arising from CM points on modular curves are the prototypical
example of such a modular construction. While we do not dispose of a com-
pletely satisfactory general definition of modular points, fulfilling the conflicting
requirements of flexibility and mathematical precision, several “test cases” that
go beyond the setting of Heegner points have been studied over the last 10 years
(cf. [Da01], [DL], [BDG], [Da04], [Tr], [Gre], [BDP2]). Three illustrative examples
were touched upon in these lectures:

(1) [BDP1], [BDP2]. “Chow-Heegner points” arising from algebraic cycles on
higher dimensional varieties. The existence and key properties of Chow-
Heegner points are typically conditional on the Hodge or Tate conjectures
on algebraic cycles.

(2) [DL], [BDG], [CD]. “Stark-Heegner points” arising from ATR (“Almost
Totally Real”) cycles on Hilbert modular varieties parametrising elliptic
curves over totally real fields. These ATR cycles are not algebraic, and the
expected algebraicity properties of the associated Stark-Heegner points do
not seem (for now) to be part of a systematic philosophy.
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(3) [Da01], [DP]. Stark-Heegner points attached to real quadratic cycles on
the “mock Hilbert modular surface” SL2(Z[1/p])\(Hp×H) parametrising
an elliptic curve E over Q of prime conductor p. These real quadratic
cycles are indexed by ideal classes of orders in a real quadratic field K,
and are topologically isomorphic to R/Z. By an analytic process that
combines complex and p-adic integration, they can be made to yield p-
adic points on E which are expected to be defined over class fields of K.
This setting leads to convincing experimental evidence for the existence of
a theory of “complex multiplication for real quadratic fields”.

1. Heegner Points

We begin with a brief sketch of the classical picture which we aim to generalize.

Modular parametrisations. Let E be an elliptic curve over Q, and let N be its
conductor. The classical construction of Heegner points is based on the modularity
theorem of [Wi], [TW], as completed in [BCDT]. It asserts that

(1) L(E, s) = L(f, s),

where f(z) =
∑
ane

2πinz is a cusp form of weight 2 on the Hecke congruence
group Γ0(N). The modularity of E is established by showing that the p-adic
Galois representation

(2) Vp(E) =

(
lim
←,n

E[pn]

)
⊗Qp = H1

et(Ē,Qp)(1)

is a constituent of the first p-adic étale cohomology of the modular curve X0(N).
The surjective GQ-equivariant projection of Galois representations

(3) H1
et(X0(N),Qp)−→H1

et(Ē,Qp)

gives rise to a non-trivial Tate cycle

(4) Πp ∈ H2
et(X0(N)× E,Qp)(1)GQ .

By the Tate conjecture for curves over number fields that was proved by Faltings,
there is therefore a non-constant morphism over Q

(5) Φ : J0(N)−→E,

where J0(N) is the Jacobian of X0(N). This stronger, “geometric” form of mod-
ularity is crucial for the Heegner point construction.

CM points. The modular curve X0(N) is equipped with a distinguished supply
of 0-dimensional cycles CMK ⊂ Div0(X0(N)(Kab)) attached to any imaginary
quadratic field K. The group CMK consists of degree zero divisors supported on
CM points attached to the moduli of elliptic curves with complex multiplication
by an order in K. It is not hard to show that Φ(CMK) is an infinitely generated
subgroup of E(Kab); it will be referred to as the group of Heegner points on E
attached to K. The importance of Heegner points can be justified on (at least)
three grounds.
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(1) The Gross-Zagier formula [GZ] relates the heights of certain points in
Φ(CMK) to the central critical derivatives of the Hasse-Weil L-series of
E over K, twisted by abelian characters of K, and thus supplies a link
between the arithmetic of E and its Hasse-Weil L-series.

(2) Following a method of Kolyvagin (cf. [Gr2]), the non-triviality of certain
Heegner points can be used to bound the Selmer group of E (and therefore,
its rank and Shafarevich-Tate group). Combined with the Gross-Zagier
formula, this has led to the strongest known results on the Birch and
Swinnerton-Dyer conjecture, most notably the theorem that

rank(E(Q)) = ords=1 L(E, s) and #X(E/Q) <∞, when ords=1(L(E, s)) ≤ 1.

(3) Heegner points can be computed efficiently in practice by analytic meth-
ods. After identifying the set Y0(N)(C) of complex points on the open
modular curve with the quotient Γ0(N)\H, and replacing E(C) by the
isogenous torus C/Λf for an appropriate period lattice Λf attached to f ,
one has

Φ(τ) =

∫ τ

i∞
2πif(z)dz =

∞∑

n=1

an
n
e2πinτ (mod Λf).

This formula leads to efficient algorithms for computing Heegner points
numerically, which have been implemented in software systems like Pari-
GP, Magma, and SAGE.

2. Chow-Heegner points

Chow Groups. Given a variety V of dimension d defined over a field F , let

CHj(V )(F ) =

{
Codimension j algebraic cycles on V over F

modulo rational equivalence

}
,

CHj(V )0(F ) = the subgroup of null-homologous cycles.

Modular parametrisations. Any element Π of the Chow group CHd+1−j(V ×
E)(Q) induces homomorphisms

(6) ΦF : CHj(V )0(F )−→E(F )

for any F ⊃ Q, by the rule

(7) ΦF (∆) := πE(π
−1
V (∆̃) · Π̃),

where πV and πE denote the natural projections from V ×E to V and E respec-
tively and ∆̃ and Π̃ are representatives of the class of ∆ and Π, chosen so that
π−1V (∆̃) and Π̃ intersect transversally. The assignment Φ : F 7→ ΦF is a natural

transformation from CHj(V )0 to E, viewed as functors on Q-algebras. This leads
to the following informal definition:

Definition 1. A modular parametrisation of E is a triple (V,Π, j) where

(1) V is a “modular variety” of dimension d;
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(2) Π is a cycle class in CHd+1−j(V × E)(Q);
(3) the induced morphism Φ : CHj(V )0−→E is non trivial.

The non-triviality condition on Φ merits some clarification. The most obvious
notion of non-triviality is to require the existence of a cycle ∆ ∈ CHj(V )0(Q̄) for
which Φ(∆) is non-zero in E(Q̄) ⊗ Q. A second notion rests on the fact that the
correspondence Π induces a functorial map on deRham cohomology:

Φ∗dR : H1
dR(E/Q)−→H2d−2j+1

dR (V/Q).

The modular parametrisation Φ will be said to be non-trivial if the class of
Φ∗dR(ωE) is non-zero, where ωE is a non-zero regular differential on E. We will
henceforth work with this cohomological notion of non-triviality.

Modular varieties. Definition 1 above falls short of being mathematically pre-
cise because we have not explained what is meant by “modular variety”. Loosely
speaking, such a variety is one which can be related to a Shimura variety in a
reasonably direct way. For instance, a Shimura variety is a modular variety, as
is the universal object or the r-fold fiber product of the universal object over a
Shimura variety of PEL type. Examples include modular and Shimura curves,
Kuga-Sato varieties, Hilbert modular varieties, Siegel modular varieties, Shimura
varieties attached to the the orthogonal groupO(2, n) or the unitary group U(p, q),
etc. For the purposes of these lectures, the term “modular variety” is best inter-
preted informally in the broadest possible sense, as any variety whose cohomology
is related to modular forms.

Chow-Heegner points. Modular varieties frequently contain a plentiful supply
of arithmetically interesting algebraic cycles. The images in E(Q̄) of such special
cycles under a modular parametrisation can be viewed as “higher-dimensional”
analogues of Heegner points: they will be referred to as Chow-Heegner points.

The general program. Given an elliptic curve E, it would be of interest to
construct modular parametrisations to E in the greatest possible generality, study
their basic properties, and explore the relations (if any) between the resulting
systems of Chow-Heegner points and values of L-series attached to E.

3. Generalised Heegner cycles

We flesh out the loosely formulated program of the previous paragraph in a
simple but non-trivial setting, in which E = A is an elliptic curve with complex
multiplication by an imaginary quadratic field K, and V is a suitable family of
2r-dimensional abelian varieties fibered over a modular curve. This construction
(to which two of the lectures in the series ended up being devoted to) is part of a
work in progress with Massimo Bertolini and Kartik Prasanna [BDP1], [BDP2].

The setting. Fix a quadratic imaginary field K, and let A be an elliptic curve
with complex multiplication by the maximal order in K. In order to simplify the
presentation of the main results, we make the following assumptions:
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Assumption 2. (1) The field K has class number one, unit group of order
two, and odd discriminant. This implies that D := −Disc(K) is one of
the following 6 primes:

D = 7, 11, 19, 43, 67, or 163.

(2) The elliptic curve A is defined over Q and has conductor D2.

These assumptions are of course very restrictive; they are only made to ease the
exposition, and the main results of [BDP1] and [BDP2] are obtained under more
general conditions in which K is not assumed to have class number one.

Let ǫD : (Z/DZ)×−→± 1 be the quadratic Dirichlet character of conductor D
attached to K. Because A has complex multiplication, its modularity follows from
the fact (known much before the work of Wiles, of course) that

L(A, s) = L(ψ, s),

where ψ is the Hecke character of K of infinity type (1, 0) defined on (principal)
ideals by the rule

ψ((a)) = ǫD(a mod
√
D)a.

The theta-series

θψ :=
1

2

∑

a∈OK
ψ(a)qaā ∈ S2(Γ0(D

2)) (q = e2πiτ )

is the weight two normalised eigenform of level D2 attached to A.
Fix an integer r ≥ 0, and consider the higher weight theta series

(8) θψr+1 :=
1

2

∑

a∈OK
ψ(a)r+1qaā =

∞∑

n=1

anq
n ∈

{
Sr+2(Γ0(D

2)) if r is even;
Sr+2(Γ0(D), ǫK) if r is odd.

Set

Γ =

{
Γ0(D) if r is odd,
Γ0(D

2) if r is even,

and write C for the modular curve attached to Γ. LetWr be the Kuga-Sato variety
obtained by taking a canonical desingularisation of the r-fold fiber product

E ×C E ×C · · · ×C E
of the universal (generalised) elliptic curve E over C. The locus W 0

r ⊂ Wr that
lies over the open modular curve admits an explicit complex uniformisation

W 0
r (C) = (Z2r ⋊ Γ)\(Cr ×H).

The theta series θψr+1 has a geometric interpretation as a regular (r+1)-form on
Wr given on W 0

r (C) by

ωψr+1 = (2πi)r+1θψr+1(τ)dz1 · · · dzrdτ,
where (z1, . . . , zr, τ) are the standard coordinates on Cr × H. The q-expansion
principle implies that

ωψr+1 belongs to Ωr+1(Wr/Q) = Filr+1Hr+1
dR (Wr/Q).
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The Deligne-Scholl motive associated to ψr+1 corresponds to the piece of the (r+1)-
st cohomology of Wr on which the nth Hecke correspondence Tn acts (for each
n) as multiplication by the Fourier coefficient an of (8). It can be shown that the
étale realisations of this motive are isomorphic to a specific piece of the middle
cohomology of Ar+1:

Hr+1
et (W̄r ,Qp)

θψr+1 = Hr+1
et (Ār+1,Qp)ψ

r+1

.

This isomorphism gives a non-trivial Tate cycle

Πp ∈ H2r+2(Wr ×Ar+1,Qp)(r+1)GQ .

The existence of this Tate cycle suggests the following conjecture which is the basis
for the definition of Chow-Heegner points on A.

Conjecture 3. There is an algebraic cycle class Π? ∈ CHr+1(Wr×Ar+1)(K)⊗Q
satisfying

Π?∗
dR([ω

r+1
A ]) ∼ [ωψr+1 ], Π?∗

dR([ω
j
Aω̄

r+1−j
A ]) = 0, for all 1 ≤ j ≤ r,

where
Π?∗

dR : Hr+1
dR (Ar+1/C)−→Hr+1

dR (Wr/C)

is the map on deRham cohomology induced by Π?, and the symbol ∼ denotes equal-
ity up to multiplication by a non-zero scalar of Q×.

Notice that the putative cycle Π? is also an element of CHr+1(Xr ×A), where Xr

is the (2r+1)-dimensional variety

Xr :=Wr ×Ar.

Viewed in this way, the cycle Π? gives rise to a modular parametrisation

Φ? : CHr+1(Xr)0−→A

defined over K. It is not hard to see that Φ? is non-trivial. More precisely, a direct
calculation reveals that

(9) Φ?∗
dR(ωA) = ωψr+1 ∧ ηrA,

where ηA is a suitably normalised class in H0,1
dR (A/C). (The fact that A has

complex multiplication implies that the class ηA can be chosen to belong to
H1

dR(A/K).)

Generalised Heegner cycles on Xr. The article [BDP1] introduces and studies
a collection of null-homologous, r-dimensional algebraic cycles on Xr, referred to
as generalised Heegner cycles. These cycles, which extend the notion of Heegner
cycles on Kuga-Sato varieties considered in [Scho], [Ne] and [Zh], are indexed by
isogenies ϕ : A−→A′, and are defined over abelian extensions of K. The cycle ∆ϕ

attached to ϕ is essentially equal to the r-fold product of the graph of ϕ:

(10) ∆ϕ := ǫr(Graph(ϕ)r) ⊂ (A×A′)r = (A′)r ×Ar
(∗)
⊂ Wr ×Ar = Xr,

where the inclusion (*) arises by embedding (A′)r in Wr as a fiber for the natural
projectionWr−→C. The projector ǫr that appears in (10) is a suitable idempotent
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in the ring of algebraic correspondences on Xr, which has the effect of making the
cycle ∆ϕ homologically trivial.

It can be shown, by adapting an argument of Schoen [Scho], that the cycles ∆ϕ

generate a subgroup of CHr+1(Xr)0(K
ab) of infinite rank. The conjectural map

Φ?
Kab sends these generalised Heegner cycles to points in A(Kab). The resulting

collection

(11) {Φ?
Kab(∆ϕ)}ϕ:A−→A′

of Chow-Heegner points should generate an infinite rank subgroup of A(Kab), and
should give rise to an “Euler system” in the sense of Kolyvagin. In the classical
situation where r = 0, the variety Xr is just a modular curve and the existence
of Π? follows from Faltings’ proof of the Tate conjecture for curves. When r ≥ 1,
the very existence of the collection of Chow-Heegner points relies, ultimately, on
producing the algebraic cycle Π? unconditionally.

Complex calculations. Since this is a workshop about explicit methods, we
hasten to point out that even when the modular parametrisation Φ? cannot be
shown to exist, it can still be computed efficiently in practice, by complex analytic
means.

The numerical calculation of Φ? rests on the complex Abel-Jacobi map

(12) AJXr : CH
r+1(Xr)0(C)−→

Filr+1H2r+1
dR (Xr/C)dual

ImH2r+1(Xr(C),Z)

of Griffiths and Weil, which is defined by the rule:

(13) AJXr (∆)(ω) =

∫

∆̃

ω, (for any (2r+1)-chain ∆̃ with ∂∆̃ = ∆).

This is a natural generalisation of the usual Abel-Jacobi map for elliptic curves:

(14) AJA : A(C) = CH1(A)0(C)−→
Ω1(A/C)dual

ImH1(A(C),Z)
,

which one recovers from (12) after replacingXr by A and setting r = 0. The image
of the Chow-Heegner point Φ?(∆ϕ) under the Abel-Jacobi map (14) is computed
by noting that:

(15) AJA(Φ
?(∆ϕ))(ωA) = AJXr (∆ϕ)(Φ

?∗
dR(ωA)) = AJXr (∆ϕ)(ωψr+1 ∧ ηrA),

where the first equality follows from the functorial properties of the Abel-Jacobi
maps, and the second follows from (9).

Let N = D or D2 (depending on whether r is odd or even) and let ϕ : A−→A′

be an isogeny from A to some elliptic curve A′. Suppose that A′(C) is described
as A′ = C/〈1, τ〉, and that (A′)r is embedded in Wr as the fiber above the point
of C corresponding to the pair (C/〈1, τ〉, 1/N). Suppose also that

ϕ∗(2πidz) = ωA,

where z is the standard coordinate on C/〈1, τ〉 = A′(C). The last expression in (15)
can be calculated from the following proposition, which is established in [BDP1],
Thm. 3.14:
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Proposition 4. Let 0 ≤ j ≤ r be an integer. For a complex isogeny ϕ as above,
modulo the appropriate period lattice,

AJXr (∆ϕ)(ωθ
ψr+1

∧ ωjAη
r−j
A ) =

(−dϕ)j(2πi)j+1

(τ − τ̄ )r−j

∫ τ

i∞
(z − τ)j(z − τ̄ )r−jθψr+1(z)dz.

Setting j = 0, we find that Φ?
C = ΦC, where

ΦC : CHr+1(Xr)0(C)−→A(C)

is given by the explicit formula

ΦC(∆ϕ) =
2πi

(τ − τ̄ )r

∫ τ

i∞
(z − τ̄)rθψr+1(z)dz (mod ΛA),

for an appropriate period lattice ΛA attached to the elliptic curve A. Conjecture 3
on the existence of the modular parametrisation Φ? implies the following explicit
algebraicity statement:

Conjecture 5. Let H be a subfield of Kab and let ∆ϕ ∈ CHr+1(Xr)0(H) be a
generalised Heegner cycle defined over H. Then (after fixing an an embedding of
Kab into C),

ΦC(∆ϕ) belongs to A(H)⊗Q,

and

ΦC(∆
σ
ϕ) = ΦC(∆ϕ)

σ for all σ ∈ Gal(H/K).

While ostensibly weaker than Conjecture 3, Conjecture 5 has the virtue of being
more readily amenable to experimental verification. A number of such verifications–
which can be viewed as indirect numerical “tests” of the Tate conjectures for
Wr ×Ar+1–are documented in [BDP2]. In these experiments, the complex points
ΦC(∆ϕ) attached to a few generalised Heegner cycles ∆ϕ are calculated to high
accuracy and recognized as algebraic points defined over the predicted class fields.

p-adic methods. Aside from such numerical explorations, the main theoretical
evidence for the existence of the modular parametrisation Φ? arises from p-adic
methods.

If F is any field, then the Abel-Jacobi map admits an analogue in étale coho-
mology:

(16) AJetF : CHr+1(Xr)0(F )−→H1(F,H2r+1
et (X̄r,Qp)(r+1)).

The image of the conjectural algebraic cycle Π? under the étale cycle class map is
a Tate cycle

Πet ∈ H2r+2
et (Xr ×A,Qp)(r+1)GQ ,

which in turn gives rise to a surjective, GQ-equivariant projection

πr : H
2r+1
et (X̄r,Qp)(r+1)−→H1

et(Ā,Qp)(1) = Vp(A).

Applying πr to the target of (16) gives a map

(17) πr ◦AJetF : CHr+1(Xr)0(F )−→H1
Sel(F, Vp(A)),
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where H1
Sel(F, Vp(A)) is the pro-p Selmer group of A over F . This Selmer group

consists cohomology classes whose restrictions to each completion Fv of F belongs
to the image of the local connecting homomorphism

δv : (lim
←
A(Fv)/p

nA(Fv))⊗Zp Qp−→H1(Fv, Vp(A))

arising from the p-power descent exact sequence of Kummer theory for A over
Fv. When F is a global field, this is the “usual” pro-p Selmer group of A over
F , and when F is a local field of residue characteristic p, the Qp-vector space
H1

Sel(F, Vp(A)) is identified with the Lie algebra A1(F ) ⊗ Qp of the p-adic Lie
group A(F ).

Remark: The system {AJetFϕ(∆ϕ)}ϕ (as ϕ ranges over all isogenies from A, and Fϕ
is the field of definition of ϕ) is an infinite collection of global cohomology classes
defined over finite abelian extensions of K, satisfying various norm compatibility
and Selmer conditions. This collection obeys (a simple variant of) the axioms of
an Euler system, as they are spelled out in [Ru] for example.

In the case where F is a finite extension of Qp, equation (17) can be used to
define a p-adic parametrisation

ΦF := πr ◦AJetF : CHr+1(Xr)0(F )−→A(F )⊗ Q,

which is a p-adic counterpart of the map ΦC, is defined independently of the Hodge
or Tate conjectures, and agrees with Φ?

F when the latter exists. The main theorem
of [BDP2] is the following p-adic analogue of Conjecture 5, which shows that the
images of generalised Heegner points under ΦF have the expected algebraicity
properties, and can be related to the L-series of A. Assume for simplicity that the
integer r is odd.

Theorem 6. Let p = pp̄ be a rational prime which splits in K/Q. Let H ⊂ Kab

be a finite extension of Q which is unramified at p, let ∆ ∈ CHr+1(Xr)0(H) be a
generalised Heegner cycle defined over this field, and let Hp ⊃ H be the completion
of H at a prime above p. Then

ΦHp
(∆) belongs to A(H)⊗Q.

In particular, the cycle ∆1 ∈ CHr+1(Xr)0(K) attached to the identity isogeny
1 : A−→A maps to a rational point on A(K) ⊗ Q under ΦKp

. This point is of
infinite order if and only if

L(ψ2r+1, r + 1) 6= 0, and L′(ψ, 1) 6= 0.

The idea of the proof of Theorem 6 is to express the local points ΦHp
(∆ϕ)

in terms of special values of the p-adic L-functions studied in [BDP1] which are
attached to the Rankin convolution of θψr+1 with Hecke characters of K. The
resulting formulae for the local points ΦF (∆ϕ) (for F any p-adic field over which
∆ϕ can be defined) allows one to compare these points for different values of r,
and thereby reduce the case r > 0 of Theorem 6 to the case r = 0, where it follows
from the Tate conjecture for curves proved by Faltings.
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The very possibility of such a proof reveals that the Chow-Heegner points con-
structed in this setting are not genuinely new, since they can ultimately be related
to CM points on modular curves. The set-up involving the CM elliptic curve A
and the variety Xr—a simple but non-trivial “toy model” for the notion of Chow-
Heegner points—is perhaps most noteworthy for bringing the Hodge and Tate
conjectures on algebraic cycles, which are notoriously difficult to test numerically,
in the realm of “explicit methods”.

4. ATR cycles

Of course, the hope is that higher-dimensional cycles will lead to points on E
that cannot already be obtained by more classical approaches based on Heegner
points. We will take a first step in this direction by considering certain non-
algebraic cycles on Hilbert modular varieties.

The setting. Let F be a totally real field of degree r + 1, and fix an ordering
v0, v1, . . . , vr of the r+1 distinct real embeddings of F . Let E be an elliptic curve
over F , and let

Ej := E ⊗vj R (0 ≤ j ≤ r)

be the r+1 elliptic curves over R obtained by taking the base change of E to R via
the embedding vj . To ease the exposition, we will make the following inessential
assumptions:

(1) The field F has narrow class number one;
(2) the conductor of E/F is equal to 1 (i.e., E has everywhere good reduction).

Remark 7. These hypotheses, although very restrictive, are satisfied in some
examples. For example, when D = 29, 37 and 41, the real quadratic field F =
Q(

√
D) has narrow class number one, and there is an elliptic curve E of conductor

one over F . This elliptic curve cannot be defined over Q, but it is isogenous to its
Galois conjugate, and is a quotient of the Jacobian J1(D). The elliptic modular
form thus associated to E belongs to S2(Γ0(D), ǫD), where ǫD is the quadratic
Dirichlet character of conductor D attached to F .

In general, the modularity conjecture asserts that E gives rise to a Hilbert mod-
ular form f on SL2(OF ). Such a form is a holomorphic function on the product
H0×H1×· · ·×Hr of r+1 copies of the complex upper half plane, which is of parallel
weight (2, 2, . . . , 2) under the action of the Hilbert modular group SL2(OF ). The
latter group acts discretely on H0 × · · · × Hr by Möbius transformations via the
embedding

(v0, . . . , vr) : SL2(OF )−→SL2(R)r+1.

Because of this trasformation property, the Hilbert modular form f can be in-
terpreted geometrically as a holomorphic differential (r+1)-form on the complex
analytic quotient

(18) X(C) := SL2(OF )\(H0 ×H1 × · · · × Hr),

by setting
ωhol
f := (2πi)r+1f(τ0, . . . , τr)dτ0 · · · dτr .
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This quotient in (18) is identified with the complex points of the (open) Hilbert
modular variety X attached to GL(2)/F , but this algebraic structure will not be
exploited in our construction of Stark-Heegner points attached to ATR cycles.

It will be useful to replace ωhol
f by a closed, but non-holomorphic differential

(r+1)-form ωf on X(C). When r = 1, the differential ωf is defined by choosing a
unit ǫ ∈ O×F of norm −1 satisfying

ǫ0 := v0(ǫ) > 0, ǫ1 := v1(ǫ) < 0,

and setting

ωf = (2πi)2 (f(τ0, τ1)dτ0dτ1 − f(ǫ0τ0, ǫ1τ̄1)dτ0dτ̄1) .

For general r, one defines ωf similarly, but this time summing over the subgroup

of O×F /(O+
F )
× of cardinality 2r consisting of units ǫ with v0(ǫ) > 0. Note that the

closed (r+1)-form ωf is holomorphic in τ0, but only harmonic in the remaining
variables τ1, . . . , τr. The justification for working with ωf rather than ωhol

f lies in

the following statement which is a reformulation of a conjecture of Oda [Oda].

Conjecture 8 (Oda). Let

Λf :=

{∫

γ

ωf , γ ∈ Hr(X(C),Z)
}
.

Then Λf is a lattice in C and the elliptic curve C/Λf is isogenous to E0.

This conjecture is known to hold for Hilbert modular forms which are base
change lifts of classical elliptic modular forms. For example, in the setting of
Remark 7, the Hilbert modular form attached to E is the Doi-Naganuma lift of
an elliptic modular form in S2(Γ1(D), ǫD) and Conjecture 8 is known to hold in
this case.

Let

Zr(X(C)) :=





Null-homologous cycles
of real dimension r

on X(C)



 .

Conjecture 8 makes it possible to define an “Abel-Jacobi map”

(19) AJf : Zr(X(C))−→E0(C),

by choosing an isogeny ι : C/Λf−→E0(C), and setting

(20) AJf (∆) := ι

(∫

∆̃

ωf

)
, (for any ∆̃ with ∂∆̃ = ∆).

Note that the domain Zr(X(C)) of AJf has no natural algebraic structure, and
that the map AJf bears no obvious relation (beyond an analogy in its definition)
with the Griffiths-Weil Abel-Jacobi map on the Hilbert modular variety X .

ATR Cycles. A quadratic extension K of F is called an ATR extension if

K ⊗F,v0 R ≃ C, K ⊗F,vj R ≃ R⊕ R, (1 ≤ j ≤ r).

The acronym ATR stands for “Almost Totally Real”; an ATR extension of F is
“as far as possible” from being a CM extension, without being totally real.
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Fix an ATR extension K of F , and let Ψ : K−→M2(F ) be an F -algebra em-
bedding. Then

(1) Since K ⊗F,v0 R ≃ C, the torus Ψ(K×) has a unique fixed point τ0 ∈ H0.
(2) For each 1 ≤ j ≤ r, the fact that K ⊗F,vj R ≃ R⊕ R shows that Ψ(K×)

has two fixed points τj and τ
′
j on the boundary of Hj . Let Υj ⊂ Hj be the

hyperbolic geodesic joining τj to τ ′j .

An embedding Ψ : K−→M2(F ) has a conductor, which is defined to be the unique
OF -ideal cΨ for which

Ψ(K) ∩M2(OF ) = Ψ(OF + cΨOK).

The OF -order OΨ := OF + cΨOK is called the order associated to Ψ. By the
Dirichlet unit theorem, the group

ΓΨ := Ψ((O+
Ψ)
×) ⊂ SL2(OF )

is of rank r and preserves the region

RΨ := {τ0} × Υ1 × · · · × Υr.

The ATR cycle associated to the embedding Ψ is defined to be the quotient

∆Ψ := ΓΨ\RΨ.

It is a closed cycle on X(C) which is topologically isomorphic to an r-dimensional
real torus. In many cases, one can show that ∆Ψ is null-homologous, at least after
tensoring with Q. (This is the case, for instance, when r = 1, and it follows from
the fact that the group cohomology Hr(SL2(OF ),C) is trivial.) Assume from now
on that ∆Ψ is homologically trivial, and therefore that it belongs to Zr(X(C)).

The following conjecture lends arithmetic meaning to the Abel-Jacobi map AJf
and to the ATR cycles ∆Ψ.

Conjecture 9. Let Ψ : K−→M2(F ) be an F -algebra embedding of an ATR ex-
tension K of F . Then the complex point AJf (∆Ψ) ∈ E0(C) is algebraic. More
precisely, the isogeny ι in the definition (20) of AJf can be chosen so that, for all
Ψ,

AJf (∆Ψ) belongs to E(HcΨ),

where HcΨ is the ring class field of K of conductor cΨ.

This conjecture has been tested numerically in [DL], for the three elliptic curves
mentionned in Remark 7. A key ingredient in [DL] is the formulation of an efficient
algorithm for calculating AJf numerically. This algorithm relies on group cohomol-
ogy, and involves the manipulation of certain (r+1)-cochains on Γ which are defined
by integrating ωf over appropriate regions. The algorithm described in [DL] also

exploits the fact that the real quadratic field K = Q(
√
D) for D = 29, 37, and 41,

is Euclidean. It would be of interest to have algorithms to calculate AJf in more
general settings, particularly in cases where r > 1.

Conjecture 9 is poorly understood at present. For instance, it is not clear
whether the Tate conjecture sheds any light on it. On the positive side, the ATR
points that are produced by Conjecture 9 are “genuinely new” and go beyond what
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can be obtained using only CM points on Shimura curves. Indeed, the former are
defined over abelian extensions of ATR extensions of totally real fields, while the
latter are defined over abelian extensions of CM fields.

5. Real quadratic cycles on SL2(Z[1/p])\(Hp ×H)

The construction based on ATR cycles fails to cover some of the most basic
settings where a modular construction might be expected to exist. The simplest
non-trivial such setting arises when E is an elliptic curve overQ of prime conductor
p, and K is a real quadratic field in which p is inert. In that case, a study of signs
in functional equations reveals that

ords=1 L(E/H, s) ≥ [H : K],

for any abelian extensionH ofK which is unramified at p and for which Gal(H/K)
is isomorphic to a (generalised) dihedral group. (See the discussion in the introduc-
tion of [Da01] for example.) The Birch and Swinnerton-Dyer conjecture therefore
predicts that

rank(E(H))
?
≥ [H : K].

It is natural to ask whether this predicted systematic growth in Mordell-Weil rank
can be accounted for by a modular construction.

Such a modular construction does appear to exist. It rests on the formal analogy
between the Hilbert modular surface SL2(OF )\(H0 × H1) (corresponding to the
case r = 1 of the ATR construction described in the previous paragraph) and the
quotient

SL2(Z[1/p])\(Hp ×H),

where Hp := P1(Cp) − P1(Qp) is the p-adic upper half plane. Some of the terms
that make up the analogy are listed in the table below.

ATR cycles Real quadratic cycles
F real quadratic Q

v0, v1 p, ∞
Elliptic curve E/F of conductor 1 Elliptic curve E/Q of conductor p

SL2(OF )\(H0 ×H1) SL2(Z[1/p])\(Hp ×H)
K/F ATR K/Q real quadratic, with p inert

Ψ : K−→M2(F ) Ψ : K−→M2(Q)
〈γ〉 := Ψ((O+

Ψ)
×) 〈γ〉 := Ψ((O+

Ψ)
×)

∆Ψ = {τ0} × (Υ1/γ), τ ∈ H0 ∆Ψ = {τ} × (Υ1/γ), τ ∈ Hp.

⇓ AJf ⇓ AJ
(p)
f

Points in C/Λf = E0(C), Points in K×p /q
Z = E(Kp),

defined over abelian extensions of K defined over abelian extensions of K.
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The “real quadratic cycles” ∆Ψ in SL2(Z[1/p])\(Hp × H) are topologically

isomorphic to R/Z, and AJ
(p)
f (∆Ψ) belongs to K×p /q

Z = E(Kp), where q ∈ Q×p
is the p-adic Tate period of E. Since the symmetric space Hp × H mixes a rigid
analytic topology on the first factor with a complex analytic topology on the

second, one cannot define AJ
(p)
f by directly integrating an appropriate differential

on a two-dimensional region having ∆Ψ as boundary, as in equation (20) defining
AJf . The main steps that make it possible to define the p-adic analogue of AJf
are:

(1) To reinterpret the elliptic modular form f ∈ S2(Γ0(p)) attached to E as
a “mock Hilbert modular form” on SL2(Z[1/p])\Hp×H. This reinterpre-
tation gives a precise meaning to certain 2-cochains on Γ with values in
C×p which are the direct p-adic analogues of the corresponding cochains
considered in the ATR setting in the algorithms of [DL].

(2) With these cochains in hand, the algorithms of [DL] can be precisely mim-

icked, yielding invariants AJ
(p)
f (∆Ψ) ∈ K×p /q

Z.

For more details on this construction, and the precise definition of AJ
(p)
f , see

[Da01], [Da04]. The article [DP] describes the most efficient algorithms for comput-

ing the Stark-Heegner points AJ
(p)
f (∆Ψ) attached to real quadratic fields. These

algorithms have been implemented in MAGMA and can be downloaded from the
web site

http://www.math.mcgill.ca/darmon/programs/shp/shp.html

References

[BCDT] Breuil, C., Conrad, B., Diamond, F., and Taylor, R., On the modularity of elliptic
curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939.

[BDG] Bertolini, M., Darmon, H., and Green, P. Periods and points attached to quadratic al-
gebras. Heegner points and Rankin L-series, 323–367, Math. Sci. Res. Inst. Publ., 49,
Cambridge Univ. Press, Cambridge, 2004.

[BDP1] Bertolini, M., Darmon, H., and Prasanna, K. Generalised Heegner cycles and p-adic
Rankin L-series, submitted.

[BDP2] Bertolini, M., Darmon, H., and Prasanna, K., Chow-Heegner points on CM elliptic
curves and values of p-adic L-series, in progress.

[CD] Charollois, P., Darmon, H. Arguments des unités de Stark et périodes de séries
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Computing Frobenius elements in Galois groups

Tim Dokchitser

(joint work with Vladimir Dokchitser)

Suppose f(t) ∈ Z[t] is a polynomial of degree n. Write αi ∈ C for its roots,

K = Q(α1, ..., αn)

for the splitting field and G = Gal(K/Q) ⊂ Sn for the Galois group. At almost all
primes p (e.g. those not dividing the discriminant ∆f of f) there is a well-defined
conjugacy class in G, the class of Frobenius [Frobp].

Problem. Suppose we are given f , and we know its Galois group G as a permu-
tation group in Sn. How to compute Frobp at a given prime p?

In the ‘maximal’ case G = Sn the conjugacy classes in G are in one-to-one cor-
respondence with possible cycle types of n-cycles. Then the (well-known) solution
is to factor f̄ = f mod p, and the degrees of the irreducible factors determine the
cycle type. On the other hand, if G is e.g. alternating or dihedral, the situation
is more subtle as the cycle type does not determine the conjugacy class uniquely.
For example in A5 there are two conjugacy classes of 5-cycles, so when f mod p
is irreducible it is not clear which one of them is [Frobp].
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This problem has been studied by Serre and Buhler for A5 and generalized
by Roberts for An, and the solution is that the values of the square root of the
discriminant of f distinguish the conjugacy classes.

In this joint work, we try to address the problem for a general group G ⊂ Sn.
The idea is as follows:

Suppose G has several conjugacy classes with the same cycle type, and fix
g0 ∈ Sn of this type.

Pick a polynomial F ∈ Q[x1, ..., xn] and compute, say, the set of all possible
values F (σ(α)) ∈ K for σ ∈ Sn, i.e. the values of F on all permutations of the
roots. The group G acts on this set, and write m1(x), ...mt(x) ∈ Z[x] for the
minimal polynomials of these values. Now suppose f̄ factors according to our
cycle type. Compute the roots of f̄ ,

f̄(x) = (x− β1) · · · (x− βn) ∈ F̄p[x],

choosing the ordering of βj in such a way that Frobenius x 7→ xp acts on them
as g0. Then F (β) is a root of one (and in general only one) of the reductions of
the polynomials mj . If we are lucky, the index j determines the conjugacy class
uniquely, in which case we found the Frobenius class.

For instance, for G = An ⊂ Sn,

F =
∏

1≤i<j≤n
(xi − xj)

can take two distinct values ±
√
∆f on the permutations of the roots αj , both

rational. In this case m1 = x−
√
∆f and m2 = x−

√
∆f . Now

∏

1≤i<j≤n
(βi − βj)

is a root of either m1 or m2, and this precisely determines the conjugacy class of
Frobenius at p.

For general G, whether or not this method works or not for a given F turns out
to be a purely group-theoretic question about subgroups of Sn. I discussed several
reasonable choices for these subgroups and the invariants F , and the efficiency of
the algorithms that they lead to. In particular, the method does work efficiently
for cyclic, dihedral and alternating groups.

On the extremality of an 80-dimensional lattice

Mark Watkins

Joint work with Zachary Abel, Steve Donnelly, NoamD. Elkies, Scott Kominers,
and Damien Stehlé.

We show the extremality of a specific even unimodular 80-dimensional lattice.
This lattice comes about by a general construction of Quebbemann [2] and is
specifically derived by Schulze-Pillot [4]. It has an automorphism group that
contains SL2(F79), which comes about naturally via a relation to coding theory.
It was the “first candidate” for an extremal lattice of dimension 80, though Bachoc



Explicit Methods in Number Theory 1887

and Nebe [1] found two others (with automorphism group related to that of the
Mathieu group M22) for which it proved easier to show extremality. Our method
of showing extremality (which means that the minimum length of a nonzero vector
is 8) is to use the positivity of the Θ-series of the lattice, and find all 7541401190400
vectors of norm 10. This idea was previously used by Abel, Elkies, and Kominers
in exploring similar questions in dimension 72.

The lattice can be described as a sublattice of the direct sum of two lattices. One
of these is simply a 2-dimensional latticeM2 with determinant p. The other is a 78-
dimensional lattice constructed from E = Q(ζ79). Here we take an ideal A ⊆ OE
such that AĀ = (d) with d ∈ E+ totally positive. This ideal induces a (positive
definite) lattice U78 of dimension 78 via a basis for the ring of integers Z[ζ79],
with the quadratic form given by Q1(u) = trEQ(uūd−1). A computation with the

different gives the determinant to be 7977.
Writing Q0(m) for the quadratic form on M2, we then take the sublattice of

index p of M2 ⊕ U78 given by the pairs (m,u) such that Q0(m) + Q1(u) is a
multiple of 79. A calculation with projection maps shows that this subset is
indeed actually a sublattice. The determinant here is 79 · 7977 · 792, and every
vector has norm divisible by 79; upon dividing this lattice by 79, we thus obtain
an integral unimodular lattice of dimension 80. It will be even when Q0 is even.

Schulze-Pillot relates this construction to coding theory, from which one can
more easily obtain the automorphism group. However, he chooses Q0 to be odd
for simplicity on that side of the argument, and then has to pass to an even lattice
via Kneser’s neighbouring argument. He works in K = Q(

√
−79), and takes

d = 19 as an auxiliary prime that splits in K, which gives A by passing up to E.
The import of d = 19 here is its location in the class group of K; we could obtain
five distinct (even) lattices by this method, one for each ideal class.

The relation to coding theory then allows Schulze-Pillot to find a scaled root
system (of type 80A1, that is, 80 vectors all of the same norm that are mutually
orthogonal) in the lattice, from which a standard construction yields a unimodular
lattice whose automorphism group contains SL2(F79). A calculation shows this
to be identical to our lattice, and as mentioned above, a 2-neighbour of this is our
candidate for an even unimodular extremal lattice in dimension 80.

We now turn to showing that this lattice is extremal, that is, that it has no
vectors of norm 2, 4, or 6. One can make a direct argument to show that neither
of the first two possibilities occur. For vectors of norm 6, we use the Θ-series of
the lattice. This is a modular form of weight 40 and level 1. The space of such
modular forms has dimension 4, and a triangular basis is

f0 = 1 + 1250172000q4 + 7541401190400q5+O(q6),

f1 = q + 19291168q4 + 37956369150q5+O(q6),

f2 = q2 + 156024q4 + 57085952q5 +O(q6),

f3 = q3 + 168q4 − 12636q5 +O(q6).
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We know that Θ80 = f0 + a1f1 + a2f2 + a3f3 for some integers ai, and as noted
above, can show that a1 = a2 = 0 directly. So we can write

Θ80 = 1 + a3q
3 + (· · · )q4 + (7541401190400− 12636a3)q

5 +O(q6),

and by positivity we have a3 ≥ 0. By finding 7541401190400 vectors of norm 10
in the lattice, we will show that a3 = 0, which in turn implies that the lattice is
extremal as claimed.

The capability to find all vectors of norm 10 is made possible via use of the
automorphism group, which reduces the problem by a factor of about 492960 (its
order). Contrariwise, a search for vectors of length 6 would take much longer, as
such a search must be exhaustive.

Upon cataloguing vectors with nontrivial stabiliser (of which there are 483 or-
bits of vectors of norm 10, most with stabiliser of size 3), we are left to find
15298043 orbits (of norm 10) with nontrivial stabiliser. A probabilistic analysis of
the situation (which turns out to be the same as that for the “coupon-collecting”
problem) leads us to a harmonic sum, and so we estimate that about 250 million
vectors of norm 10 will need to be generated to hit each orbit at least once, at
least if the vectors found are suitably random.

We then used the standard lattice vector searching algorithms, augmented by
an idea of pruning. The idea here, first mentioned by Schnorr and Hörner [3], is
to truncate the hyperspheres (or hyperellipsoids) in which the iterative search is
performed, as locations closer to boundaries are somewhat less likely to contain lat-
tice points. Viewed in a different way, pruning demands that the first coordinates
considered (in the Gram-Schmidt basis) be small in size, as the latter coordinates
will also need to be small if a sufficiently short vector is to be found. Furthermore,
by periodically switching the lattice basis via a small perturbation, we can reduce
ourselves to only searching in the first 60 or so (of 80) layers of the pruning tree
(with but one choice, the most central, being considered for the final coordinates),
and this also has a noticeable impact on the number of norm 10 vectors found per
unit time. In this idea, we again exploit the irrelevance of exhaustivity.

Changing the basis is not totally cost-free, as lattice reduction must be applied
to the new perturbed basis (this takes 2-3 minutes). However, due to the large
dimension of the problem, it is unlikely that LLL will return an identical reduced
basis to one that had previously been found via such randomisation. Also, all such
bases should be similar in their enumeration efficacy.

In practise, we switched the basis every 105 vectors, which typically took about
20-30 minutes to find. Our whole run took about 2 cpu-months, or about 4 days of
real time on 12-16 CPUs, due to the obvious parallelisation of running a different
basis on each CPU. Without pruning, our estimate is that it would have taken
about 1000 times longer (or more). We did indeed find the expected 15298043 free
orbits of norm 10 vectors, and conclude that the lattice is thus extremal.
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Intersecting curves on a torus

Arjen Stolk

This talk is about a problem in algebraic geometry that arises when studying
certain questions of discrete tomography. Tomography is concerned with recon-
structing images from sets of projections.

The images we consider are finite sets of numbers placed on a square lat-
tice. The space of such images can be represented by the Laurent polynomial
ring Q[u, u−1, v, v−1]. The monomials represent grid positions, the coefficients the
numbers placed at these positions.

The projections are made as follows. For a finite set of distinct directions,
take the sum of the numbers placed on the points along each straight line in that
direction. The ring homomorphism

σa,b : Q[u, u−1, v, v−1] −→ Q[w,w−1]

sending u to w−b and v to wa precisely identifies those monomials which are on
the same line in direction (a, b). For a finite set of directions one considers the
map

σ : Q[u, u−1, v, v−1] −→ Q[w,w−1]n,

where σ = (σa1,b1 , . . . , σan,bn).
Of interest is the computation of linear dependencies between the line sums of

images. These are linear maps d : Q[w,w−1]n → Q such that d ◦ σ = 0, i.e. linear
combinations of the line sums that are zero for all images. The space of such
dependencies is Hom(cok(σ),Q). Satisfying all dependencies is clearly necessary
for a vector of line sums to come from an image. One can show that it is also
sufficient. Thus the dependencies provide a way to identify which line sums arise
from images.

Geometrically, the map σa,b embeds a one-dimensional torus as a closed sub-
group of a two-dimensional torus. The map σ takes a disjoint union of such
one-dimensional tori and maps it to their union inside the two-dimensional torus.
From this it is clear that the cokernel, which measures the difference between the
rings of functions of these objects, consists of local contributions coming from the
intersection points of the one-dimensional tori.

These intersection points can be explicitly computed for any given set of di-
rections. Each local contribution can then also be described explicitly by locally
‘taking logarithms’, which turns the problem into some finite linear algebra. When
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combined these provide an explicit way to compute generators for the space of de-
pendencies.

Algorithms for automorphic forms on Shimura curves

John Voight

Modular symbols allow a detailed investigation of classical modular forms. Auto-
morphic forms on more general Shimura varieties have proved no less interesting
to study, and yet many aspects of the theory are not as well understood. In joint
work with Matthew Greenberg, we describe below an algorithm to compute au-
tomorphic forms on Shimura curves working with explicit group cohomology; via
the Jacquet-Langlands correspondence, these methods also allow the computation
of Hilbert modular forms over totally real fields of odd degree. Remarkably, our
methods work without reference to cusps or a canonical moduli interpretation of
the Shimura curve, as these features of the classical situation are absent.

Let F be a totally real field of degree n = [F : Q] and let ZF denote its ring of
integers. Let S2(N) denote the Hecke module of (classical) Hilbert modular cusp
forms over F of parallel weight 2 and level N ⊂ ZF . Our main result is as follows.

Theorem. There exists an algorithm which, given a totally real field F of strict
class number 1 and odd degree n, and an ideal N of ZF , computes the system of
Hecke eigenvalues associated to Hecke eigenforms in the space S2(N) of Hilbert
modular forms of parallel weight 2 and level N.

We now sketch the method of the above algorithm. Let B be the quaternion
algebra ramified at all but one real place of F and at no finite place. Let O
be an Eichler order of level N, let O∗1 denote the units of norm 1 in O, and let
Γ = ΓB0 (N) = O∗1/{±1}. Let SB2 (N) denote the space of modular forms of weight
2 on the Shimura curve X = XD

0 (N) associated to O. By the Jacquet-Langlands
correspondence, there is an isomorphism

SB2 (N)
∼−→ S2(N)

of Hecke modules.
Note this is only possible when n has odd degree, since the number of ramified

places of B must be even. When n has even degree, Jacquet-Langlands relates the
space S2(N) to a space of modular forms on a zero-dimensional Shimura variety,
corresponding to a definite quaternion algebra; this avenue has been pursued by
Dembélé and his coauthors.

We compute with these spaces in cohomology, by using the analogue of the
Eichler-Shimura theorem: there is an isomorphism of Hecke modules

H1(ΓD
0 (N),C) ∼−→ SB2 (N)⊕ SB2 (N),

where denotes complex conjugation. The group H1(Γ,Q) = Hom(Γ,Z) is ‘just’
group cohomology: it is a free Z-module of rank 2g, where g is the genus of X .

The above results extend to higher weight k by an appropriate modification of
the coefficient module.
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The Hecke operators act on H1(Γ,Z) via double cosets as follows. Let l ⊂ ZF
be a prime and choose a splitting ιl : O →֒ M2(ZF,l). For (x : y) ∈ P1(Fl), let
λ(x:y) ∈ O be an element such that

ιl(λ(x:y)) ≡
(
x y
0 0

)
(mod l)

and the reduced norm of λ(x:y)) is a totally positive generator of l.

Then for f ∈ H1(Γ,Z), we define f | Tl : Γ → Z as follows: for all γ ∈ Γ and
a ∈ P1(Fl), there is a unique b ∈ P1(Fl) and δa ∈ Γ such that

λaγ = δaλb.

We then define

(f | Tl)(γ) =
∑

a∈P1(kl)

f(δa).

Therefore, to effectively compute systems of Hecke eigenvalues on SD
2 (N), we

need algorithms to:

(1) Compute an explicit finite presentation of Γ;
(2) Compute a generator (with totally positive norm) of a left ideal I ⊂ O;

and
(3) Given δ ∈ Γ, write δ as an explicit word in the generators for Γ, i.e., solve

the word problem in Γ.

In Problem 3, we are really finding a replacement for the Manin trick for mod-
ular symbols, which gives a kind of substitute for the Euclidean algorithm in this
context.

We address Problems 1 and 3 by the computation of a fundamental domain.
Let p ∈ H be a point with trivial stabilizer Γp = {1}. We define the Dirichlet
domain centered at p to be

D(p) = {z ∈ H : d(z, p) ≤ d(gz, p) for all g ∈ Γ}.
The set D(p) is a closed, connected, and hyperbolically convex fundamental do-
main whose boundary consists of finitely many geodesic segments. The key result
is then as follows:

Proposition. There exists an algorithm which, given Γ and p ∈ H, returns the
Dirichlet domain D(p), a finite presentation for Γ with a minimal set of generators,
and a solution to the word problem for Γ.

In Problem 2, we define the structure of a lattice on I in a natural way and
use a variation of the LLL-reduction algorithm to find an element in I of small
reduced norm.

As an application of our results, we have proven the following result, in joint
work with Lassina Dembélé and Matthew Greenberg.

Theorem. There exists a finite, nonsolvable Galois extension K of Q which is
ramified only at p = 3 and one ramified only at p = 5.
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This answers a conjecture of Gross (for p = 3 and p = 5). For p ≥ 11, Serre
constructed such extensions ramified only at p using the Galois representation
associated to a classical cusp form of level 1. Recently, Dembélé has constructed
such an extension ramified only at p = 2 arising from a Hilbert modular form
of level 1 and parallel weight 2 over the totally real field Q(ζ32)

+. Using our
techniques, we settle Gross’ conjecture by exhibiting a Hilbert modular form of
level 1 and parallel weight 2 over Q(ζ27)

+ (for p = 3) and level p5 | 5 and parallel
weight 2 over F ⊂ Q(ζ25) with [F : Q] = 5 (for p = 5). For p = 3, our field K has
Galois group PGL2(F327) · 9 and so has degree

329(354 − 1) = 3990838394187339929534246606941971670344.

The root discriminant of F satisfies δF < 76.21, which is remarkably small in
comparison, and similar results hold for p = 5.

The case p = 7 seems difficult to reach using these methods, owing to the fact
that there are no interesting forms over Q(ζ7)

+ but the genus of the Shimura curve
for the field of degree 7 inside Q(ζ49) has genus 22684 which places it beyond the
realm of computational feasibility at the moment.

Solving quadratic equations over number fields

Denis Simon

The following are latex notes by Bjorn Poonen, taken in real time during the talk:

Over Q: Given a, b, c ∈ Z, to find x1, x2, x3 ∈ Z not all zero such that ax21 + bx22 +
cx23 = 0, use the following two steps:

(1) Minimization (find a minimal integral model): Factor a, b, c, and eliminate
the bad primes by local computations.

(2) Reduction (LLL).

Today we’ll generalize the minimization step to number fields.
First let us describe minimization over Q. Let Q ∈ M3(Q) be symmetric with

detQ 6= 0.

(1) Clear denominators, to make Q ∈M3(Z).
(2) Divide by gcd(a, b, c).
(3) For p| detQ, compute the kernel of Q mod p. Find U ∈ SL3(Z) such that

QU mod p has first two columns zero.
(4) If dimker(Q mod p) = 2, then tUQU mod p has zero entries except in the

lower right corner. Multiply Q on left and right by the matrix



1

1
p




to get pQ′ with detQ′ = (detQ)/p. (Legendre: make a, b, c pairwise
coprime.)

(5) If dimker(Q mod p) = 1 and p2| detQ, tUQU mod p has nonzero entries
only in the upper left 2 × 2 block, and the lower right entry is 0 mod p2.
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Multiply Q on left and right by the matrix



p

p
1


 to get pQ′ with

detQ′ = p−2(detQ). (Legendre: make a, b, c squarefree.)
(6) If dimker(Q mod p) = 1 and p| detQ and p2 ∤ detQ. Choose U as before

to get upper left 2× 2 block mod p; then the existence of a p-adic solution
implies that the determinant of this block is a square mod p.



p

1
1





∗ ∗ 0
∗ 0 0
0 0 0





p

1
1




Get pQ′ with detQ′ = p−1 detQ. (Legendre: compute square root of −b/a
mod c.)

Over number fields:

(1) OK (gp: nfinit).
(2) Just store the gcd as an ideal I0.

View Q as a function I1 ⊕ I2 ⊕ I3 → I0. Define

det(Q; I0, I1, I2, I3) := (detQ)I−30 (I1I2I3)
2.

Integral model: Qij ∈ I0I
−1
i I−1j for all i and j; in this case det(Q; I0, I1, I2, I3) is

an integral ideal.

Two-coverings of Jacobians

Ronald van Luijk

Let k be a field of characteristic different from 2, and let ks be a separable
closure of k. Let C be a curve of genus 2 defined over k, with Jacobian variety J .
A two-covering of J is a variety X over k, together with a morphism π : X →
J , such that there exists an isomorphism g : Xks → Jks satisfying π = [2] ◦ g,
where [2] is the multiplication-by-2 map. Given a choice of g, we obtain a cocycle
σ → g ◦ σ(g−1), where the composition of isomorphisms is translation by some
2-torsion point Pσ. This determines a well-defined cocycle class in H1(J [2]) =
H1
(
Gal(ks/k), J [2](ks)

)
that does not depend on the choice of g. We thus get

a bijection between isomorphism classes of two-coverings of J and elements of
H1(J [2]). In this talk, we show that the two-coverings corresponding to elements
of a large subgroup of H1(J [2]) (containing the Selmer group when k is a global
field) can be embedded as intersection of 72 quadrics in P15

k , just as the Jacobian J
itself. Moreover, we can give explicit equations for the models of these twists in
the generic case, extending the work of Gordon and Grant which applied only to
the case when all Weierstrass points are rational. In addition, we can describe
elegant equations on the Jacobian itself.

The key idea is as follows. Let C be given as y2 = f(x), where f ∈ k[x] is a
separable polynomial of degree 6. Set L = k[x]/f and Ls = L ⊗k ks ∼= ks[x]/f .
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Denote the norm from L to k by N = NL/k. The following diagram exists.

1

��

1

��

µ2(k
s)

��

µ2(k
s)

��

1 // M //

��

µ2(L
s)

��

N
// µ2(k

s) // 1

1 // J [2](ks) //

��

µ2(L
s)

µ2(ks)

N
//

��

µ2(k
s) // 1

1 1

HereM is by definition the kernel of the induced map N : µ2(L
s) → µ2. The Weil-

pairing extends to a pairing on µ2(L
s) and a pairing on M × µ2(L

s)/µ2, making
the diagram is self-dual around its diagonal.

The action of J [2] on J induces a linear action of J [2] on the model of J in
P15, and thus on P15 itself. The corresponding projective representation J [2] →
PSL(16) lifts to a linear representation M → SL(16). Since M is abelian, this
representation is the direct sum of 16 characters of M . It turns out they are those
elements of µ2(L

s)/µ2, the dual ofM , that are not contained in the image of J [2].
These characters give a set of coordinates on P15. This gives the homogeneous
coordinate ring of P15 a natural grading by the group µ2(L

s)/µ2. The most im-
portant ingredient in our work is the fact that the ideal that determines the model
of J in P15 is homogeneous with respect to this grading.

Higher descents on elliptic curves with a rational 2-torsion point

Tom Fisher

Let E/K be an elliptic curve over a number field. Descent calculations on E can
be used to find upper bounds on the rank of the Mordell-Weil group E(K), and
to compute covering curves that assist in the search for generators of E(K). The
general method of 4-descent, developed in the PhD theses of Siksek [4], Womack [7]
and Stamminger [6], has been implemented in MAGMA [3] (when K = Q) and
works well for curves of sufficiently small discriminant. However the method can
be improved when E has a rational 2-torsion point. In this case we follow Bremner
and Cassels [1], see also Siksek [4].

We recall that E has a Weierstrass equation of the form

y2 = x(x2 + ax+ b)
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with 2-torsion point T = (0, 0). Let φ : E → E′ be the 2-isogeny with kernel {O, T }
and let φ̂ : E′ → E be the dual isogeny. There is an injective group homomorphism

δ : E(K)/φ̂E′(K) → K×/(K×)2 given (for P 6= O, T ) by P = (x, y) 7→ x.
Suppose P = (x, y) ∈ E(K) with δ(P ) = ξ1 mod (K×)2. Then x = ξ1(s/t)

2 and
y = ξ1(rs/t

3) where

(1) r2 = ξ1s
4 + as2t2 + (b/ξ1)t

4.

Parametrising a conic over K gives

(s2 : t2 : r) = (f(l,m) : g(l,m) : h(l,m))

where f , g and h are binary quadratic forms. Then

(2) f(l,m) = ξ2s
2 and g(l,m) = ξ2t

2

for some ξ2 ∈ K×. Parametrising each of these conics over K gives

(l : m : s) = (p1(c, d) : p2(c, d) : p3(c, d))

(l : m : t) = (q1(θ, ψ) : q2(θ, ψ) : q3(θ, ψ))

where the pi and qi are binary quadratic forms. Then

(3) p1(c, d) = ξ3q1(θ, ψ) and p2(c, d) = ξ3q2(θ, ψ)

for some ξ3 ∈ K×. The singular fibres in the pencil of quadrics spanned by (3),

are defined over L = K(
√
b/ξ1) and L

′ = K(
√
ξ1). We write

p1(c, d)− εp2(c, d) = ξ3α(c + γd)2

for some ε, α, γ ∈ L. Then by (3) we have

q1(θ, ψ)− εq2(θ, ψ) = α(c+ γd)2.

Parametrising a conic over L gives

(θ : ψ : c+ γd) = (Q1(λ, µ) : Q2(λ, µ) : Q3(λ, µ))

where Q1, Q2 and Q3 are binary quadratic forms. Then

θ = πQ1(λ, µ) and ψ = πQ2(λ, µ)

for some π ∈ L×. Let 1, β be a basis for L over K. Writing λ = x + βy and
µ = u+ βv we expand to give

πQ1(λ, µ) = F1(x, y, u, v) + βF2(x, y, u, v)

πQ2(λ, µ) = G1(x, y, u, v) + βG2(x, y, u, v)

where F1, F2, G1 and G2 are quadratic forms with coefficients inK. Since θ, ψ ∈ K
it follows that

(4) F2(x, y, u, v) = G2(x, y, u, v) = 0.

Up to linear changes of co-ordinates over K, this quadric intersection depends
only on the image of π in L×/K×(L×)2, and hence only on ξ4 := NL/K(π) ∈
K×/(K×)2. We recover π from ξ4 by again solving a conic over K.
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The equations (1), (2), (3), (4) define covering curves C1, C2, C3, C4 that fit in
a commutative diagram

C4
//

��

C3
//

��

C2
//

��

C1

��   
A

A

A

A

A

A

A

A

E
φ

// E′
φ̂

// E
φ

// E′
φ̂

// E

where the vertical maps are isomorphisms defined over K, and all other maps are
morphisms of degree 2 defined over K. At each stage (j = 1, 2, 3, 4) there are
only finitely many ξj ∈ K×/(K×)2 for which the corresponding covering curve Cj
is everywhere locally soluble. Thus each rational point on E lifts to one of only
finitely many 4-coverings C4 of E, and these can be computed explicitly.

We recall that the general method of 4-descent requires that we compute the
class group and units of a degree 4 extension of K. In contrast (assuming the class
group and units of K itself are known) the above method only requires that we
solve conics over K and over L. We make the following improvements.

• We use the Cassels pairing to efficiently compute upper bounds for the
rank. (This was not required in [1], since for the curves considered there,
descent by 2-isogeny already shows that the rank is at most 1.)

• By solving conics over both L and L′ we can write C4 as a quadric in-
teresection in two different ways. It is then easy to compute one further
covering curve. The same idea gives two further covering curves when
all the 2-torsion points of E are K-rational. This corresponds to a full
8-descent on E.

• We replace the problem of solving a conic over L with that of solving a
quadratic form of rank 4 over K. Taking K = Q the latter can be solved
efficiently using an algorithm of Simon [5].

We are in the process of writing a program in MAGMA to compute rank bounds
by this method (when K = Q). Initial versions of this program have assisted
in finding an elliptic curve E/Q with E(Q)∼=Z/12Z × Z4 (the previous largest
known rank for this torsion subgroup was 3) and in finding 10 new examples of
elliptic curves E/Q with E(Q)∼=Z/2Z × Z/8Z × Z3, including one where every
point of infinite order has canonical height greater than 100. The examples are
listed on Dujella’s website [2]. The main reason we need higher descents to make
these searches is that we would otherwise be swamped by examples which, while
appearing to be candidates for large rank, are in fact accounted for by elements of
2-power order in the Tate-Shafarevich group.

The universal family of elliptic curves with torsion subgroup Z/2Z × Z/8Z is
Eλ : y2 = x(x2 +Ax +B) where

A = (λ2 − 1)4 − 32λ4

B = −16λ4(λ2 + 1)2(λ4 − 6λ2 + 1).

In addition to the 10 new rank 3 examples mentioned above, we have found 7
examples that conjecturally have rank 3, in the sense that our best upper bound
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for the rank is 3 and we have found two independent points of infinite order. The
corresponding values of λ and heights of the known generators are as follows.

λ ĥ(P1) ĥ(P2) ĥ(P3)
15/272 15.49 71.16 ?
9/296 18.03 51.62 ?

303/520 14.67 159.65 ?
672/689 106.64 185.69 ?
101/770 55.31 219.37 ?
865/888 109.63 206.01 ?
581/922 41.38 68.39 ?

These points were found by searching on 4-coverings. We are presently unable to
compute the 8-coverings (as curves of degree 8), since the method in [6] requires
that we solve a conic over a degree 4 number field, and this seems out of reach
for examples of this size. The curves are also far too large for any sort of L-
value computation, so we do not know any (even conjectural) upper bound on the
heights of the missing generators.
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Non-split Cartan modular curves

Burcu Baran

For any positive integer n, let X+
ns(n) denote the modular curve associated to the

normalizer of a non-split Cartan subgroup of GL2(Z/nZ). The curve X
+
ns(n) clas-

sifies isomorphism classes of elliptic curves with a certain type of “non-split”level n
structure. Historically, both the integral points and the rational points of X+

ns(n)
play crucial roles in two different problems. The integral points are closely related
to the class number one problem and the rational points are described by Serre’s
uniformity conjecture. In this talk, after a brief introduction to X+

ns(n) we focus
on all X+

ns(n) whose genus is less than or equal to 2 and has finitely many integral
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points. We discuss their equations and integral points. We also discuss X+
ns(13)

which is a genus 3 curve and is defined by a quartic in P2.

The unit-residue group

Gabriele Dalla Torre

The Tate pairing of curves over finite fields is a non-degenerate paring from a
subgroup and a quotient group of the divisor class group onto a quotient group of
the multiplicative group of the finite field. The goal of this talk is to study the
unit-residue group, which is an obstruction to a similar pairing on number fields.

Given a positive integer m and a local field F which contains a primitive m-th
root ζm of unity, it is possible to define the norm-residue symbol, an antisymmetric
bilinear map of F ∗ × F ∗ into the group 〈ζm〉. This definition can be extended to
ideles J of any global field K which contains a primitive m-th root of unity and
we obtain a non-degenerate pairing on J/Jm × J/Jm.

Definition 1. Let K be a global field containing a primitive m-th root of unity
and let U be the unit idele group of K. The unit-residue group is the quotient

U/U
⊥
, where U = UJ/Jm and U

⊥
is the annihilator of U with respect to the

inner product defined by the norm-residue symbol.

The unit-residue group is isomorphic to (Z/mZ)2·|S∞|, where S∞ is the set of
infinite primes, and hence is trivial when K is a function field. Moreover the

norm-residue symbol induces a non-degenerate pairing on U/U
⊥ × U/U

⊥
.

Definition 2. Let K be a number field containing a primitive m-th root of unity.
Let J be the idele group of K and U be the unit idele group of K. The virtual

subgroup V is the group V = V/U⊥, where V = (K∗ ∩ U) · U⊥ = (K∗ · U⊥) ∩ U .

The virtual subgroup is a maximal self-annihilating subgroup of the unit-residue
group, but it is not generally a free Z/mZ-module.

We give examples and, in some cases, a complete description of the unit-residue
group and the virtual subgroup. Our results include the following theorem.

Theorem 1. Let K be a cyclic cubic or quintic number field where 2 splits and
let m = 2. Then the virtual subgroup induces a bijection between the set of primes
above 2 and the set of infinite primes.
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Computing Igusa Class Polynomials

Marco Streng

The Hilbert class polynomial HK ∈ Z[X ] of an imaginary quadratic number
field K has as roots the j-invariants of complex elliptic curves having complex
multiplication (CM) by the ring of integers of K. These roots generate the Hilbert
class field of K, and Weber [9] computed HK for many small K. The CM method
uses the reduction of HK modulo large primes p to construct elliptic curves over
Fp with a prescribed number of points, for example for cryptography. The bit size

of HK grows exponentially with K, like Õ(∆), and so does the runtime of the
algorithms that compute it.

If we go from elliptic curves (genus 1) to genus 2 curves, we get the Igusa class
polynomials HK,n ∈ Q[X ] (n = 1, 2, 3) of a quartic CM field K. Their roots are
the Igusa invariants of all complex genus 2 curves having CM by the ring of in-
tegers of K. As in the case of genus 1, these roots generate class fields and the
reduction modulo large primes p yields cryptographic curves of genus 2. Comput-
ing Igusa class polynomials is considerably more complicated, in part because of
their denominators. Recently, various algorithms have been developed [1, 2, 6, 8],
but as these algorithms use approximations to an unspecified precision, no runtime
bound or proof of correctness was given.

In [7], we describe a complete and correct algorithm that computes Igusa class

polynomials HK,n ∈ Q[X ] of quartic CM fields K = Q(
√
∆0,

√
−a+ b

√
∆0),

where ∆0 is a real quadratic fundamental discriminant and a, b ∈ Z are such that
−a + b

√
∆0 is totally negative. Our algorithm is based on the complex analytic

approach of [6] and [8]. This is the first proof of correctness and the first runtime
bound of any algorithm that computes these polynomials. The discriminant ∆ of
K is of the form ∆ = ∆1∆

2
0 for a positive integer ∆1. We may and will assume

0 < a < ∆, as each quartic CM field has such a representation. We disregard the
degenerate case of non-primitive quartic CM fields, i.e., those that can be given
with b = 0, as abelian varieties with CM by non-primitive quartic CM fields are
isogenous to products of CM elliptic curves, which are given already by the Hilbert
class polynomial. We have the following runtime bound.

Main Theorem. The algorithm in [7] computes HK,n (n = 1, 2, 3) for any prim-
itive quartic CM field K in which 2 and 3 do not ramify. It has a runtime of

Õ(∆
7/2
1 ∆

11/2
0 ), and the bit size of the output is Õ(∆2

1∆
3
0).

An essential part of the proof is the denominator bound, as provided by Goren
and Lauter [5] and Goren [3,4]. As the results of [3,4] assume ramification bounds
on the primes 2 and 3, we have a similar restriction. This restriction will disappear
as soon as Goren’s results are extended to this case.

Yang’s [10] denominator bounds are tighter than those of Goren and Lauter,
but are proven only for a small class of CM fields. For that class of CM fields, we

get an improvement from Õ(∆
7/2
1 ∆

11/2
0 ) to Õ(∆3/2

1 ∆7/2
0 ) + Õ(∆5/2

1 ∆5/2
0 ).
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We do not claim that our runtime is optimal, but an exponential runtime is
unavoidable, because the degree of the Igusa class polynomials (as with Hilbert
class polynomials) is already bounded from below by a power of the discriminant.
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Rings associated to binary forms and the class groups of those rings

Melanie Wood

The association of algebraic objects to forms has had many important applications
in number theory. Gauss, over two centuries ago, studied quadratic rings and ideals
associated to binary quadratic forms, and found that ideal classes of quadratic
rings are exactly parametrized by equivalence classes of integral binary quadratic
forms. Delone and Faddeev, in 1940, showed that cubic rings are parametrized by
equivalence classes of integral binary cubic forms. Birch, Merriman, Nakagawa,
Corso, Dvornicich, and Simon have all studied rings associated to binary forms
of degree n for any n, but it has not previously been known which rings, and
with what additional structure, are associated to binary forms. Rings and certain
ideals have been associated to classes of binary forms, by writing the bases and
multiplication tables in terms of the coefficients of the form.

In this talk, we describe a geometric construction for rings and ideals associ-
ated to binary forms, which gives Gauss composition, the theorem of Delone and
Faddeev, and the rings and ideals associated to higher forms. We describe briefly
what algebraic structures are parametrized by binary n-ic forms, for all n. The
algebraic data associated to an integral binary n-ic form includes a rank n ring,
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an ideal class for that ring, and a condition on the ring and ideal class that comes
naturally from geometry. We further explain that classes of pairs of n by n matri-
ces parametrize the ideal classes of rings associated to binary n-ic forms. We give
a geometric construction for the rings and ideals from a pair of matrices, and show
how to use the Eagon-Northcott complex to make this geometric construction for
all matrices, even the pair of zero matrices. These parametrizations work when any
base scheme replaces the integers, and the correspondences between forms and the
algebraic data are functorial in the base scheme. The proofs of these statements
are all included in the author’s PhD thesis.

An integral version of Shimura’s conjecture on Petersson inner
products

Kartik Prasanna

The aim of this talk is to motivate and outline an integral version of Shimura’s
conjecture on Petersson inner products of quaternionic modular forms. Let F be
a totally real field and f a Hilbert modular newform over F of weights (k1, . . . , kd)
with k1 ≡ · · · ≡ kd mod 2. Let B be a quaternion algebra over F such that f
admits a Jacquet-Langlands transfer to B. Shimura studied the question of how
the Petersson inner products 〈f, f〉 and 〈fB, fB〉 are related to each other, when
f and fB arithmetically normalized. (See below for an explanation of this term.)
In particular, he made the following conjecture:

Conjecture 1. (Shimura) Let Σ∞ denote the set of infinite places of F . Then
for each v ∈ Σ∞, there exists a complex number cv such that (for varying B)

(1) 〈fB, fB〉 ∼Q̄×

∏

v∈Σ∞,v∤discB

cv.

Remark 2. (Arithmetic normalizations) The form fB may be thought of as a
section of a vector bundle over a quaternionic Shimura variety. The variety and
this bundle admit canonical models over a suitable number field Kf , and even
integral models at good primes p, using which fB can be normalized up to a
p-unit in Kf .

Towards this conjecture, Shimura [5] showed that if B1 and B2 are complemen-
tary quaternion algebras i.e. such that Σ∞ = {v ∈ Σ∞ : v | discB1} ⊔ {v ∈ Σ∞ :
v | discB2}, then

〈f, f〉 ∼Q̄× 〈fB1 , fB1〉〈fB2 , fB2〉.
In later work, Michael Harris [1] proved Shimura’s conjecture under the technical
hypothesis that the automorphic representation π attached to f admits at least
one finite place at which it is discrete series.

We would like to make a more precise version of Shimura’s conjecture, that is
valid up to p-units for good primes p. To motivate this, we look at the simplest
case, that of F = Q and f a form of weight 2 with rational Fourier coefficients.
Then f corresponds to an isogeny class C of elliptic curves over Q. Suppose that
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the conductor of f is (a square-free integer) N so that f may be viewed as a
differential on the modular curve X := X0(N). Let B be an indefinite quaternion
algebra with N− = discB|N . Then f admits a Jacquet-Langlands transfer fB to

the Shimura curve XB := XN−

0 (N+) where N = N+N−. Further, if E and E′

denote the strong elliptic curves in C corresponding to X and XB respectively, ϕ
and ϕB the corresponding modular parametrizations, and p is a non-Eisenstein
prime for f (i.e. such that the Galois representation E[p] is irreducible), then one
can show that

(2)
〈f, f〉

〈fB, fB〉
∼ degϕ

degϕB
∼
∏

q|N−

cq,

where cq is the order of the component group (over the algebraic closure) of the
Neron model of E at q, and ∼ now denotes equality up to p-adic units. The first ∼
above follows from an analysis of the Manin constant for f and fB and using that E
and E′ are isogenous by an isogeny of degree prime to p; the second ∼ is a theorem
of Ribet-Takahashi [4]. (See [2], Sec. 2.2.1 for more details.) The constants cq are
arithmetically interesting, since they measure level-lowering congruences satisfied
by the form f at q.

Example 3. The elliptic curve

y2 + y = x3 − x2 − 2174x− 151262

has conductor N = 291 = 3 · 97. For this curve, c3 = 23 and c97 = 1.

Combining (1) and (2), we are lead to the following refined version of Shimura’s
conjecture for arbitrary totally real fields F , which appeared in [3]. (We assume
here that p is a good prime for f i.e. such that p ∤ discF , cond f , [F : Q] and the
class number of F and further that p is not Eisenstein for f .)

Conjecture 4. ( [3], 4.2) Let π = ⊗vπv denote the automorphic representation
of GL2(AF ) corresponding to f . For each place v of F such that πv is discrete
series, there exists a complex number cv such that

(3) 〈fB, fB〉 ∼
〈f, f〉∏
v|discB cv

,

where ∼ denotes equality up to a p-adic unit.

Naturally, one would expect that for infinite places v, cv is transcendental,
while for finite places v, cv is an algebraic integer and measures level-lowering
congruences satisfied by f at v.
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Towards Cohen-Lenstra heuristics for orders

Manjul Bhargava

We determine the mean number of 3-torsion elements in the ideal groups and class
groups of quadratic orders. In fact, we are able to determine these means for any
family of quadratic orders defined by suitable sets of local conditions.

As a consequence, we show that the difference between the average number of
order 3 ideals and the average number of order 3 ideal classes, in any such family
of complex quadratic orders, is independent of the family!

Complete addition laws for all elliptic curves over finite fields

Daniel J. Bernstein

(joint work with Tanja Lange)

This talk reports the latest news from a joint project with Tanja Lange to find,
for each elliptic curve E, the fastest possible complete addition law for E.

Quaternionic Shimura varieties and Stark-Heegner points

Matthew Greenberg

Let F be a totally real number field of narrow class number one with ring of
integers OF . Let N be a squarefree ideal of OF and let E be an elliptic curve over
F with conductor N . Let O be a OF -order in a non-CM quadratic extension K
such that (discO, N) = 1. Let H+

O be the narrow ring class field of K associated
to O. Under the assumption that the sign in the functional equation of L(E/K, s)
is −1, one has

(1) ords=1 L(E/H
+
O , s) ≥ [H+

O : K].

In this case, the conjecture of Birch and Swinnerton-Dyer predicts that the rank
of E(H+

O) is at least [H
+
O : K]. Our goal is to present, under the assumption that

the sign in the functional equation of L(E/K, s) is −1, analytic constructions of
conjecturally algebraic points on E which should generate a finite index subgroup
of E(H+

O) under the assumption that equality holds in (1). Our constructions
generalize constructions of Darmon for the following special cases:

(1) K is an ATR (almost totally real) extension of F and all primes ℓ|N split
in K.
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(2) F = Q, K is real quadratic and there is a prime p|N which is inert in K
and all ℓ|N , ℓ 6= p, split in K.

Let

Σ = {ℓ|N : ℓ is inert in K} ∪ {infinite places of K}.
Our assumption that the sign in the functional equation of L(E/K, s) is −1 im-
plies that |Σ| is odd. Assume that Σ contains a nonarchimedean place p. Let B
be the quaternion F -algebra ramified precisely at the primes in Σ− {p}. Assum-
ing the modularity of E/F , the Jacquet-Langlands correspondence implies that
L(E/F, s) = L(π, s), where π is an automorphic representation of B×(AF ).

Let R0(N
+) be an Eichler OF -order in B of level N+, where N+ is the product

of the primes dividing N which are not in Σ. Let R = R0(N
+)⊗OF OF,{p}, where

OF,{p} denotes the ring of {p}-integers of F . Let Γ0(N
+) and Γ be the groups of

norm one units of the orders R0(N
+) and R, respectively.

Using p-adic integration, we associate a cohomology class

ϕ ∈ Hn+1(Γ,K×p )

to π, where n is the number of infinite places of F at which B is split. There is a
natural pairing

〈·, ·〉 : Hn+1(Γ,K×p )×Hn+1(Γ,Z) −→ K×p

The subgroup Λϕ := 〈ϕ,Hn+1(Γ,Z)〉 is a lattice in K×, the lattice of periods of
ϕ,and we obtain an induced Abel-Jacobi map

AJϕ : Bn(Γ,Z) −→ K×p /Λϕ,

where Bn(Γ,Z) is group of n-boundaries on Γ with coefficients in Z.

Conjecture [4, Conjecture 2]. Λϕ is commensurable with the Tate lattice of
E/Kp.

In [3], this conjecture is proved using Hida theory in the case F = Q. The case
F = Q and B =M2(Q) was previously known by work of Darmon [2]. Let qE ∈ Fp

be the Tate period of E. Assuming the above conjecture, we may find an isogeny

β : Kp/Λϕ −→ Kp/q
Z
E = E(Kp).

To each optimal embedding ψ : O → R0(N
+), we may naturally associate an

n-boundary ∆ψ ∈ Bn(Γ,Z) and set

Pψ = βAJϕ(∆ϕ) ∈ E(Kp)

Conjecture [4, Conjecture 3]. The point Pψ belongs to E(H+
O).

We present the following result, proved in [5], as evidence for this conjecture.

Theorem. Suppose F = Q. Let χ be an unramified quadratic character of
Gal(K̄/K) and let Hχ be the extension of K cut out by χ. Then

∑

σ∈Gal(H+
O
/K)

χ(σ)Pψσ ∈ E(Hχ).
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This theorem in the case B = M2(Q) was previously known by work of Bertolini
and Darmon [1], and our techniques of proof are based on theirs.
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Un survol de l’obstruction de Brauer–Manin entière

Jean-Louis Colliot-Thélène

Soient k un corps de nombres, Ω l’ensemble de ses places, kv le complété de k
en une place v. Soit Ω∞ l’ensemble des places archimédiennes de k. Soit X une
k-variété algébrique. On note X(Ak) l’espace des adèles de X . On a l’application
diagonale X(k) → X(Ak).

Lorsque X/k est propre, X(Ak) cöıncide avec le produit topologique des X(kv).
Dans ce cas, l’image de X(k) dans X(Ak) est dense si et seulement si le principe
de Hasse et l’approximation faible valent pour X .

On s’intéresse ici au cas où X/k n’est pas nécessairement propre, par exemple
au cas des variétés affines. On note X•(Ak) l’espace des adèles de X , modifié de
la façon suivante : pour chaque place archimédienne v de k, on remplace l’espace
topologique X(kv) par l’ensemble de ses composantes connexes.

Si l’ensemble X(k) des k-points de X est dense dans X•(Ak), on dit que X
satisfait l’approximation forte.

Deux exemples classiques de variétés satisfaisant cette propriété sont :
1) La droite affine. Dans ce cas l’approximation forte est une généralisation du
théorème du reste chinois.
2) Tout groupe semisimple simplement connexe G tel que le produit

∏
v∈Ω∞

G(kv)
n’est pas compact : c’est là un théorème de Martin Kneser et de V. P. Platonov.

Soit Br X le groupe de Brauer de X . On dispose de l’accouplement de Brauer–
Manin

X•(Ak)× Br X/Br k → Q/Z.

On note X•(Ak)Br ⊂ X•(Ak) l’espace des adèles modifiées qui sont orthogonales
au groupe de Brauer de X . L’image de l’application diagonale X(k) → X•(Ak)
est dans le fermé X•(Ak)Br. Des exemples de variétés affines X pour lesquelles
X•(Ak)Br est un sous-ensemble propre de X•(Ak) se trouvent dans la littérature,
parfois sous une forme quelque peu cachée, comme dans l’étude des représentations
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“spinorielles” ou des “exceptions spinorielles” dans la théorie des formes quadra-
tiques entières (voir [1], Prop. 7.3 et §7.4). On peut aussi construire des exemples
en partant de la définition ci-dessus ( [6]).

Si l’image deX(k) est dense dansX•(Ak)Br , on dit que l’obstruction de Brauer–
Manin entière est la seule obstruction à l’approximation forte sur X .

Théorème 1 (JLCT et Fei Xu [1]) Soient k un corps de nombres et G un k-
groupe semisimple simplement connexe tel que le produit

∏
v∈Ω∞

G(kv) ne soit pas
compact. Soit X/k une k-variété espace homogène de G. Si les groupes d’isotropies
géométriques sont connexes, alors l’obstruction de Brauer–Manin entière est la
seule obstruction à l’approximation forte sur X.

Théorème 2 (JLCT et Fei Xu [1]) Soient k un corps de nombres et G un k-
groupe semisimple simplement connexe tel que le produit

∏
v∈Ω∞

G(kv) ne soit pas

compact. Soit X/k une k-variété espace homogène de G. Si les groupes d’isotropies
géométriques sont abéliens finis, alors l’obstruction de Brauer–Manin entière est
la seule obstruction à l’approximation forte sur X.

La démonstration de ces théorèmes utilise le théorème d’approximation forte
pour G, le principe de Hasse pour les espaces principaux homogènes sous G
(théorème de Kneser, Harder et Chernousov), ainsi que diverses formes de la
théorie du corps de classes (suites exactes de Tate–Nakayama, de Poitou–Tate,
de Kottwiz).

LorsqueG = Spin(q) est le groupe des spineurs d’une forme quadratique de rang
au moins 3, isotrope en une place archimédienne, un cas particulier est le théorème
classique (Eichler, Kneser): Soit q une forme quadratique entière q indéfinie, en
au moins 4 variables. Si un entier n ∈ Z est représenté par q sur chaque anneau
p-adique Zp, alors il est représenté par q sur Z.

Pour les formes de rang 3, il peut y avoir une obstruction de Brauer–Manin
entière à la validité d’un tel énoncé (cela donne lieu à des “exceptions spinorielles”).
L’analyse de cette obstruction donne naissance à un algorithme ( [1], §5.8) permet-
tant de décider si une équation n = q(x, y, z), avec n ∈ Z entier et q une forme
quadratique entière indéfinie, admet une solution en entiers x, y, z ∈ Z (mais cet
algorithme ne permet pas de déterminer explicitement une solution). L’algorithme
requiert la connaissance explicite d’une solution de n = q(x, y, z) avec (x, y, z) ∈ Q
(à ce sujet voir l’article de D. Simon [7]).

Le problème de la représentation d’un entier par une forme quadratique binaire
est aussi très intéressant, comme on peut le voir en lisant le livre [3] de D. Cox,
et aussi diverses notes de F. Lemmermeyer. Dans ce cas, la Q-variété algébrique
sous-jacente X est un espace principal homogène d’un tore algébrique. Le groupe
Br X/Br Q associé est en général infini.

Théorème 3 (D. Harari [5]). Soient k un corps de nombres et T un k-tore
algébrique. L’obstruction de Brauer–Manin entière est la seule obstruction à
l’approximation forte sur tout espace homogène de T .
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C. Demarche [4] vient d’établir un énoncé général qui recouvre les théorèmes 1,
2 et 3.

Soit n un entier positif. Dans [3], Cox donne un algorithme pour décider si
un nombre premier p est représentable sous la forme x2 + ny2. On peut montrer
que cet algorithme revient à calculer l’obstruction de Brauer–Manin. De façon
générale, on peut se demander si le théorème 3 peut être rendu algorithmique.
Cette question vient de faire l’objet d’un travail de Dasheng Wei et Fei Xu [8].

Si l’on quitte le monde des espaces homogènes de groupes, y a-t-il des classes
intéressantes de variétés algébriques pour lesquelles on peut espérer que l’obstruc-
tion de Brauer–Manin entière soit la seule obstruction ?

Soit n 6= 0 un entier. Si n n’est pas congru à ±4 modulo 9, peut-on écrire n
comme somme de trois cubes d’entiers ? C’est là un problème diophantien célèbre.
Notons Xn le Z-schéma défini par

n = x3 + y3 + z3.

La condition de congruence assure que Xn a des points dans tous les anneaux
p-adiques Zp.

Théorème 4 (JLCT et O. Wittenberg [2]) Sous les hypothèses ci-dessus, pour
tout n non congru à ±4 modulo 9, il existe un point dans

∏
pXn(Zp) qui est

orthogonal à Br(Xn ×Z Q).

En d’autres termes, l’obstruction de Brauer–Manin entière ne saurait donner
une réponse négative au problème. De façon informelle : aucune utilisation de lois
de réciprocité ne permettra de montrer l’existence d’un tel entier n non somme de
trois cubes.

Des arguments généraux de nature arithmétique montrent que le groupe quo-
tient Br(Xn×ZQ)/Br(Q) est fini. Mais il faut des arguments arithmétiques ad hoc
pour déterminer ce groupe et en expliciter des représentants dans Br(Xn ×Z Q),
ce qui est requis pour la démonstration du théorème 4.

Des arguments géométriques suggèrent que l’étude des points entiers sur les
surfaces cubiques est du même ordre de difficulté que celle des points rationnels
sur les surfaces quartiques.
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Constructing explicit isogenies of hyperelliptic Jacobians in genus ≥ 3

Benjamin Smith

We survey a range of constructions of explicit isogenies of Jacobians of curves of
genus ≥ 3. This forms part of a program aimed at generalizing, where possible,
the work of Vélu for elliptic curves and the well-known Richelot isogeny in genus 2.

Theorem 1. There exists an efficient algorithm which takes as input a hyperellip-
tic curve H of genus 3 over a field K (of characteristic not 2 or 3) and a maximal
2-Weil isotropic subgroup S of JH [2] generated by differences of Weierstrass points,
and returns an extension L/K, a curve X/L of genus 3, and a correspondence C ⊂
HL ×X such that the induced homomorphism φC = (πCX)∗ ◦ (πCHL)∗ : JHL → JX
is an isogeny with kernel S.

In general, the curve X of the algorithm in Theorem 1 is not hyperelliptic.
This leads us to an application of Theorem 1 in cryptology, where it can be used
to move instances of the Discrete Logarithm Problem from hyperelliptic to non-
hyperelliptic Jacobians, which are vulnerable to faster index calculus algorithms.

We draw attention to the recent work of Mestre, which constructs for each g ≥ 2
a (g+1)-parameter family of pairs of hyperelliptic curves of genus g with explicitly
isogenous Jacobians. In each case, the isogeny has kernel isomorphic to (Z/2Z)g.

Finally, we construct some new families of isogenies of hyperelliptic Jacobians
based on factorizations of separated-variable polynomials. These include the first
families (to our knowledge) of nontrivial non-endomorphism isogenies of Jacobians
where the degree of the isogenies is odd.

Theorem 2. For each row of the following table, there exists an n-dimensional
family of pairs (X,Y ) of hyperelliptic curves of genus g defined over K, together
with a correspondence C ⊂ X × Y inducing an explicit isogeny φ : JX → JY
splitting multiplication by m on JX ; further, the kernel of φ is isomorphic to G.
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g n [m] G K

3 2 [2] (Z/2Z)3 Q(
√
−7)

5 1 [3] (Z/3Z)5 Q(
√
−11)

6 3 [2] (Z/2Z)6 Q(
√
−7)

6 2 [3] (Z/3Z)6 Q(
√
−3

√
13 + 1)

7 2 [4] (Z/4Z)4×(Z/2Z)6 Q(
√
−15)

10 2 [3] (Z/3Z)10 Q(
√
−11)

10 1 [4] (Z/4Z)9×(Z/2Z)2 Q(
√
−7)

12 3 [3] (Z/3Z)12 Q(
√
−3

√
13 + 1)

14 3 [4] (Z/4Z)9×(Z/2Z)10 Q(
√
−15)

15 1 [8] (Z/8Z)5×(Z/4Z)10×(Z/2Z)10 sextic CM-field

20 2 [4] (Z/4Z)19×(Z/2Z)2 Q(
√
−7)

30 2 [8] (Z/8Z)11×(Z/4Z)19×(Z/2Z)19 sextic CM-field
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Progress report: curves with many points via high-rank K3 surfaces

Noam D. Elkies

We briefly review the theory of K3 surfaces X in characteristic zero and their
moduli, and how one might use models ofX as an elliptic K3 surface, double plane,
quartic surface, “etc.” to obtain explicit formulas for certain modular varieties, and
to search for curves C/Q of small genus g > 0 with many points. We then recount
some of the latest findings of this project.

Genus 1. For g = 1, “many points” means large Mordell–Weil rank given
the torsion group T . In the case T = Z/2Z, our previous rank records over Q of
17 and 18 (announced in 2005 and 2006 respectively) used an elliptic K3 surface
with Mordell–Weil group Z/2Z × Z9 parametrized by a sporadic rational point1

on the modular curve X0(191)/w191. Recently we found that the same Mordell–
Weil group can be obtained using K3 surfaces parametrized by the Shimura curve
X(10, 23)/w230 which is rational. This gives a wider selection of candidate curves,
a few of which turned out to have rank 19. This is the current record for torsion
Z/2Z. As J. Cremona pointed out when this record was 15 (Dujella 2002) or 14
(Fermigier 1996), this record is also the largest r for which we have a curve E/Q
that is proved to have rank exactly r. Thanks to the 2-torsion point, a 2-descent is

1That is, a rational point that is neither cusp nor CM; We had found the simple model
y2 − (x3 + x − 1)y = x3 + x2 − x for the genus-2 curve X0(191)/w191 , and the sporadic point
with x = 2, back in 1989.
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feasible, and implemented in Cremona’s mwrank, even for curves as complicated
as the rank-19 curve

y2 = x3 − 7864378943583579213062175x2/4
+ 1319877519318187510943691980656379870879079014400x;

whereas in the absence of torsion we have no feasible way to check whether the
group generated by 28 independent points is of finite index in the Mordell–Weil
group. The use of a rational moduli space X(10, 23)/w230 also lets us use bi-
quadratic base changes to find nonconstant curves over Q(t) with a 2-torsion point
and Mordell–Weil rank at least 11; our earlier family already gave infinitely many
C/Q whose group of rational points contains (Z/2Z) × Z11, but it was a much
sparser collection, parametrized by elliptic curves of positive rank rather than
rational curves.

[We also incremented the rank record for T = (Z/2Z)2 from 14 to 15, for the
curve

y
2 = x(x− 16305880494794397409378471875)(x + 257899443538678285971790559136);

but the only new ingredient here was more patience with mwrank.]
Genus 2. Once g > 1, Faltings’ theorem (= Mordell’s conjecture) guarantees

that the number of rational points on any given curve C is finite, but the bound on
#C(Q) is not uniform as we vary C over all genus-g curves. Caporaso, Harris, and
Mazur proved (c.1994) that, assuming the Bombieri–Lang conjecture (the rational
points on a variety of general type are not Zariski dense), the number of rational
points on genus-g curves over Q is uniformly bounded given g. But the bound is
not effective even for g = 2.2

In addition to #C(Q), one can ask for large orbit counts #(C(Q)/Aut(Q)). For
genus 2, AutQ(C) is always nontrivial but its size can be as small as 2 and as large
as 12. For over a decade the record for the number of points of a genus-2 curve
was 588,3 for the Keller–Kulesz curve

y2 = 278271081x2(x2 − 9)2 − 229833600(x2 − 1)2

(1995); but this curve has 12 automorphisms, so “only” 49 orbits, whereas Stahlke
(1997) found a curve with fewer points (≥ 366) but minimal symmetry, and thus
many more orbits (≥ 183). In 2007 we searched through linear sections of a suitable
“double plane” model of the singular K3 surface with Néron–Severi discriminant
163, finding several examples that broke Stahlke’s record, the best of which had
at least 2 · 268 = 536 points. Finally in December 2008 Stoll searched our double

2For both Faltings and CHM (Caporaso–Harris–Mazur), Q can be replaced by any fixed
number field K. The bound may depend on K as well as g, but CHM also show that for
each g > 1 there is an upper bound Ng on lim supC/K #C(K) independent of K, assuming a

further Bombieri–Lang conjecture that a variety V of general type contains a closed subvariety
V0, smaller than V itself, such that V (K)− V0(K) is finite for every number field K.

3Here and later it is not feasible to prove that a set of rational points is complete, so the
counts reported are lower bounds.
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plane models more systematically, finding several examples with even more points
than the 588 of the Keller–Kulesz curve; the largest count was 2 · 321 = 642, for

y2 = 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x+ 157402.

(The techniques used to find the largest few point pairs also found four more pairs
on Stahlke’s curve, raising its count to 2 · 187 = 374, but this is still well below
the new records.)

For lim supC #C(Q) we had obtained a lower bound of 150. This was for
infinite families each of whose Zariski closures in M2 (the moduli space of genus-2
curves) has dimension 1. (The previous record of 48, due to Mestre, also had
1-dimensional closure in M2.) For a family whose Zariski closure has dimension 2,
we can show that some lines on our double planes yield curves with at least 120
rational points. For a family of curves that is Zariski-dense in M2, we use a one-
dimensional family of double planes parametrized by the rational Shimura curve
X(146, 1)/w146 that parametrizes smooth sextics with 49 tritangents to get a lower
bound of 2(49 + 6) = 110.

Several other genus-2 curves C coming from our double planes have absolutely
simple Jacobians JC of rank at least 26, incrementing Dreier’s 1995 record of 25;
an example is

y2 = 80878009x6 − 236558406x5 − 1018244179x4

+ 4436648480x3 + 6445563464x2 − 13620761544x+ 684062.

Stoll found several more such examples. [NB if we do not require that the Jacobian
be simple then it is easy to use rank records for elliptic curves to get bielliptic curves
of genus 2 whose Jacobian has rank 30+.]

These high Jacobian ranks all come from divisors supported on rational points.
In another direction, we use plane sections of quartic K3 surfaces with high Néron–
Severi rank but no lines to find infinite families of genus-2 curves that probably
have no rational points, but whose Jacobians are simple of rank at least 19. Alas
these curves are much too complicated to hope for a proof that any of them has
C(Q) = ∅.

Coming attractions. We have already used these techniques to find curves of
genus 2 with a rational Weierstrass point that have a large point count or Jacobian
rank. The condition that C have a rational Weierstrass point is equivalent to a
restriction on the image of the representation of Gal(Q/Q) on JC [2]. The technique
can be adapted to produce curves satisfying other such restrictions, such as a
nontrivial subgroup of JC(Q)[2] or JC(Q)[3]. Naturally the resulting ranks and
point counts will not be as impressive as for unrestricted curves, but the special
Galois structure could make such curves more amenable to descent techniques for
finding exact values, not just lower bounds, for #C(Q) or the rank of JC(Q).

We’ll also explore analogous constructions of curves of genus 3, using quartic
K3 surfaces. For each g > 2 there is a similar approach using K3’s embedded in
Pg via a complete linear series of sections of a divisor of self-intersection 2g − 2.
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For large enough g this method will not do as well as more elementary approaches
using polynomial identities; but g = 3 is still promising: there are infinite families
(not yet computed explicitly) of smooth plane quartics with at least 52 rational
points, and some individual curves in these families will likely have much larger
counts.

Modular forms and elliptic curves over Q(ζ5)

Paul E. Gunnells

(joint work with Farshid Hajir, Dinakar Ramakrishnan, Dan Yasaki)

Let ζ5 be a primitive fifth root of unity, and let F = Q(ζ5). In this talk we describe
recent computational work that investigates the modularity of elliptic curves over
F . Here by modularity we mean that for a given elliptic curve E over F with
conductor N there should exist an automorphic form f on GL2, also of conductor
N , such that we have the equality of partial L-functions LS(s, f) = LS(s, E), where
S is a finite set of places including those dividing N . We are also interested in
checking a converse to this notion, which says that for an appropriate automorphic
form f on GL2, there should exist an elliptic curve E/F again with matching
of partial L-functions. Our work is in the spirit of that of Cremona and his
students [7–9, 15] for complex quadratic fields, and of Socrates–Whitehouse [16]
and Dembélé [10] for real quadratic fields.

Instead of working with automorphic forms, we work with the cohomology of
congruence subgroups of GL2(O), where O is the ring of integers of F . There
are several reasons for this. First, we have the Eichler–Shimura isomorphism,
which identifies the cohomology of subgroups of SL2(Z) with a space of modular
forms. More precisely, if N ≥ 1 is an integer and if Γ0(N) ⊂ SL2(Z) is the
usual congruence subgroup of matrices upper triangular mod N , then we have
H1(Γ0(N);C) ≃ H1(X0(N);C) ≃ S2(N)⊕ S2(N)⊕Eis2(N), where X0(N) is the
open modular curve Γ0(N)\H, S2(N) is the space of weight two holomorphic cusp
forms of level N , the summand Eis2(N) is the space of weight two holomorphic
Eisenstein series, and the bar denotes complex conjugation.

Moreover, this reason generalizes. Borel conjectured, and Franke proved [11],
that all the complex cohomology of any arithmetic group can be computed in terms
of certain automorphic forms, namely those with “nontrivial (g,K)-cohomology”
[6, 18]. Although this is a small subset of all automorphic forms (Maass forms,
for instance, can never show up in this way), all such automorphic forms are
widely believed to be connected with arithmetic geometry (Galois representations,
motives, . . . ).

Finally, working with cohomology also has the advantage that computations
can be done very explicitly using tools of combinatorial topology. In a sense the
cohomology provides a concrete incarnation of exactly the automorphic forms we
want. These are the automorphic forms that account for the “modular forms over
Q(ζ5)” in the title.
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Now we explain the setting for our computations. For our field we begin with the
algebraic group G = RF/Q(GL2) (R denotes restriction of scalars), which satisfies
G(Q) = GL2(F ). We replace the upper halfplane H with the symmetric space X
for the group G = G(R) ≃ GL2(C)×GL2(C). We have X ≃ H3 × H3 × R, where
H3 is hyperbolic 3-space; thus X is 7-dimensional. We remark that if we were to
work with G′ = RF/Q(SL2) instead, the appropriate symmetric space would be
H3 × H3. The extra flat factor R accounts for the fact that SL2(O) has infinite
index in GL2(O).

One might ask why we prefer GL2 to SL2. First, one knows that the same
cusp forms contributing to the cohomology of subgroups of SL2(O) also appear
in the cohomology of subgroups of GL2(O), so there is no reason not to work
with GL2. But a more compelling reason for our choice is that there is a natural
model of X in terms of the cone of positive-definite binary hermitian forms over
F [1, 14]. In fact, using GL2 is essential, since this linear model plays a key role
in our computations of cohomology and the Hecke action; more details (for the
analogous Hilbert modular case) can be found in [13].

Now letN be an ideal inO. We consider the cohomology spacesH∗(Γ0(N);C) =
H∗(Γ0(N)\X ;C), which contain classes corresponding to the cusp forms we want
to study (the analogue of “weight two” modular forms). A priori we have cohomol-
ogy in degrees 0 to 7, but thanks to a vanishing theorem of Borel–Serre [5] we know
that the cohomology vanishes in degree 7 (the virtual cohomological dimension is
6). Furthermore, standard computations from representation theory show that the
only degrees where cuspidal automorphic forms can contribute to the cohomology
are 2 through 5, and that a given cusp form will contribute to all of these groups.
Thus it suffices to investigate only one degree. Generalizing techniques of [2–4,12],
which treat SL4(Z), and [13], which treats the Hilbert modular case, we developed
an method to compute the cohomology space H5(Γ0(N);C) and its structure as a
Hecke module. The technique is similar to the modular symbol method, although
the combinatorics are more involved (cf. [17, Appendix]).

We conclude by discussing our results and giving an example. We have com-
puted the cuspidal subspace of H5(Γ0(N);C) for all levels N with Norm(N) ≤
4800, and for prime levels N with Norm(N) ≤ 7921. We have simultaneously
compiled a list of elliptic curves over F of small norm conductor, essentially by
carefully searching over the space of coefficients for Weierstrass equations. For
each rational cuspidal Hecke eigenform we identified, we found an elliptic curve
E over F whose number of points modulo primes not dividing the conductor NE
agreed with the Hecke eigenvalues for operators away from NE , as far as we could
compute both sides. Conversely, for any level N where we found no rational eigen-
classes, we did not find any elliptic curve over F of that conductor. In other words,
our data totally supports a generalization of a modularity conjecture connecting
elliptic curves over F with rational Hecke eigenclasses.

The first prime level (up to Galois) where we found a rational eigenclass was
the prime in O dividing 701. The corresponding elliptic curve has Weierstrass
parameters (a1, a2, a3, a4, a6) = (−ζ25 − ζ5 − 1, ζ35 − ζ5,−ζ45 ,−ζ45 , 0). We computed
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the Hecke operators Tℓ for primes ℓ with Norm(ℓ) ≤ 751. Note that this curve is

not a base change form Q(
√
5) to F .1
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Selmer Groups and Galois representations

Alex Bartel

In this talk, we present a technique for extracting information about certain in-
tegral Galois modules from other number theoretic quantities. This technique
exploits the compatibility of standard conjectures or theorems about special val-
ues of L-functions with so-called Artin formalism. We will briefly explain the main
idea below but first we give some examples of the results that can be proved using
it:

Theorem 1 ( [1], Theorem 1.1). Let p be a prime number. As E/Q ranges over
elliptic curves and F/Q ranges over Galois extensions with Galois group D2p, the
order of the p-Selmer group Sp(E/F ) is unbounded.

Theorem 2 ( [2], Theorem 1.1). Let p be an odd prime, F/k a Galois extension
of number fields with Galois group D2p, S a finite Galois stable set of places of F
including all the archimedean ones, K the intermediate quadratic extension and
L, L′ two distinct intermediate extensions of degree p over k. Then

hS(F )hS(k)
2

hS(K)hS(L)2
= pα[O×S,F : O×S,LO×S,L′O×S,K ]

for an easily computable explicit number α depending e.g. on the numbers of
embeddings of the intermediate fields lying below those in S.

The technique for proving these results is essentially representation theoretic
and will now be explained. Let F/K be a finite Galois extension of number fields
with Galois group G and suppose that Hi and H

′
j are two sets of subgroups such

that there is an isomoprhism of permutation representations
⊕

i

C[G/Hi] ∼=
⊕

j

C[G/H ′j ].

Write Li = FHi , Lj = FH
′

j and let E/K be an elliptic curve. Then, a set
of identities between twisted L-functions of E, called Artin formalism implies
that there is an equality of products of L-functions of E over corresponding fixed
subfields of F : ∏

i

L(E/Li, s) =
∏

j

L(E/L′j, s).

The conjecture of Birch and Swinnerton-Dyer then predicts that there should be
an equality of the conjectural interpretations of leading coefficients of the Taylor
expansions around s = 1, which after various cancellations reads

∏

i

#X(E/Li)Reg(E/Li)C(E/Li)

|E(Li)tors|2
?
=

∏

j

#X(E/L′j)Reg(E/L
′
j)C(E/L

′
j)

|E(L′j)tors|2
,(1)
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where C denotes Tamagawa number, renormalised in a certain way but we will
suppres that in the rest of the discussion, and Reg is the determinant of the Néron-
Tate height pairing evaluated on a basis for the free part of the elliptic curve. This
number is in general transcendental, but in the above situation we see that∏

iReg(E/Li)∏
j Reg(E/L

′
j)

?∈ Q×.

In fact, equation (1) can be shown to be true only under the assumption that
all the relevant Tate-Shafarevich groups are finite, but without assuming the full
conjecture of Birch and Swinnerton-Dyer (see [3, Theorem 2.3]). Moreover, one
can derive a very similar formula unconditionally, where the size of the Tate-
Shafarevich group is replaced by a suitable expression of its torsion and its divisible
part (see [3, Theorem 4.3] and [1, Section 4]).

The conceptual explanation for the rationality of the above regulator quotient
was discovered by Tim and Vladimir Dokchitser. Namely the value of the reg-
ulator quotient does not depend on the particular choice of pairing with respect
to which the determinants are evaluated and instead of the Néron-Tate height
pairing any other bilinear non-degenerate G-invariant pairing on E(F ) could be
chosen. In particular, if this pairing is Q-valued then the value of the quotient is
rational, therefore it always is. The regulator quotient can be regarded as a purely
representation theoretic quantity, dependant only on the Galois module structure
of E(F ) and if we understand its representation theoretic nature then we can infer
properties of the Galois module E(F ) from other quantities present in equation
(1). For example, to prove Theorem 1, one constructs elliptic curves over Q and
Galois extensions F/Q with galois group D2p such that the p-part of the Tama-
gawa number quotient gets arbitrarily large. One then needs to show that if (the
p-part of) the regulator quotient gets arbitrarily large then the rank of the Galois
module must get arbitrarily large.

The idea at the heart of Theorem 2 is very similar. This time, the Birch
and Swinnerton-Dyer conjecture is replaced by the analytic class number formula.
The main representation theoretic difficulty is that the regulator of a number field
is defined differently from the regulator of an elliptic curve and to reduce the
situation to a representation theoretic consideration one needs to be able to relate
the quotient of regulators of number fields to the representation theoretic invariant
we have encountered before.
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