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Introduction by the Organisers

The workshop Explicit Methods in Number Theory was organised by Henri Cohen
(Talence), Hendrik W. Lenstra (Leiden), and Don B. Zagier (Bonn), with the
assistance of Karim Belabas (Talence), and it took place July 15–21, 2007. Four
previous workshops on the topic had been held in 1999, 2001, 2003, and 2005. The
goal of the meeting was to present new methods and results on concrete aspects of
number theory. In several cases, this included algorithmic and experimental work,
but the emphasis was on the implications for number theory.

There were three ‘mini-series’ highlighting important recent developments: one
of three hours, by Jordan Ellenberg and Akshay Venkatesh, on asymptotics for
field extensions and class numbers; one of two hours by Mark Watkins, on ran-
dom matrices and L-functions; and one of three hours by Noam Elkies, on the
construction of elliptic curves of high Mordell–Weil rank.

Some of the other themes were:

• Modular forms
• Rational and integral points on curves and higher-dimensional varieties
• Counting points on varieties over finite fields
• Fast multiplication
• Aspects of lattice basis reduction.
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As always in Oberwolfach, the atmosphere was lively and active, providing an ideal
environment for the exchange of ideas and productive discussions. The meeting
was well-attended, with 51 participants from a variety of backgrounds, including a
large number of younger researchers. There were 32 talks of various lengths, and
ample time was allotted to informal collaboration.
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Abstracts

Asymptotics for field extensions and class numbers and topology of
Hurwitz spaces, I, II, III

Jordan S. Ellenberg and Akshay Venkatesh

We are currently thinking about some long-standing problems about distribution
of discriminants of number fields and asymptotics of p-parts of class numbers;
more specifically, we are interested in the ways that the geometry arising from
the function-field analogues of these questions can give insights into phenomena
occuring over number fields.

Here are two sample questions:

Question 1: Let rp(D) be the p-rank of the class group of Q(
√
−D). What is the

average value of prp(D) as D ranges between 0 and X? What is the probability
distribution on rp(D)? What are upper bounds on rp(D) in terms of D?

Question 2: Let D be a squarefree integer and let n(D) be the number of S5-
extensions of discriminant D. What is the average value of n(D) as D ranges
between −X and X? What is the probability distribution on n(D)? What are
upper bounds for n(D) in terms of D?

Some remarks:

• The second part of Question 1 is of course the subject of the Cohen-Lenstra
heuristics.
• The third part of Question 1 (upper bounds on rp(D)) has been the subject

of quite a bit of recent interest. A folklore conjecture holds that prp(D) ≪p,ǫ

Dǫ. But at present one knows how to beat the trivial bound prp(D) ≪
D1/2+ǫ only by a small power of D, and even then only for p = 3 without
assuming a Riemann hypothesis.

The two questions are really of a similar flavor, in the following sense: prp(D) can
be thought of as measuring the number of degree-p extensions of Q with dihedral
Galois group Dp and discriminant D(p−1)/2. So in both cases we are studying
the number of field extensions of Q with given Galois group and discriminant.
Thus, the “average value” part of the questions fall under the purview of Malle’s
conjecture, which we recall here: ifG ⊂ Sn, andNG,n(X) is the number of degree-n
extensions of a number field K with Galois group G and discriminant at most X ,
then Malle conjectures that

NG,n(X) ∼ c(G,K)Xa(G)(logX)b(G,K)−1

where a, b are explicit constants. Bhargava has conjectured values for c(G,Q) when
G = Sn, which agree with known values for n ≤ 5. The value of b(G,K) originally
conjectured by Malle was shown to be incorrect in some cases by Klüners; in
recent work, Türkelli has proposed a modified definition which seems a reasonable
substitute and which admits no known counterexamples.
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A main theme of our recent work is to study the above questions in the case
where the base field K is the function field of a curve C/Fq. In that case, one has
that NG,n(X) counts covers of the curve C with fixed Galois group and discrim-
inant bounded by X . Such covers are parametrized by a moduli space HG,n,X

called a Hurwitz space. (For example, double covers of P1 with discriminant at
most q2g+2 are parametrized by the moduli space of hyperelliptic curves of genus
at most g, a particularly tractable example.)

In this setting, one has the great advantage that one can use the algebraic
geometry of the Hurwitz space HG,n,X in order to estimate the cardinality of
HG,n,X(Fq). In particular, by the Lefschetz trace formula one can control this
number of points by controlling the cohomology of HG,n,X . It turns out that
there is a very natural guess to make: namely, that these Hurwitz spaces (more
precisely, variants of these which parametrize things like “covers with squarefree
discriminant”) have the same cohomology as affine space in a large range of di-
mensions. In particular, Hurwitz spaces of dimension d ought to have very close
to qd points. The key point is that, by comparison of etale and singular cohomol-
ogy, the necessary vanishing of cohomology is a purely topological assertion about
the complex points of HG,n,X , on which the apparatus of topology and complex
algebraic geometry can in principle be brought to bear.

This description has now strayed a bit from “explicit methods,” so let us remark
on some computational problems which will help to clarify the plausibility of the
“master guess” above.

• The conjectures of Malle and of Cohen-Lenstra have been subjected to
quite extensive numerical checking over number fields; over function fields,
however, much less experimentation has been done, even in the case of S3-
extensions (equivalently, 3-ranks of class groups of quadratic fields) where
a very fast algorithm due to Belabas is available in the case K = Q.
Explicit computation of NG,n(X) where K is a function field should give
very persuasive evidence that the cohomology of various Hurwitz spaces
are behaving as we expect (or otherwise!)
• The master guess also implies statements of a “non-abelian Cohen-Lenstra”

type over function fields. For instance, it suggests that the function n(D)
above (counting S5-extensions of squarefree discriminant D) obeys a Pois-
son distribution with mean 1. Can this be investigated experimentally?
What about the analogous question over Q (where the expected mean is
(13/120)ζ(2)−1?) (Remark: we are indebted to the recent work of Dun-
field and Thurston for alerting us to the fact that the Poisson distribution
should arise here – their work concerns, not finite covers of a random num-
ber field, but finite covers of a random 3-manifold – but the underlying
topological issues turn out to have a great deal in common.)



Explicit Methods in Number Theory 1963

Asymptotics of class numbers for fundamental discriminants

Nicole Raulf1

Let D := {d ∈ N : d ≡ 0, 1 (4), d 6= �} and DF := {d ∈ D : d a fundamental
discriminant}. For every d ∈ D we denote the class number of primitive binary
quadratic forms with coefficients in Z and discriminant d by hd. Furthermore, ǫd
is the fundamental solution of Pell’s equation t2 − du2 = 4. Class numbers and
their behaviour have been of interest for a long time as can be seen from the works
of Gauß, Siegel, Shintani, Datskovsky and other mathematicians. Siegel [Sie] e. g.
proved that

∑

d≤N

hd log ǫd =
π2

18ζ(3)
N3/2 +O(N logN)

as N → ∞. Later Shintani [Shi] improved the error term and Datskovsky [Dat]
has the corresponding result for fundamental discriminants. But so far it has not
been possible to separate hd from log ǫd in these formulas. This problem does not
exist anymore when we order the terms according to the size of ǫd. Using Selberg’s
trace formula Sarnak [Sar1] showed that

(1)
∑

d∈D,
ǫd≤N

hd = Li
(
N2
)

+O
(
N3/2 log2N

)

as N → ∞. Here Li(N) :=
∫ N

2
dt

log t . In order to determine the asymptotic

behaviour of this sum when we only sum over fundamental discriminants we first
consider the expressions ∑

d≡a (m),
ǫd≤N

hd log ǫd

for m ∈ N and a ∈ N0, i. e. we restrict ourselves to class numbers whose discrim-
inants belong to the progression d ≡ a (m). For the progression d ≡ 0 (m) the
theorem that gives the asymptotics reads as follows:

Theorem 1 ([Rau]). For m ∈ N let τ(m) := ♯{p ≥ 3 : p|m}.
1. If m ≡ 0 (2) then

∑

d≡0 (m),
ǫd≤N

hd log ǫd ∼
2τ(m)

56m

∏

p≥3,
p|m

(
1− p−3

)−1






37, 2||m,
74, 4||m,
88, 8||m,
122, 16||m,
28, 32|m.






×N2, N →∞.

1Research supported by a fellowship within the PostDoc-Programme of the German Academic
Exchange Service (DAAD).
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2. If m ≡ 1 (2) then

∑

d≡0 (m),
ǫd≤N

hd log ǫd ∼
2τ(m)−1

m

∏

p≥3,
p|m

(
1− p−3

)−1
N2, N →∞.

For similar formulas for the progressions d ≡ a mod m, m ∈ N, a ∈ N0, see [Rau].
Moreover, by partial summation the regulators in these formulas can be removed
and for m = 1 we recover the leading term of (1). With the help of the formulas
for class numbers in progressions we finally deduce

Theorem 2 ([Rau]). We have the following asymptotic behaviour:

∑

d∈DF ,
ǫd≤N

hd ∼
25ζ(3)

16

∏

p≥2

(
1− 2p−2 − p−3

)
Li(N2) as N →∞.

In order to prove Theorem 1 it suffices to understand the behaviour of the sums

(2)
∑

2<t≤N, d(t,u):=
(t2−4)/u2∈D∗

hd(t,u) log ǫd(t,u)√
d(t, u)

for u ∈ N fixed and “small”. Here D∗ = {d ∈ D : d ≡ 0 (m), d ≡ 0 (4)},
{d ∈ D : d ≡ 0 (m), d ≡ 1 (8)} or {d ∈ D : d ≡ 0 (m), d ≡ 5 (8)}. For
determining the asymptotics of (2) one can use the class number formula and
discuss

∑
t L(1, d(t, u)) where L(s, d(t, u)) :=

∑∞
n=1(d(t, u)/n)n−s with (d(t, u)/·)

being the Kronecker symbol. In different situations this approach for deriving
asymptotics of class numbers has been used by Barban [Bar] and by Sarnak [Sar2].
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Probabilistic models for L-functions, I, II

Mark Watkins

The zeros of the Riemann zeta function were conjectured by Hilbert and Polya to
have a spectral interpretation. Work of Montgomery and computations of Odlyzko
gave credence to this, especially as the spacings between zeros were well-modelled
statistically by the spacings between eigenvalues of random matrices. The fit here
is extremely good — we see this as a manifestation that random matrix theory
gives very good models for local statistics of L-functions, at least to first order.

On the other hand, global statistics such as moments (which correspond to the
evaluation of the characteristic polynomial of a random matrix at some point on
the unit circle) do not have such universal behaviour, and so we must introduce
arithmetic information into the model. This was done in a largely ad hoc manner
for moments of the zeta function on the critical line in the work of Keating and
Snaith, following earlier work of Conrey and Ghosh. More recently, the Hybrid
Model of Gonek, Hughes, and Keating allows us a more natural derivation: the
zeta function is approximated by a truncated Euler product times a Weierstrass
product of zeros — this is moderated by a parameter X , which tells us to consider
the primes up to X and (essentially) the zeros at distance at most 1/ logX . These
contributions from the primes and zeros are suspected to be independent. The
Euler product can be analysed rigourously and gives the same arithmetic factor as
guessed by Conrey and Ghosh, while the zeros again require an analogy from ran-
dom matrix theory; the resulting analysis reproduces the conjecture of Keating and
Snaith, but gives stronger evidence that the arithmetic and universal behaviour
have been combined in an adequate manner. Our hope in this analogy is bolstered
by taking function field analogues, for which we can often obtain rigourous re-
sults. The above problem uses unitary matrices to model the situation, as will all
questions involving zero-spacing or moments in the t-aspect. However, questions
about zeros of low height or moments of special values can yield other symmetries:
the most common examples are quadratic Dirichlet characters from which we get
symplectic symmetry, and the quadratic twists of a fixed elliptic curve, where we
see orthogonal symmetry.

The work of Keating and Snaith establishes a result for moments of character-
istic polynomials for any of these symmetry types, and we can thus export this
result (possibly using analysis similar to the Hybrid Model, or merely at the level
of analogy) to predict the moments of L(Ed, 1) in a family of quadratic twists of
even parity. Their result gives the s-th moment as a meromorphic function of s,
and thus we can obtain a value distribution, whose behaviour for small values is
dominated by the rightmost pole. If we consider d close to D, we get a result like

Prob
[
L(Ed, 1) < t

]
∼ αEt

1/2(logD)3/8 as t→ 0,

where αE is the arithmetic factor. Here the exponent of 1/2 comes from the right-
most pole s = −1/2 of the moment generating function, while the 3/8 exponent

on the log is
(
−1/2

2

)
— both of these are particular to orthogonal symmetry. From
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the conjecture of Birch and Swinnerton-Dyer, we can then introduce a discretisa-
tion process which will allow us to predict the number of even parity twists with
L(Ed, 1) = 0 (arithmetically, we generically expect such twists to have rank 2). In
particular, BSD gives us (essentially) a formula

Sd =
L(Ed, 1)T 2

∏
p cp(d) ·Ωre/

√
d

where Sd is a nonnegative integer. Thus if Sd < 1 we have Sd = 0. Plugging in
the right side of the above for t gives us that

Prob
[
L(Ed, 1) < t

]
∼ βE ·

√∏
p cp(d) · (log d)3/8/d1/4.

For |d| that are prime, we understand cp(d) and so can just sum over d to get a

predicted asymptotic of cED
3/4(logD)3/8−1 for the number of even prime twists

up toD for which L(Ed, 1) vanishes. When considering all twists, we must consider
the average behaviour of the Tamagawa product, and this essentially depends upon
the 2-torsion of E. We get a prediction of cED

3/4(logD)bE , where there are four
possible values of bE . Rubinstein has computed much data (using the Waldspurger
correspondence and ternary quadratic forms), and they do not show our guesses to
be false. Kowalski has theorems about the function field analogues, but these are
mostly upper bounds. Assuming the Parity Conjecture, Rubin and Silverberg can
constructD1/2 twists of rank≥ 2 for various E, but this is far from our expectation
of above. Another item of interest is a conjecture about counts of vanishing twists
when restricting to arithmetic progressions modulo a prime — it is expected that
quadratic residuacity is the controlling factor, and the ratio between counts for

squares and non-squares should be
( p+1+ap

p+1−ap

)−1/2
where the −1/2 is the rightmost

pole again. Again the data show no obvious contradiction.
David, Fearnley, and Kislievsky consider fixing an elliptic curve E and twisting

by cubic Dirichlet characters, which is related to the behaviour of the curve when
base-extending to a C3 extension. Here the symmetry is unitary, and there is no
“parity” as the sign of the functional equation can be anywhere on the unit disc.
Copying the above methodology, they get a prediction that the number of cubic
characters χ with conductor less than D such that L(E ⊗ χ, 1) = 0 should be
asymptotically cED

1/2(logD)bE where bE is 1/4 or 9/4, depending on whether
E has 3-torsion. Fearnley and Kisilevsky can construct D1/2 such twists in some
cases, which is quite close to the guess. We could also consider x3 + y3 = mz3

(where there is no obvious function field analogue), or the set of elliptic curves
(ordered by discriminant), and get similar heuristics. In these cases, the data
converge to the asymptotic behaviour too slowly to say much, though we are able
to refute the “null hypothesis” that a positive proportion of even parity curves
have positive rank.

For quadratic twists of odd parity, we can use complex approximations to Heeg-
ner points and a theorem of Gross and Zagier to get data of similar bulk to Rubin-
stein’s data for even parity. However, there is no precise conjecture for the number
of odd twists with L′(Ed, 1) = 0, and a numerical analysis of the data does not
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yield a compelling guess even at the crude level. On the other hand, we can readily
compute the ratio of vanishings for squares/non-squares modulo a prime, where

here we expect
(p+1+ap

p+1−ap

)−3/2
as the rightmost pole is now at −3/2. The data do

not dispel this suspicion.
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Applications of the Mordell–Weil sieve

Michael Stoll

In this talk, we consider the following situation.

• A is an abelian variety over Q (for simplicity, we could work over a number
field instead);
• X ⊂ A is a closed subvariety not containing any translates of subabelian

varieties of A of positive dimension (this implies that X(Q) is finite);
• We know (explicit generators of) the Mordell-Weil group A(Q).
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Of course, the last requirement is highly nontrivial in practice.
The typical situation is when X is a curve of genus g ≥ 2 embedded into its

Jacobian variety A. When g = 2, we can determine A(Q) in many cases.

1. The Mordell-Weil Sieve

The idea of the Mordell-Weil Sieve is to combine our ‘global’ knowledge of A(Q)
with ‘local’ information on how X sits inside A, in order to obtain information
on X(Q). The simplest instance uses a finite set S of primes of good reduction for
X and A and considers the following diagram.

X(Q)
�

�

//

��

A(Q)

β

��∏

p∈S

X(Fp) �

� α
//

∏

p∈S

A(Fp)

If the images of the maps α and β above are disjoint, then X(Q) must be empty.
Conversely, we can ask, if X(Q) is empty, can we expect the images of α and β

to be disjoint if S is sufficiently large?
Bjorn Poonen has come up with some heuristic considerations that indicate a

positive answer. Roughly, the argument is as follows. Let B > 0 be a parameter
(which we will choose large later) and let SB be the set of good primes p ≤ B2

such that #A(Fp) is B-smooth. We expect #SB ≥ δπ(B2) when B is large, for
some δ > 0. Then one can work out that

#
∏

p∈SB

A(Fp) ≈ eδB2 dim A , #
∏

p∈SB

X(Fp) ≈ eδB2 dim V , #im(β) ≈ e2rB dim A ,

where r is the rank of A(Q). The expected size of im(α) ∩ im(β) is about

e2rB dim A−δB2 codimA X , which tends to zero very quickly as B → ∞. For details,
see [3].

So we have as a first application that we can prove X(Q) = ∅ for curves X
of higher genus (say). The Mordell-Weil sieve was first developed in this context
by Scharaschkin [5], who applied it to some twists of the Fermat quartic. It was
improved by Flynn [2], who applied it to a number of genus 2 curves, and further
improved by Bruin and Stoll [1] in the context of a project which (successfully)
aimed at deciding for every genus 2 curve given by an equation

y2 = f6x
6 + · · ·+ f1x+ f0

with integral coefficients |fj| ≤ 3 whether it has rational points or not.
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2. Improvements and Refinements

In practice, instead of the maps in the diagram above, we compute the maps in
the following diagram, with a suitable choice of N .

X(Q)
�

�

//

��

A(Q)/NA(Q)

βN

��∏

p∈S

X(Fp) �

� αN
//

∏

p∈S

A(Fp)/NA(Fp)

We work our way up to this N , by starting with N0 = 1 and multiplying by a
prime factor at a time, keeping track of β−1

N (im(αN )) at each stage.
We can use more information than just what we get modulo p for good primes.

Instead of looking at the image X(Fp) of X(Qp) in the quotient A(Fp) of A(Qp),
we can consider any finite quotient of A(Qp) and the image of X(Qp) in it. This
allows us to use information at bad primes (e.g., we can use the component group),
and also information modulo higher powers of p.

In this way, we can restrict our attention to potential rational points on X
lying in certain residue classes (even modulo bad primes). We can then use the
Mordell-Weil sieve to prove that such points do not exist, even when X does have
rational points.

This second application proved to be very useful in completing the proof
that there are no unknown primitive solutions to x2 + y3 = z7, see [4]. There,
we had to rule out the existence of rational points satisfying certain congruences
mod 2 and 3 on a plane quartic that has rational points and whose Jacobian has
Mordell-Weil rank 3.

In a similar way, we can rule out the existence of rational points on X that are
in a specified coset of nA(Q) in A(Q), by taking N above to be a multiple of n
and restricting to the relevant cosets. This provides a third application: if we
know a number n such that no two rational points on X are in the same coset
mod nA(Q), then we can hope to determine X(Q) — for each coset, we can find
a point if one exists and rule out the existence of points if there is no point.

In particular, when X is a curve of genus g and the Mordell-Weil rank of its
Jacobian A is less than g, then such an n can be found by Chabauty’s approach: if,
for every P ∈ X(Fp), there is a differential ω ∈ ΩX(Qp) that kills the Mordell-Weil
group such that its reduction ω̄ modulo p does not vanish at P , then we can take
n = #A(Fp). This works very well in practice when g = 2 and the rank is 1.

3. Information on Rational Points

WhenX has rational points and we do not know a number n that ‘separates’ the
points as in the third application above, we still can use the Mordell-Weil sieve in
order to obtain information on potential unknown rational points on X . Namely,
if all the elements we find in β−1

N (im(αN )) come from known rational points on X ,
then we can deduce that for every potential unknown point P ∈ X(Q), there must
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be a known Q ∈ X(Q) such that P − Q is divisible by N in A(Q). This in turn
can be translated into a lower bound on the height of any unknown rational point
on X , which can be made more or less arbitrarily large.

Combining this with upper bounds obtained using Baker’s method, we have
as a fourth application a way of determining the set of all integral points on
a hyperelliptic curve (say), even when its rank is too large to use methods that
determine the set of rational points. This is an ongoing project with Bugeaud,
Mignotte, Siksek, and Tengely.
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Chabauty for symmetric powers of curves

Samir Siksek

1. Introduction

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 defined
over a number field K, and write J for the Jacobian of C. Suppose that the rank
of the Mordell–Weil group J(K) is at most g−1. In a pioneering paper, Chabauty
[1] proved the finiteness of the set of K-rational points on C. This has since been
superseded by Faltings’ proof of the Mordell conjecture which gives the finiteness
of C(K) without any assumption on the rank of J(K). Chabauty’s approach
however, where applicable, can be refined to obtain explicit bounds for C(K) or
even to compute C(K), as in the work of Coleman [2], Grant, McCallum, Flynn,
Wetherell, Poonen, Bruin, Stoll, etc.; see [3] for a very useful survey.

One can ask if it is sensible to apply Chabauty to varieties X of dimension at
least 2, where the Albanese variety Alb(X) plays the role of the Jacobian. Of
course the Albanese map  : X → Alb(X) is often not injective. Indeed Alb(X)
can have smaller dimension than X . However, for varieties X where the Albanese
map is injective, or even where (X) is merely birational to X , there is a hope
that Chabauty might enable us to determine the rational points on X . Alas, for
a general variety X there are as of yet no algorithms for studying the arithmetic
of Alb(X). A sensible starting point for the investigation of Chabauty in higher
dimension is the symmetric powers of curves. Here the Albanese variety is also
the Jacobian of the curve.
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Our broad objective in this work is to refine the method of Chabauty so that
we can compute C(d)(K) in favourable circumstances. Our achievements can be
summarized as follows:

(I) Inspired by work of Klassen [4], we give an explicit criterion for an element
of C(d)(K) to be the unique element in its residue class, for a given prime υ
(the residue classes being the fibres of the reduction map). Just as in classical
Chabauty, we need an assumption on the rank of the Mordell–Weil group: our
criterion requires that rankJ(K) ≤ g − d.
(II) We often expect, by applying the criterion of (I), to show that the fibres
containing a K-rational element do not contain any other. This criterion however
does not tell us anything about fibres that do not seem to contain K-rational
elements. Thus, if reduction map C(d)(K) → C(d)(kυ) happens to be surjective
then it might be possible to use (I) to show that the known elements of C(d)(K)
are the only ones. Experience however suggests that the reduction map is rarely
surjective for d > 1. To prove that the known elements of C(d)(K) are all its
elements, we combine information given by our criterion using several well-chosen
primes υ1, . . . , υt.

(III) Suppose ̺ : C → C′ is a degree d morphism defined over K. Then ̺∗C′(K)
is a subset of C(d)(K). If C′ has genus 0 or 1 then C′(K) can be infinite, and in
this case ̺∗C′(K) is an infinite subset of C(d)(K), and undoubtedly, the strategy
of (I), (II) fails. In this case we explain how the strategy of (I), (II) can be suitably
modified to compute C(d)(K)\̺∗C′(K). Again we need a condition on the ranks
of the Mordell–Weil groups; in the obvious notation, we require rankJC(K) −
rankJC′(K) ≤ gC − gC′ − d+ 1.

We illustrate our method by computing C(2)(Q) for two curves C of genus 3.
The first is a hyperelliptic curve, and the second a non-hyperelliptic plane quartic
curve. It is noteworthy that in both examples C(2) is a surface of general type,
being birational to a Θ-divisor on the Jacobian. Much less is known about the
arithmetic of surfaces of general type than that of other surfaces.

We are aware of some earlier Chabauty computations on symmetric squares of
hyperelliptic genus 3 curves by Wetherell, although no details of such computations
have been published.

2. Examples

2.1. A Hyperelliptic Example. Let C be the smooth projective curve over Q

with affine chart

C : y2 = x(x2 + 2)(x2 + 43)(x2 + 8x− 6).

Being hyperelliptic, C is of course a double cover of the projective line. In our
earlier notation, the map ̺ : C → C′ is just the map

C → P1, (x, y) 7→ x, ∞ 7→ ∞.
Thus

̺∗P1(Q) = {{(x, y), (x,−y)} : x ∈ Q} ∪ {{∞,∞}}.
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Note that the hyperelliptic involution ι : C → C extends to an involution on C(2)

which we will also denote by ι. Thus

ι : C(2) → C(2), {(x1, y1), (x2, y2)} 7→ {(x1,−y1), (x2,−y2)}.
Our method shows that

C(2)(Q) = ̺∗P1(Q) ∪ {Qi : i = 1, . . . , 10} ⊆ C(2)(Q),

where

Q1 = {(
√

6, 56
√

6), (−
√

6,−56
√

6)},
Q2 = {(0, 0),∞}, Q3 = {(

√
−2, 0), (−

√
−2, 0)},

Q4 = {(
√

43, 0), (−
√

43, 0)}, Q5 = {(−4 +
√

22, 0), (−4−
√

22, 0)},

Q6 =

{(
41 +

√
1509

2
,−222999− 5740

√
1509

)
, conjugate

}
,

Q7 =

{(
−164 +

√
22094

49
,
257704352− 1648200

√
22094

823543

)
, conjugate

}
,

Q8 = ιQ1, Q9 = ιQ6, Q10 = ιQ7.

2.2. A Plane Quartic Example. Let C be the smooth plane quartic (genus 3)
curve with affine equation

C : x4 + (y2 + 1)(x+ y) = 0,

and let J be its Jacobian. Schaefer and Wetherell [5] observe that it has a triv-
ial automorphism group, and that its Jacobian J is absolutely simple and not
modular. Using a deep descent argument they show that J(Q) ∼= Z⊕ Z/4Z.

Using our method we showed that C(2)(Q) = {Q1, . . . ,Q10}, where

Q1 =
{
(−17 +

√
259,−48 + 3

√
259), (−17−

√
259,−48− 3

√
259)

}
,

Q2 =

{(
−1,

1 +
√
−3

2

)
,

(
−1,

1−
√
−3

2

)}
,

Q3 =

{(
1 +
√
−3

2
, 0

)
,

(
1−
√
−3

2
, 0

)}
, Q4 = {(0, 0),∞},

Q5 = {(0, 0), (0, 0)}, Q6 = {(0, i), (0,−i)}, Q7 = {(−1, 0),∞},
Q8 = {(−1, 0), (0, 0)}, Q9 = {(−1, 0), (−1, 0)}, Q10 = {∞,∞}.
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On the negative Pell equation

Jürgen Klüners

(joint work with Étienne Fouvry)

Let d be a squarefree number and consider the so-called negative Pell equation
(NPE):

x2 − dy2 = −1 for x, y ∈ Z.

Denote by D the discriminant of Q(
√
d) and by ǫD the fundamental unit of the

maximal order. Then it is known that NPE(d) is solvable if and only if the
fundamental unit ǫD has norm −1.

It is clear that the NPE is only solvable when d > 0. By reducing modulo a
prime p | d we get: x2 ≡ −1 mod p. The latter equation is only solvable when
p = 2 or p ≡ 1 mod 4.

Therefore it is natural to consider the subset of special discriminants:

D := {D > 0 : D fundamental, p | D ⇒ p ≡ 1, 2 mod 4}.

Denote by D(X) := #{D ∈ D : D ≤ X}. Peter Stevenhagen formulates the
following conjecture [6]:

Conjecture 1. Let α :=
∏∞

j=1(1 + 2−j)−1 = 0.419422 . . . Then

lim
X→∞

#{D ∈ D : D ≤ X and Norm(ǫD) = −1}
D(X)

= 1− α = 0.580578 . . .

It is well known that for a special discriminant D the negative Pell equation
is solvable if and only if ClD = CD, i.e. the ordinary and the narrow class group
coincide. We remark that for special discriminants the 2–ranks of the two class
groups always coincide.

In [2–4] we study the behaviour of the 4–ranks of the class group. Theoretically
it is known that these 4–ranks are the same or differ by 1. The behaviour of p–
ranks of class groups is predicted by the Cohen–Lenstra heuristics [1] which was
extended to 4–ranks by Gerth [5]. In the following we need the function:

α∞(r) :=
α∏r

j=1(2
j − 1)

.

We are able to prove that the densities

δ(a, b) := lim
X→∞

# {D ∈ D : D < X, rk4(CD) = a and rk4(ClD) = b}
D(X)
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exist and are equal to:

δ(a, b) =






0 if 0 ≤ a < b,

0 if 0 ≤ b < a− 1,

2−a · α∞(a) if a = b,

(1− 2−a) · α∞(a) if a = b+ 1.

Using the above mentioned results we can control the 4–ranks of those groups.
We use the following well known statements:

(1) Let D ∈ D such that rk4(CD) = 0. Then the negative Pell equation for D
is solvable.

(2) LetD ∈ D such that rk4(CD) 6= rk4(ClD). Then the negative Pell equation
for D is not solvable.

Denote by D−(X) the number of D ∈ D with D ≤ X such that ǫD has norm −1.
Then we can prove

Theorem 1. For X →∞, we have the inequalities

(α − o(1))D(X) ≤ D−(X) ≤
(

2

3
+ o(1)

)
D(X).

We can summarize our result in familiar words as follows: Stevenhagen conjec-
tures that about 58% of the special D satisfy Norm(ǫD) = −1. We prove that this
percentage is between 41% and 67%.
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Statistics for low-lying zeros of Hecke L-functions in the level aspect

Guillaume Ricotta

1. Introduction

We would like to provide evidence for the fact that zeros of L-functions seem
to behave statistically as eigenvalues of random matrices of large rank throughout
the instance of Hecke L-functions. First, we remind you of Iwaniec-Luo-Sarnak’s
results on one-level densities for low-lying zeros of Hecke L-functions (see [5]) and
Katz-Sarnak’s results on one-level densities for eigenvalues of orthogonal random
matrices (see [6]). Then, we explain that Hughes and Miller (see [1]) found a new
example of a very strange phenomenon discovered by Hughes and Rudnick (see
[2]) called mock-Gaussian behavior. These works were carried on by the author
and Royer in the context of low-lying zeros of symmetric power L-functions in the
level aspect (see [7]).

Acknowledgements. The author would like to thank Henri Cohen, Hendrik W.
Lenstra and Don B. Zagier for inviting him to the Mathematisches Forschungsin-
stitut Oberwolfach on the occasion of the workshop “Explicit Methods in Number
Theory”. His visit is financed by the ANR project “Aspects Arithmétiques des
Matrices Aléatoires et du Chaos Quantique”.

Notation. We write P for the set of prime numbers; the main parameter in this
paper is a prime number q, whose name is the level, which goes to infinity among
P. For any ν > 0, Sν(R) stands for the space of even Schwartz functions Φ whose
Fourier transform

Φ̂(ξ) :=

∫

R

Φ(x)e(−xξ) dx

is compactly supported in [−ν,+ν].

2. A quick walk in the world of L-functions

2.1. Hecke L-functions and their zeros. Let f be a primitive cusp form of
level q, even integer weight κ ≥ 2 and trivial character ǫq say f ∈ H∗

κ(q) (see
[3] for the automorphic background). If (λf (n))n≥1 are its (suitably normalised)

Hecke eigenvalues then we define

L(f, s) :=
∑

n≥1

λf (n)

ns
=
∏

p∈P

(
1− λf (p)

ps
+
ǫq(p)

p2s

)−1

,

which is an absolutely convergent and non-vanishing Dirichlet series and Euler
product on ℜs > 1, and also L∞(f, s) := ΓR (s+ (κ− 1)/2)ΓR (s+ (κ+ 1)/2)
where ΓR(s) := π−s/2 Γ (s/2) as usual. The function Λ(f, s) := qs/2L∞(f, s)L(f, s)
is a completed L-function in the sense that it satisfies the following nice analytic
properties, proved by E. Hecke:

• the function Λ(f, s) can be extended to a holomorphic function of order 1
on C;
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• the function Λ(f, s) satisfies a functional equation of the shape

Λ(f, s) = iκǫf (q)Λ(f, 1− s)
where ǫf(q) = −√qλf (q) = ±1.

Let us recall some preliminary facts on zeros of Hecke L-functions, which can
be found in section 5.3 of [4]. If ǫf (q) = −1 then the functional equation of
L(Symr f, s) evaluated at the critical point s = 1/2 provides a trivial zero. The
Generalised Riemann Hypothesis is the main conjecture about the horizontal dis-
tribution of the zeros of Λ(Symr f, s) in the critical strip.

Hypothesis GRH. For any prime number q and any f in H∗
κ(q), all the zeros of

Λ(f, s) lie on the critical line {s ∈ C : ℜs = 1/2}.
Under hypothesis GRH, it can be shown that the spacing between two consec-

utive zeros with imaginary part in [0, 1] is roughly of size (2π)/ log (q). Thus, we
normalise the zeros by defining

ρ̂ :=
log (q)

2iπ

(
ℜρ− 1

2
+ iℑρ

)

for any zero ρ of Λ(f, s). We aim at studying the local distribution of the zeros of
Λ(f, s) in a neighborhood of the real axis of size 1/ log q.

2.2. One-level density. Fix Φ ∈ Sν(R). Let us define the harmonic probability
measure on H∗

κ(q). If A is any subset of this space then its harmonic probability
measure is defined by

µh
q (A) :=

∑

f∈A

ωf (q)

where the harmonic weight associated to any f in H∗
κ(q) is given by

ωq(f) :=
Γ(κ− 1)

(4π)κ−1〈f, f〉q
and 〈f, f〉q stands for the Petersson scalar product. The random variable on(
H∗

κ(q), µh
q

)
defined by

∀f ∈ H∗
κ(q), D1,q[Φ](f) :=

∑

ρ,Λ(f,ρ)=0

Φ (ρ̂)

is the one-level density (relatively to Φ). Its harmonic expectation is

Eh
q (D1,q[Φ]) :=

∑

f∈H∗
κ(q)

ωq(f)D1,q[Φ](f)

and its m-th moments are

Mh
q,m (D1,q[Φ]) := Eh

q

((
D1,q[Φ]− Eh

q (D1,q[Φ])
)m)

for any integer m ≥ 1. We may legitimately wonder if the previous sequences of
complex numbers converge as q goes to infinity among the primes. If yes, the fol-
lowing general notations will be used for their limits Eh

∞ (D1[Φ]) and Mh
∞,m (D1[Φ])
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for any integer m ≥ 1. Let ε = ±1. The signed harmonic expectation of the one-
level density is

Eh,ǫ
q (D1,q[Φ]) := 2

∑

f∈Hǫ
κ(q)

ǫf (q)=ǫ

ωq(f)D1,q[Φ](f)

and its signed m-th moments are

Mh,ǫ
q,m (D1,q[Φ]) := Eh,ǫ

q

((
D1,q[Φ]− Eh,ǫ

q (D1,q[Φ])
)m)

for any integer m ≥ 1. The possible limits of these sequences will be denoted
Eh,ǫ
∞ (D1[Φ]) and Mh,ǫ

∞,m (D1[Φ]) for any integer m ≥ 1.

3. A very quick walk in the world of random matrices

3.1. On classical compact groups. Let N ≥ 1 be an integer. We define

UN := {A ∈MN(C), AA∗ = 1N} ,
SON := {A ∈ UN ∩MN(R), det(A) = +1}

where 1N is the identity matrix of size N . These compact groups are endowed with
normalised Haar measures dUN and dSON . We consider the following sequences of
probability spaces

O := ((SON , dSON ))N≥1 ,

SO+ := ((SO2N , dSO2N ))N≥1 ,

SO− :=
((
SO2N+1, dSO2N+1

))
N≥1

.

Note that the eigenvalues of any A ∈ UN can be writen as

exp (iθ1(A)), . . . , exp (iθN (A))

where 0 ≤ θ1(A)) ≤ . . . ≤ θN (A)) ≤ 2π. We define the normalised eigenangles by

∀i ∈ {1, . . . , N}, θ̂j(A) :=
N

2π
θi(A).

since the mean spacing between eigenangles is roughly (2π)/N .

3.2. One-level density. Fix Φ ∈ Sν(R). IfKN ⊂ UN is one of the above compact
groups, then the random variable on (KN , dKN ) defined by

∀A ∈ KN , D1,KN [Φ](A) :=
N∑

j=1

Φ
(
θ̂j(A)

)

is the one-level density (relatively to Φ). Its expectation is

EN(D1,KN [Φ]) :=

∫

KN

D1,KN [Φ](A)dKN (A)

and its m-th moments are

MN,m(D1,KN [Φ]) := EN ((D1,KN [Φ]− EN (D1,KN [Φ]))
m

)
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for any integer m ≥ 1. The limits of the sequences of complex numbers

(EN (D1,KN [Φ]))N≥1 , (MN,m (D1,KN [Φ]))N≥1

as N goes to infinity will be denoted

E∞ (D1,K [Φ]) , M∞,m (D1,K [Φ])

for any integer m ≥ 1.

4. Iwaniec-Katz-Luo-Sarnak’s results on one-level densities

Katz and Sarnak (see [6]) proved the following result.

Theorem 1. If ν > 0 is any real number and Φ belongs to Sν(R) then

E∞ (D1,O[Φ]) = δ0(x) +
1

2
,

E∞

(
D1,SO+ [Φ]

)
= δ0(x) +

1

2
η(x),

E∞

(
D1,SO− [Φ]

)
= δ0(x) −

1

2
η(x) + 1,

where

η(x) :=






1 if |x| < 1,
1
2 if x = ±1,

0 otherwise.

Remark 2. It should be mentioned that if Φ belongs to Sν(R) with ν < 1 then the
three densities match:

E∞ (D1,O[Φ]) = E∞

(
D1,SO+ [Φ]

)
= E∞

(
D1,SO− [Φ]

)
.

A result similar in the world of L-functions was proved by Iwaniec and Luo and
Sarnak (see [5]).

Theorem 3. If ν < 2 and Φ is in Sν(R) then

Eh
∞ (D1[Φ]) = E∞ (D1,O[Φ]) ,

Eh,+1
∞ (D1[Φ]) = E∞

(
D1,SO+ [Φ]

)
,

Eh,−1
∞ (D1[Φ]) = E∞

(
D1,SO− [Φ]

)
.

Remark 4. The crucial fact is that the authors succeeded in breaking the natural
barrier ν = 1.

Remark 5. This result, which is believed to be true without any restriction on
the size of the support ν, suggests that zeros of Hecke L-functions behave like
eigenvalues of orthogonal random matrices of large rank. In addition, a trivial
vanishing at the critical point seems to have some effect on the behaviour of low-
lying zeros.
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5. Hughes-Miller’s results on mock-Gaussian behaviour

For any Φ ∈ Sν(R), one defines

σ2
Φ := 2

∫ +1

−1

|u|Φ̂2(u) du

and

Rm(Φ) := (−1)m−12m−1

(∫

R

Φ(x)m sin (2πx)

2πx
dx− 1

2
Φ(0)m

)

for any integer m ≥ 1. Hughes and Miller proved the following striking result (see
[2]).

Theorem 6. Let ε = ±1 and Φ ∈ Sν(R). We assume hypothesis GRH and the
Generalized Riemann hypothesis for all Dirichlet L-functions. If ν < 1

m−1 then

Mh
∞,m (D1[Φ]) = M∞,m (D1,0[Φ]) =

{
0 if m is odd,

2
∫

R
|u|Φ̂2(u) du× m!

2m/2(m
2 )!

otherwise.

and

Mh,ǫ
∞,m (D1[Φ]) = M∞,m (D1,S0ε [Φ]) =

{
ε×Rm(Φ) if m is odd,

ε×Rm(Φ) + 2
∫

R
|u|Φ̂2(u) du× m!

2m/2(m
2 )!

otherwise.

Remark 7. It may be checked that if ν < 1
m then Rm(Φ) = 0 while if ν < 1

m−1

then Rm(Φ) is not identically zero. As a consequence, the moments of the signed
one-level densities of low-lying zeros of Hecke L-functions and the moments of the
one-level densities attached to SO− and SO+ are Gaussian if ν < 1

m but cease to

be Gaussian as soon as the support exceeds 1
m . Such a phenomenon was observed

for the first time by Hughes and Rudnick (see [2]) in the particular case of Dirichlet
L-functions. In addition, the defect of being Gaussian is exactly balanced according
to the “sign”, which implies that the moments of the one-level density of low-lying
zeros of Hecke L-functions and the moments of the one-level density attached to
O are Gaussian if ν < 1

m .

Remark 8. Let us explain the different assumptions in the previous theorem.
Firstly, hypothesis GRH may be easily removed. Secondly, the Generalized Rie-
mann hypothesis for all Dirichlet L-functions is crucial for the following reason.
The Gaussian term comes from the diagonal term in Petersson’s trace formula
whereas the non-Gaussian term Rm(Φ) comes from an analysis of sums of Kloost-
erman sums on the prime numbers. Evaluating such sums comes down to evalu-
ating sums of characters over the prime numbers.

References

[1] C. P. Hughes and Steven J. Miller, Low-lying zeros of L-functions with orthogonal symmetry,
Duke Math. J. 136 (2007), no. 1, 115–172. MR MR2271297



1980 Oberwolfach Report 34/2007

[2] C. P. Hughes and Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Q. J. Math.
54 (2003), no. 3, 309–333. MR MR2013141 (2005a:11131)

[3] Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics,
vol. 17, American Mathematical Society, Providence, RI, 1997. MR MR1474964 (98e:11051)

[4] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical
Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI,
2004. MR MR2061214 (2005h:11005)

[5] Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of L-functions,

Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55–131 (2001). MR MR1828743
(2002h:11081)

[6] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and mon-
odromy, American Mathematical Society Colloquium Publications, vol. 45, American Math-
ematical Society, Providence, RI, 1999. MR MR1659828 (2000b:11070)

[7] G. Ricotta and E. Royer, Statistics for low-lying zeros of symmetric power l-functions in the
level aspect, preprint available at http://arxiv.org/abs/math/0703760 (2007).

Double zeta values and modular forms

Herbert Gangl

(joint work with Masanobu Kaneko and Don Zagier)

The double zeta values, which are defined for integers r ≥ 2, s ≥ 1, by

(1) ζ(r, s) =
∑

m>n>0

1

mrns
,

are subject to numerous relations. Already Euler found that when the weight
k = r + s is odd the double zeta values can be reduced to products of usual zeta
values. Furthermore, he gave the sum formula

(2)
k−1∑

r=2

ζ(r, k − r) = ζ(k) (k > 2).

The aims of the talk were to give other interesting relations among double zeta
values, and to indicate that the structure of the Q-vector space of all relations
among double zeta values of weight k is connected with the structure of the space
of modular forms Mk of weight k on the full modular group Γ1 = PSL(2,Z).

Double zeta values are a special case of multiple zeta values, defined by sums like
(1) but with longer decreasing sequences of integers, which are known to satisfy
a collection of relations called the double shuffle relations. The specialization of
these relations to the double zeta case is given by the following two sets of easily
proved relations:

(3)

ζ(r, s) + ζ(s, r) = ζ(r) ζ(s) − ζ(k) (r + s = k; r, s ≥ 2) ,

k−1∑

r=2

[(
r − 1

j − 1

)
+

(
r − 1

k − j − 1

)]
ζ(r, k − r) = ζ(j) ζ(k − j) (2 ≤ j ≤ k

2
) .

We wish to study the relations which can be deduced from (3). Since we want to do
this algebraically, it is useful to work, not with the double zeta values themselves,
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which for all we know may satisfy other relations than (3) (it is not even known
that any ζ(r, s)/πr+s is irrational), but with the formal double zeta space Dk,
generated by formal symbols Zr,s, Pr,s and Zk subject to the relations (3), with
Zr,s, Pr,s and Zk taking the role of ζ(r, s), ζ(r)ζ(s) and ζ(k), respectively, and
where r and s are allowed to assume the value 1.

In Dk we can prove a number of explicit relations. In particular, Euler’s result
that all Zr,s are rational linear combinations of the Pr,s when the weight k is odd
holds in the formal double zeta space Dk, so that we can (and usually will) assume
that k is even. Similarly, the formal analogue of Euler’s sum formula (2) holds
in Dk, and in fact (for k even) has a refinement giving the sums of the even- and
odd-argument double zeta values of weight k separately. Surprisingly, they are
always in the ratio 3:1, independently of k :

Theorem 1. For even k > 2, one has

k−1∑

r=2
r even

Zr,k−r =
3

4
Zk ,

k−1∑

r=2
r odd

Zr,k−r =
1

4
Zk .

As an example of a more complicated identity, we show that, for m,n ≥ 1 odd,
m+ n = k > 2,

2

n−1∑

ν=0

(−m
ν

)
Bν Zn−ν,m+ν =

∑

r+s=k

(−1)s−1λm,n(r, s)Pr,s ,

where Bν is the νth Bernoulli number and

λm,n(r, s) =

n−1∑

ν=0

(
m+ ν − 1

ν

)(
r − 1

n− ν − 1

)
Bν

(which despite appearances is symmetric in r and s). Since Bν = 0 for all odd ν
except ν = 1, this implies that any Zev,ev can be written in terms of Zod,od’s and
Pr,s’s. But in fact only Zod,od’s are required:

Theorem 2. Let k > 2 be even. Then the Zr,k−r with 0 < r < k odd are a basis
of Dk. There are explicit representations of the elements of various bases of Dk

as linear combinations of the Zod,od’s.

Theorem 2 is false for double zeta values. Instead we have the following result,
which gives the first connection with modular forms:

Theorem 3. (Rough statement.) The values ζ(od, od) of weight k satisfy at least
dimSk linearly independent relations, where Sk denotes the space of cusp forms of
weight k on Γ1.

Example. For k = 12, the first weight for which there are non-zero cusp forms
on Γ1, we have the identity

(4) 28 ζ(9, 3) + 150 ζ(7, 5) + 168 ζ(5, 7) =
5197

691
ζ(12)

which can be written in terms only of ζ(od, od)’s using Theorem 1.
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Although Theorem 3 holds for the “true” double zeta world and is false in
the formal one, it is in fact a consequence of a result in the formal space. In
fact, it follows from two different—though complementary—results. Both of them
involve period polynomials. We recall the definition of these polynomials. For
each even k we consider the space Vk of homogeneous polynomials of degree k− 2
in two variables and the subspace Wk ⊂ Vk of polynomials satisfying the relations
P (X,Y ) +P (−Y,X) = 0, P (X,Y ) +P (X −Y,X)+P (Y, Y −X) = 0. It splits as
the direct sum of subspaces W+

k and W−
k of polynomials which are symmetric and

antisymmetric with respect to X ↔ Y , with the former being odd and the latter
even with respect to X 7→ −X . The Eichler-Shimura-Manin theory tells us that
there are canonical isomorphisms over C between Sk and W+

k and between Mk

and W−
k . The full statement of Theorem 3 associates to any polynomial in W−

k ,
in an injective way, an explicit relation among the numbers Zod,od and Pev,ev (and
Zk). For the above example (4), for instance, the polynomial X2Y 2(X2−Y 2)3 in
W−

12 leads to the relation

28Z9,3 + 150Z7,5 + 168Z5,7 = 28P4,8 +
95

3
P6,6 −

167

3
Z12 ,

which by Euler’s theorem agrees with (4) modulo Qπ12.

The other result about formal double zeta values which implies Theorem 3
involves the space W+

k rather than W−
k . More precisely, it involves a certain 1-

dimensional extension Ŵ+
k ⊂ Vk + C ·

(
Xk−1Y −1 +X−1Y k−1

)
(see §6 for details)

which is isomorphic to Mk rather than Sk :

Theorem 4. If {Zr,s, Pr,s, Zk} is a collection of numbers satisfying the double
shuffle relations in weight k, then the polynomial

∑

r+s=k
r, s even

Pr,s X
r−1Y s−1 Zk

2

(
Xk−1Y −1 +X−1Y k−1

)

belongs to Ŵ+
k (and to W+

k if Zk = 0). Every element of Ŵ+
k arises in this way.

From one point of view, this says that the subspace Pev
k of Dk spanned by the

Pr,s with r and s even is canonically dual to Ŵ+
k . From another, it says that there

are k/6 + O(1) relations among the Pev,ev, these relations being the same as the

relations satisfied by the coefficients of period polynomials in W+
k . Moreover , we

also have

Theorem 5. The space Pev
k is canonically isomorphic to MQ

k , by a map which

sends Pr,s to (2πi)−kGrGs (plus a multiple of G′
k−2 if r or s = 2) and Zk to

(2πi)−kGk.

Lifting this statement to Dk leads naturally to the definition of double Eisenstein
series as

Gr,s(τ) =
∑

m, n∈Zτ+Z
m≻n≻ 0

1

mrns
(τ ∈ H = upper half-plane),



Explicit Methods in Number Theory 1983

where n ≻ 0 means n = nτ + b with n > 0 or n = 0, b > 0 and m ≻ n means
m− n ≻ 0.

They also turn out to satisfy the double shuffle relations. For details, see [1].
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Weyl group multiple Dirichlet series

Paul E. Gunnells

(joint work with Gautam Chinta and Sol Friedberg)

Let Φ be an irreducible, reduced root system of rank r and with Weyl group W .
Let θ be a regular weight for Φ. The goal of this talk is to describe the construc-
tion of a Dirichlet series in r complex variables s1, . . . , sr depending on θ, with
meromorphic continuation to Cr, and satisfying a group of functional equations
isomorphic to W . Such series have appeared in the literature in different applica-
tions. Conjecturally the series we construct are the Fourier–Whitaker coefficients
of the Eisenstein series attached to the Borel subgroup of metaplectic covers of split
semisimple algebraic group attached to Φ. The series also have many intriguing
connections with combinatorics and representation theory.

For example, when Φ = A2 and θ is the sum of the fundamental weights, such
a series has the form

(1) Z(s1, s2) =
∑

d,m>0
d,m odd

χd0(m̂)a(d,m)m−s1d−s2 , si ∈ C

on the region on absolute convergence. Here d0 is the squarefree part of d, m̂ is
the part of m relatively prime to d0, and χl denotes the character attached to
the quadratic extension Q(

√
l)/Q. The function a(d,m) is defined through the

multiplicativity relation

a(d,m) =
∏

pk||d,pl||m

a(pk, pl)

and at p by

(2) a(pk, pl) =

{
min(pk/2, pl/2) if min(k, l) is even,
0 otherwise.

This series was essentially constructed by Siegel [11] and was later used by Goldfeld–
Hoffstein [10] to study mean values of the form

(3)
∑

|d|>0

L(1/2, χd) and
∑

|d|>0

L(1, χd).
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Note that if we ignore the differences between d0, d and m̂,m, and ignore a, the
Z(s1, s2) roughly has the form

Z(s1, s2) ≈
∑

d,m>0

(
d

m

)
m−s1d−s2 ≈

∑

d

L(s1, χd)d
−s2 .

This explains the relevance of (1) to investigate sums of the form (3).
The general series is constructed out of nth power residue symbols; the general-

ization of (2) is constructed using a twisted deformed version of the Weyl character
formula. We now give the definition under the simplifying assumptions that Φ is
simply-laced and that the symbols are quadratic, i.e. n = 2. This is the setting of
[7]. The case Φ = A2 and general n is carried out in [8]. General Φ and general n
will be treated in [6].

Let K be a number field with ring of integers O. Let S = Sf ∪ S∞ be a set
of places with S∞ all archimedian places and Sf large enough so that the ring of
S-integers OSf

has class number 1. Let I (S) be the group of integral ideals prime
to Sf , and let J (S) be the group of fractional ideals coprime with Sf .

There is a quadratic residue symbol
(
∗
∗

)
: J (S) ×J (S) → {−1, 0, 1}. Es-

sentially this symbol is defined so that
(

(a)
∗

)
gives the character attached to the

abelian extension K(
√
a), but there are some technicalities. The full details of this

symbol were worked through by Fisher–Friedberg [9].
We choose a subset of positive roots Φ+ ⊂ Φ and a subset of simple roots

α1, . . . , αr. Let s = (s1, . . . , sr) be a vector of r complex variables, indexed by
the simple roots in Φ, that is by the nodes of the Dynkin diagram for Φ. Let
I = (I1, . . . , Ir) be a tuple of ideals from I (S), and let Ψ = (ψ1, . . . , ψr) be a
collection of r idèle class characters unramified outside of S. We denote by Ψ(I)
the product

∏
i ψi(Ii).

We come to our main construction. We define

(4) ZS(s,Ψ) =
∑

I∈I (S)r

Ψ(I)H(I)∏
j |Ij |sj

,

where H : I (S)r → Z is a function we will specify in a moment. In fact correctly
defining H is the main part of the whole story; for Siegel’s series (Φ = A2 and
K = Q) H combines χd0(m̂) and a(d,m) from (1). The function H is constructed
so that ZS(s,Ψ) will satisfy r basic functional equations σ1, . . . , σr, taking s =
(s1, . . . , sr) to σj0s = (s′1, . . . , s

′
r), where

s′j =






sj + sj0 − 1/2 if j and j0 are adjacent,
1− sj0 if j = j0, and
sj otherwise.

Here adjacent means that the variables correspond to adjacent nodes of the Dynkin
diagram for Φ. It is easy to check that these involutions generate a group isomor-
phic to the Weyl group of Φ. Note that H is the only part of the definition
reflecting the structure of Φ; without it (4) has nothing to do with Φ, except that
the number of variables is the same as the rank of Φ.
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We first impose on H a twisted multiplicativity condition: given ideals Ij , I
′
j ∈

I (S) with (I1I2 · · · Ir , I ′1I ′2 · · · I ′r) = 1 we put

(5)
H(I1I

′
1, . . . , IrI

′
r)

H(I1, . . . , Ir)H(I ′1, . . . , I
′
r)

=
∏

i,j adj.
i<j

(
Ii
I ′j

)(
I ′i
Ij

)

Note that if H were actually multiplicative, then the right of (5) would be 1.
Instead it is a product of symbols reflecting the structure of Φ. This property of
H is where the residue symbols appear. Note that since H is not multiplicative,
the final series ZS will not have an Euler product.

Next we define H on tuples of the form (P k1 , . . . , P kr), where P is a fixed prime
ideal, and where the ki are nonnegative integers. This is the most important part
of the construction. Let x = (x1, . . . , xr) be a vector of variables and let F be the
function field C(x). We define an action of the Weyl group W on F that depends
on θ. Then we construct a rational function fθ(x) ∈ F such that

(6) fθ(x) =
∑

k1,...,kr≥0

H(P k1 , . . . , P kr)xk1
1 · · ·xkr

r

and such that fθ is invariant under the action and satisfies a few additional tech-
nical properties. Using that the local factors of Z are invariant under W we prove
that globally Z satisfies the correct functional equations.

For example, for Siegel’s series (1) we have

(7) fθ(x, y) =
1 + x+ y − xy2 − x2y − x2y2

(1− x2)(1− y2)(1 − px2y2)
.

It is a pleasant exercise to check that under the identification H(pk, pl) = a(pk, pl),
equations (6)–(7) yield (2).

This talk presented joint work with Gautam Chinta and Sol Friedberg on the
construction of multiple Dirichet series in several complex variables [5–8]. Related
work has been carried out by Ben Brubaker, Dan Bump, Gautam Chinta, Sol
Friedberg, and Jeff Hoffstein [1–4].
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Theoretical aspects of Maass type form computation

Andrew R. Booker

(joint work with Andreas Strömbergsson)

Algorithms for computing non-holomorphic cusp forms (Maass forms) on
PSL(2,Z)\H have been investigated since the 1970s. Chief among these is the
algorithm of D. Hejhal, which is robust both in the correctness of its results, and
in its range of applicability. However, until recently, no example of a Maass form
had been rigorously computed, the main difficulty being that the discrete spec-
trum of Maass forms is imbedded in a continuous spectrum spanned by Eisenstein
series. This problem was overcome in [1] by making use of the operator introduced
by Lindenstrauss and Venkatesh:

♦ = 2 cos((log p)
√

∆− 1/4)− Tp,

where p is a suitable prime number and Tp the corresponding Hecke operator. This
operator is designed to annihilate the contribution from the continuous spectrum;
using it, ten Laplacian eigenvalues were computed and certified correct to over 100
decimal places in [1].

In the talk I described some joint work with Andreas Strömbergsson that goes
beyond the simple certification technique of [1]. We show that one can use oper-
ators like ♦ to give a version of Hejhal’s algorithm (i.e. using only linear systems
of equations based on automorphy relations) for which one can prove convergence
to cusp forms. One of the main obstacles is to show that for any Maass-Hecke
eigenform f of Laplacian eigenvalue λ = 1/4+ r2, there is a prime p not too large
for which the Hecke eigenvalue λp is different from pir +p−ir (the Hecke eigenvalue
of the corresponding Eisenstein series). By standard Rankin-Selberg theory and
convexity bounds, this is true for some p ≪ε λ

1/2+ε. To improve on the expo-
nent would require a solution to the subconvexity problem for symmetric square
L-functions in the eigenvalue aspect, which is not yet available. However, it turns
out that a simple automorphy argument using a lower bound for the constant term
of the Eisenstein series (which is essentially the Riemann ζ-function on the line

ℜ(s) = 1) gives p <
√
λ/2π, which is exactly what is needed to solve the problem

at hand.
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Once one has an algorithm, as above, for computing a list of discrete Laplace
eigenvalues, it remains to show that the list is complete. This arises because of
the well-known difficulty in bounding the eigenvalue multiplicity. (More precisely,
the discrete spectrum is believed to be simple, but the best known multiplicity
bound is O(

√
λ/ logλ).) To do this, we followed the model described by Turing

for verifying the Riemann hypothesis computationally. The precise input needed
is an explicit bound on the average of the error term in Weyl’s law. Let N(t)
denote the number of discrete eigenvalues λ = 1/4 + r2 (counting multiplicity)
with r ∈ [0, t], and

S(t) = N(t)−
(
t2

12
− 2t

π
log

t

e
√

π
2

− 131

144

)
.

Then, for T > 1,

−
(

2 +O

(
1

logT

))(
π

12 logT

)2

≤ 1

T

∫ T

0

S(t) dt

≤
(

1 +O

(
1

logT

))(
π

12 logT

)2

.

Here the implied constants may be taken to be 13, though we expect that to
improve with more work. This result is proven using the Selberg trace formula
and some new results on certain extremal functions. The constant π

12 in the above
is best possible by this method, but is already enough to give satisfactory results.
We used it to certify complete the first 2000 eigenfunctions, needing less than 2%
extra forms for the certification.

Finally, I discussed briefly how one can apply these techniques to give an al-
gorithm for computing real quadratic class numbers unconditionally (i.e. without
relying on GRH to certify the results) in best possible time on average. Basically,
one can use the trace formula for Hecke operators to evaluate a sum of the form

∑

d<X

h(d)w(d),

running over all fundamental discriminants d, with a positive weight function w.
The sum is expressed in terms of spectral data, i.e. Laplacian and Hecke eigen-
values of Maass forms. Given lower bounds for each h(d) (which can obtained
quickly using computations in the class group) and a list of those spectral data,
one compares both sides to certify that all computed values of h(d) are correct.
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The curious fact that 1
2 log 2 < .37

Harold M. Stark

1. Introduction. This paper represents research still in progress. Let S be any
set of positive integers and for x > 0, let N(x, S) be the number of integers n
in S with n ≤ x. Let now M be an infinite set of positive integers and S a subset
of M . There are unsolved problems in number theory where there is a conjectured
asymptotic density,

N(x, S) ∼ CN(x,M) as x→∞,

where C is of the form

C =
∏

q

(1− aq),

with the product being over all primes q and the numbers aq are in the range
0 ≤ aq < 1 and are sufficiently small so that the product for C is convergent
(i.e. C > 0). The convergence of the product is equivalent to the convergence
of
∑
aq.

The heuristics for such a conjecture typically involve, for each prime q, throwing
out from M a subset Mq whose density in M is presumed to exist and be aq, with
S making up the set of integers in M which are not in any of the Mq. Sometimes
it has not been proved that the Mq have a density, and often even when this is
known, the necessary uniformity of estimates of the N(x,Mq) as we go through
an inclusion-exclusion argument have not been achieved.

Indeed, in some of the most interesting such problems, it is not even currently
known that the set S is infinite. It is for these problems that we propose a simple
modification that would lead to positive lower densities for S and require only
upper estimates on the N(x,Mq) which we would hope are more easily given than
the good lower estimates that would also be needed in any inclusion-exclusion
argument. Suppose that we can find a real number x0 and numbers bq in the
range 1 > bq > 0 such that for x > x0 and all q,

N(x,Mq) < bqN(x,M),

(presumably for each q, we end up with bq ≥ aq) and such that
∑
bq is convergent.

For all x < x0, we would then get

(1) N(x, S) >

[
1−

∑

q

bq

]
·N(x,M),

so that S would be infinite if
∑
Bq < 1. Simple alterations are possible when∑

Bq ≥ 1 although a finite amount of inclusion-exclusion, say for all q ≤ q0,
would become necessary.
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2. Class-numbers of real quadratic fields. This example is presented in
Stark [4]. There are two versions here. Let M be the set of all discriminants
of real quadratic number fields and S be the subset of all discriminants of real
quadratic fields whose class-number is a power of 2. For each odd prime q, Mq is
the subset of M with class-numbers divisible by q. The alternative question lets
M ′ be the set of all prime discriminants of real quadratic fields; S′ and M ′

q are
then the intersections of S and Mq with M ′. Since the class-number of a prime
discriminant is odd, S′ consists of the class number one fields in M ′.

The Cohen–Lenstra heuristics [1] predict the two sets S and S′ have the same
densities in M and M ′, respectively, where for odd q, the Mq and M ′

q are the
subsets of M and M ′ with class-numbers divisible by q and the conjectured values
of aq for odd q are the same in both cases and are given by

aq = 1−
∞∏

j=2

(1− q−j),

and we take a2 = 0. The aq are quite small (a3 = .1598 · · · , a5 = .0495 · · · , etc.)
resulting in C = .7544 · · · and 1 −∑ aq = .7341 · · · . Class field theory converts
the counting of numbers in Mq and M ′

q to the counting of certain totally real fields
of degree q. Giving upper estimates for this is currently beyond us.

It is often stated that the heuristics are known for q = 3 thanks to the work
of Davenport and Heilbronn [2]. However Davenport and Heilbronn provide a
weighted average for M3 and I don’t believe that even now it is known that M3

has a limiting density in M . However, in the Ellenberg–Venkatesh talks, it was
stated that the average order of the 3-Sylow subgroups of the class groups for all
real quadratic fields of discriminant up to x is 4/3. This instantly leads to an
upper asymptotic estimate of N(x,M)/6 for the number of discriminants up to
x whose class-numbers are divisible by 3. So, according to our method we could
take b3 = .17 for example. I do not know what is known for q = 3 when we restrict
to prime discriminants.

3. Artin’s primitive root conjecture. It is natural to look at other problems
that might be amenable to this sort of attack. Artin’s primitive root conjecture
comes immediately to mind. We take M = P , the set of primes, and to avoid
entanglements which can change the conjectured constant, we will take S to be
the set of primes p such that 2 is a primitive root (mod p). Artin conjectured that
S has a density in P with

C = .3739 · · · ,
and with the aq given for all primes q by

aq =
1

q(q − 1)
.

Indeed, under GRH, this was proved by Hooley [3] in 1967.
For a given prime q, let

Kq = Q

(
exp

(
2πi

q

)
, 21/q

)
,
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a normal extension of Q of degree q(q−1). If 2 is not a primitive root (mod p) for
some odd prime p, then there is a prime q which divides (p−1) such that 2 is a qth

power (mod p). As Artin noted, this relation between p and q is equivalent to the
condition that p splits completely inKq. The primes p which split completely inKq

form the set Mq. From the start, this conjecture is nicer than the class-number
conjecture because we actually know the values of aq are correct.

Furthermore, we can unconditionally do a finite amount of inclusion-exclusion.
Let M ′ be the set of primes which do not split completely in any Kq with q ≤ q0.
We know that as x→∞,

N(x,M ′) ∼ Cq0N(x,M)

[note: N(x,M) = π(x)], where

Cq0 =
∏

q≤q0

(1− aq).

We choose q0 large enough such that

C < Cq0 < C + .001,

and further such that ∑

q>q0

aq < .001.

As an improvement to (1), we wish to subtract from N(x,M ′) successively for
each q > q0 the number of primes p out to x which split completely in Kq. If
necessary, we are willing to estimate aq’s in troubling ranges from above, so that
if bq ≥ aq for all q > q0, we hope to have at least

(
C −

∑

q>q0

bq

)
N(x,M) ≤

(
C −

∑

q>q0

aq

)
N(x,M)

primes p out to x for which 2 is a primitive root.
Naturally, we will have to consider several ranges of q individually. Since a

prime p splitting completely in Kq must satisfy p ≡ 1 (mod q), we needn’t consider
primes q ≥ x at all. The larger q < x is, the more difficult a decent estimate for
N(x,Mq) becomes. Before looking at Hooley’s paper, a natural starting point

would be to consider the range x1/2 < q < x and it is this range that led to the
title of this paper.

As a prelude to counting the number of primes less than x such that p − 1
is divisible by a prime q between x1/2 and x, we will just count the number of
integers n less than x such that n− 1 is divisible by at least one such prime q. In
fact, since q > x1/2, for an integer n contributing to this count, there can only be
one such prime q, as otherwise n would be larger than x. Thus the number of n
deserves to be asymptotic to

∑

x1/2<q<x

x

q
= x

[
log log(x) − log log(x1/2) + o(1)

]
∼ x log(2).
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(This is the initial range of the Dickman function ρ(u), in this case for u = 1/2. For
u < 1/2, ρ(u) is more difficult to evaluate because we start getting into inclusion-
exclusion arguments.) Under the assumption that the same log(2) density will
occur for primes p < x as integers n < x, we expect that the number of primes
p < x such that p−1 is divisible by a prime q in the range [x1/2, x] is asymptotic to
(x/ log(x)) log(2). We propose to throw out from our count N(x,M ′) all of these
primes, but there are two problems here. The first problem is that we are in a
range where sieves have difficulty counting primes. The second is that log(2) > .37.
The latter problem can be overcome by noting that for q = 2, we threw out from
N(x,M) the 1/2 of all primes ≡ 1 or 7 (mod 8) and so at this point, we only
need to throw out those primes p ≡ 3 or 5 (mod 8) with p < x and p− 1 divisible
by a prime q > x1/2. We expect the number of such primes to be asymptotically
log(2)

2 · x
log(x) and it is this expectation that gave rise to the title of this note since

(1/2) log(2) = .3465 · · · .
Since the problem of dealing with q > x1/2 is loaded with difficulties, it seems

worthwhile to see how Hooley dealt with this range. In fact, Hooley made use
of the seemingly more intractable condition that p split completely in Kq in the
form that p is thrown out when 2m ≡ 1 (mod p) and p − 1 = mq. When q
is large, m is small and this allowed Hooley to simultaneously count primes for
all small m simultaneously. In this manner, he showed unconditionally that the
number of primes p less than x such that q | (p − 1) with prime q > x1/2 log(x)
is O(x/ log(x)2). Hooley likewise dealt unconditionally with those p = 1 + mq
where x1/2/ log(x)2 < q < x1/2 log(x). In fact Hooley introduced our strategy
of just dealing with the primes p ≡ 1 (mod q), but his range of q is sufficiently
small that the Brun sieve already puts all such p into the error term. These two
interesting unconditional results allow us to shift our range of q from [x1/2, x] down
to [x1/4, x1/2] and try to estimate primes p < x such that p ≡ 3 or 5 (mod 8) and
p−1 is divisible by at least one prime in the new lower range. But we are now in a
region where the large sieve is applicable, and so we get a density log(2)/2 for such
primes p. Indeed there is now just enough room to slightly lower the exponent 1/4
at the lower end x1/4 of our range of q.

We can’t yet cover the range of q up to x1/4−ǫ unconditionally, but I am be-
ginning to wonder if this is another of those problems where the obstruction to
proving there are infinitely many p such that 2 is a primitive root (mod p) is the
possible existence of zeta functions of number fields with non-real zeros very close
to s = 1.
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Elliptic curves and surfaces of high rank, I, II, III

Noam D. Elkies

Over the past two years we have improved several of the (Mordell–Weil) rank
records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For
example, we found the first example of a curve E/Q with 28 independent points
Pi ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and
the first example of a curve over Q with Mordell–Weil group ∼= (Z/2Z)⊕Z18 (the
previous rank record for a curve with a 2-torsion point was 15, by Dujella 2002).
In these lectures we give some of the background, theory, and computational tools
that led to these new records and related applications.

I Context and overview: the theorems of Mordell(–Weil) and Mazur; the rank
problem; the approaches of Néron–Shioda and Mestre; elliptic surfaces and Néron
specialization; fields other than Q.

II Elliptic surfaces and K3 surfaces: the Mordell–Weil and Néron–Severi groups;
K3 surfaces of high Néron–Severi rank and their moduli; an elliptic K3 surface
over Q of Mordell–Weil rank 17. Some other applications of K3 surfaces of high
rank and their moduli.

III Computational issues, techniques, and results: slices of Niemeier lattices;
finding and transforming models of K3 surfaces of high rank; searching for good
specializations. Summary of new rank records for elliptic curves.

I Context and overview.
Mordell (1922) proved that the set E(Q) of rational points of an elliptic curve

E/Q has the structure of an abelian group, and that this group is finitely gen-
erated. That is, E(Q) ∼= T ⊕ Zr, where T is a finite abelian group (the torsion
group of E) and r is the rank of E.1 This raises the basic structural question:

Which groups arise as E(Q) for some elliptic curve E/Q?

Equivalently,

Which ordered pairs (T, r) arise as the torsion
and rank of some elliptic curve E/Q?

Mazur’s celebrated torsion theorem [Mazur 1977] answers the questions of which
torsion groups arise: the cyclic groups of order N for 1 ≤ N ≤ 10 and N = 12,
and the groups (Z/2Z) ⊕ (Z/2NZ) for 1 ≤ N ≤ 4. These are exactly the fifteen
groups T for which there is a rational modular curve parametrizing elliptic curvesE
with an embedding of T into E(Q). It is thus almost immediate that each of these
fifteen groups arises infinitely often; the deep part of Mazur’s theorem is the proof

1Weil later (1928) generalized this from E/Q to A/K for an arbitrary abelian variety A over
a number field K, which is why the group E(Q) and rank r are often called the “Mordell–Weil
group” and “Mordell–Weil rank” even in the case covered by Mordell’s original result.
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that when the modular curve has positive genus it has no rational points other
than “cusps” (which parametrize certain degenerate elliptic curves).

This leaves the question of which values of r arise for each of the fifteen pos-
sible T . At present this question is hopelessly difficult. It is not even known
whether infinitely many r arise; equivalently, whether lim supE/Q(r) is infinite

for some (all) of those T . As long as this question remains intractable, we also
ask for which (T, r0) can we prove that lim sup(r) ≥ r0; this is in some sense a
more demanding question than finding large individual values of r, in that proving
lim sup(r) ≥ r0 requires infinitely many curves, not a single lucky guess.

Our main theme is the use of K3 surfaces of high rank and their moduli to
get new records for these questions (and also to obtain some other applications of
explicit parametrizations of K3 surfaces). For the remainder of this first lecture we
outline how the quest for curves of large rank naturally leads to elliptic surfaces,
and illustrate two important earlier approaches to the problem.

Essentially the only technique known for proving lower bounds on lim sup(r)
(at any rate the only technique known for r0 > 2) is finding parametrized families,
that is, infinite families of elliptic curves E together with generically independent
points P1, . . . , Pr0 .

Paradigmatic example: given (xi, yi) (i = 1, 2, 3), solve the simultaneous linear
equations for a2, a4, a6 that make y2

i = x3
i + a2x

2
i + a4xi + a6 for each i = 1, 2, 3.

This yields an elliptic curve E with 3 rational points (xi, yi). Exercise: they are
generically independent (that is, independent when E is considered as an elliptic
curve over the field Q(x1, y1, x2, y2, x3, y3)). Hint: any quadruple (E,P1, P2, P3)
(E some elliptic curve, each Pi on E) arises this way for some xi, yi if and only
if each Pi 6= 0 and Pi 6= ±Pj for i 6= j. [Moreover, we can make xi, yi unique by
requiring (x1, x2) = (0, 1); then (x3, y1, y2, y3) gives a birational parametrization
of the “3-rd power E3 of the universal elliptic curve”.] By a specialization theorem
of Néron ([Néron 1952], see also [Serre 1989, Ch.11]), later sharpened by Silver-
man (more on this below), there are infinitely many choices of (xi, yi) ∈ Q6 for
which P1, P2, P3 remain independent on the curve E/Q. Indeed (and not surpris-
ingly), this is true for “most” rational (xi, yi), and infinitely many non-isomorphic
curves E arise this way. Hence lim sup(r) ≥ 3.

One quickly sees ways to improve this beyond rank 3; for instance, use the
extended Weierstrass form y2 + a1xy + a3 = x3 + a2x

2 + a4x + a6 (or even the
same with a0x

3 instead of x3); or, pass a cubic plane curve through 9 “random”
points of P2. These are still not that far from each other, but they do suggest
two complementary ways of viewing the task. In general, an elliptic curve over
F (t1, ..., tn) with several rational points is both:

1) [“à la Mestre”] Polynomial identities (algebra, often ingeniously applied),
and

2) [“à la Néron”] An algebraic variety of dimension n + 1 equipped with a
suitable map to n-dimensional space over F (algebraic geometry).
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We next give a short table of record ranks of nonconstant elliptic curves2

over Q(t), all but the first and last of whose rows are taken from [Rubin–Silverberg
2002, Table 3] and represent the Mestre-style algebraic approach:

Rank ≥ Author(s) and year
8, 9, 10 Néron (1952)
11, 12 Mestre (1991)

13 Nagao (1994)
14 Mestre, Kihara (2000–1)

(15,16,)17,18 NDE (2006–7)

This leap from 14 to 18,3 and similar improvements for curves with nontrivial
torsion, is also the key ingredient (via specialization) of the new record ranks for
individual curves over Q. Curiously these improvements are achieved by returning
to Néron’s geometric viewpoint but applying it to elliptic surfaces at the next level
of complexity: elliptic K3 surfaces rather than rational elliptic surfaces. We shall
say more about this in the second lecture. First we interpolate some comments
about Néron’s family, an example of Mestre’s identities, and remarks on elliptic
curves and surfaces defined over number fields other than Q.

Recall that we obtained rank ≥ 3 by birationally parametrizing all elliptic
curves E with three rational points P1, P2, P3, a.k.a. the “3-rd power E3 of the
universal elliptic curve”; and observed that some higher powers can be likewise
parametrized using other models of elliptic curves, notably the unique cubic curve
passing through 9 general points P1, . . . , P9 in the plane. This already gives
lim sup(r) ≥ 9, because there are various ways to get a 10th point P0 that can serve
as an origin, such as the 9th base-point of the pencil of cubics through P1, ..., P8.

For r = 10, and thus for larger r, it is no longer possible to completely param-
etrize Er — ultimately because the modular form ∆ = q

∏∞
n=1(1 − qn)24 yields

a holomorphic 11-form on E10! Nevertheless, Néron used the geometry of cubic
curves to find (in effect) rational curves on E10 that give rise to elliptic curves
over Q(t) with 10 generically independent rational points. We describe this con-
struction in some detail because some of the ideas will recur in the more compli-
cated setting of elliptic K3 surfaces.

We follow the exposition in [Shioda 1991]. Start with P1, ..., P8, and thus also
the ninth base-point P0. Then blowing up P2 at P0, P1, . . . , P8 gives a birational
isomorphism of P2 with the pencil of cubics through these nine points. Choose
P0, ..., P8 on a cuspidal cubic, say Γ : Y 2Z = X3, and choose the coordinate t on
the pencil so that Γ is the preimage of t =∞. For generic such P1, . . . , P8 this sur-
face has no reducible fibers, and so rank 8. Parametrize Γ by A(u) = (u : 1 : u3),
so that A(u1), A(u2), A(u3) are collinear iff u1 + u2 + u3 = 0; in particular, the
line through A(u) and A(−u/2) is tangent to Γ at A(−u/2). Let D1, D2, D3 be

2An elliptic curve over Q(t1, . . . , tn) is “nonconstant” if it is not isomorphic over Q(t1, . . . , tn)
with a curve over Q. Such a curve of rank r yields nonconstant curves of rank at least r over
Q(t1, . . . , tm) for each positive m < n by specialization, so it is enough to consider n = 1.

3Ranks 15 and 16 are in parentheses because we proved the existence of such curves in 2006
but did not compute them explicitly.
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these tangents for u1, u2, u3. Each Di meets a generic curve Et of the pencil at 2
points other than Pi = A(ui); so we get a “double section”: a section defined over
a double cover of the t-line. Moreover, each of these double covers is rational, and
t = ∞ is a branch point. So any two of them give a degree-4 cover of P1 by a
rational curve, and Néron shows that the two new points4 are independent, giving
rank 10 over Q(t). For each t ∈ Q (with finitely many exceptions where E degen-
erates), we obtain by specialization an elliptic curve Et/Q with 10 rational points.
Since E/Q(t) is nonconstant, Néron’s specialization theorem yields infinitely many
choices of t where these points remain independent and the curves Et are pairwise
non-isomorphic. (Silverman later used the canonical height to construct, given a
curve E/Q(t) and independent rational points P1, . . . , Pn, an effective bound H
such that the specialized points on Et remain independent for all t not of the form
t0/t1 with t0, t1 ∈ Z∩ [−H,H ], proving that the set of exceptions to independence
is finite and effectively computable. See again [Serre 1989, Ch.11].) Using all three
Di yields rank 11 over the compositum of three rational double covers of Q(t),
all branched at t =∞. This compositum is the function field of an elliptic curve,
usually of positive rank and thus giving infinitely many examples of elliptic curves
over Q with 11 rational points. A variation of Néron’s specialization theorem, or
of Silverman’s refinement, then shows that these include infinitely many distinct
curves of rank at least 11 over Q.

But this did not quite give a nonconstant elliptic curve of rank ≥ 11 over Q(t).
Such a curve was first constructed in [Mestre 1991], as follows. Suppose we have
distinct x1, . . . , x12 ∈ Q, polynomials A2, A3 ∈ Q(X) of degrees at most 2, 3 re-
spectively, and a monic polynomial R(X) of degree 4 whose graph Y = R(X)
intersects the plane cubic curve C : Y 3 + A2(X)Y + A3(X) = 0 at the 12 points
Pi : (X,Y ) = (xi, R(xi)). Then we expect to get rank 12− 1 by regarding C as an
elliptic curve with origin (say) P1. Now the condition on the xi, Aj , and R is equiv-

alent to
∏12

i=1(X−xi) = R3 +A2R+A3. The xi thus uniquely determine R as the

principal part of the Taylor expansion at infinity of
(∏12

i=1(X − xi)
)1/3

, and then

we can recover A2 and A3 if and only if the X−1 coefficient of
(∏12

i=1(X − xi)
)1/3

vanishes (in which case A2, A3 are unique). That coefficient is a homogeneous
quintic F (x1, . . . , x12), which is also invariant under translation (xi) 7→ (xi − ξ)
and thus yields degree-5 hypersurface in P10. This hypersurface contains some
obvious rational subvarieties such as the subspace cut out by xi + x6+i = 0
(1 ≤ i ≤ 6), but this choice makes our 11 points dependent (though it gives C a
2-torsion point and can thus be used to construct elliptic curves of moderately large
rank with T ⊇ Z/2Z). Mestre finds a less obvious rational subvariety of dimen-
sion 3 that preserves independence, consisting of arbitrary linear combinations of

4Four new points are visible, but the two points in each double section sum to an element of
the known rank-8 group.
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(a, a, a, b, b, b, c, c, c, d, d, d) and (b, c, d, a, c, d, a, b, d, a, b, c) for fixed a, b, c, d.5 Vari-
ations of this idea were later used by Mestre and others [see table above] to push
the record rank over Q(t) to 14 (and also for other purposes, such as construct-
ing hyperelliptic curves of given genus with many rational points). Moreover, it
was the rank-11 family that was used by Mestre, Nagao, Fermigier, Kouya, and
Martin-McMillen during 1992–2000 to raise the rank record for individual curves
E/Q from 14 to 15, 17, 19, 20, 21, 22, 23, and finally 24 (see [Dujella 2006a]), even
after curves of rank > 11 over Q(t) were found, because Mestre’s curves have sim-
pler coefficients and more parameters, and thus offer greater scope for searching
for high-rank specializations.

What of the rank of elliptic curves E/F (T ) for general fields F? We exclude the
case of a “constant elliptic curve”, in which E is isomorphic over F (T ) with a fixed
elliptic curve E0/F , because then E(F (T )) = E0(F ) (proof: no nonconstant maps
from P1 to E0), which can be very large and/or complicated if F is large enough.
For nonconstant curves, the geometry of the associated elliptic surface (more on
this in the next lecture) yields the result that E(F (T )) is finitely generated. The
list of possible torsion groups is the same that Mazur proved over Q together
with (Z/NZ)2 (N = 3, 4, 5) and (Z/3Z) ⊕ (Z/6Z), and the proof is much easier
than over Q. But, as with Mordell’s theorem for E/Q, the bound on the rank
is not uniform. Indeed, when F has characteristic p > 0 the rank is unbounded
for “isotrivial” curves with constant and supersingular j-invariant [Šafarevič–Tate
1967], and also for non-isotrivial ones [Ulmer 2002]. In characteristic zero, it is not
yet known whether the rank of nonconstant elliptic curves over F (T ) is unbounded
even for F = C; the record is due to Shioda [1992]: the curve y2 = x3 + T n + 1
over C(T ) has (trivial torsion and) rank ≤ 68, with equality if and only if 360|n.
Note that even though the curve is defined over Q, most sections are not; for
instance, if 3|n then (x, y) = (−µT n/3, 1) is on the curve for each µ ∈ C such
that µ3 = 1. Still, the generators are all defined over some number field F0, and
it follows by Néron’s specialization theorem that there are infinitely many elliptic
curve of rank at least 68 over F0.

II Elliptic surfaces and K3 surfaces.
[This part began with a review of the general setup of elliptic curvesE over F (T )

for an arbitrary field F ⊂ C, relating the arithmetic of E with intersection theory
on the corresponding elliptic surface X . We do not repeat all of this material here;
see for instance [Shioda 1990].]

5An extra dimension can be obtained by adding multiples of (c, d, b, d, a, c, b, d, a, c, a, b) and

(d, b, c, c, d, a, d, a, b, b, c, a), the latter of which is redundant but highlights the A4 symmetry.
This symmetry suggests the following equivalent construction of the resulting copy of P2 ×P2 in
the hypersurface F5 = 0: let V be the irreducible 3-dimensional representation of the alternating
group A4, let 〈·, ·〉 be an A4-invariant perfect pairing on V, and let v, v′ be any vectors in V ;
then the 12 inner products 〈v, gv′〉 (g ∈ A4) are coordinates xi of a point on F5. This can be
verified by regarding F5(x1, . . . , x12) as an A2

4-invariant polynomial on V ⊕ V and showing it

must vanish identically [NDE 3.vii.1991, unpublished e-mail to J.-F. Mestre].
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We assume throught that X is a minimal Néron model for E. Such a surface X
is birational with an elliptic surface in extended Weierstrass form y2 +a1xy+a3 =
x3 + a2x

2 + a4x + a6, with each ai (i = 1, 2, 3, 4, 6) a section of O(id) for some
nonnegative integer d (in down-to-earth language, a homogeneous polynomial of
degree id in two variables). The smallest such d is the “arithmetic genus” of X .
As the name suggests, the description of elliptic surfaces of arithmetic genus d
gets more complicated as d increases. When d = 0 we have a constant elliptic
curve E0 over F (T ) (equivalently, a surface X ∼= E0 ×P1). Once d > 0, it follows
from intersection theory on X , together with the fact that h1,1(X ) = 10d, that the
Mordell–Weil rank of E/F (t) is at most 10d− 2. Except for the smallest few d it
is not known whether this upper bound can be attained.

When d = 1 we say X is a “rational elliptic surface”, because it is birational
with P2, at least over an algebraic closure F . Néron’s surfaces of rank 8 are
rational. Since 8 = 10d− 2 for d = 1, this gives the maximal Mordell–Weil rank of
a rational elliptic surface. Much more can be said of the geometry and arithmetic
of such surfaces, notably Shioda’s beautiful work relating rational elliptic surfaces
with the invariant theory of the Weyl group of the root lattice E8 and its root
sublattices; but we shall not follow this thread here.

Our main concern is the case d = 2, when X is an “elliptic K3 surface”.
A K3 surface is a smooth algebraic surface X with trivial canonical class and
H1(X , OX ) = 0. This is the last case in which an algebraic surface can be ellip-
tic in more than one way; we heavily exploit this flexibility in our analysis and
computations.

A key invariant of a K3 surface X is its Néron–Severi lattice NS(X ) = NSF (X ).
The Néron–Severi lattice of any compact algebraic surface over F is its Néron–
Severi group (divisors defined over F modulo algebraic equivalence), equipped
with the symmetric integer-valued pairing induced from the intersection pairing
on divisors. For a K3 surface, this group is a free abelian group, and the pairing
is even: D ·D ∈ 2Z for all D ∈ NS(X ). Let ρ be the rank of NS(X ). By the index
theorem, the pairing is nondegenerate of signature (1, ρ− 1).

If X is elliptic then NS(X ) contains two distinguished classes defined over F ,
the fiber f (preimage of any point under the map T : X → P1) and the zero-
section s0. The intersection pairing on the subgroup H they generate is deter-
mined by f · f = 0, s0 · f = 1, and s0 · s0 = −d = −2; hence H is isomorphic
with the “hyperbolic plane” (i.e., the even unimodular lattice with Gram matrix


0 1
1 0


). Conversely, any copy of H in NS(X ) defined over F yields a model of X

as an elliptic surface: one of the generators or its negative is effective, and has
2 independent sections, whose ratio gives the desired map to P1. (Warning: in
general one might have to subtract some base locus to recover the fiber class f .)
Moreover, the pair (NS(X ), H) determines the reducible fibers6 and Mordell–Weil

6Except for the distinctions between Kodaira types I1 and II (simple node and cusp, neither
of which contributes to NS(X )), I2 and III (either of which contributes A1), and I3 and IV (either
of which contributes A2).
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group of the elliptic surface over F . Indeed let Ness, the “essential lattice” of the
elliptic surface, be the orthogonal complement of H in NS(X ), with the pairing
scaled by −1 to make it positive definite. Let R ⊆ Ness be the root lattice of Ness,
the sublattice spanned by the roots (vectors of norm 2) in Ness. This is a direct
sum of root lattices An (n ≥ 1), Dn (n ≥ 4), or En (n = 6, 7, 8), with each factor
indicating a reducible fiber of the corresponding type; and the Mordell–Weil group
E(F (T )) is canonically isomorphic with the quotient group Ness /R. In particular
its rank is the difference between the ranks of Ness and R. The rank of Ness, in
turn, equals ρ− 2, so the Mordell–Weil rank is at most ρ− 2, with equality if and
only if Ness has no roots; in this case the Mordell–Weil rank over F (T ) is also ρ−2
if and only if NS(X ) consists entirely of divisor classes defined over F .

Now ρ is at most h1,1(X ) = 10d = 20, whence the upper bound 18 = 20 − 2
on the Mordell–Weil rank. While a rational surface always has ρ = h1,1, for more
complicated surfaces the Néron–Severi rank ρ may be strictly smaller. For K3
surfaces over C the situation is completely described by the Torelli theorem of
Piateckii-Shapiro and Šafarevič [1971]. This theorem confirms and refines the fol-
lowing näıve parameter count: there are 9 + 13− 4 = 18 parameters for an elliptic
K3 surface (the coefficients a4, a6 of a narrow Weierstrass model have 8 + 1 and
12 + 1 coefficients, and we subtract 4 for the dimension of GL2 acting on the
projective coordinates of the T -line); each free Ness generator, whether in R or
the Mordell–Weil group, imposes one condition and thus reduces the dimension
of the moduli space by 1. Recall that over C it is known that H2(X ,Z) ∼= II3,19

(the unique even unimodular lattice of signature (3, 19)), and that NS(X ) embeds
into H2(S,Z). The Torelli theorem asserts that this embedding is “optimal”, that
is, realizes NS(X ) as the intersection of H2(X ,Z) with a Q-vector subspace of
H2(X ,Z)⊗Q; for every such lattice L of signature (1, ρ− 1), there is a nonempty
(coarse) moduli space of pairs (X , ι), where ι : L → NS(X ) is an optimal embed-
ding consistent with the intersection pairing; and each component of the moduli
space has dimension 20 − ρ. Moreover, for ρ = 20, 19, 18, 17 these moduli spaces
repeat some more familiar ones: CM elliptic curves for ρ = 20, elliptic and Shimura
modular curves for ρ = 19, and moduli of abelian surfaces and RM abelian sur-
faces for certain cases of ρ = 17 and ρ = 18. It turns out that many of those
moduli spaces are more readily parametrized via K3 surfaces than by more direct
approaches. We shall treat these applications elsewhere, concentrating here on the
application to elliptic K3 surfaces.

To attain the upper bound of 18 on the Mordell–Weil rank, we must use a
model of one of the (countably infinite number of) K3 surfaces of Néron–Severi
rank 20 as an elliptic surface with trivial R. This can happen over C, and thus
over Q [Cox 1982,Nishiyama 1995]; these proofs via [Piateckii-Shapiro–Šafarevič
1971] use transcendental methods and yield no explicit equations, but the example
Y 2 = X3 − 27(T 12 − 11T 6 − 1) was later obtained in [Chahal–Meijer–Top 2000].
This still leaves open the question of whether an elliptic K3 surface can have
Mordell–Weil rank 18 over Q(T ). We repeat the warning that it is not sufficient for
the surface to be defined over Q; as with Shioda’s surface Y 2 = X3 +T 360 +1, the
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Chahal–Meijer–Top surface does not have all of NS(X ) defined over Q. Likewise
for the Néron–Severi groups of some other familiar examples of K3 surfaces of
maximal Néron–Severi rank, such as the diagonal quartic X4 + Y 4 = Z4 + T 4

in P3 or the complete intersection
∑6

i=1Xi =
∑6

i=1X
2
i =

∑6
i=1X

3
i = 0 in P5.

One somewhat familiar example where the full Néron–Severi group is defined
over Q is the universal elliptic curve with a 7-torsion point, considered naturally
as an elliptic surface over the modular curve X1(7) ∼= P1

Q. But this surface

has |disc(NS(X ))| = 7, much too small for any of its elliptic-surface models to
have rank 18. In fact we combine arithmetic considerations with the construction
in [Inose 1978] to show that if NSQ(X ) has rank 20 then disc(NS(X )) is one of the
thirteen discriminants −3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67,
−163 of imaginary quadratic orders of class number 1. Each of these arises uniquely
up to twists, albeit with different elliptic models — already −3 and −4 have 6 and
13 respectively. But even 163 is too small for Ness to have no roots.7 Therefore
there are no elliptic K3 surfaces of Mordell–Weil rank 18 over Q.8 But Mordell–
Weil rank 17 is barely possible — still not with

(
ρ, |disc(NS(X ))|

)
= (20, 163) but

with an exceptional rational point on a certain Shimura curve!
More on this soon; first we describe torsion on elliptic K3 surfaces. Each of the

torsion groups in Mazur’s list, other than Z/9Z, Z/10Z, Z/12Z, and (Z/2Z) ⊕
(Z/8Z), can arise for such a surface, requiring at least the following reducible fibers,
and thus giving an upper bound on the rank equal to 6 less than the number of
degenerate fibers counted without multiplicity:

torsion {0} Z/2Z Z/3Z Z/4Z Z/5Z

fibers 124 2818 3616 442214 5414

formula (0,0,0,a4,a6) (0,a2,0,a4,0) (a1,0,a3,0,0) (a1,a2,a1a2,0,0) etc.

bound 18 10 6 4 2

torsion Z/6Z Z/7Z Z/8Z
fibers 62322212 7313 82 4 2 12

bound 2 0 0

torsion (Z/2Z)⊕ (Z/2Z) (Z/2Z)⊕ (Z/4Z) (Z/2Z)⊕ (Z/6Z)

fibers 212 4424 6323

bound 6 2 0

The three cases with bound zero are the universal elliptic curves with that
torsion group. When the bound is positive it can always be attained over C
but (as was already seen in the case of trivial torsion) might not be attainable

7Such a lattice, positive-definite of rank 18 with discriminant 163 and minimal norm ≥ 4,
would have broken the density record for a sphere packing in R18. But the existence of such a

lattice is not excluded by known sphere-packing bounds, so its impossibility had to be proved by
other means.

8This was asserted in [Shioda 1994], but as a consequence of an incorrect result that was later
retracted.
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over Q. The maximal rank is not known yet in each case, because with nontrivial
torsion it is possible for the Mordell–Weil group to be defined over Q even though
Gal(Q/Q) acts nontrivially on NSQ(X ). Still, the discriminant −163 surface does

have an elliptic model that attains rank 4 with torsion group Z/4Z, and was
used to get rank 12 over Q (the previous rank record for an elliptic curve with
a rational 4-torsion point was 9, by Kulesz–Stahlke 2001). Explicitly, the surface
has equation Y 2 + aXY + abY = X3 + abX2 where (a, b) = ((8T − 1)(32T + 7),
8(T+1)(15T−8)(31T−7)); it has a 4-torsion point at X = Y = 0, and four points
with X = −15(T + 1)(31T − 7)(32T + 7)/4, (8T − 1)(15T − 8)(31T − 7)(32T + 7),
−(T + 1)(8T − 1)(15T − 8)(32T + 7), and −4(T + 1)(2T + 5)(15T − 8)(32T + 7)
that together with torsion generate E(Q(T )); and taking T = 18745/6321 yields
a curve E/Q with eight further independent points, so E(Q) ∼= (Z/4Z) ⊕ Z12.
There are also various ways to combine pairs of quadratic sections to get infinitely
many E/Q with E(Q) ⊇ (Z/4Z) ⊕ Z6; the previous rank record for an infinite
family with 4-torsion was 5 (Kihara 2004, according to [Dujella 2006], where he
cites two papers in Proc. Japan Acad. A).

A variant approach is to get some of the torsion group by a suitable base change;
for instance our records with torsion group (Z/2Z) ⊕ (Z/2Z) were obtained by
starting from an elliptic K3 surface of Néron–Severi rank 20 with torsion group
Z/2Z whose remaining 2-torsion points are defined over a quadratic extension
of Q(T ) that is still rational; likewise we obtained (Z/2Z)⊕ (Z/4Z) by quadratic
base change from a curve over Q(T ) with torsion group Z/4Z.

We return now to the problem of finding elliptic K3 surfaces of large Mordell–
Weil rank with no torsion restriction. Having proved that rank 18 is unattainable,
we try for rank 17, corresponding to Néron–Severi rank 19. Here the moduli
spaces have dimension 20− 19 = 1, and in principle the Torelli theorem for K3
surfaces [Piateckii-Shapiro–Šafarevič 1971] identifies these curves with standard
arithmetic quotients. In practice it is not always easy to identify the modular
curve corresponding to a given lattice L of signature (1, 18), especially when we
need results over Q rather than C. But some identifications can be made. For
instance, If L ⊃ II1,17 then the surfaces are parametrized by the classical modular
curve X0(N)/wN where N = disc(L)/2. This curve is rational for some rather
large N (largest is 71), and elliptic of rank 1 for some N that are even larger
(largest is 131). For N > 131 the curve has only finitely many rational points
by Mordell-Faltings. We need only one rational point, but it must be neither
a cusp (because cusps yield degenerate surfaces) nor a CM point (because CM
points yield a surfaces of rank 20). It is expected that there are only finitely
many examples; the largest known are for N = 191 [Elkies 1998] and N = 311
[Galbraith 1999]. But again even those N are too small for Ness to have no roots.
Still, N = 311 is large enough for R to have rank only 2, leaving Mordell–Weil rank
17 − 2 = 15. This was already a new record, and as with Néron’s construction
it could be pushed a bit further with quadratic sections, to 16 over Q(T ) and
17 for infinitely many specializations. (We can increment only once over Q(T ),
because for elliptic K3 surfaces we cannot choose the ramification points.) But I



Explicit Methods in Number Theory 2001

did not compute explicit equations for this K3 surface: such a computation would
have been a huge undertaking then, and even now with better tools it would be
a substantial project. I did, however, manage to compute an elliptic model for
the K3 surface for the N = 191 point that has a 2-torsion point and the minimal
root lattice A8

1 that can accommodate Z/2Z torsion. Thus this elliptic surface has
Mordell–Weil group (Z/2Z) ⊕ Z9 over Q(T ). Quadratic sections increment this
to 10 over Q(T ) and 11 for an infinite family, improving on Kihara’s 2001 and
1997 records of 9 ([Dujella 2006], again citing papers in Proc. Japan Acad. A).
Specialization of the K3 surface to t ∈ Q produced the new record curve E/Q
with E(Q) ∼= (Z/2Z)⊕ Z18.

One can do even better when L is an even lattice of signature (1, 18) that
does not contain II1,17. Let N = disc(L)/2, and suppose N is squarefree. Then
L ⊃ II1,17 if and only if a certain obstruction in Br2(Q) vanishes. This obstruction
is supported on an even subset of the prime factors of N . If it does not vanish then
we get the corresponding Shimura modular curve instead of a classical (elliptic)
modular curve. When N is composite, the Shimura curve can have smaller genus
than X0(N)/wN because there are fewer oldforms. This lets us use N large enough
that Ness can have trivial root system. Even so, we did not find any case where
the Shimura curve has infinitely many rational points. But for N = 6 · 79 we
found a sporadic non-CM point. Here the Shimura curve has genus 2, and a
bielliptic involution that lets us predict an equation for the curve using the methods
of [González–Rotger 2004]. We find u2 = 16t6−19t4+88t2−48, with the following
rational points: the fixed points of the bielliptic involution (t, u)↔ (−t,−u), with
t = ∞; four points with |t| = 2 and |u| = 32; and four with |t| = 14/13 and
|u| = 26251/133. It turns out that the last orbit is non-CM. This one orbit of
rational points yields an elliptic K3 surface of Mordell–Weil rank 17 over Q(t),
answering the question in [Shioda 1994] on the maximal Mordell–Weil rank of
such a surface. It also yields the new records of 18 for the Mordell–Weil rank of
a nonconstant elliptic curve over Q(T ) (again via quadratic base change), and of
19 for a lower bound on lim sup(r) over curves E/Q. Specialization of the rank-17
surface also yields several examples of elliptic curves over Q with more than 24
independent rational points, including a curve of rank at least 28.

Some remarks on the computation of these families and specializations are in
the third lecture. We conclude this second lecture by noting that the connection
between K3 surfaces of Néron–Severi rank 19 and Shimura curves also makes it
possible to compute explicit information (equations, CM coordinates, Clebsch-
Igusa invariants, etc.) about Shimura curves of levels considerably beyond what
was previously feasible.

III Computation and results.
We briefly describe the steps of the computations needed to get from the above

theory of K3 surfaces and their moduli to explicit elliptic curves over Q(T ) and Q.
Finding suitable positive-definite lattices Ness. After the second lecture’s forced

march through K3 territory, I thought better of attempting another such review
of Euclidean and hyperbolic lattices. Basically Ness is obtained as a suitable slice
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of a Niemeier lattice. The Niemeier lattices are the 24 even unimodular lattices Λ
of rank 24, each with a known root system R and “glue group” Λ/R, which gives
a handle on the torsion and roots of its slices. See [Conway–Sloane 1993, Ch. 10.3,
pages 399–402] for an example of this technique.

Finding equations for E/Q(T ) and its Mordell–Weil generators. Here it may
seem that we are back where we started: we still seek the coefficients of polynomial
identities, such as yi(T )2 = xi(T )3 + a4(T )xi(T ) + a6(T ) (1 ≤ i ≤ 17), with
various auxiliary conditions on the (xi, yi) to ensure the correct height pairings.
There are too many variables to solve such a nonlinear system directly, but in the
4-torsion case shown earlier it was barely possible. Still it was more convenient to
eliminate only some of the variables, and recover the remaining ones as follows.
The general theory tells us that the coefficients are rational and behave well modulo
suitable small primes p such as 41 = (163 + 1)/4. An exhaustive search mod p
finds a solution. Lift this solution arbitrarily to characteristic zero and regard
the lift as a p-adic approximation to the correct solution. Apply the natural
generalization of Newton’s iteration x 7→ x − F (x)/F ′(x) to this context, using
finite differences rather than derivatives to approximate F ′. Each step doubles the
p-adic precision. Soon the p-adic approximation is close enough to recognize the
actual rational numbers by lattice reduction. Then confirm them by substitution
into the desired identities. Finally change coordinates to simplify the equations to
ones whose coefficients have smaller heights, which is essential for finding high-rank
specializations.

Exploiting different elliptic models of the same surface. Simple example: the
Inose surfaces Y 2 = X3 + AT 4X + B′′T 7 + BT 6 + b′T 5 over the T -line have
essential lattice Ness = R = E2

8 with reducible fibers at T = 0 and T = ∞.
Scaling to Y 2 = X3 +AX +B′′T +B +B′/T we obtain an elliptic model over
the X-line, this time with R = D16 and [Ness : R] = 2 (note that (T, Y ) = (0, 0)
is a 2-torsion point). It turns out that the transformation is particularly simple
when, as here, the two lattices are “2-neighbors”: they have isomorphic index-2
sublattices. We start from a model of X as an elliptic surface whose coefficients
are easier to compute, and then follow a chain of 2-neighbors (and the occasional
3-neighbor) that introduces or removes roots and torsion until it reaches an elliptic
surface with the desired essential lattice.

Parametrizing families of K3 surfaces of Néron–Severi rank 19. When the
Néron–Severi rank is 19 rather than 20, our task is not to solve for the coefficients
of a single surface but to parametrize a one-dimensional family by a modular
curve. We start at a known point P0 of the curve (maybe coming from a surface of
rank 20, in an elliptic model in which R is the same but the Mordell–Weil rank is
larger by 1), and then deform it p-adically. For example, fix a rational function f
of the coefficients (say, the cross-ratio of the T -coordinates of four reducible fibers),
and use Newton to find points for which f is near f(P0). Now the coefficients are
generally no longer rational even if f(P ) is, but they are algebraic with degree at
most deg(f). We can guess those with lattice reduction if deg(f) is small enough.
Varying f(P ) over simple rational numbers in a p-adic neighborhood of f(P0), we
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can then guess the equations relating those coefficients with f by solving simulta-
neous linear equations. At this point we have a guess for a (usually very singular)
model for the moduli curve, and if we can’t or won’t find a smooth model directly
then we can ask Magma (or someday Sage) for it. We then verify that the equa-
tions we guessed numerically actually work symbolically. Then specialize to the
non-CM point to find the desired surface.

Incrementing the rank via quadratic base change. As already noted, the nec-
essary “quadratic sections” — rational curves on X that intersect the fiber f
with multiplicity 2 — are harder to find than in Néron’s situation. The trace of
the quadratic section is an element of E(Q(T )), defined mod 2E(Q(T )) when we
translate by elements of the Mordell–Weil group; equivalently, a half-lattice vector
mod E(Q(T )). Intersection theory tells us that we need a coset of 2E(Q(T )) in
E(Q(T )) consisting of vectors of norm 2 mod 4, with no representatives of norm
less than 10. (This is for a surface with no reducible fibers; when R 6= {0} the
criterion is more complicated.) The corresponding coset of E(Q(T )) in 1

2E(Q(T ))
then consists of “holes” of norm at least 5/2. For our rank-17 surface, there are
literally thousands of such holes, and for each one we get an inequivalent quadratic
section. The resulting genus-zero curves are all rational because we can always find
some other divisor whose intersection with the quadratic section is odd. This also
gives millions of biquadratic base changes of genus 1 and positive rank, any one
of which gets the lower bound 19 on lim sup(r). (Alas none of them degenerates
to a genus-zero curve, so we do not find an elliptic curve of Mordell–Weil rank at
least 19 over Q(T ) this way.)

Guessing good specializations by Mestre’s heuristic. The conjecture of Birch
and Swinnerton-Dyer suggests that large rank should correlate with small partial
products of L(E, 1). Taking logarithms, we want to make

∑
p<x log(p/Np) very

negative. Experimentally, we need literally thousands of primes, and must canvass
many millions of specializations Et. That’s a lot of Np’s to compute. But each
depends only on t mod p, so we precompute

∑
p<x p of them once and for all, store

a low-precision approximation to log(p/Np) for each one, and then search for large
values of

∑
p log(Np/p) in sieve style.

Finding extra rational points. The resulting candidates for large rank have
coefficients much too large for it to be feasible to find new rational points by
direct search. The simplest independent set of 28 rational points we could find on
our record curve

y2 + xy + y = x3 − x2

− 20067762415575526585033208209338542750930230312178956502

+ 344816117950305564670329856903907203 . . .

. . . 74855944359319180361266008296291939448732243429

has 28-digit integers for its x-coordinates! When the curve has nontrivial 2-torsion,
Cremona’s program mwrank quickly computes Selmer 2-groups to find upper
bounds on the rank, and then usually finds enough generators on the candidate
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record curves. But in the absence of torsion the coefficients are much too large for
descent to be feasible. (This is why we can only say that the curve has rank at
least 28, not exactly 28, though it seems quite unlikely that the rank is even larger.)
Instead we exploit the known rank-17 sublattice of E/Q to search for rational
points near half-lattice holes of the sublattice. This yields equations y2 = Q(x)
for quartics Q with much smaller coefficients. (This looks close enough to the
behavior of 2-descents that the method might be regarded as a fake 2-descent.)
We then use a sieve technique, implemented by C. Stahlke and M. Stoll in their
C program ratpoints, to find a few such rational points near some of the deepest
half-lattice holes in the generic Mordell–Weil lattice. Finally we use the canonical
height to determine the rank of the subgroup of E(Q) generated by all the known
points.

Summary of new rank records. In the following table of record ranks of fam-
ilies of elliptic curves with specified torsion group, “r+” means rank at least r
over Q(T ), and at least r+1 for an infinite family parametrized by a positive-rank
elliptic curve obtained by quadratic base change from the record curve over Q(T ).
Plain r is a lower bound on the rank of a curve over Q(T ). The previous records
as of 2004 are from [Dujella 2006].

torsion {0} Z/2Z Z/3Z Z/4Z (Z/2Z)⊕ (Z/2Z) (Z/2Z)⊕ (Z/4Z)
≤ 2004 14 9 6 5 6 3
new 18+ 10+ 7 5+ 7+ 3+

For other torsion groups, the records remain 3 for Z/5Z and Z/6Z; “1+” for
Z/7Z, Z/8Z, and (Z/2Z) ⊕ (Z/6Z) (the three cases where the universal elliptic
curve is K3); and “0+” for Z/9Z, Z/10Z, Z/12Z, and (Z/2Z) ⊕ Z/8Z (the four
cases where the universal elliptic curve has d > 2).

The new rank records for individual curves over Q are as follows:

torsion {0} Z/2Z Z/4Z Z/8Z
≤ 2004 24 15 9 5
new 28 18 12 6

torsion (Z/2Z)⊕ (Z/2Z) (Z/2Z)⊕ (Z/4Z) (Z/2Z)⊕ (Z/6Z)
≤ 2004 10 6 5
new 14 8 6

The incremental improvements for torsion groups Z/8Z and (Z/2Z) ⊕ (Z/6Z)
are due only to better searching in known families. The absence (so far?) of a new
record for Z/3Z may be due to the lack of an efficient implementation of descent
via a 3-isogeny.

We conclude with a few remarks on integral points. Our r ≥ 28 curve has at
least 1174 pairs (x,±y) of integral points in its minimal model, but this is not a
record: a curve with r ≥ 25 in the same family has at least 2810 such pairs in
the known subgroup of E(Q). The same family also contains a curve for which
we found only 21 independent points but the subgroup they generate contains at
least 2564 pairs of integral points. Over Q(T ), the analogue of integral points
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is points (X,Y ) where X,Y are polynomials of degree at most 4, 6 respectively.
In the absence of reducible fibers, these are exactly the nonzero elements of the
Mordell–Weil group whose canonical height is as small as 4. Our elliptic K3 surface
of rank 17 has 1311 such pairs (X,±Y ).
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Complexity news: FFT and integer multiplication

Daniel J. Bernstein

URL: http://cr.yp.to/talks.html#2007.07.18

• What is the total algebraic complexity of multiplying two polynomials of degree
below n over the field of real numbers?

1866 Gauss FFT (15 + o(1))n lg n;

1968 Yavne split-radix FFT (12 + o(1))n lg n;

News, 2004 Van Buskirk tangent FFT (34/3 + o(1))n lg n.

• What is the bit complexity of multiplying two n-bit integers?

1971 Schönhage/Strassen algorithm Θ(n lgn lg lg n);

News, 2007 Fürer algorithm (n lg n)2O(lg∗ n).

Counting subrings of maximal orders

Jos Brakenhoff

For a number field K of degree n we let OK be its ring of integers. We are
interested in the number of subrings R ⊂ OK which have a given finite index
[OK : R] = h. I.e., we want to determine

fK(h) = #{R ⊂ OK | R is a subring with [OK : R] = h}.
It is well-known that fK(h) = 1 for all number fields of degree 2. Furthermore,
results have been obtained for number fields of degree 3 and 4, see for example [1].

The goal of this talk is to give a uniform bound for fK(h) for number fields of
a fixed degree. More precisely, we want to give bounds for

F (n) = lim
h→∞

log(f(n, h))

log h
,

where f(n, h) = maxK:deg(K)=n fK(n), for various n.
This goal is inspired by a question of Manjul Bhargava. He wanted to know

whether F (5), and in general F (n), is bounded from above by 2.
We concentrate on the following results.

(1) F (5) ≤ 20
11 < 2

(2) F (13) ≥ 35
17 > 2

(3) lim supn→∞
F (n)

n ≤ 1

(4) lim infn→∞
F (n)

n ≥ (
√

2− 1)2
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By localization, we can show that f(n, h) is multiplicative in h. It therefore
suffices to bound these values for prime powers h = pk.

Definition 1. If G ⊂ ZN is a subgroup of index pk, then ZN/G =
⊕N

i=1(Z/p
λiZ)

with k =
∑N

i=1 λi. Order the λi such that λ1 ≤ λ2 ≤ . . . ≤ λN . The partition
λ = (λ1, λ2, . . . , λN ) is called the type of G.

We can determine the number of subgroups of OK of given type by Hall polyno-
mials. Given a type λ = (λ1, . . . , λN ), with

∑
i λi = k, there is a monic polynomial

gλ(X) ∈ Z[X ] such that for all p ∈ Z prime

#{G ⊂ ZN subgroup of index pk and type λ} = gλ(p).

The degree of gλ is
∑N

i=1(λi(2i−N − 1)).
So the limit behaviour of the number of subgroups of given type is

lim sup
p→∞

log #{G ⊂ ZN index pk, type λ}
log pk

=

∑N
i=1(λi(2i−N − 1))

k
= c(λ)

Example. Take λi = 0 for i < N and λN = k, then

c(λ) =
k(2N −N − 1)

k
= N − 1.

This is the largest possible value for fixed N .

This example gives us an upper bound for F (n), by counting the number of
subgroups which contain 1, i.e., the number of subgroups of OK/Z. (Note that
N = n− 1.) Hence F (n) ≤ N − 1 = n− 2, so we have obtained the third of our
results.

By the following lemma we also get a lower bound from counting subgroups.

Lemma 2. A subgroup G of OK that contains 1 for which G/Z ⊂ OK/Z is of
type (1, . . . , 1, 2, . . . , 2) is always a subring.

A lower bound for F (n) is the maximum of c(λ) over all types λ mentioned in

the lemma. Set d to be the number of twos in the type. Then c(λ) = d(n−d−1)
n+d−1 ,

which is maximal when d is close to (
√

2−1)(n−1). This gives both lower bounds
from the results.

For the last of our results, we need to find better bounds for the worst types.
Recall that c(λ) is maximal when λi = 0 for i < n− 1 and λn−1 = k. A subgroup
G ⊂ OK of this type satisfies OK/G ∼= Z/pkZ as groups. We call such subgroups
and -rings co-cyclic.

Lemma 3. The maps
{
R ⊂ OK : OK/R ∼= Z/pkZ

subring as groups

}
→

{
I ⊂ OK : OK/I ∼= (Z/pkZ)2

ideal as groups

}

R 7→ f(R) = {x ∈ OK : xOK ⊂ R}
g(I) = Z + I ←7 I

are each others two-sided inverse.
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We obtain a better bound for #{R ⊂ OK co-cyclic subring}, since #{I ⊂
OK ideal | OK/I ∼= (Z/pkZ)2} ≤

(
n
2

)
.

If R ⊂ OK is a subgroup of index pk and type λ with λn−1 > 2λn−2, then

R′ = OK ∩ p−2λn−2(R+ pλn−1OK)

is a co-cyclic subgroup of index pλn−1−2λn−2 . Furthermore, if R is a subring, then
R′ is a subring. We say that R is rounded to R′.

We can also count the number of subgroups that get rounded to a particular
co-cyclic subgroup.

More generally, this rounding can be done towards rings of type

(0, . . . 0, e, . . . , e︸ ︷︷ ︸
l

)

with 1 ≤ l ≤ n− 1. Using ring theory, we can give also estimates for the number
of these types of rings as well (like in the co-cyclic case). Using all these roundings
we get the upper bound F (5) ≤ 20

11 .
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Third moment of certain exponential sums over finite fields

Florent Jouve

To deal with the problem of evaluating an exponential sum over finite fields, it often
turns out that trying to see that exponential sum as a particular element of a whole
family can be a good strategy. One of the most striking instances illustrating that
fact (and which was historically of great importance) is the problem of evaluating
the seemingly simple “exponential sum”

∑

x∈U(Fq)

1 ,

where Fq is the finite field with cardinality q and U is an algebraic variety defined
over Fq.

Classically, we introduce then the Zeta function of U/Fq:

Z(U/Fq;T ) = exp
(∑

n≥1

|U(Fqn)|T
n

n

)
,

where |U(Fqn)| is the number of Fqn -rational points on U . The zeta function
of U/Fq is defined by considering the family of rational points U(Fqn) for all
n ≥ 1; and that function is known (thanks to a celebrated theorem of Dwork) to
be rational. From that rationality we deduce easily a very interesting a priori form
for the quantity |U(Fq|.

In this talk I want to give two examples of how applying that general philosophy
can really provide explicit formulæ. From now on, we fix a prime number p different



Explicit Methods in Number Theory 2009

from 2 and 3 and q = pr for an integer r ≥ 1. Let ϕ denote a non-trivial additive
character of Fq.

In our first example, we consider, for a ∈ Fq, the sum

S(a4, a2; q) =
∑

x∈Fq

ϕ(a4x3 + a2x) ,

and its third moment (introduced by Birch for modularity issues (see [1]))

B3(q) =
∑

a∈Fq

S(a4, a2; q)3 .

Our aim is to compute explicitely B3(q) (we easily notice that the computation of
the moments of lower order are straightforward). Orthogonality relations yield

B3(q) = q|S(Fq)| ,
where S is the affine surface given by x3 + y3 + z3 + x+ y + z = 0. Its projective
compactification, defined by

(1) S̃ : x3 + y3 + z3 + w2(x+ y + z) = 0 ,

is a smooth projective cubic surface. Moreover it is obvious that

|S(Fq)| = |S̃(Fq)| − |E(Fq)| ,
where E is the elliptic curve given by the homogeneous equation x3 + y3 + z3 = 0.
It is well known (see [6]) that for such a curve we have |E(Fq)| = q + 1− λr

1 − λr
2

where λ1λ2 = p and, either p ≡ 1 (mod 3), in which case λ1 + λ2 = Ap as soon as
we write the decomposition 4p = A2

p +27B2 with Ap ≡ −1 (mod3), or λ1+λ2 = 0.

We are now reduced to determining the quantity |S̃(Fq)|. From the general
theory of 2-dimensional smooth projective varieties over finite fields (see for in-

stance [4]), we have the a priori form of the Zeta function of S̃ over Fq

Z(S̃/Fq;T ) =
P1(T )P3(T )

(1 − T )(1− q2T )P2(T )
,

where Pi(T ) ∈ Z[T ] for 1 ≤ i ∈≤ 3.

Moreover (see [5]), as S̃ is a smooth cubic surface, we know that P1(T ) =
P3(T ) = 1 and that degP2 = 7. Hence we deduce the two equivalent formulæ

Z(S̃/Fq;T )−1 = (1− T )(1− q2T )P2(T ) i.e. |S̃(Fq)| = q2 + 1 + q

7∑

i=1

ηi ,

where the ηi are algebraic numbers. We need to compute
∑7

i=1 ηi. We exploit a
theorem of Swinnerton-Dyer (see [9]) asserting that such a sum is entirely deter-
mined by the action of the Frobenius morphism (raising coordinates to their q-th

power) on the set of 27 lines contained in S̃. To do so, we need to find equations
for those lines. First we notice that, looking carefully at (1), we can easily obtain
some of those lines e.g.

Dz : (t : −t : 0 : w) .
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Starting with these few lines, we can apply the method of hyperplane sections
described in [8] to obtain all of the others. Finally, computing the orbits of
those 27 lines under the action of Frobenius, we obtain, thanks to the theorem
of Swinnerton-Dyer [9] and with λ1 and λ2 as above,

• if p ≡ 1 (mod3) and if we let ǫ = 1 if 4 is a cube modulo p and ǫ = −1
otherwise,

B3(q) = q(q2 + (2 + 2χq(−1) + ζδr
6 + ζ̄6

δr
)q − λr

1 − λr
2) ,

where χq is the Legendre character of Fq, ζ6 et ζ̄6 are the primitive 6-th
roots of 1 in C and δ = (3− χp(−1)(2ǫ+ 1))/2.
• if p ≡ 2 (mod 3), then

B3(q) = q(q2 + (3 + (−1)r + 2χq(−1))q − λr
1 − λr

2) .

Our second example involves the well known Kloosterman sums and their third
moment restricted to the squares of Fq, respectively defined by

K(λ; q) =
∑

x∈F
×
q

ϕ(x + λx−1) and σ3(q) =
∑

λ∈Fq

K(λ2; q)3 .

D. H. and E. Lehmer introduced and computed σ3(q) (in the case r = 1) in [7].
We emphasize here the geometric interpretation we give for such sums. First,
orthogonality relations yield

σ3(q) = −(q − 1)3 + q|S0(Fq)| − 1 ,

where S0 is the surface defined by x+ +y+ z+ x−1 + y−1 + z−1 = 0. Elementary
transformations on that equation enable us to deduce that there is an explicit link
between |S0(Fq)| and |S(Fq)| where

S : s2 = xy(x+ y + 1)(xy + y + x) .

To compute the (minimal) smooth projective model S̃ of S, we need to construct
the smooth projective model of P2 ramified over the singular sextic curve C :
XY Z(X + Y +Z)(XY + Y Z +XZ) = 0. As C only has double points and triple

points as singularities, we deduce (see [2, page 189]) that S̃ is a K3 surface so
that, as in the previous example, we have

Z(S̃/Fq;T )−1 = (1− T )(1− q2T )P2(T ) ,

but with this time degP2 = 22. To determine P2, more geometric arguments are

needed (following [3] in which S̃ was introduced for the first time, we can exploit the

fact that S̃ can be realized as an elliptic surface over Fq). Among those arguments,
we emphasize that over any extension of Fq containing a primitive cube root of 1,

the surface S̃ is isomorphic to the Kummer surface Km(E × E) (see [2]) where
E is the elliptic curve with Weierstrass model y2 = x3 + 1. That explains the
geometric origin of the decompsition p = a2 + 3b2 (when p ≡ 1 (mod 6)) in [7].

Finally obtaining an explicit form for Z(S̃/Fq;T ), we deduce the formula

σ3(q) = ǫrq2 + q(2qχq(−1) + χq(−1)(λr
1 + λr

2) + 2)
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where

• if p ≡ −1 mod6, ǫ = −1 and λ1 = p, λ2 = −p,
• if p ≡ 1 mod6, ǫ = 1 and λ1 and λ2 are the reciprocal roots of the poly-

nomial p2T 2 − (4a2 − 2p)T + 1.
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Ranks of elliptic curves over function fields

Alan G. B. Lauder

There is a widely held belief that one half of all elliptic curves have infinitely many
rational points, but all experimental data that has been collected so far suggests
that the fraction is actually two thirds. The final purpose of my lecture is to
present experimental evidence supporting the widely held belief. The evidence
given relates to elliptic curves over function fields rather than number fields. It
was gathered using a new method for computing zeta functions of varieties over
finite fields.

Primitive root densities for rank 1 tori

Willem Jan Palenstijn

(joint work with Bart de Smit)

Artin’s primitive root conjecture gives for a non-zero integer x an expression for
the density of primes q for which x is a primitive root modulo q. We consider
an analogue for rank one tori, extending work of Yen-Mei Chen [2] and Peter
Stevenhagen, Hendrik Lenstra and Pieter Moree [3].

Let K be a number field, T a rank one torus over K and A a non-torsion point
of T (K). For a prime number p define Bp = 〈T (K), p

√
A,Zp〉 ⊂ T (K̄), where Zp

is a non-trivial p-torsion point of T (K̄). Furthermore, define B∞ as the group
generated by all Bp.
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Theorem. With notation as above, Gal(K(B∞)/K) is an open, normal subgroup
of AutT (K)(B∞) with a finite, abelian cokernel, which we call the entanglement
group.

Write E for this cokernel, E∨ for its dual, and Ap = AutT (K)(Bp). Then, we
have the following conjecture.

Artin’s primitive root conjecture for rank one tori. The density of primes
q of K for which T (Fq) is generated by Ā is

CT,A ·
∏

p prime

(
1− 1

#Ap

)
,

with CT,A ∈ Q given by

CT,A =
∑

χ∈E∨

∏

p prime
χ(Ap) 6=1

−1

#Ap − 1
.

Hooley proved this conjecture in 1967 for K = Q and T = Gm assuming
the Generalized Riemann Hypothesis. A generalization of Hooley’s argument by
Cooke and Weinberger [1] allows us to prove the above conjecture when assuming
the GRH.
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The Manin conjectures for K3 surfaces

Ronald van Luijk

This is a talk about work in progress. Little is known about the arithmetic of
K3 surfaces. It is for instance not known if there exists a K3 surface X over a
number field k such that the set X(k) of k-rational points on X is neither empty,
nor dense. Examples of K3 surfaces are smooth quartic surfaces in P3, which we
focus on in this talk. We will look at the growth of the number of rational points
of bounded height on such surfaces. Despite our lack of knowledge, it seems that
this growth is very well behaved. Consider a surface X over a number field k,
choose a height H corresponding to some ample divisor, and for each open subset
U ⊂ X set

NU (B) = #{x ∈ U(k) : H(x) ≤ B}.
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The Manin conjectures state that if the anticanonical divisor on X is ample, and
H is the height associated to it, then there exists a field extension l/k, a nonempty
open subset U ⊂ XL and a constant C, such that

NU (B) ∼ CB(logB)b−1,

where b equals the rank of PicXL. A priori, there are not many reasons why
similar asymptotics would exist for K3 surfaces. If they do, one knows they are of
the form O(Bε) for any ε > 0. In this talk we present evidence that if X is a K3
surface, then we have

NU (B) ∼ C(logB)b,

with U and b as before. There will, however, be some restrictions. If X admits
an elliptic fibration, for instance, then we can not expect these asymptotics to
hold, as infinitely many fibers may each contain more rational points than the
asymptotics predict for a dense open subset. We therefore only look at surfaces
with small Picard number b of which we know that they do not admit an elliptic
fibration.

We also compute a (relatively naive) constant C̃, based on local contributions.
In the Fano case described above, where the anticanonical divisor is ample, Em-
manuel Peyre has given a conjectured constant that differs from C̃ by a rational
number of small height.

In all (so far, a little more than a handful) examples where we computed all
rational points up to a reasonable height we see thatNU indeed appears to converge
to C(logB)b for some constant C that differs from the a priori computed naive

constant C̃ by a rational factor of height at most 3. In the future, after more
explicit computations, we intend to phrase a precise conjecture.

A non-local obstruction for equation of the type zn = F (x, y)

Denis Simon

Our starting point is the following result, which is a classical application of com-
position of quadratic forms.

Theorem 1 (see [1]). Let (a, b, c) be three coprime integers such that D = b2−4ac
is not a square. Let d > 1 be an integer. Then the equation ax2 + bxy + cy2 = yd

has a primitive solution (x and z are coprime integers) with y coprime to 2D if
and only if the class of the form ax2 + bxy+ cy2 is a d–th power in the class group
Cl(D).

My goal is to generalize the “⇒” part of this for binary forms of degree n > 2.

Let F (x, z) = a0x
n + a1x

n−1z+ · · ·+ anz
n be a homogeneous binary form with

integral coefficients. Assume that F is irreducible over Q and primitive (the ai are
coprime).

Following [2], we define an order ZF in the splitting field K of F . The discrim-
inant of this order is exactly the discriminant of F . This order ZF is contained in
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the maximal order ZK ofK and in general Ind(F ) = [ZK : ZF ] is a positive integer
that can be > 1. We also define an element cl(F ) in the class group Cl(ZF ).

We prove the following:

Theorem 2. Let F be as above and d > 1. If the equation F (x, z) = yd has a
primitive solution (x and z are coprime integers) such that y is coprime to Ind(F ),
then cl(F ) is a d–th power in the class group Cl(ZF ).

In the following tables, we record some forms F of degree 4 and 3, such that
Ind(F ) = 1. For these forms, we indicate their discriminant and the type of the
class group Cl(ZF ). We also record the value of cl(F ) in this group. Finally, the
last column indicates a list of values of d for which our theorem proves that their
exists no primitive solution to yd = F (x, z).

Disc(F ) F Cl(ZF ) cl(F ) d
2448 2x4 + 2x3 − 5x2 − 2x+ 5 Z/2Z (1) 2

13785 4x4 − 3x3 + 14x2 − 5x+ 11 Z/3Z (1) 3
14504 4x4 − 5x3 − 6x2 + 5x+ 4 Z/4Z (2) 4
13396 2x4 − 2x3 + 6x2 − 3x+ 5 Z/5Z (3) 5
43245 2x4 − 3x3 + x2 + 3x+ 2 Z/6Z (1) 2, 3
25205 2x4 − x3 + 5x2 + x+ 2 Z/7Z (1) 7

438445 3x4 − 2x3 + 8x2 + x+ 4 Z/8Z (4) 8
235901 2x4 − x3 − 7x2 + x+ 10 Z/9Z (3) 9
77648 2x4 − 6x3 + 5x2 + 10x+ 3 Z/10Z (7) 2, 5

330781 3x4 − 4x3 + 4x2 + 5x+ 2 Z/11Z (1) 11
122728 4x4 + 3x3 − 6x2 − 3x+ 4 Z/12Z (10) 3, 4
146548 2x4 − 2x3 + 8x2 − x+ 3 Z/13Z (12) 13
141681 3x4 − 4x3 + 11x2 − 5x+ 7 Z/14Z (3) 2, 7

Disc(F ) F Cl(ZF ) cl(F ) d
−648 2x3 + 3x2 + 2 Z/3Z (1) 3
−1879 2x3 + x2 − x+ 4 Z/4Z (2) 4
−1572 2x3 + 2x2 + x+ 4 Z/5Z (2) 5
−2856 2x3 + 2x2 + 5x− 3 Z/7Z (3) 7
−18628 4x3 − 9x2 + 4x+ 7 Z/8Z (4) 8
−22443 8x3 + 5x2 − 3x+ 3 Z/9Z (3) 9
−12244 3x3 − 4x2 + 7x+ 4 Z/11Z (1) 11
−19919 2x3 − 5x2 + 7x+ 10 Z/12Z (2) 3, 4
−9064 5x3 − 4x2 − 5x+ 6 Z/13Z (9) 13

Looking at this table for n = 3, we observe that there is no example with d = 2.
As suggested by this observation, we prove

Proposition 3. Let F be irreducible and primitive of degree n. Assume that
Ind(F ) = 1. Let d denote the different of ZF . Then we have [d] = cl(F )n−2 in
Cl(ZF ).
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By Hecke’s theorem, we know that [d] is always a square in Cl(ZK) (= Cl(ZF ) in
this case). When the degree n is odd, this proves that cl(F ) is also a square, hence
proving the observation. When the degree n is even, this construction provides an
explicit square root of [d].

In particular, when d = 2 and n = 3, we want to represent squares by cubic
forms. After some amount of computations, we ask the following question:

Question 4. Let F be any primitive binary cubic form. Is it true that F always
primitively represent a square?

I do not know any counterexample to this. In the talk, I state a partial answer
to the question by showing

Proposition 5. Let F be any primitive binary cubic form. There exist coprime
integers x and z, and an integer y such that

• either F (x, z) = y2

• or F (x, z) = 2y2.
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Parity conjecture for elliptic curves

Tim Dokchitser

(joint work with Vladimir Dokchitser)

Suppose E is an elliptic curve (or a principally polarised abelian variety) defined
over a number field K. An identity between the L-functions L(E/Ki, s) for exten-
sions Ki of K induces a conjectural relation between the Birch–Swinnerton-Dyer
quotients. Using the BSD-invariance under Weil restriction and under isogenies,
it is not hard to prove that these relations actually hold, assuming only finiteness
of the Tate-Shafarevich group X. In fact, without assuming that X is finite, it
is possible to give unconditional statements about Selmer groups as well.

I discussed a method to interpret these relations and use them to deduce special
cases of various parity conjectures:

“Weak” Parity Conjecture. Assuming X is finite,

(−1)rk(E/K) = w(E/K).

“Strong” Parity Conjecture. For every prime p,

(−1)rkp(E/K) = w(E/K). ( =⇒ Weak P.C.)

“Even stronger” Parity Conjecture.

(−1)rk(E/K) = w(E/K). ( =⇒ Strong P.C.)
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As an example, suppose for simplicity that E/K is semistable, and suppose
Gal(F/K) ∼= S3, with subfields as follows:

K

M
C3

M ′@
C2

��

F

G = S3.

Then

L(E/F, s)L(E/K, s)2 = L(E/M, s)L(E/M ′, s)2.

If X(E/F ) is finite, the relation between BSD-quotients reduces to

RE/F RE/K
2

RE/M RE/M ′
2 ≡ CE/F CE/K

2

CE/M CE/M ′
2 mod Q∗2

where R is the regulator and C the product of local Tamagawa numbers. It is
then not hard to see that

LHS ≡ 3rk(E/K)+rk(E/M)+rk(E/M ′) mod 2.

and a purely local computation shows

ord3(RHS) even ⇐⇒ w(E/K)w(E/M)w(E/M ′) = 1,

a special case of the parity conjecture.
Our main application is the following result, completing earlier work of various

authors, notably Birch-Stephens, Greenberg-Guo, Nekovář and Kim.

Theorem 1. Strong Parity Conjecture holds for all E/Q.

Corollary. Either (−1)rk(E/Q) = w(E/Q) or Q/Z ⊂X(E/Q).

The second application is that modulo some restrictions at 2 and 3, for elliptic
curves over general number fields parity follows from finiteness of X:

Theorem 2. Weak Parity Conjecture is true for all E/K that are semistable at
v|6 and not supersingular at v|2.
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2n-descent on elliptic curves

Sir Peter Swinnerton-Dyer

Let E be an elliptic curve over a number field k. To implement a 2-descent on E
it is necessary to write it in the form Y 2 = (X − α1)(X − α2)(X − α3) by means
of a field extension; the 2-coverings which are locally soluble have the form

(1) Z2
i = λi(X − αi) for i = 1, 2, 3 and Z1Z2Z3 = Y,

where λ1λ2λ3 = 1 and some obvious conjugacy conditions hold. For this to be
everywhere locally soluble, the λi must be units at all good primes.

It is usually said that a 4-descent involves working in the field of definition of a
4-division point; but Cassels in 1999 showed how to do this while working inside
the k(αi). In this talk I show how to generalize this to 2n-descent for all n.

Let C be a curve of genus 1 with Jacobian E, defined over k and everywhere
locally soluble. Then there exist functions fi in k(αi)(C) and F in k(C) such that
the 2-coverings of C have the form

(2) Z2
i = λifi for i = 1, 2, 3 and Z1Z2Z3 = F,

where λ1λ2λ3 = 1. Moreover either there are no triples (λ1, λ2, λ3) for which (2) is
everywhere locally soluble or the triples for which (2) is everywhere locally soluble
are just those for which (1) is everywhere locally soluble. Moreover one can test
which of these happens without constructing the fi.

The proof of the existence of such fi depends on the local-to-global theorem for
Severi–Brauer varieties; and the implementation of the process depends on being
able to find points on a Severi–Brauer variety defined over k(αi). This appears to
be a difficult problem.

LLL and numerical analysis

Damien Stehlé

Lattice reduction is a central tool in many areas in mathematics and computer
science. Some of its applications require very fast algorithms and implementations.
To achieve this efficiency goal, floating-point arithmetic is used within these algo-
rithms, most often heuristically, to compute Gram-Schmidt orthogonalisations.

In this talk, I show how to use classical results from numerical analysis to
guarantee the correctness of these algorithms relying on floating-point arithmetic.
I survey the 2005 L2 algorithm of Nguyen and Stehlé [2] that uses floating-point
approximations within the famous LLL algorithm [1], as well as ongoing research
on the numerical stability of the QR-factorisation and the use of floating-point
arithmetic in the computation of Hermite-Korkine-Zolotarev reduced bases.
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A tighter analysis of Kannan’s enumeration algorithm

Guillaume Hanrot

(joint work with Damien Stehlé)

Let L = (b1, . . . , bd) be a lattice in Rn. Though efficient methods exist to find
short nonzero vectors in L, it is required in some applications to find one shortest
nonzero vector in L. A theorem by Ajtai asserts that it is a difficult problem, more
precisely an NP-hard problem under randomized reductions.

A simple algorithm due to Kannan [5] (also known as Fincke-Pohst’s algo-
rithm [2]) exists for this task: namely, enumerate the x ∈ L within the ball
B := {‖x‖ ≤ ‖b1‖}. The way of analyzing this enumeration is by relating lattice

points in L to integer points within the ellipsoid E := {(yi) ∈ Zd/
∑d

i=1 y
2
i ‖b∗i ‖2 ≤

4‖b1‖2}, where (b∗i ) is the Gram-Schmidt orthogonalization of the basis bi. The
complexity of this enumeration highly depends on the quality/reduction strength
of the input basis.

We shall say that (b1, . . . , bd) is an HKZ-reduced basis if b1 is a shortest vector
of L, and if proj<b1>⊥(b2, . . . , bd) is an HKZ-reduced basis of proj<b1>⊥(L). The
basis is quasi-HKZ reduced iff. proj<b1>⊥(b2, . . . , bd) is HKZ-reduced and ‖b∗2‖ ≥
‖b1‖/2.

Previous analyses [4, 5] estimate this number of points by the volume of the
outer parallelepiped, which is

d∏

i=1

‖b1‖
‖b∗i ‖

≤ 2ddd/2,

the latter inequality being valid if the basis is quasi-HKZ reduced. Our analysis
improves on this approximation by proving that the right order of magnitude is
closer to the volume of the inner parallelepiped. Indeed, we have [3]:

Theorem 1. The number of integer points in E is bounded by

2O(d)
d∏

i=1

max

(
1,
‖b1‖√
d‖b∗i ‖

)
.

From this formula, we see that the largest the ‖b∗i ‖ the best. This means that
in order for this algorithm to be practical, one first has to perform a large precom-
putation on the basis in order to reduce it strongly. In his original paper, Kannan
already performs simultaneously Hermite-Korkine-Zolotareff (HKZ)-reduction on
the basis while computing the shortest vector. This means that we can assume
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that the basis we are working with is already quasi-HKZ-reduced. In that setting,
we have [3]:

Theorem 2. Assume that tbe basis bi is quasi HKZ-reduced. Then, for all I ⊂
{1, . . . , d}, one has

∏

i∈I

‖b∗i ‖ ≥ ‖b1‖|I|d−|I|(1+log d
|I|

).

As a conclusion, Kannan’s algorithm checks at most dd/2e+o(d) candidate points
in the worst case. Work in progress based on ideas from [1] suggests that our
analysis is sharp.
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Computations of values of p-adic L-functions of real quadratic fields

Xavier-François Roblot

Let E be a real quadratic field and, for f a modulus of E, denote by Clf(E) the ray
class group of E modulo f. Let χ be an abelian character of Clf(E) with values
in Q̄. We fix an embedding of Q̄ into Cp, therefore χ can also be seen as having
values in Cp. The L-function of χ is defined by

L(s, χ) =
∏

q∤f0

(
1− χ(q)Nq−s

)−1
for ℜ(s) > 1,

where q runs through the prime ideals of E not dividing the finite part f0 of
the modulus f. It is well-known that this function can be extended to the whole
complex plane to an analytic function if the character χ is non trivial, otherwise
it is a meromorphic function with a simple pole at s = 1.

Deligne-Ribet [5], Cassou-Noguès [3] and Barsky [1] proved independently that
there exists a continuous p-adic function Lp(s, χ), the so-called p-adic L-function
of χ, that interpolates L(s, χ) in the following sense: let φ denote the Euler totient
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function and set q = 4 if p = 2 and q = p otherwise, then for all integers k ≤ 0
such that k ≡ 1 (mod φ(q)), we have

(1) Lp(k, χ) =
∏

p|p

(
1− χ(p)Np−k

)
L(k, χ).

We use a reinterpretation of the construction of the p-adic L-functions of Cassou-
Noguès and Barsky using p-adic measures, due to Katz [6], see also [4] and [2], to
explicitely compute values of these functions.

Let c be a prime ideal of E, of residual degree 1, relatively prime with D, the
codifferent of E, and such that χ(c) 6= 1. Let ν ∈ (cD)−1 be such that

Tr(ν)Z = Tr((cD)−1).

The function α 7→ ξ(α) = exp(2iπTr(να)) is an additive character of order c = N c

on ZE , the ring of integers of E, such that

c−1∑

i=0

ξ(α)i =

{
0 if α 6∈ c,

c otherwise.

For an integral ideal a, relatively prime to f, we define the twisted partial zeta
functions

Z(s, a, i) =
∑

α∈R(a)

ξ(α)iNα−s for ℜ(s) > 1,

where R(a) is a set of representatives of {α ∈ Z+
E ∩ a with (α, p) = 1} under the

action of Uf(E)+ = {u ∈ U(E) ∩ Z+
E and u ≡ 1 (mod f)}, and Z+

E is the subset of
totally positive elements in ZE . These functions admit analytic continuation to C

and are linked to L-functions in the following way

(2) L(s, χ) =
(
c1−sχ(c)− 1

)−1∏

p|p

(
1− χ(p)Np−s

)−1∑

a

Nas
c−1∑

i=1

Z(s, a, i)

where a runs through a set of integral ideals representing all the classes of Clf(E).

Using methods originating from the works of Shintani [7], one can construct
power series Fa,i(T1, T2) ∈ Q̄[T1, T2] such that

(3)
[
∆−kFa,i(T1, T2)

]
T1=T2=0

= Z(k, a, i) for all k ∈ Z≤0

where ∆ is the operator

∆ = (1 + T1)(1 + T2)
∂2

∂T1∂T2
.

Then the theory of p-adic integration enables one to associate to a power series
F (T1, T2) with bounded coefficients in Cp a measure µF over Z2

p such that

(4)
[
∆tF (T1, T2)

]
T1=T2=0

=

∫
(x1x2)

t dµF (x1, x2) for all t ∈ Z≥0.

Using the embedding of Q̄ into Cp that we fixed in the introduction, we can regard
Fa,i as having coefficients in Cp. Unfortunately, unless p is split in E, this power
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series does not have bounded coefficients. To fix this, we let γ ∈ ZE be such that
ZE = Z + γZ and we consider the change of variables

(5) T1 ← (1 + T1)(1 + T2)− 1, T2 ← (1 + T1)
γ(1 + T2)

γ′ − 1

where γ′ is the conjugate of γ. This change of variables is inversible and applying
its inverse to Fa,i, we obtain a power series Ga,i now having bounded coefficients.
Putting together (3), (4) and (5), and letting µa,i be the measure associated to
Ga,i, we get the following

∫
N (x1 + x2γ)

−k dµa,i(x1, x2) = Z(k, a, i) for all k ≤ 0,

where N denotes the absolute value of the norm from E to Q.

It is not difficult to build p-adic continuous functions ψs, with s ∈ Zp, such that
s 7→ ψs is a continuous map, the functions ψs’s are zero on pZp and satisfy the
following interpolation property

ψt(x) = xt for all t ∈ Z≥0 such that t ≡ −1 (mod φ(q)).

The p-adic twisted partial zeta function is defined by

Zp(s, a, i) =

∫
ψ−s

(
N (x1 + x2γ)

)
dµa,i(x1, x2).

It is a continuous function on Zp, and if we use the p-adic equivalent of (2), which
means basically replacing the function x 7→ x−s by the function ψ−s, to define the
p-adic L-function Lp(s, χ), we get a continuous function on Zp (or Zp \ {1} if χ is
trivial) satisfying (1).

We now briefly explain how to compute approximate values of Zp(s, a, i). Write

Ga,i(T1, T2) =
∑

n1,n2≥0

g(a, i)n1,n2T
n1
1 T n2

2

and, for s ∈ Zp, let

ψs

(
N (x1 + x2γ)

)
=

∑

n1,n2≥0

a(s)n1,n2

(
x1

n1

)(
x2

n2

)

be the Mahler expansion of this function, so that a(s)n1,n2 → 0 when n1 + n2 →
∞. The coefficients a(s)n1,n2 can easily be computed from the values at positive
integers of the function (x1, x2) 7→ ψs

(
N (x1 + x2γ)

)
. We then have

Zp(s, a, i) =

∫
ψ−s

(
N (x1 + x2γ)

)
dµa,i(x1, x2) =

∑

n1,n2≥0

g(a, i)n1,n2a(−s)n1,n2 .

By truncating this sum to a finite sum by discarding terms such that n1 +n2 ≥ N ,
for a suitable large enough positive integer N , one gets a good approximation of
the value of Zp(s, a, i).
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on arXiv: math/0405487v1.

[3] Pi. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-
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[4] P. Colmez, Résidu en s = 1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371–389.
[5] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real

fields, Invent. Math. 59 (1980), 227–286.
[6] N. Katz, Another look at p-adic L-functions for totally real number fields, Math. Ann. 255

(1981), 33–43.
[7] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields, Journal

Fac. Sci. Univ. Tokyo, Sec. IA, 23, (1976), 393–417.

Quadratic twists of rank 1

Christophe Delaunay

(joint work with Xavier-François Roblot)

The main goal is to study the behavior of the regulators of elliptic curves with
rank 1 belonging to a family of quadratic twists of a fixed elliptic curve E defined
over Q. The methods coming from random matrix matrix theory as developed
in [K-S], [CKRS], [CFKRS] etc. allow us to derive precise conjectures for the
moments of those regulators. We hope those moments can help in the predictions
for the number of extra-rank (i.e. number of odd quadratic twists1 Ed having a
Mordell-Weil rank greater than 3). We have developed in [De-Ro] an efficient
Heegner-point construction method to compute explicitly the regulator (and the
order of the Tate-Shafarevich group) of elliptic curves with rank 1 in a quadratic
twist family. The numerical data (of the families of odd twists of the curves 11a1,
14a1, 15a1 and 17a1) are in close agreement with our predictions.

Suppose that E has conductor N and that for all primes p dividing N we have
fixed a sign wp such that

∏
p|N wp = w(E) where w(E) is the sign of the functional

equation of E. Let

F =
{
d < 0, fundamental discriminant with

(
d

p

)
= wp for all p | N

}

and
F(T ) =

{
d ∈ F , |d| < T

}
.

Then, our family of quadratic twists is (Ed)d∈F . The choices of the wp imply
that w(Ed) = −1 for all d ∈ F . If L′(Ed, 1) 6= 0 then the elliptic curve Ed has
rank 1 and hence the Mordeil-Weil group Ed(Q) is generated by one generator Gd

up to torsion and the regulator R(Ed) of Ed is then the canonical height ĥ(Gd)

1An odd (resp. even) quadratic twist is a quadratic twist of E such that the sign of the func-
tional equation of its L-function is −1 (resp. +1). By the Birch and Swinnerton-Dyer conjecture,
that we assume here, this is the same as to say that its Mordell-Weil rank is odd (resp. even)
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of Gd. Our heuristic gives an asymptotic formula for the moment of order k (with
0 < k < 1) of R(Ed); more precisely it states that for 0 < k < 1 we should have

1

|F(T )|
∑

d∈F(T )
L′(Ed,1) 6=0

R(Ed)
k ∼ AE(k)T k/2 log(T )bE(k) as T →∞

where the constant bE(k) is explicit and mainly depends on the field of definition
of the 2-torsion points of E.

From a numerical and experimental point of view, the situation of odd quadratic
twists differs from the even-rank one. Indeed, in the latter case, we consider a
family (Ed)d of even quadratic twists of a fixed elliptic curve. For each curve Ed

one has to compute the special value L(Ed, 1) of its L-function and to determine
if it is zero or not. If L(Ed, 1) = 0 the curve Ed contributes to the extra-rank
otherwise the curves has rank 0 and the regulator is simply 1; the Birch and
Swinnerton-Dyer conjecture allows then to deduce |X(Ed)| from L(Ed, 1). The
computation of L(Ed, 1) is done via a Waldspurger’s like formula which roughly
speaking states that L(Ed, 1) is up to some fudge factor the square of the |d|-
th coefficient of a weight 3/2 modular form often given by a linear combination
of theta series. It follows that huge computations are possible (see for example
[Rub], [Qua] etc.). The numerical data are in close agreement with the well-known
conjectures of [CKRS] about extra-vanishing (coming from the models of random
matrix theory) or on the behavior of the Tate-Shafarevich groups X(Ed) of Ed

(see [Qua], [De1]).
In the rank 1 case, the numerical point of view appears to be more complicated.

In that case, we first have to compute the value of the derivative L′(Ed, 1) for each
curves Ed in our family of odd quadratic twists. Nevertheless, on the one hand
there is no Waldspurger’s formula to compute it directly, and on the other hand,
even if we had computed it, it is just possible to deduce from it (via the Birch
and Swinnerton-Dyer conjecture and if it is nonzero) the values of the product
R(Ed)|X(Ed)|. Then, we also need to evaluate at least one of the two members
of the previous product.2 The only (know) efficient possibility is to write down a

generator Gd of Ed(Q) and to compute R(Ed) = ĥ(Gd) where ĥ is the canonical
height of Ed.

In our method, we first adapt directly the Heegner-point construction and
replacing Waldspurger’s formula by Gross and Zagier’s one. This allows us to
compute directly the regulator R(Ed) and at the same time the order of the Tate-
Shafarevich group |X(Ed)| (assuming the Birch and Swinnerton-Dyer conjecture).

2For some families of elliptic curves (Fj)j , there can exist a generic point in the Mordel-Weil
group Fj(Q) and then one can separate the terms in the product of the Birch and Swinnerton-
Dyer formula and a direct investigation is then possible [De-Du]. Nevertheless, such families, for
which we know in advance the regulator, are very special and in particular are not quadratic
families (however we must precise that it is possible to get sometime a generic point for some
very specific and tiny sub-family of quadratic twist).



2024 Oberwolfach Report 34/2007

References

[CKRS] J. B. Conrey, J. P. Keating, M. O. Rubinstein and N. C. Snaith, On the frequency of
vanishing of quadratic twists of modular L-functions, Number theory for the millennium, I
(Urbana, IL, 2000), 301–315, A K Peters, Natick, MA, 2002.

[CFKRS] J. B. Conrey, D. W. Farmer J. P. Keating, M. O. Rubinstein and N. C. Snaith, Integral
moments of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104.

[CRSW] J. B. Conrey, M. O. Rubinstein, N. C. Snaith and M. Watkins, Discretisation for odd

quadratic twists, in Rank of elliptic curves and random matrix theory, ed. J. B. Conrey,
D. W. Farmer, F. Mezzadri and N. C. Snaith, London Mathematical Society, Lecture notes
series 341, 201–214.

[De1] C. Delaunay, Heuristics on class groups and on Tate-Shafarevitch groups, in Rank of
elliptic curves and random matrix theory, ed. J. B. Conrey, D. W. Farmer, F. Mezzadri and
N. C. Snaith, London Mathematical Society, Lecture notes series 341, 323–340.

[De2] C. Delaunay, Moments of the Orders of Tate-Shafarevich groups, International Journal of
Number Theory, 1 (2005), no. 2, 243–264.

[De-Du] C. Delaunay and S. Duquesne, Numerical Investigations Related to the Derivatives of
the L-series of Certain Elliptic Curves, Exp. Math. 12 (2003), no. 3, 311–317.

[De-Ro] C. Delaunay and X.-F. Roblot, Regulators of rank 1 quadratic twists, preprint available
on arXiv (:0707.0772).

[K-S] J. P. Keating and N. C. Snaith, Random matrix theory and L-functions at s = 1/2, Comm.
Math. Phys. 214 (2000), 91–110.

[Qua] P. Quattrini, On the distribution of analytic
√

|X| values on quadratic twists of elliptic
curves, Experiment. Math. 15 (2006), no. 3, 355–365.

[Rub] M. Rubinstein, Numerical data, available at http://www.math.uwaterloo.ca/~mrubinst

[Sna] N. Snaith, Derivatives of random matrix characteristic polynomials with applications to
elliptic curves, J. Phys. A 38 (2005), 48, 10345–10360.

Finding rational points on elliptic curves using 6-descent and
12-descent

Tom A. Fisher

Let E be an elliptic curve over Q. An n-descent calculation on E provides us with
n-covering curves πα : Cα → E for α running over a finite indexing set A, with
the property that ⋃

α∈A

πα(Cα(Q)) = E(Q).

The usual choice of indexing set A is the n-Selmer group S(n)(E/Q) which sits in
a short exact sequence

0→ E(Q)/nE(Q)
δ→ S(n)(E/Q)→X(E/Q)[n]→ 0.

Given α ∈ S(n)(E/Q) there are two possibilities: either πα(Cα(Q)) is a coset of
nE(Q) in E(Q), in which case α is the image of this coset by δ, or Cα(Q) is
empty, in which case α maps to a non-zero element of the Tate-Shafarevich group
X(E/Q).

It has long be known that n-descent can help in the search for generators of
the Mordell-Weil group E(Q). Indeed the theory of heights (see for example
[7]) suggests that if we write our n-coverings as curves of degree n, with small
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coefficients, then a point of (logarithmic) height h on E(Q) should come from
a point of height approximately h/(2n) on Cα(Q) for suitable α. This is not a
precise statement (the height is only bounded up to the addition of a constant
whose behaviour with respect to n is unknown) but the idea seems to work well
in practice.

We would therefore like to perform n-descent calculations for n as large as
possible. Until recently n-descent has only been practical for general elliptic curves
in the case n = 2. (By general we mean that no assumptions are made on the
Galois module structure of E[n].) Methods for 4-descent and 8-descent have been
developed in the PhD theses of Siksek [9], Womack [13] and Stamminger [10].
Joint work of the author with Cremona, O’Neil, Simon and Stoll [3] has now
made 3-descent practical, and in a few preliminary examples also 5-descent. The
algorithms for 2-descent, 3-descent and 4-descent, for elliptic curves over Q, have
been contributed to the computer algebra system MAGMA [8]. The n-covering
curves are returned as (equations for) curves of degree n in Pn−1 (respectively as
y2 = quartic, if n = 2).

Given coprime integers m and n we would like to combine an m-covering and
an n-covering to produce an mn-covering. We have found a practical method for
doing this, based on representations of the Heisenberg group, that works whenever
each of m and n is plus or minus a square modulo the other. This includes the
case where m and n are consecutive. More precisely, in that case, we specify an
embedding of E in P(Matn,n+1), as a curve of degree n(n+ 1), in such a way that
when E acts on itself by translation, the n-torsion points act as left multiplication
by n × n matrices, and the (n + 1)-torsion points act as right multiplication by
(n+1)× (n+1) matrices. We can then twist E by a pair of cocycles taking values
in E[n] and E[n+ 1] to obtain the required n(n+ 1)-covering Cn(n+1) as a curve
in P(Matn,n+1). Conveniently, the covering map Cn(n+1) → Cn+1 is defined by
taking n × n minors. Our implementations of 6-descent and 12-descent (i.e. the
cases n = 2, 3) are further simplified by using formulae coming from the invariant
theory of binary quartics and ternary cubics.

If an n-covering π : C → E is to be useful in the search for rational points on E,
not only must we find explicit equations for C ⊂ Pn−1, but we must also make
a change of co-ordinates on Pn−1 so that these equations have reasonably small
coefficients. The task naturally falls into two parts which, following terminology
introduced by Cremona, we call minimisation and reduction.

Minimisation is the task of removing as many prime factors as possible from a
suitably defined discriminant. The most familiar example is that of minimising a
Weierstrass equation. By reduction we mean the use of unimodular transforma-
tions to further decrease the size of the coefficients. The basic example is reduction
of binary quadratic forms, or more generally lattice reduction. Thus minimisation
is concerned with the finite places, and reduction with the infinite places. The
need to perform reduction is our main reason for working over Q (instead of a
more general number field).
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The minimisation and reduction of 2-coverings is described in [1], [2], and [5].
Generalisations to 3-coverings and 4-coverings are given in [4] and [13]. These algo-
rithms are included as part of the MAGMA implementations of 2-descent, 3-descent
and 4-descent. Hence in our implementations of 6-descent and 12-descent we start
with an n-covering and an (n+1)-covering both of which are already minimised and
reduced. So it not unreasonable to hope that the n(n+1)-covering we compute will
automatically be minimised and reduced. Numerical examples suggest that this is
true for reduction, but not for minimisation. For minimisation we currently use a
limited number of ad hoc tricks, based on the behaviour of the defining equations
when reduced mod p. Although these methods work reasonably well in practice,
there remains considerable room for both theoretical and practical improvements.

Once we have minimised and reduced our equations for C we must then search
for rational points on C. We use the p-adic point searching method due indepen-
dently to Elkies and Heath-Brown, as implemented by Watkins in the MAGMA

function PointSearch. Descriptions may be found in [12] and [13, §2.9]. (Elkies’
original paper [6] only considers real approximations.) The method first chooses
an auxiliary prime p, whose size depends on the height bound set for the search.
The points on the reduction of C mod p are then enumerated, and for each such
point P0 a lattice method variant of Hensel’s lemma is used to search for rational
points on C with reduction P0. A variant of the method uses two primes. The
method works particularly well for curves of high codimension as considered here.

Using 12-descent, we now expect to be able to find rational points on an elliptic
curve over Q up to logarithmic height 600 (provided the discriminant of the original
elliptic curve is not too large, for practical reasons). The main bottleneck comes in
the 3-descent, where we must compute the class group and units of each number
field generated by the co-ordinates of a 3-torsion point of E. (There is usually
just one such field, and it has degree 8.) Fortunately, since our final answer comes
in the form of a rational point, there is no need to perform these intermediate
calculations rigorously.

As an application we show that every elliptic curve (of prime conductor) in
the Stein-Watkins database [11] has rank at least as large as predicted by the
conjecture of Birch and Swinnerton-Dyer. Prior to our involvement this had been
reduced by Cremona and Watkins to a list of 35 elliptic curves of analytic rank 2,
for which one generator of small height (less than 34) was known, but a second
generator of large height (greater than 220) remained to be found. In each case we
were able to find the second generator using either 6-descent or 12-descent. For
example the second generator on the elliptic curve

y2 + y = x3 − 237882589x− 1412186639384

has height 642.626.
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Algorithmic representation of a curve and its Picard group

Kamal Khuri-Makdisi

Abstract: Let C be a smooth projective algebraic curve over a field k. I describe
how one can represent C without explicit equations, by using instead the “values”
of global sections of line bundles on C at sufficiently many points of C. This
representation of C leads to fast algorithms for divisors and divisor classes on C,
as well as to interesting approaches to finding explicit models for modular and
Shimura curves.

1. Statement on Research

I am currently pursuing various theoretical and algorithmic questions related
to modular curves, with the goal of eventually generalizing the results to Shimura
curves associated to an indefinite quaternion algebra over Q. The ideas grew out of
earlier work of mine [KM04a,KM04b] on algorithms for divisors and divisor classes
on algebraic curves. I have been developing systematic and general methods to
find and work with equations of modular curves. These methods should extend to
the case of Shimura curves, and should give a good computational handle on the
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Jacobians (more precisely, the degree zero Picard groups) of modular and Shimura
curves and their endomorphisms by Hecke operators Tp for small p.

I specifically wish to compute with exact elements of number fields, not with
complex approximations. In the setting of Shimura curves, this means that I
would need to get a handle on a number of automorphic forms on the quaternion
algebra, together with an interpretation of their “values” in terms of the abelian
surfaces with quaternionic multiplication parametrized by the Shimura curve. I
call such an interpretation “moduli-friendly.” In the setting of modular curves, a
simple example of this is the two Eisenstein series of weights 4 and 6 on the full
modular group SL(2,Z), whose “values” at a point on the modular curve X(1)
corresponding to an elliptic curve E : y2 = x3 +ax+ b are essentially the values of
the coefficients a and b. (Here the idea is to parametrize not just elliptic curves,
but rather pairs (E,ω) with a choice of global differential ω on E; this pins down
the values of a and b, and allows us to genuinely talk of evaluating an elliptic
modular form at such an object.) I can give a moduli-friendly interpretation of
all holomorphic Eisenstein series on the congruence subgroup Γ(ℓ). Moreover, I
conjecture that all modular forms of weight 3 and above on Γ(ℓ) are polynomials
in the weight 1 Eisenstein series, which have a particularly direct moduli inter-
pretation. (The corresponding statement about weight 1 Eisenstein series on the
subgroup Γ1(ℓ) is a result of Borisov and Gunnells [BG01b, BG03]. The above
conjecture thus states that their result extends to Γ(ℓ).)

Theorem 1. Assume that the above conjecture holds. Given just one curve E0

without complex multiplication, defined (say) over Q, then using all the coordinates
of the torsion points in E0[ℓ] allows us to obtain equations for the modular curve
X(ℓ) over the field Q(E0[ℓ]). Hence these equations describe all modular curves
with level ℓ structure. With some more work we can reduce the field of definition to
the cyclotomic field Q(µℓ), and perhaps even to Q. For the modular curve X1(ℓ),
we obtain an analogous result unconditionally.

The above method of obtaining models for modular curves is well suited for
working with their Jacobians. More generally, the following is my philosophy for
describing curves and for working with their Jacobians, which grew out of my
work in [KM04a,KM04b]. Let C be a smooth projective curve of moderately large
genus g and gonality over a perfect field k.

Philosophy 2. (1) The best way to represent the curve C is to choose a line
bundle L on C with degL = N + g ≥ 2g + 2 but degL = O(g) nonetheless. Then
we must arrange to know explicitly the spaces V = H0(C,L) and V ′ = H0(C,L⊗2),
as well as the multiplication map µ : V ⊗V → V ′. (For modular curves, V will be
a space of modular forms Mκ(Γ) of given weight κ, while V ′ =M2κ(Γ).)

(2) The most efficient way to keep track of the multiplication µ is to represent
elements of V and V ′ by their values at sufficiently many points of C. (In the
setting of modular curves, this means knowing the values of elements ofMκ(Γ) and
M2κ(Γ), evaluated in a moduli-friendly way at sufficiently many tuples (E,ω, α),
where α is a level structure for Γ.)
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Statement (1) above is equivalent to knowing equations for C, since the com-
plete linear series corresponding to the (N + 1)-dimensional space V = H0(C,L)
gives a projective embedding of C into PN , where the homogeneous ideal IC ⊂
k[T0, . . . , TN ] describing the image of C is generated by its elements of degree 2
due to the assumption on degL; these elements of degree 2 are implicit in our
knowledge of the map µ. Statement (2) above says that rather than storing a
multiplication table, we are better off representing elements of V and V ′ by their
values at points of C. (In Section 2 of [KM04b], this is the difference between
using “Representation A” and “Representation B”; in Section 5 of that article, we
describe how to convert a curve from Representation A into Representation B.) To
be able to talk about the value of a section at various points, we need to choose (at
least implicitly) a trivialization of L near each such point. This removes the need
for knowing the multiplication table of µ, since we merely need to multiply values;
on the other hand, we must take enough points to be able to identify elements of
V and V ′ by their values at those points. A conservative choice is to evaluate at
1 + 2 degL points; alternatively, we can take dimV ′ points in general position on
the curve.

Using the above model of C, we can represent certain divisors by subspaces
of V : let D be a k-rational effective divisor with degD ≤ degL − 2g. Then we
represent D by the k-rational subspace WD ⊂ V consisting of the linear functions
that vanish on D (to the correct multiplicity), and we similarly define W ′

D ⊂ V ′,
by

WD := H0(C,L(−D)) ⊂ V, W ′
D := H0(C,L⊗2(−D)) ⊂ V ′.

I used the above representation in [KM04b] to give the asymptotically fastest
known algorithms for the group law in the Picard group of a general curve:

Theorem 3. Let C be any curve of genus g, represented as above. Then there
exist efficient randomized algorithms for the group operations (i.e., addition, in-
version, subtraction, equality testing, and membership testing) in the Picard group
(Pic0 C)(k). Each such group operation takes an expected O(g2.376) field operations
in k, and the result is guaranteed to be correct.

The above complexity of O(g2.376) involves fast linear algebra; if we use Gauss-
ian elimination instead, the complexity rises to O(g3+ǫ). The previous record for
general curves had been a complexity of O(g4), by Florian Hess [Hes99]; his al-
gorithms however attain a faster complexity (O(g2)) than mine for special curves
such as hyperelliptic or trigonal curves, whose gonality is small compared to their
genus. On the other hand, my general algorithms are quite simple to implement,
involving nothing more than linear algebra on subspaces of V and V ′, and the
multiplication µ. Even for special curves of small genus, my approach is algorith-
mically efficient: in recent work [ASKM06], Fatima Abu Salem and I obtained a
20% speedup over previous methods [BEFG04,FOR04] for computations in the
Picard group of C3,4 curves, which have genus 3.
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