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MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 170
APRIL 1985, PAGES 473-481

On the Conjecture of Birch and Swinnerton-Dyer
for an Elliptic Curve of Rank 3

By Joe P. Buhler, Benedict H. Gross and Don B. Zagier

Abstract. The elliptic curve y? = 4x* — 28x + 25 has rank 3 over Q. Assuming the Weil-
Taniyama conjecture for this curve, we show that its L-series L(s) has a triple zero at s = 1
and compute lim, _,; L(s)/(s — 1)* to 28 decimal places; its value agrees with the product of
the regulator and real period, in accordance with the Birch-Swinnerton-Dyer conjecture if I
is trivial.

The object of this note is to verify the conjecture of Birch and Swinnerton-Dyer
numerically (to high accuracy) for the elliptic curve
(1) E:y?=4x3— 28x + 25.
The conductor of E is 5077, which is apparently the smallest conductor for a curve
of rank 3 over Q. Since previous accurate numerical verifications were done for
modular curves of rank 0 or 1, and these can now be confirmed theoretically [2], [4],
it seemed desirable to test the conjecture for a curve of larger rank.

We assume some familiarity with the theory of elliptic curves; good references are
[3] and [5].

1. The Canonical Height Function. One of the main ingredients in the Birch-
Swinnerton-Dyer formula is the regulator, i.e., the determinant of the matrix ex-
pressing the canonical height pairing on E(Q) ® R with respect to a Z-basis of
E(Q)/E(Q) s In this section we describe how to calculate the canonical height of a
point P € E(Q).

We first recall the definition. The global minimal model for E has the form
(2) y2+y=x3—"Tx + 6,
obtained by replacing y by 2y + 1 in (1) and dividing by 4; this equation has
discriminant A = 5077. If P € E(Q), then the naive height of P is defined as
3) h(P) = logmax(|a|,b), x(P)=a/b,b>0,(a,b)=1
(here it does not matter whether we use model (1) or (2) for E, as the x-coordinates
are the same); the canonical height is the unique quadratic form / on E(Q) ® R such
that hA(P) — h(P) is bounded, and the canonical height pairing is the associated
bilinear form (P, P’Y = X(h(P + P’y — h(P) — h(P’)). The definition of % im-
mediately implies the formula A(P) = lim,_, _ n~2h(nP), but this is not convenient
for calculations. A formula which is usable is
(4) h(P) =logh + F(x(P)),
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where b denotes the denominator of x(P) as in (3) and F(x) is the real-valued
function defined by

F(x) =log|x| + Y 4" tlogz,,

n=0
5
®) 14 50 49 x¥+ 14x2 — 50x, + 49
z, =14+ — - =+ —, Xog = X, X1 = 3 .
4x> — 28x, + 25

Near x = 0 the first two terms in (5) become infinite, but we can combine them to
obtain

(o]
(6) F(x) = %log(x“ +14x2 — 50x + 49) + ), 4" llogz,,
n=1

a formula which now makes sense for all x. Note that the formula relating x, , ; to x,,
is the formula relating x(2P) to x(P) for P € E, so that x, = x(2"P). In particular,
X, = e;=1.946... for n = 1, where e¢; < e, < e; denote the roots of the poly-
nomial 4x* — 28x + 25, 50 z,, lies between 1 and 1.328... and log z, between 0 and
0.284.... Therefore the series in (5) or (6) converges very rapidly and we can
calculate i ( P) to any desired degree of accuracy.

Formula (4) is the specialization to our case of a general recipe of Tate [6] for
computing heights; indeed, F(x(P)) is Tate’s formula for the infinite component of
(P, P) while ord ,(b)log p (p prime) gives the p-component of the canonical height
(even for the prime p = 5077 of bad reduction, since the fiber of the Néron model at
p is irreducible). However, Tate’s result, although quoted in the literature, has not
yet been published, so we give a direct proof of (4) in our case. By virtue of the
definition, it will suffice to show that the expression on the right-hand side of (4)
differs by a bounded amount from /A(P) and is multiplied by 4 if P is replaced by
2P. By the formula already cited, replacing P by 2P replaces x(P) = a/b by
x(2P) = a*/b*, where

a* = a* + 14a*b? — 50ab® + 49b*, * = 4a3b — 28ab’ + 25b*.

We claim that b* is the exact denominator of x(2P). Indeed, an elementary
calculation with g.c.d.’s shows that (a*, b*) = 1 for any integers a, b with (a, b) =1
unless a = 92b (mod 5077), in which case 5077|(a*, b*). But this cannot happen
here, since 4x3 — 28x + 25 = 4(x — 92)%(x + 184) + 5077(20x — 1227) would be
divisible by 5077 but not by 50772 if x were = 92 (mod 5077) and hence, could not
be a square. (This is an elementary restatement of the fact that the Néron model at
5077 has only one component.) On the other hand, replacing P by 2 P replaces x,, z,,
by X, 1, 2,41 10 (5), s0

F(x(2P)) = logle(2P)] + ¥ 4~ Hlog .,
n=0
= log|x(2P)| + 4( F(x) — log|x| — 4 'log z,) (x =x(P))
= 4F(x) — log(4x® — 28x + 25)
= 4(F(x(P)) + logb) — log b*,
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proving the second assertion. As to the difference of 4 and h, we can write (3) as
h(P) = log b + log max(|a|/b, 1), so

h(P) — h(P) = F(x) —logmax(|x|,1)  (x = x(P)).

If x = e; =194... is in the right-hand component of E(R), then the same is true
forall x, (n = 0),s01 < z, < 1.328... for all nin (5) and therefore

0< F(x)—logx< Y 4" 'log(1.328...) = 0.0947....
n=0
The other component e; < x < e, of E(R) is compact and we easily find the
minimum and maximum of F(x) — log max(|x|, 1) there to be 0.4006. .. and 1.205. ..
(obtained for x = e, and x = -1, respectively; see Figure 1). Hence in all cases we
have

(7) h(P)<h(P)<h(P)+1205....

This completes the proof of (4). We remark that the difference between the naive
and canonical heights on elliptic curves has been studied by several authors (cf. [7]
and the literature cited there) but that the inequality (7) is much sharper than the
one obtained by specializing their results, suggesting that some improvements in the
general case may still be possible.

/
\

FIGURE 1
The functions F(x) and log max(|x|,1)

2. The Mordell-Weil Group and the Regulator. Let N, (p # 5077) denote the
cardinality of E(Z/pZ), i.e., 1 plus the number of solutions of (2) in integers modulo
p- Then |E(Q) | must divide N, for all p > 2; since N; = 7 and Ns = 10 it follows
that £(Q) is free Abelian. We claim that it is of rank 3, generated by the three points

P,=(0,2), P,=(1,0), P,=(2,0).

It follows from Eq. (7) that these are the only points (up to sign) with canonical
height less than 1, since #(P) < h(P) < 1 implies (cf. (3)) max(|a|, b) < e and hence
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(since b is always a square) b = 1, a € {-2,-1,0,1,2}; of these five candidates, only
a = 0,1,2 lead to points with #(P) < 1. On the other hand, one sees by a 2-descent
(cf. [1]) that P,, P,, P, generate E(Q)/2E(Q), which is of rank 3 over Z/2Z. These
two facts and the fact that E(Q) is torsion-free imply by the usual proof of the
Mordell-Weil theorem (cf. any text on elliptic curves) that E(Q) = ZP, + ZP, + ZP,
as claimed. Using the algorithm of Section 1 we can calculate the entries of the
matrix

9909... -2365... -.2764...
A=((P,P))o ,cr=|-2365... 6682... .0333...
~2764...  0333... .7670...

to any desired accuracy. The regulator is the determinant of this matrix:

(8) R = det A = .417143558758383969817119544618093.. .. .

As an illustration, we have given the representations of P as n,P, + n, P, + n, P,
and the naive and canonical heights of P for 18 integral points P € E(Q) in Table 1;
the canonical heights can be computed either by the algorithm of Section 1 or as
(ngnyny)A(ngnin,)". One has of course also the negatives —P = (x,-y — 1) =
-ny Py — n; P, — n, P, with the same heights. The large number of 36 integral points
seems to be typical of curves with a high rank relative to their conductor.

TABLE 1

Integral points on E

x y no n ny h(P) h(P)
-3 0 0 -1 -1 1.50192454 1.09861229
-2 3 0 -1 1 1.36857251 169314718
-1 3 -1 0 -1 1.20508110 0.00000000
0 2 1 0 0 199090633 0.00000000
1 0 0 1 0 66820517 0.00000000
2 0 0 0 1 76704336 169314718
3 3 1 1 0 1.18592770 1.09861229
4 6 -1 -1 -1 1.46677848 1.38629436
8 21 1 -1 0 2.13229530 2.07944154
11 35 -1 -1 1 2.43916362 2.39789527
14 51 0 2 0 2.67282066 2.63905733
21 95 0 0 -2 3.06817342 3.04452244
37 224 -2 0 -1 3.62493152 3.61091791
52 374 1 -1 2 3.96137952 3.95124372
93 896 2 2 1 4.53836901 4.53259949
342 6324 -2 0 1 5.83640586 5.83481074
406 8180 0 2 2 6.00769815 6.00635316
816 23309 1 3 -1 6.70508531 6.70441435
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FIGURE 2
Integral points on E

3. The Real Period. The group E(R) has two connected components. Let w =
dx/(2y + 1) be a Néron differential on E over Z, and |w| the associated measure on
E(R). The real period  is defined by

Q= wl =2 w|.
fE ole1=2)

If we write (0.1) in the form y? = 4(x — e;)(x — e,)(x — e;) with e; < e, < e,
we may calculate this period integral using the arithmetic-geometric mean. This is
defined on two positive real arguments x and y by M(x, y)= lim X, =

lim, , v, where xo=x, yo=y, x,.1=(x,+,)/2, V.11 = {X,V,- We find
(Gauss):

o dx 2@ 2@
9) e=4f == -
) L Y M(fe;— e e —ey)  M(222689...,0.938503...)

= 4.151687983086933049884175683507286....

4. The L-Series. The L-series for E over Q is given by an Euler product which
converges in the right half-plane Re(s) > 3/2:

o0
L(E,s)=(1+50777)" T1 (1-a,p*+p2)" = Yan,
p #5077
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where a,(p # 5077) equals p + 1 — N, with N, as in Section 2. We have

. NS/2 -s _ w(_&) s—1

A(s)i= N*2Qm) " T(s)L(E, 5) = [f L2
where N = 5077 and f(7) = £*_,a,e*"" (7 € C, Im(7) > 0). The Weil-Taniyama
conjecture states that f(7) is a cusp form of weight 2 on I',( N). We will assume that
it is true. (This could be checked by a finite computation in the 422-dimensional
space of cusp forms of this weight and level, but we have not carried it out; thus this
note could more properly be described as a simultaneous numerical verification of
the Birch-Swinnerton-Dyer and Weil-Taniyama conjectures.) Then f(7) satisfies the
functional equation f(-1/Nt) = Nr2f(7) and the analytic continuation and func-
tional equation of L(E, s) follow:

(10) A(s) = fff(%)(ys-l Y ) =A@ ),

In particular, the order of L(E, s) at s = 1 is odd and the rth derivative (r > 1 odd)
is given by

AO(1) = 2f1wf(if1yv)(log y) dy
11)
( fooe‘z"’"y/‘/ﬁ(log y) ay.

=2Ya,

n=1
If A(s) vanishes to order > r at s = 1, then integrating (11) once by parts gives
27 e 27n
(12 LO(1) = —=AP(1) =2r! Y ——G( )
: N 2w
where

6,(x)= ooy [ e s Y (2 ),

The series (12) is rapidly convergent, because G,(x) ~ x~'e™* as x — o0, so it can be
used to compute L"(1) if we have a good algorithm to compute G,(x).

The function G,(x) is the familiar exponential integral [°e~*"dy/y, which can
be calculated for small x (x < 3) by the power series

G,(x) = log— -+ Z - l)n‘ x" (v = Euler’s constant)
n=1 .

and for large x (x > 2) by the continued fraction expansion

Gl(x) =
x +

1+

x +
1+

+
T I
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Taking 250 terms of the series in (12) gives L'(1) = 0 to 13 decimal places. But this
implies that L'(1) = 0 exactly, since the main result of [2] implies that L'(1) is a
simple multiple of the height of some rational point on E (“Heegner point”) and, as
we have seen, E contains no rational points of very small nonzero height. Since L(s)
has odd order, we have ord ,_; L(s) = 3.

In general, the functions G,(x) satisfy G,(x) = e™*, G/(x) = —(1/x)G,_(x), so

G,(x)=Plog 2]+ % SRR

'
n=1 non

for some polynomial P, of degree r. To determine P,, we use the integral representa-
tion:

x"*ds anyc > 0.

C—100

(13) G(x) =5~

2771

(To prove (13), we observe that the right-hand side satisfies the same recursive
differential equations as G.(x) and tends to zero as x — oo0.) Shift the path of
integration in (13) to the left; then the residue at s = —n gives the term (-1)"~"x"/n"n!
and the residue at s = 0 gives P,(log1/x). Hence,

" e
P(t)= Z Yo m —' where T(1 +5) = Y v,5"
m=0 : n=0

Since by Euler-Maclaurin

logT'(1 +s) = —ys + Z - 1)’f(n)s,

n=2

we find, for r = 3, the expansion

Gy(x) = —(log— _y)3+ _ﬁ(logl _ ) (3) N Z (1" '

n=1 nn'

which converges for all x. Using this we find the value

. L(E,s) _, v+ 4 27n
(9 R B 2L (¢5077)

= 1.7318499001193006897919750851

using the terms for n < 600 (the error made in breaklng off the series here can be
estimated using (12) and the formulas G,(x) ~ x %" and |a,| < d(n)Vn, where
d(n) is the number of divisors of n).

The results of the computations described in this section are summarized in Table
2.
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TABLE 2
Computation of L'(1) and L " (1)

n n
277'n) Qan a, 2am a,, 2am
G| — G| — 2) —G (——) 2) —G (——
n a I(WV 3(‘/ﬁ) ;m Vv Z1:’" YN

n

1 1 1.93741992 2.26675143 3.87483985 4.53350286

2 -2 1.32687953 .98498602 1.22108079 2.56353082

3 -3 1.00056041 .54955613 —.78004003 1.46441856

4 2 18875755 .34359041 .00871752 1.80800897

5 -4 .63840821 .22972608 -1.01273562 1.44044725

6 6 .52596620 16064962 03919678 1.76174648

7 -4 43894007 11604939 -.46244901 1.62911861

8 0 .36992797 08592813 —.46244901 1.62911861

9 6 .31419941 06487957 -.04351647 1.71562470
10 8 .26856035 .04977090 .38618010 1.79525814
50 =22 .00231086 .00005681 -.00236637 1.73179489
100 22 .00001521 .00000013 .00001335 1.73185001
250 48 .00000000 .00000000 00000000 1.73184990

5. The Conjecture. The conjecture of Birch and Swinnerton-Dyer predicts that
ord,_,L(FE, s) = rank(E) = 3 and that

lim *L(E’SZ
s=1 (s —1)

where III is the (conjecturally finite) Tate-Shafarevich group of E over Q. Equations
(8) and (9) give

= Q- R - Card(III)

Q - R = 1.731849900119300689791975085060154 . ..
which agrees with the right-hand side of (14) within the accuracy of our computa-
tions in Section 3. This strongly suggests that the conjecture is true and that
Il = (1). We have checked, via a 2-descent (cf. [1]), that the 2-primary component of
III is trivial.

6. Acknowledgment. We would like to thank J.-F. Mestre for some useful sugges-
tions.

Note added in proof. It has now been verified by J.-P. Serre and J.-F. Mestre that
the curve E satisfies the Weil-Taniyama conjecture (cf. beginning of Section 4), thus
unconditionally justifying the calculations in this paper.

Department of Mathematics
Reed College
Portland, Oregon 97202

Department of Mathematics
Brown University
Providence, Rhode Island 02912

Max-Planck-Institut fur Mathematik
Gottfried-Claren-Strasse 26
5300 Bonn 3, West Germany

and
Department of Mathematics

University of Maryland
College Park, Maryland 20742



AN ELLIPTIC CURVE OF RANK 3 481

1. A. BRUMER & K. KRAMER, “The rank of elliptic curves,” Duke Math. J., v. 44,1977, pp. 715-743.

2. B. GRoss & D. ZAGIER, “Points de Heegner et dérivées de fonctions L,” C. R. Acad. Sci. Paris, v.
297, 1983, pp. 85-87.

3. Y. I. MaNIN, “Cyclotomic fields and modular curves,” Uspekhi Mat. Nauk, v. 26, 1971, pp. 7-71;
English transl. in Russian Math. Surveys, v. 26,1971, pp. 7-78.

4. B. MAZUR & H. P. F. SWINNERTON-DYER, “Arithmetic of Weil curves,” Invent. Math., v. 25, 1974,
pp. 1-61.

5. J. TATE, “ The arithmetic of elliptic curves,” Invent. Math. v. 23,1974, pp. 179-206.

6. J. TATE, Letter to J.-P. Serre, Oct. 1, 1979.

7. H. G. ZIMMER, “On the difference of the Weil height and the Néron-Tate height,” Math. Z., v. 147,
1976, pp. 35-51.



	Article Contents
	p. 473
	p. 474
	p. 475
	p. 476
	p. 477
	p. 478
	p. 479
	p. 480
	p. 481

	Issue Table of Contents
	Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 283-577+S17-S25
	Volume Information [pp.  575 - 577]
	Front Matter
	Some A Posteriori Error Estimators for Elliptic Partial Differential Equations [pp.  283 - 301]
	Mixed Finite Element Methods for Quasilinear Second-Order Elliptic Problems [pp.  303 - 320]
	Improved Accuracy by Adapted Mesh-Refinements in the Finite Element Method [pp.  321 - 343]
	Finite Element Methods of Optimal Order for Problems with Singular Data [pp.  345 - 360]
	Convenient Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems [pp.  361 - 377]
	The Convergence of Galerkin Approximation Schemes for Second-Order Hyperbolic Equations With Dissipation [pp.  379 - 390]
	Variable Step Size Predictor-Corrector Schemes for Second Kind Volterra Integral Equations [pp.  391 - 404]
	On the Steady States of Finitely Many Chemical Cells [pp.  405 - 415]
	Conjugate Gradient-Like Algorithms for Solving Nonsymmetric Linear Systems [pp.  417 - 424]
	On Polynomial Approximation in the Complex Plane with Application to Conformal Mapping [pp.  425 - 433]
	On the Differential-Difference Properties of the Extended Jacobi Polynomials [pp.  435 - 441]
	The Generalized Integro-Exponential Function [pp.  443 - 458]
	Rational Approximations for the Fresnel Integrals [pp.  459 - 461]
	Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis [pp.  463 - 471]
	On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3 [pp.  473 - 481]
	Elliptic Curves Over Finite Fields and the Computation of Square Roots $\operatorname{mod} p$ [pp.  483 - 494]
	On Totally Real Cubic Fields [pp.  495 - 518]
	Modular Multiplication Without Trial Division [pp.  519 - 521]
	Some Periodic Continued Fractions With Long Periods [pp.  523 - 532]
	2000000 Steiner Triple Systems of Order 19 [pp.  533 - 535]
	Computing $\pi(x)$: The Meissel-Lehmer Method [pp.  537 - 560]
	Averaging Effects on Irregularities in the Distribution of Primes in Arithmetic Progressions [pp.  561 - 571]
	Reviews and Descriptions of Tables and Books
	untitled [pp.  573 - 574]
	untitled [p.  574]

	Supplement to the Convergence of Galerkin Approximation Schemes for Second-Order Hyperbolic Equations With Dissipation [pp.  S17 - S25]
	Back Matter



