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Large Integral Points on Elliptic Curves

By Don Zagier

To my friend Dan Shanks

Abstract. We describe several methods which permit one to search for big integral points on

certain elliptic curves, i.e., for integral solutions ( x, y ) of certain Diophantine equations of the

form y2 = x} + ax + b (a,b e Z) in a large range \x\, \y\ ^ B, in time polynomial in

log log B. We also give a number of individual examples and of parametric families of

examples of specific elliptic curves having a relatively large integral point.

In this note we will discuss two questions:

(i) given an elliptic curve E over Q, say in Weierstrass form y2 = x3 + ax + b

(a,b g Z), how to search efficiently for large integral solutions (x, y), and

(ii) how to construct elliptic curves which possess a large integral point.

Problem (i) is usually handled by Skolem's />-adic method, or, in the case a = 0,

by factoring y2 - b in Q(V¿ ) and applying results on linear forms in logarithms [6],

[9]. We will describe three other methods. The first, which is certainly not new,

works if the curve E has all its 2-torsion points defined over Q (i.e., if the cubic

polynomial x3 + ax + b factors completely over Q). The second needs only one

2-torsion point to be rational (i.e., x3 + ax + b = 0 should have at least one

rational root) but requires knowing generators of the Mordell-Weil group £(Q). The

third method makes no assumptions about the 2-torsion but again requires knowing

a basis of E(Q). This method is known in principle and has been used for theoretical

purposes, but not, apparently, as an algorithm for actually finding integral points.

All three methods depend eventually on the fact that approximate solutions of the

equations

(1) ar - ßs ~ 0    or    ar - ßs ~ y        (r,s6Z)

(a, ß, y given real numbers) can be found rapidly by continued fraction or related

algorithms, and all three require a search time of the order of log log B to find

solutions with |x|, \y\ < B.

For question (ii) there seems to be no general procedure. We will describe some

rather ad hoc methods and give a list of equations y2 = x3 + ax + b having fairly

large integral solutions relative to the size of the coefficients a and b.
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1. Searching for Large Integral Points.

Method 1: Multiple Pell's Equations. If an elliptic curve over Q has all its

2-torsion rational, it can be defined by an equation y2 = (x - ax)(x - a2)(x - a3)

with ai e Z, and Fermât descent leads to a finite list of triples (cx,c2,c3) such that

any integral solution has the form x — a¡= c(n2 (i = 1,2,3) for some nt e Z.

Combining any two of these equations gives a Pell-type equation c¡nj - c¡n2¡ =

a i - a¡ whose solutions belong to finitely many sequences of exponential growth,

and this means that log* is exponentially close to a member of an arithmetic

sequence {«r + yS|reN} with a, ß e R. Combining any two of these formulas for

log a: gives an equation ar + ß = ar' + ß' + 0(e~") (c > 0) of the form (1), and

this can be solved in time roughly O(logr) = O(loglogx).

As an example we take the old chestnut: When is the sum of the first n squares a

perfect square? This problem, often known as the "cannonball problem", because it

appears in puzzle books (e.g., [5, #138]) in terms of stacking cannonballs into a

square pyramid, has been solved long ago; the unique nontrivial solution l2 + 22

+ • • • +242 = 702 is connected with the construction of the Leech lattice [4] and

hence has a certain importance in modern physics. The equation 12+ ••• +n2 = m2

can be written 6w2 = n(n + l)(2n + 1), and an easy consideration shows that any

solution has the form

n = a2,    n + 1 = 2b2,    2n + 1 = 3c2

or

(2) n = 6a~,    n + 1 = b ,    2« + 1 = c ,

the two being exemplified by n = 1 and n = 24, respectively. We consider only (2).

It leads to three Pell equations

c2-12a2 = l,    c2-2/r=-l,    b2-6a2 = l       (a,b,c>0)

with solutions given by

c + a{Ï2 = (1 + 2jñ)r,    c + b)/2 = (1 + i/2)\    b + aje = (5 + 2i/6)'

(r,s,t > 0, s odd).

Hence

(7 + v/48)2r-2+(7- M)2''     (1 + v^)2ï-6+(l - v^)2*
" =-8-=-8-

(5 + y^)2' -2+(5 + /24)2' /

4

and

log« = 2rlog(7 + i/48 ) - log8 + 0(1/«)

(3) =2¿log(l + i/2)-log8 +0(l/n)

= 2/log (5 + y/24) - log4 + 0(1/«)

with explicit 0( )-constants. Combining any two of these leads to an approximate

equation of the form (1). The most convenient two are the first two, since the terms

log 8 drop out and we are left with the homogeneous equation

(4) Hog(7 + M) -ilog(l + fi)= 0((7 + v/48)"2r).
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Any solution of this would correspond to a very good rational approximation s/r

(with 5 odd) of the real number

loe(7 + v/48 )
A = —^-—zr1 = 2.9884215191386608004806174839497371923153521213522...

log(l + ñ)

and could be recognized by a very large partial quotient in the continued fraction

expansion of X. This expansion begins [2,1, 85, 2, 1, 2, 1,1,1_]. The large partial

quotient 85 at the beginning corresponds to the rational approximation 3/1 of À

and the solution n = 24 of our original problem. Computing the expansion further

to as many terms as justified by the above 50 digits of X, we find no further large

partial quotients, and this shows that (4) has no solution under about 1025 and

consequently (2) no further solution under about 1010". This bound would be even

larger if we had used a more accurate value of X, e.g., 1010 if we had 200 rather

than 50 digits; the time needed for the computation (of the decimal and then of the

continued fraction expansion of À) is negligible even on a modest computer. If we

had taken a different pair of the equations (3) or were looking at a different

example, then we would have had to look at an equation like (4) but with an extra

additive constant, i.e., an equation like the second one in (1). A modification of the

continued fraction algorithm permits one to solve such equations almost as fast as

their homogeneous counterparts.

Method 2: PelFs Equation and Canonical Height. Now suppose that our elliptic

curve has only one rational 2-torsion point, but that its Mordell-Weil group is

known. As an example, we take the curve

(5) E: y2 = x3 - 30x + 133 = (x + l)(x2 - Ix + 19),

which by inspection has the small integral solutions

r-(-7,0),    ±P = (6,±13),    ±P+ T= (2,+9),    ±2?=(-3,±14)

with 27 = 0. By descent one shows easily that E(Q) = Z © Z/2Z with generators P

and T (a 2-descent over Q can be carried out for any elliptic curve having at least

one rational 2-torsion point; see [8, pp. 301-304]). If (x, y) is an integer solution of

(5), then x + 1 is positive and the g.c.d. of x + 7 and x2-7x + 19isa divisor of

117 = 32 • 13, so x + l = da2, x2 - Ix + 19 = db2 for d e {1,3,13,39}. The

values d = 3 and d = 39 lead to a contradiction (if x2 — Ix + 19 = (x + l)2 —

9(x + 1) + 27 is divisible by an odd power of 3 then x + 1 = 0 mod 9 and

(x + 7)/3 cannot be a square or 13 times a square) and the value d = 1 to the

factorizable equation (2b)2 - (2x - I)2 = 27 whose only solutions with x + 7 a

square are x = - 3, x = 2. We are left with

x + 7 = 13a2,       x1 - Ix + 19 = 13b2.

The second of these equations can be written (2x - I)2 - 52b2 = -27 and has the

general solution

2x- 1 + b\¡52 = (±5 + v/52)(649 + 90^52)'    or

(±21 + 3v/52)(649 + 90/52)'.
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The solutions with — 5 + ■¡52 and +21 + 3\/52~ lead to x congruent to 1 or 5

(mod 9), incompatible with x + 1 = 13a2. Also, from x = -7 (mod 13) we find that

/ must be even, so in fact

2x - 7 + ¿.1/52" = (5 + /52 )(842401 + 116820^/52 )r   or
(6) _ _   ,

(-21 + 3v/52)(842401 + 116820v/52 )'

for some r, r' > 0. The values r = 0, r' = 0 lead to the small solutions x = 6 and

x = -7, while r = 1 leads to the "large" solution

(7) (*,>•) = (5143326, ±11664498677)        (= ±5P).

But now we seem to have reached an impasse, for simply searching through small

values of r and r' looking for x in (6) with (x + 7)/13 a perfect square would, first

of all, require huge accuracy (since x grows very rapidly and one cannot use an

approximate value of an integer to test whether it is a square), and also would be

only exponentially rather than doubly exponentially fast (i.e.. would require comput-

ing time of the order of logx rather than log log x). So we need a second condition

on x to replace the second Pell's equation of Method 1.

This second condition is provided by the canonical height function. We do not

review the theory of the height (see, for instance, Chapter VIII of [8]), but only recall

that it is a positive-definite quadratic form

h: £(Q)/(torsion) -» RT

which is effectively and rapidly computable (cf. [3] for an example of a high-accu-

racy computation). Suppose we have a large solution (x, y) of (5) and write it as mP

or mP + T with m e Z. Then, on the one hand,

h((x,y)) = m2h(P)

since h is quadratic, and on the other hand, by the definition of the height,

h((x,y)) = logx + c+ 0(1/x)

with c and the 0( )-constant effectively computable. (Again we refer to the above

sources; observe that for an integral point on an elliptic curve one would in general

have h((x, y)) = logx + c¡ + 0(x~x) for one of a finite collection of constants c,,

depending on congruence conditions on x modulo the various primes of bad

reduction of the curve.) Combining these two formulas and our Pell-type equation

(6) gives the pair of equations

log x = ra + ß + 0(1/x)    or    r'a + ß' + 0(1 / x)

= m2h(P) -c+ 0(1/x)

with

a = log(842401 + 116820v/52 ),       ß = log(5 + ]/S2)/2,

jB' = log((-21 +3v/52)/2).

If we now simply forget that m2 is a square and write s instead of m2, we are left

with a nonhomogeneous approximate linear equation, like the second one in (1),

which again can be solved in roughly logarithmic time with respect to r or s and

hence doubly logarithmic time with respect to x, with only moderate accuracy

required. We omit the actual computational details since our third method will be
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superior anyway. Observe that the present method would also work, though not

quite as well, if the rank of E(Q) were larger than 1. If, for instance, E(Q) had two

(known) generators Px and P2, then the fact that the height is a quadratic form

would mean that the height of an unknown large integral point (x, y) = mxPx +

m2P2 would be a quadratic form hxm\ + h2mxm2 + h3m\. If we then wrote sx, s2,

and s3 for the three unknown integers m\, mxm2, and m\ (thus forgetting that sx

and s3 are squares and s\ - sxs3), we would have an equation of the form

ra + hxsx + h2s2 + h3s3 + ß = 0, i.e., like (1) but with more variables. This can be

solved reasonably quickly by using the algorithm of [7] instead of continued

fractions.

Method 3: Group Law on E(R). The third method is based on the fact that the

Mordell-Weil group E(Q) is a subgroup of E(R), which is isomorphic to the circle

group R/Z or to two copies of the circle group. We need only consider the identity

component £(R)° of E(R) since in the Weierstrass model y2 = x3 + ax + b the

other component, if there is one, is compact, and one can find all integral points on

it by direct search. The isomorphism <p: £(R)0 -» R/Z is given explicitly by

(8) <p(P) = -/ (modi)
" h     \¡x3 + ax + b

if P = (i,r\) with f) > 0, and by <p(-P) = -<p(P) if tj < 0; here,

dx

12 = 2/
yx3 + ax + b

(y = largest real root of x3 + ax + b = 0) is the real period of E.

Pi
£(R)°

0

Figure 1

As an example we again take the curve (5). Here E(Q) = (P,T) with 2T = 0 and

P = (6,13) of infinite order. If /»' = (¿, 17) is a large integral solution of (5), then

rp(P') = 0(ix/2) by (8), the 0( )-constant being known explicitly. On the other

hand, P' = rP or rP + T for some r e Z, so cp(P') = r<p(P) or rcp(P) + \ (mod 1).

Also, £ > ecr2 for some c > 0 by the height considerations discussed under "Method

2," so tp(P') = 0(e~"1/2). We thus have an approximate equation of the form

(9) r-2y(P)-s = 0{e-cr2/2)        (r,jeZ),

and this is an equation of the (easier, homogeneous) form (1) which can be solved as

usual by a continued fraction algorithm, once we know <jp(P) accurately. Numerical

integration on a pocket calculator gives <p(P) ~ 0.200041344203; this has the

obvious rational approximation 5, corresponding to the large integral point (7), and
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no other good approximations (in the sense of (9)) with numerator and denominator

under around 106, showing that (5) has no further integral solution under about

102.5x10 j0 gQ further, we need a more accurate value of cp(P). Numerical

integration would work, but there are better ways. The denominator Q in (8), a

complete elliptic integral, can be calculated very rapidly by Gauss's arithmetic-geo-

metric mean, and the method can be extended to cover also the incomplete elliptic

integral in the numerator (Landen's transformation). This method is doubly ex-

ponential, i.e., in n steps one gets about 2" digits of accuracy, but requires evaluating

a transcendental function (see below). There is a simpler method which is only

simply exponential but requires only elementary arithmetic operations. Namely, it is

obvious from Eq. (8), or from Figure 1, that <p(Q) e (0, t) for a point Q with

positive v-coordinate and <p(Q) &({-,!) if y(Q) < 0. Since <p(2'Q) = 2'<p(Q)

(mod 1), we immediately obtain the binary expansion

/   v     £   a, [0    if y(TP)>0,

Since doubling a point on y2 = x3 + ax + b is given by the simple formula

0 = (x,y)=>2Q = (X2-2x, X(3x - X2) -y)        (X = (3x2 + a)/2y),

this gives an easy way to compute <p(P) one binary digit at a time. Taking 167 terms

of (10) gives the 50-digit value

<p(P) « 0.20004134420460575588311129477140424985602364831619,

and this is enough (since its continued fraction has no very large partial quotients

after the initial [0,4,1,966,1,... ]) to show that (5) has no further integral solutions

after (7) under about 1010 . Again, we could push this bound up further in negligible

computer time if we had more than 50 digits of accuracy available. If we used

Landen's transformation mentioned above, then (10) would be replaced by a

formula of the form

/- ,\     /   v     On     ûi a„  ,      arctan(è„) . .    .        .
(11) oo(P) = ^ + ^-+...+^+       2„J "' + e„       (0 < arctaniA) < »),

where b„ is a certain inductively computed algebraic number and en+1 = 0(e2).

Then 10 terms (rather than 167) would suffice to give the above 50-digit value of

<p(P), and 12 (rather than 665) to give 200 digits. However, since the problem of

computing <p(P) is primarily one of accuracy, rather than time, anyway, this more

complicated method is not worth applying and we omit the formulas for computing

Z>„in(ll).

As in Method 2, we could deal with curves of rank > 1 by using the algorithm of

[7] rather than the continued fraction algorithm. Also, it is perhaps worth noting that

the function <p is so easy to compute, using (10), that it is actually the most

convenient way to look for small linear dependencies among rational or integral

points on elliptic curves. For instance, the curve y2 = x3 + 17 of rank 2 has the

integral points

Pl = (-2,3),    P2=(-l,4),    P3 = (2,5),    P4 = (4,9),    P5 = (8,23),

Pb = (43,282),    P7 = (52,375),    Ps = (5234, 378661)
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(and their negatives). Using (10) we find

cp(Px)= .432771019602809..., <p(/>2) = .379909003461601...,

m(/>3) = .245451042667221..., <p(P4) = .187319976935588...,

m(P5)= .134457960794380..., tp(P(,)= .058131065731633...,

m(P7) = .052862016141208..., <p(/>8) = .005269049590425...,

and looking for small linear dependencies (modi) by hand or by the algorithm of

[7], we immediately find the representations of P3,.., P% as 2PX + P2, -Px - P2,

-2PX, 3PX + 2P2, Px - P2, and 2PX + 3P2, respectively, the work involved being

probably less than that needed to actually carry out the additions on the elliptic

curve.

Remarks on Finding All Integral Points. We have described three methods, each of

which is doubly exponential and in favorable circumstances permits one to find all

integral points on an elliptic curve with coordinates up to a number of the order of

1010 . The question naturally arises whether this, in combination with the known

upper bounds on integral points given by Baker's results on linear forms in

logarithms, suffices to ensure that all integral solutions of an equation y2 = x3 + ax

+ b have been found. Unfortunately, although the bound given by Baker's method

is only singly exponential in a polynomial in H = max{|a|, \b\), the constants

involved are so big that the bound is for all practical purposes actually triply

exponential: Even for H = 10 the published result [1]

maxfjxl, |j|} < exp((l06#)106)

gives the upper bound |x| < 1010 , far bigger than the above 1010 . However,

recently better estimates have been obtained by Masser and Wüstholz, based on

analogues of Baker's bounds for elliptic rather than ordinary logarithms (cf. [8, pp.

262-263]); here "elliptic logarithm" refers to the function <p: £(R)° -> R/Z dis-

cussed under "Method 3" above. The best bound obtained (G. Wüstholz, not yet

published) has the form

\(p{rxPx + ■•• +r„P„)\> e-<0ogr)»"iogiogr       (r=  max |r¡A

where c is a computable constant depending on E and on PX,...,P„, whose value

(not yet computed numerically) should be of the order of 1050 for n = 1 and E, Px

of reasonable size. Together with the upper bound |cp| < e~cr discussed above, this

should lead to a bound on r small enough to permit the determination of all integral

points on E if the rank of E(Q) is small and its generators are known.

2. Curves With Large Integral Points. We now turn to our second theme of finding

examples of equations

(12) y2 = x3 + ax + b       (a,b^Z)

which have large integral solutions. We must first decide what we mean by "large."

If x is any positive integer and we take for y the nearest integer to x3/2, then

\y2 - x3\ < x3/2 + \ and we obtain a solution of (12) with \b\ < x/2. \a\ < xx/1 + 1.

Since this works for all x, we want at least to require that a "large" solution have
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a = 0(xa), b = 0(xß) with a < \, ß < 1. This forces us to choose y = (x3/2)

(nearest integer to x3/2), b = smallest residue (in absolute value) of y2 - x3

(mod x), a = (y2 — x3 — b)/x in (12), i.e., everything is determined by x. Since the

a priori ranges of a and b are 0(xx/1) and O(x), respectively, the probability that a

given x leads to a solution with a = 0(xa), b = 0(xß) is 0(xa+ß~3/'2), and we will

expect infinitely many such examples if the sum of this over all x diverges, i.e., if

a + ß > j. In particular (specializing to a = 0, ß = 0, a = ß and 3a = Iß, respec-

tively), we can expect that for any e > 0 the four assertions

y2 = x3 + b

y2 = x3 + ax

y2 = x3 + ax + b

y2 = x3 + ax + b

hold with only finitely many exceptions but that each has infinitely many exceptions

for e = 0. A reasonable measure of the impressiveness of a large integral solution

seems to be the number

(13) p = log(*)/log(max{|a| /2, |¿>|1/3})

(interpretation: x is of the order of the pth power of the roots of x3 + ax + b = 0);

then asymptotically we would not expect to exceed p = 10 + e and would regard

any value of p near 10 as worth recording.

The above suggests an exhaustive way to find good solutions of (12): We simply

try every value x = 1,...» X, set y = (x3/2), a = (y2x~l - x2), b = y2 - x3 — ax

and record (a, b, x, y) if p is large enough. This method of coming up with examples

is admittedly like the one Borho [2] once likened to that of draining a section of a

river dry and picking up the fish from the river bed, earning the scorn of all real

fishermen; nevertheless, it gives us a start. We can make two slight improvements.

First of all, if we write x = s2 + t with -s < t < 5 (every positive integer has a

unique such representation), then by the binomial theorem x3/2 equals s3 + fii

+ l-î-1/2 + e with |e| < .1, so we can compute y as (s3 + fsr + l^1/2), thus

avoiding the nonelementary square root operation. Also, if we write

/,a\ 3      3st + r I 3 t2\
(14) y = s3+^,        '=(47)

(rejecting the solution if r # st (mod 2)), then

(15) y2 - x3 = L4[s2(4sr - t2) + r2 + 6str] - t3,

which involves only numbers of the order of x3/2 rather than x3, so we can compute

with modest accuracy. In this way we can fairly quickly find all solutions of (12)

with a and b fairly small relative to x and x less than some chosen bound X. At my

request, A. Odlyzko ran this algorithm on a Cray-1 up to X = 108 (running time: 4

minutes), printing out all solutions with |a| < xx/4, \b\ < xx/3. He found 117

solutions in this range, of which 54 had the form a = ± 1 or  ± 2 and b = D,

(x, y, b e Z) => x < b2+e ("Hall's conjecture"),

(x,y,aeZ) => x^a2+c,

(x,y,a,b^Z) => x < max{|a|, \b\)

/ r,x ii     ,1/2   ,, ,l/3i 10 + F
(x,y,a,b^Z) => x < maxi|a|     ,\b\     j
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corresponding to the parametric solutions

(x3y) = (64«6± 8n2,512«9± 96«5 + 3«),    y2 = x3 ± x + n2,

(Xt y) = (4„6 + An2, 8«9 ± 12«5 + 3«), y2 = x3 ±2x + n2

with n < 10, n < 17, respectively. Some of the best of the other 63 solutions are

listed in Table 1, with the corresponding values of p (note that p = 9 + 0(l/log«)

for the families (16)). The curve (1) in this table is the curve (5) used as an example in

Section 1. Most of the curves in Odlyzko's table had a relatively large number of

small integral points; only 8 (including the curves (h), (1), (m), and (p) of Table 1)

had a rational 2-torsion point.

Table 1

Some large solutions of (12)

a h x v p

(a) -2      5       1,318 47,849    13.39

(b) 4     -1       4,321 284,038    12.08
(c) 0     17       5,234 378,661     9.07

(d) 11      4      16,833        2,183,948     8.12

(e) -13     37      60,721       14,962,645     8.59

(f) -12    -10      80,327       22,766,293     9.09

(g) -7     22      484.961      337,722,676    12.71
(h)     -9     28      764,396      668,309,460    12.20

(i) -13 4 1,056,517 1,085,962,264 10.82

(j) -19 -51 2,955,980 5,082,205,677 10.12
(k) -24 124 4,435,710 9,342,104,422 9.53

(1) -30 133 5,143,326 11,664,498,677 9.09
(m) -37 60 11,975,623 41,442,617,124 9.03

(n) -23 -33 17,454,557 72,922,784,957 10.64
(o) -16 49 19,103,002 83,493,454,805 12.09

(p) 27 -62 28,844,402 154,914,585,540 10.42

(q) 37 18 64,039,202 512,470,496,030 9.96
(r) 2 97 90,086,608 855,047,718,145 12.01

We now try to construct families of curves with big solutions. The first idea is to

choose x = s2 + t with 3i2 divisible by 4s, since this will give the best approxima-

tion of r to 3t2/4s in (14). If 4sr = 3t2, then (15) reduces to y2 - x3 = ^t3 + \r2,

and this can be made near a multiple of x = s2 + t by choosing \¡t3 divisible by s2.

The conditions 4s\3t2, 8s2|i3 lead to 5 = Xn3, t = 2Xun2, r = 3Xu2n, and hence to

(x, v)= (\V + 2Xun2, W + 3A2u«5 + U«2«),
(17) "

' y2 = x3+(Xu3)x+(i4X2u4n2)

with X, u, n g Z and (to ensure integrality) 2\Xun. The best values are obtained with

n large and X and u small. In particular, the values u = ±1, X = 1,2 give the

families (16), and any fixed values of X and u lead to an infinite parametric family

with p = 9 + o(l). We can modify the family (17) by adding a constant c to the

formula x = X2nb + 2Xun2; this leads after some calculation to

x = X2nb + 2Xun2 + c,

y = X3n9 + 3X2uni+ÏX(u2 + cn2)8,

a = Xöu - 3c ,

b = \X282n2 - cX8u + 2c3.
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with X, m, n, c e Z, 8 := u2 - 3c«2, and X8n = 0 (mod 2). For fixed values of c and

8 the equation u2 - 3c«2 = 8 is a Pell's equation with (if any) infinitely many

integral solutions, and we again get infinite families of examples with p = 9 + o(l).

For instance, taking X = 8 = 1, we find for c = 2 and («, u) = (20,49) the curve (q)

of Table 1, while taking c = 4, 10, 1, and 6 and the smallest integer solution of

u2 - 3cn2 = 1 with « > 20 leads to the larger examples given in Table 2.

Table 2

Curves given by (18) with X = 1, 8 = 1

(s) v2 = x3 + 49x - 64, x = 482.042,404 v = 10,583,464,697,386

(t) v2 = x3 - 59a- + 74, x = 7,257,247,018 y = 618,241,079,050,562

(u) v2 - a3 + 94a + 689, a = 30,841,587,841 y = 5,416,329,712,145,492

(v) v2 = a3 + 469a + 1594, x = 6.327,540,232,326 y = 15.916,675.888,150.694,092

Next, we analyze some of the large solutions in Table 1 to see if they have a

special form which can be generalized. The solutions in (b), (d), (i), (m), and (q) are

of the form 3P for some P with small integral coordinates, those in (k) and (1) have

the form 5P, and those of (h) and (r) have the form 2P + T where 2T = 0 (in fact,

the solution in (h) has the form 4P + T with P = (-1,6) or (9, -26) and T =

( - 4,0)). This suggests looking for parametric families of curves with integral points

of one of these forms. We first need a small integral (or, in the case of 2P + T,

half-integral) point P on our curve. It is convenient to abandon the standard

Weierstrass form and instead shift x by x(P), so that P = (0, n) for some «eZ,

i.e., we take our curve in the form

(19)        E: y2 = x3 + Ix2 + mx + n2,        P = (0,n)       (/,w,«eZ).

Then, by direct calculation, we have

x(2P)=^-2-l,       x(3P)=^-2 +
4n- kL

mn2

n3       m(<;p\ - I 111      HL 2k2(n4 + mk)      \
x(5P) - y- + j¿ + nín, + mkn4_2ki)J   -\T +  2«

where k = }(m2 - 4/«2). Making 2F integral consists simply in requiring that

m = 2nh in (19) for some integer «, but the corresponding value x(2P) = h2 - / is

not particularly big, corresponding to the fact that there are no cases of a point 2P

in Table 1. Making x(3P) integral and large can be done most easily by taking

k = ±1 or, since only 8/c need be integral, k — ± {-, ± ¿ or ±£, i.e., m2 - 4ln2 =

±1, ±2, ±4 or ±8. This has trivial solutions with / = 0, m = ±1 or ±2, leading

to the families (16), and Pell-type solutions with / =£ 0 fixed and small, leading to the

families (18). Thus, we get nothing new with this Ansatz. Of course, we may have

k\n2 (and hence 3P integral) for other values of k than ±1, ± {-, ± \ or ±\\ (as

mentioned, several of the large solutions found have the form 3P without belonging

to the parametric family (18)), but it is not clear how to obtain infinite families of

curves satisfying this.

We next try to make 5P integral as in the curves (k), (1) of Table 1. The above

formula for x(5P) is integral at k and «, so we need solutions of

(20) «8 + mkn4 - 2k3\2k2(n4+ mk)
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in integers n, 8/c, m with elk - m2 divisible by «2. It is not clear how to solve this

parametrically in general. However, our test curves (k) and (1) have not only P and

5P, but also 2P integral, i.e., 2«|w. Write m = 2nh and set p = I — h2; then our

curve becomes y2 = x3 + (h2 + p)x2 + (2nh)x + n2 and (20) reduces to

(2« - ph)2 + p2{p - h2)\n3p3(n - ph).

This is still hard to solve in full generality, but we can get two classes of solutions by

choosing either

= f.22« - ph = 0,       p = h2 + h'      (0 < / < 14)

or

p - «2 = 0,       2n-ph= ±1.

The first does not lead to particularly large x(5P), but the second gives

p = h2,    n=H  * \    l = 2h2,    m = h4±h,

x = «14 + 2«u + «8± 2«5- 2/r

with x fairly large. To get « integral we take « odd; we also choose 3\h so that / = 0

(mod 3) and the equation (19) can be put into standard Weierstrass form without

introducing denominators. This gives the two families

x = hX4 + 2hlx + «8± 2h5 - |«2,

(21) y = h2X + 3/i18 + 3«15 ± 2hx2 - 5h9 ± 2«6 + ih3 + \.

i       3     I    h4      ,\        19hb + 18«3 + 27        ,,      „.      ,,,,
v-2 = x3+^-y ±«jx+ -—-       (A = 3(mod6))

with p = 7 + o(l). For « = 3 they give the curves (k) and (1).

Finally, we consider the case when 2P + T is integral for some P, where T is a

rational 2-torsion point. This time we shift coordinates to make T = (0,0), so our

curve has an equation y2 = x3 + Ix2 + mx. We assume that P has the form

(|2, £tj) with i integral and r¡2 = £4 + /¿2 4- m (this is the case for our examples (h)

and (r), except that £ has a denominator 2 which can be removed by rescaling).

Then x(2P) = ((£4 - «?)/2£tj)2 and x(2P + T) = m/x(2P). If we have |4 - w

= ± 1, then x(2P) is the reciprocal of a large integer and .x(2/' + T) is integral and

large. Both of our test curves are of this type with the + sign, so we choose

m = i4 - 1; then the condition on r¡ becomes t/2 = £2(2£2 + /) - 1. This leads to

l=r-2£2,    m = i4-l,    x(2P + T) = 4£2tj2(£4 - l),

where (£, 77) is a solution of the Pell's equation r¡2 - ré,2 = -1. We look for r such

that this equation has a solution with £ of the order of rx/2\ then / = O(r),

m = 0(r2), x(2P + T) = 0(r5) and our curve has p = 5 + o(l), the best that can

be attained this way. We get some improvement by taking r = 2 (mod 8) (then i and

7j are odd and we can divide /, m by 22 and 24) and r = 2 (mod 3) (then 3|/ and we

can put our curve into standard Weierstrass form without extra denominators). This
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gives

2        3     r2 - 4rj2 + ¿4 + 3 (r - 2j2)(2r2 - 8r£2 - ¿4 + 9)
y      X 48 1728

,22, u.,)-(iV(i._1) + ̂ ,MO!rrtiflM^).

r = 2(mod24), i\2 - r£2 = -1.

The values r = 2, (£, tj) = (5,7) and r = 74, (£, tj) = (5,43) give the curves (h) and

(p). The values r = 338, (£, tj) = (13,239) give the curve (x) in Table 3 below; this

curve is especially interesting because it has b = 0, but this never happens again with

(22), since r = 2£2 leads to the equation tj2 = 2¿4 - 1 whose only nontrivial

solution is (13,239). Larger values of r give less impressive solutions (since the

family (22) has only p = 5 4- o(l)), but sometimes the coefficients a and b have the

form àu2ûj, X2¡i3bx for some smaller integers À, /x, ax, and bx, and then the curve

can be put into the form py2 = Xx3 + axx + bx with smaller coefficients. In this

way the values r = 218, 338, 5018, and 3170 (and (£, tj) = smallest solution of

tj2 = rè2 - 1) give the curves with large integral points shown in Table 3.

Table 3

Curves coming from Eq. (22)

(w) 6y2 = 5a3 + 14a + 19, x= 50689092575 v= 10417923210092732

(x) y2 = a3 4- 1785a, a = 275702503440 y = 144764163249358380

(y) y2 = 95a3 + 93a - 946, x = 185532736100114 y = 24631600184311173563844

(z) 3y2 = 143a3 - 9a + 9116, a = 147235975797220556 y = 390057200824630934517873420
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