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EISENSTEIN SERIES AND THE SELBERG TRACE FORMULA. II

H. JACQUET AND D. ZAGIER

Abstract. The integral of the kernel of the trace formula against an Eisenstein

series is investigated. The analytic properties of this integral imply the divisibility of

the convolution L-function attached to a form by the zeta function of the field.

Introduction. This paper is a sequel and generalization of [12], but can be read

independently of that paper; in particular, we will repeat the description of the

problem given in the introduction of [12], now, however, in an adelic setting.

Let F be a global field, A its ring of adeles, and p0 the representation of

PGL(2, A) by right translation on the space of cusp forms Lq(PGL(2, F)\

PGL(2,A)). Given any <p e C00O(PGL(2, A)), the operator p0(y) on this space is of

Hilbert-Schmidt type and can be represented by a kernel function K0(x, y) for

which an explicit formula of the form

K0(x, y) = K(x, y) - Kms(x, y) - Ksp(x, v)

is known, where K is given as a sum over PGL(2, F), KKs as an integral involving

Eisenstein series, and Ksp as a sum of products of characters. In particular, one can

calculate trp0(<p) from the identity

trp0(<p) = / K0(x,x)dx;
•,PGL(2,f)\PGL(2,A)

the result is the Selberg trace formula.

What we will do is to calculate instead the integral

l(s) = I K0(x,x)E(x,s) dx,
•/PGL(2, F)\PGL(2,A)

where E(x, s) is an Eisenstein series. Our main result is an identity expressing I(s),

roughly speaking, as a finite linear combination of zeta functions of quadratic

extensions of F. Since the residue of E(x,s) at s = 1 is a constant function of x,

one can in principle recover the Selberg trace formula from this identity by

computing the residue of I(s) at s = 1, but the formula for I(s) has other

interesting consequences. Most notably, it implies that, as in the special cases treated

in [11 and 12], I(s) is divisible by £F(s) or, in other words, that the function

K0(x, x) for any <p is orthogonal to the functions E(x, p) for all zeros p of the zeta

function of F. A somewhat more precise formulation of the main result is as follows.
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Theorem. For 0 < <%e(s) < 1,

/(*) = E h(') + E ',(*) + E j-j /x(*.«0 </«
£ , = 1 x    Z7r/ '/Im(u) = l/2

where the first sum is a finite sum over certain quadratic extensions E of F, the last sum

is a finite sum over certain grossencharacters of F, and

IE(s) is a multiple of £E(s),

Ix(5) is a multiple of £F(s) ,

I2(s) is a multiple of JF(s)£F(2s - l),

I3(s) is a multiple of fF(s)fF(25),

74(5) is a multiple of tF(s)£F(2s)/£F(s + 1),

75(j) is a multiple of {F(s)£F{2s - \)/$F(s - 1),

, /       \ .           u- t    tr 1  ^2^(5 + 1 - 2m,x)^(5 - 1 + 2m,x)7X(5,«) uamutopleafUs) -L(2 _ 2M,X)L(2M,X)-"

(Here "multiple" means "product with an entire function".) The actual statement

proved in the text will involve L-functions rather than zeta-functions, because <p will

be taken as a function on GL(2, A) with a given central character rather than a

function on PGL(2, A).

The organization of the paper is as follows. The first section, apart from a few

lemmas (e.g. an estimate of the growth of Whittaker functions), is just a review of

those facts from the theory of Eisenstein series which will be needed in the sequel; it

can be skipped by the expert reader. The bulk of the paper is §2, in which we

calculate I(s) for <%e{s) > 1, obtaining the same formula as given above but without

the term I5. The extra term Is(s) in the strip 0<^(5)<1 appears as a residue

coming from the poles of Ix(s, u) at u = s/2 and « = 1 — 5/2 when x is the trivial

character. (For the same reason, the poles at u = (1 + 5)/2 give a contribution

which cancels the term IA(s) when we cross the line 3$e{s) = 0. A similar phenome-

non already occurred in [12].) This will be carried out in §3, where we also give the

main application—the divisibility of I(s) by $F{s), and as a consequence of this the

holomorphy of the symmetric square of the L-series attached to a cusp form. This

latter fact was proved for classical holomorphic forms by Shimura [10] and indepen-

dently by one of the authors [11]; Shimura's method was generalized by Gelbart and

Jacquet [3] to an adelic setting, while the present paper is essentially the adelic

generalization of [11]. Another application is—or should be—the trace formula,

which as explained above arises by calculating the residue of I(s) at 5 = 1. This

calculation is complicated by the fact that some of the terms in the formula for I(s)

(namely the terms Iv I2 and / in the theorem above) have double poles at s = 1,

and although the coefficients of (5 - l)"2 naturally cancel in the sum, this means

that we need two terms of the Laurent expansion rather than just the leading term in

order to calculate the residue. We were able to calculate the residues of IE and Ix to

I5 explicitly, obtaining six of the seven terms in the usual adelic Selberg trace
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formula (cf. 3.2), but the formula for Ix(s, u) is so complicated that we could not

reduce the expression for its residue to the corresponding term in the trace formula

as it is usually formulated. After almost a five year delay during which we hoped to

return to and settle this point, we decided to publish the paper with the deduction of

the usual trace formula from our formula left incomplete.

In any case, both of these two consequences of our theorem—the trace formula

and the holomorphy of symmetric square L-functions for representations of GL(2)

—were already known. The main interest in our result lies in the form of the

identity, which can be thought of as a generalization of the trace formula in which

the various terms are expressed locally (i.e. as products of local integrals). Further-

more, the method can in principle be generalized to GL(«). For GL(3) this has

already been partially carried out by Parameswaran Kumar.

0. Notations and conventions. Tate integrals. F denotes a global field, Fv the

completion of F at a typical place v, Rv the valuation ring of FD, and A and A x the

adeles and ideles of F. We will generally use Greek letters for elements of F and

Latin letters for adelic variables. The norm map from A x to R x is denoted by | |, the

set of ideles of norm 1 by A f. We choose once and for all a splitting A x = A x X R x

and denote by A the set of characters on A X/Fx which are trivial on R X; thus the

most general (quasi-) character on A X/Fx has the form a <-> x(« )MS witn X G A,

5 e C. We choose once and for all a nontrivial additive character \p: A/F -> C. The

Haar measures on A, Af and A x are normalized by /A/f dx = 1, J/\*/F>< dxal = 1

and dxa = dxax X dxt, where dxt = dt/t is the standard Haar measure on R x.

We denote by G the algebraic group GL(2) and by Z, A, N and P (= AN) the

subgroups of matrices of the form (g °), (g °), (0 x) and (g £), respectively; we write

GF, Gv and GA for G(F), G(FV) and G(A) and similarly for the other groups. We

denote by K = II,, Kv the standard maximal compact subgroup of GA. We will often

identify JVA, ZA and AA with A, A x and (A x)2, respectively; in particular, this will

be done to define the Haar measures on these groups and also to identify i//,

elements of A, and pairs of elements of A with characters of N^/NF, of Z^/ZF, and

of A^/AF, respectively. The Haar measure on K is normalized so that fKdk = 1

and the Haar measure on GA then chosen so that

f   f(g)dg=(   f     f   f(kna)dndadk= f   f     f   f{kan)\a2/ax\dndadk
JGA JK JAA  JNA JK JAA  JNA

(here av a2 denote the diagonal components of a e A). We denote by w the

element (° 0) of G and by g >-» gl (g e G) the involution g >-> 'g'1.

We denote by y(A) the space of Schwartz-Bruhat functions and by yo(A) the

subspace spanned by products $ = Ily^,, whose components at real and complex

places have the form

®v(xv) = e'"*" X polynomial in xv (v real),

<bv(xv) = e~2"x"x" X polynomial in xv, xv    (v complex);
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the spaces Sf(A2) and <S^0(A2) are defined analogously. We denote by

<f>(x)= f ${u)^{xu)du ($e^(A)),
•'a

$(x,y)=[   f ®(u,v)j(xu+ yv)dudv     ($ey(A2)),
•'A   •'A

<!>(jc, v) = f <&(x,v)4>{yv)dv ($e^(A2)),
•'a

the Fourier transform and Fourier transform with respect to the second variable.

For ge6A and $ <= y(A2), gO denotes the function g$(x, y) = $[(x, v)g]; thus

g3> = |det g|_1g'<l>. Finally, we call any integral of the form

f    <£>{a)x(a)\a\Sdxa       (*e^(A),xeA,jGC,*(j)>l)

a Tate integral for L(5, x) (where L(s, x) itself is defined by making the appropriate

standard choice for $) and denote by L(0, 5, x) the meromorphic continuation of

this function, i.e.

L(0>,5,X) = L($,l-5,x)

=  [        <f>(a)X(a)\a\Sdxa+  f        $(a)x(a)\a\1~sdxa

f*(ol_*(o)    lfy = 1
+      5-1 5 X '

10 otherwise.

Finally, we mention the identity

f   f    <P[(0,a)k]\a\2dxadk = c<f>(0)        ($e^(A2)),
JK •'A*

which can be thought of as the analogue of the ordinary polar coordinates formula

f°   f" <i>(x + iy)dxdy= f2' f <&[rei9]r2 — d0

in R2. The constant c is given by

L(2,lF)\D\V2

ResJ_1L(5,lF)'

where D is the discriminant and L(s,lF) the zeta-function (with factors at infinity

added) of F. It is also equal to \ vol( ZAGF\ GA).

1. Review of Eisenstein series and related topics. Almost all of the material in this

section is standard; we refer the reader to [2, 4].

1.1. Eisenstein series. For Xi, Xi G A and SeC we denote by irXltXltl the

representation of GA by right translation on the space H(xi,X2>s) of (classes of)

functions / on GA satisfying

4(o     l)s] = Xi(a)x2(b)\^\f(g)        («,6GAx,xeA,geGA)
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and

f  \f(k)\2dk <oo.

Because of the Iwasawa decomposition, the functions in H(xi, X2' 5) are determined

by their restrictions to K, so we may identify all these spaces with the space

#(Xi,X2) = {/eL-(*)l/[(S    Xb)k]-Xi(a)x2(b)f(k)

In other words, UieC #(Xi> Xi>s) is a n^er bundle over C and we have trivialized

this bundle. Given any / e H(xi, X2X tne corresponding section of U5 //(Xi, X2> -0

is defined by

Sf[(o    Xb)k's]=xMx2(b)\^f(k)        (a,be/\x,x^J\,k^K)

and the corresponding Eisenstein series (for 3le(s) > 1) by

Ef(g,s)=      E     5/(yg,5)        (geGA).
yePF\GF

For later purposes, we fix once and for all an orthonormal basis (of AT-finite

functions) {/a}„e^(x x ) of the Hilbert space #(xi>X2); tne corresponding func-

tions Sfa(g, 5) and £/a(g, 5) will sometimes be denoted simply Sa(g, s), Ea(g, s).

The definition of Eisenstein series just given corresponds to the classical series

E(z,s)= E My*)*       (z,iGC,Im(z)>0,*(i)>l).

re{±(o ?)}\SL(2,Z)

For analytic purposes another definition, analogous to the function

±Im(z)s        Z        (mz + n)-2s = U2s)E(z,s),

(m,n)eZ2-0

is more convenient: For $ e S(A2) the function

/(g.*,Xi.X2.*) = X1(detg)|detg|7    $[{0,t)g]XlXll(t)\t\2'd*t

(which is a Tate integral for L(25,X1X21)) belongs to #(Xi>X2'-y) and tne corre-

sponding Eisenstein series

E(g,s) = E(g,<&,Xi,X2,s)=     E     /(Yg,*.Xi,X2.*).
yePF\GF

again convergent for &a(s) > 1, can be rewritten as

£(g,5) = Xl(detg)|detg|7 £     $[£rg]M2W(0 <**'•

The Poisson summation formula now implies that E(g,s) has a meromorphic

continuation to all 5, satisfies the functional equation

E(g,*,xi,xi,') = £(g\*,xrl,x;M - *)
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(see "Notations and Conventions"), and is holomorphic unless Xi = X2> when it has

simple poles at s = 0 and 5 = 1 with residues given by

Res^1£(g,5) = ^(O)xi(detg),       Resi=0£(g,5) = -i*(0)Xi(detg).

The relationship between the two types of Eisenstein series is given by the following

lemma.

Lemma. /// e H(xv X2) " K-finite, then the section Sf(g,s) can be written as a

finite linear combination

Sf(g,s) = L{2s, XiXzVE PMf(g,*„ Xi, X2, *)
I

and correspondingly the Eisenstein series Ef(g, s) as

Ef(g,s) = L(2s,xlX2YlLPi(s)E(g,t>l,XuX2^),
i

where O, e S0(/\2) and each P[{s) is the reciprocal of a polynomial in s and in q~s for

finitely many places v which has no zeroes in the half-plane 0te(s) > 0.

Proof. The space #(xi>X2) is tne restricted tensor product over all places v of

analogously defined spaces Hv(x\v, X2i>)> and wc may assume that /= Y\vfv with

/„ e Hv{xi„, X2v)< fv - 1 ^or almost all finite v. We claim that for such an / we can

write (with the obvious notations)

P (5)
(*) SJ0(gv,s) = ,      "-■^\fv(gv>®c>Xlv>X2»>S)

Ev\2-S, X\vX2v)

where <£„ is a Schwartz-Bruhat function on F2, equal to the characteristic function

of R2V for almost all v, and Pv(s) is an elementary function of 5, equal to 1 for

almost all v. From this it will follow that f(g,s) equals

/)(5)L(25,x1X21)_1/(g^,Xi,X2^)

with- P = n Pv and <D = n $„ e ^(A2).

To prove (*) we must distinguish several cases. Observe that it suffices to check (*)

for gv e Kv since both sides belong to Hv(xiv, X2t» s)- F°r almost all finite places v,

fv is identically 1 and Xi„ and X2u are unramified; then (*) holds with Pv=\ and

<&v the characteristic function of R2. For the remaining finite places v we define

^{xy)=ifv{k)XxlM<*k)    if(x,v) = (0,l)/c,       k<=Kv,

\ 0 otherwise;

this is well-defined, and for k e Kv we have

/0(*>*0.Xi0,X2B.*) = Xi,,(det*)/    <S>A(0,t)k]xioX2l(t)\t\2vdxt

and therefore (*) holds with Pv(s) = Lv(2s,XivX2~l), which is the reciprocal of a

polynomial in q~s having no zeroes in <%e(s) > 0. If v is a real place, then (since /

is AT-finite) we may assume that fv has the form

x I cosd      sin0\ _   i„e
/u I -sin f?    costfj
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for some n e Z such that Xi0X2u(-l) = (-1)"; then we set

*,(*, y) = e-^2+y\y - dx)w       (x, y e F0)

with c = sign(«) and find

'.[(31 Z'»\*-^-A-'ML •~*i'f**fiw»

-<K.)i.(J..»xi')/.[(3*   £5}
where <2(5) is a polynomial whose roots lie in the half-plane 9te{s~) < 0, so (*) holds

with Pv(s) = Q(s)'1. Finally, let » be a complex plane. Then Xi^X^2) =

(z/|z|)"|z|,x for some x e R, a & I and all z e Fx. Say a > 0. We may assume

that / has the form

with p,q,r,u ^ Z and # + «=/> + /■ +a. Then we take

0„(x, v) = JC»S'y<y«e-2'(*t+^)

and again find

f0[l "/),*.,xi„x2..* ^^r^^'^'-kl2"^"2""2^'

= e(5)L(25,XlX21)/J(«    ~*)

with 2('x) a polynomial not vanishing for 9te{s) > 0, so we can set P„(s) = Q(s)'1

as before. This completes the proof of the lemma.

Notation. For our standard basis elements fa (a e A(xi, X2)) we will some-

times use the notations Pai, $„, (i G Ia) for the polynomials and Schwartz-Bruhat

functions occurring in the decomposition of Sa(g, s) given by the lemma.

1.2. Whittaker functions. We now discuss the Fourier coefficients of the Eisenstein

series. The Bruhat decomposition gives for ^(5) > 1

Ef(g,s) = Sf(g,s) +   £   Sf{wvg,s)
v^NF

and hence

/ Ef{ng,s)i>(n)dn= f   Sf(wng,s)$(n) dn,
JNF\NA JNA

where we have used the isomorphism x ►-» (J, x) between A/F and N^/Np to write

\p as a character of the latter group. We will denote this function by Wf(g, 5). It is a

meromorphic function of 5. To see how it depends on 5, we apply the same

construction to E(g, $, Xi. X2>s) (which is sufficient because of the lemma in 1.1).
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We find

IF(g,$,Xi,X2^) =  f £("g.^)>Xl>X2.i)<r'(") dn
JNf\N*

= (   /(w"g^,Xi.X2>-y)'r'(«) dn
JNa

= Xi(detg)|detgr/' j(x)[    $[(/, tx)g]XlX'21(t)\t\2sdxtdx
•'A •'A"

= Xi(detg)|detgf/"    g^(t,t-1)XlX~21(t)\t\2^1dxt
•'a*

with  gO(x, v)   as  defined  in  §0.  The  last  integral  converges  for  all   s,   so

W{g, 3>, Xi, X2>J) ls an entire function of s. We use it to obtain two further

properties of Whittaker functions: an estimate of their growth and a formula for

their Mellin transforms.

Lemma 1. For any e > 0, W(s, $, Xi, X2>s) satisfies

|^(g.*.Xi,X2.*)l<*o(fl)|a|

for g = (gfc £)/t e GA, w/iere $0 is a suitable Schwartz-Bruhat function on A.

Moreover, this estimate {i.e. the choice of $0 given $ and e) is uniform for s in a

vertical strip.

Proof. Because W is ^-finite and invariant (up to a factor of absolute value 1) by

ZAA^A, we may assume that g = (g ?)• Then using the integral representation just

obtained, we see that it suffices to prove that, given $ > 0, there is a <E>0 e y(A)

such that

1(a) =  \a\'[    *(ar,r-1)M2'"V/<*0(a)|a|1"/'
DEF •'A*

for all a g A x and 5 in the interval 1 —A < (s) < A. This is a local question. We

may assume that <& = Vl$v where $t, is the characteristic function of R2 for all

finite u; then with obvious notations 1(a) = Vllv(av). For v finite the local integral

Iv(av) is zero for \av\v > 1 and is given by

r   / \ l lS   f I     l2s_1     IX

■,1<|/Iu<|a„|„

/  I       I1"*       I       I5    1-2*\a  \       — \a \ a\uv\y \uv\yHv -f      2j-1   j.   1

= <    l-«J-2s       "B     '

,( l0gk|,| if     2,-1 = 1
|a"1^1       log?,,  j      nq»

for |ct„l„ < 1. From this we get

Iv(av) = Q if |a„|„> 1,

*»(«»)-1 if|fl„|e-l,

\l.(a.)\< CB(*)W.\l.~'~' * kl.<l
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for any e > 0, where 6 = max(5,1 - s) and Cv(e) is a constant independent of a

which is < 1 for almost all v (for 6 * \, Cv(e) can be taken to be q~"/(l - ql~26))-

At a real place we have an analogous calculation: if |$(jc, v)| < /(max(x, v)), where

f(x) is bounded as x -» 0 and rapidly decreasing as x -» co, then we find after an

obvious change of variables

k(<OI„<kl0/    / maxdaj^.r1))/2^1-
•'o «

which is clearly of rapid decay as \av\v -» oo and is bounded by

2\av\\-e-e f f(x)x^^dx = Cv(e)\av\\-9-'

as la^lj, -» 0 (the integral converges at x = 0 because 28 + 2e - 2 > -1). The

calculation for complex v is exactly analogous. Thus we obtain in all cases

|/r(fl,)|< C;(e)«0r(aB)kll~#~"

with O0„ e S(F„), $0y = characteristic function of Rv for all finite v, and C„(e) < 1

for almost all v, and multiplying these equations together gives the desired estimate.

The uniformity in vertical strips is clear from the proof.

Lemma 2. The integral

Vf(g,s;s',r)=f^ Wf^    ^g^rx^)!^'" Va

(/G #xi.x2» « G Ga, *,*' e C, t e A)

converges for 8%e(s') > 1, &t*(s) > 1 — 5^(5') and has a meromorphic continuation

in 5, 5' gwew 6v the formula

Vft           >    \      L(s',v)L{2s + s'- \^XxX2X) n( ,    v
fy(g,s; 5 ,t) = -—-Q(g,s; 5',t)

L(25,XiX2   )

vWzere Q(g, 5; 5', t) for g & K is the quotient of a polynomial in s, s' and q^s, q*s'

for finitely many places v by a polynomial in s which has no roots in the half plane

0ie(s) > 0. The residue of Vf at s = (1 - 5')/2 (s' constant) is given by

ResJ=(W)/2F/(g,5;5',T)= (-M*'1^)     ''T = *'-1*2'

\0 otherwise.

Proof. The statement about the convergence is immediate by Lemma 1. By the

lemma of 1.1, we have

Vf(g,s; s',r)

-E  w/'^-n/Mfg    ?)*.»i.Xi.X2.*lTX51(a)|«r'"Va;«   ^(2s,XiX2 )J**      L\0     1/ J
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we substitute for W(g, $, Xi> X2>s) tne formula given before Lemma 1 and observe

that replacing g by (g \)g relaces g<&(t, u) by g$(at, u). This gives

Vf(g,s; 5',r) = I     ,/'('),1,x1(detg)|detgr
i    E(ZS, X1X2 )

xf      f    i3T(a/,/-1)XiXi1(0l'|2l~1TXiXi1(«)k|25     ~ldxtdxa.
•/AX   •'A*

The inner integral can be rewritten by the change of variables a -» t~la, t -» r_1 as

//   g~*,(a,t)TX,X2\a)\a\1S+S'~l<t)\t\s'dxadxt

(A-)2

which is a Tate integral for L(25 + s' - 1, tx\X2^)L(s', t); if g e A", then (since

g<£>, G S0(A2)) it is the product of L(25 + 5' - 1, XiX21)L(s', t) with a polynomial

in 5, 5' and finitely many (7*1, qv±s'. This proves the second statement of the lemma.

To compute the residue at s = (1 — s')/2, we recall that the residue of a Tate

integral L(<&, 5, x) at 5 = 0, x = 1 is -$(0), so that the residue of the above double

integral at 5 = (1 - s')/2, TX1X21 = 1 is given by

-\j   &A.0,t)r(t)\t\''d*t.
z •'a*

But g$(.(0, 0 is the Fourier transform of g$,(0, f) = $,-[((), f)g], so using Tate's

functional equation we see that this integral is (the analytic continuation of) the Tate

integral

47 •,[(o,/)g]T-i(/)i/i1_,,rfx/
z •'a*

and hence (since t"1 = X1X21)

Res,_(1_0/2K/(g,j; •S'>T) = -2"Xi(detg)|detg|

xE    ̂ ((1-50/2) j    ^.[(O.OgJxrX^Okr^^

lv     F,((l-5Q/2)       / 1~5'\

z   ,    L(l -5 ,XlX2 )    V z      ;

as claimed.

Exercises. 1. Show, using the Tate functional equation, that Vf satisfies the

functional equation

Vf(g,s;s',r)= K/(g',l-5;l-5',r-1),

where /e //(xi1, Xi"1) is defined by f(k) = f(wkl).

2. Show that Ress, = 1Vf(g,s; s',1) = Sf(wg,s).
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1.3. Intertwining operators. The intertwining operator serves to compute the

constant Fourier coefficient of Eisenstein series. Formally, it is the operator

M(xi, X2> s): H(Xl, x2,s) -* H(X2, Xv 1 - s) defined by

M(Xi,X2>s)f(g) = f   f(wng)dn.

This integral converges only if Res(5) > 1, but its analytic continuation may be

obtained from its effect on the elements f(g, 3>, Xi, X2> SY-

f   f(wng,$,Xi,X2,s)dn
jn*

= Xi(detg)|detgf/"   [    <S>[(t, tx) g\XlX2\t)\t\2s dx t dx
•'a ■'a*

= Xi(detg)|detgf/"     [ ^[(t,x)g]dxxxX~2l{t)\t\2s~ldxt
•'A*   •'A

which is a Tate integral for LF(25 - 1, XiXi1)- Thus we see that, roughly speaking,

the operator M(xx, X2>s) has the analytic behavior of

LF(2s -'l.XiXi^/M^XiXi1)-

In fact, if we apply the Tate functional equation to the last expression obtained, we

find that it (or rather, its analytic continuation to !%e(s) < \) equals

Xl(detg)|detgr7    *[(0,OM>g']x2Xf1(OI'rV/,

in other words we have the explicit formula

M(Xi.X2.*)/(*.*»Xi»X2.*)-/(»iB,.*.xr1,X21.l -*).

From this formula it follows in particular that M(xi, X2>s) * = M(x2, Xi> 1 ~~ s)-

Exercise. Show that Res^.o^g, 5; 5', 1)= -M(xlf X2>s)sf(g,s)if T = 1. = 0

otherwise (compare Exercise 2 of 2.1).

As an application, we prove

Lemma 3. Let <j> be a C°° function on GA which is left and right K-finite, transforms

by a character 10 of ZA, and has compact support modulo ZA. For 5 e C, x e A

define

U?)=(  /^["(V    ^s\x{a)\ats+1)/1dxadn       (g e GA)

and

S(s,x) =  f   L.x(wn)dn.
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Then z.(s, x) is a holomorphic multiple of L(s, x2u~l)/L(s + 1, x2<° L) and

Re^1H(5,x) = (C"1/w/^)x(detg).g    tfx2^,

VO otherwise,

where c = \ vol( ZAGF\ GA) as in §0.

Proof. Note that the integral defining £ converges for all 5 (the integrand has

compact support) and that £ belongs to //(x. X'V (s + l)/2). Hence the integral

defining E(5, x) = M(x, x~V(5 + l)/2) £JtX(l) converges for <%e(s) > 1 and can

be continued analytically by the formula above: we expand

€,.x(x)=      E      (i,x>/a)5/a(g, ^—)
aG^(X.X_1")

(the sum is finite because £     is right /C-finite) and use the lemma of 1.1 to obtain

-(j.x)=L(^-/JL  w ^ n—rnrMU'X w'^—
/sj. L(5 + l,X2w l)     V l    I

x/fi.^.x.x'V1^)

= L(s + i,xVir1E(^,/a)^(1T1)
a,I '

X/jw.i^X-'.X""1,^)-

The analytic properties of Z(5, x) are clear from this formula. In particular, it is

clear that E(s, x) has no pole at s = 1 unless xw_1 = X-1- Using the formula

Res,_0/(g,*,Xi,Xi,j) = -iXi(detg)$(0)

(which is obtained by the usual Tate method) we find for x2 = w

Resi = 1E(5,x)= 7j}]yZ(«i,x./>«,i(1)i.(0)'

By the polar coordinates identity given at the end of §0 we have

<f>(0) =   [f $(u,v)dudv = c-1(     f <!>[(0,a)k]dk\a\2dxa
j£ yAx jK

for any $ e ^(A2). Hence

= c~1f fa(k)X-\dctk)dk.

Substituting this into the formula for the residue gives

Resi=1H(5,X) = c-1/ £lx(/c)x-1(det/c)J/c
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which by virtue of the Iwasawa decomposition is equivalent to the result given in the

lemma.

1.4. The Selberg kernel function. Let tp be a function with the same properties as in

Lemma 3 of 1.3 and p(<p) the operator

p(«p)/(*) = f        <p(y)f(xy)dy
JGFZ„\GA

on the space L2 = L2(GF\ GA, w"1) of functions on GF\ GA which transform under

ZA by w"1 and are square integrable on GFZX \ GA. This operator can clearly be

represented by the kernel function

K(x,y)=      £     <p{x~lyy).

y*GF/ZF

It is known (cf. [1 or 2] for an exposition) that L2 is the direct sum of the space L2,

of cusp forms and spaces L2^. and L2p defined using Eisenstein series and residues

of Eisenstein series, respectively, and one has a corresponding decomposition of K

as K0 + Kms + Ksp where K0 is the kernel function for the operator p0(<p) =

p(<p) | Lq and similarly for KUs and Ksp. The theory of Eisenstein series leads to the

following explicit formulas for Kms and Ksv:

Kms(x,y)=   E E 4—
XeA  a,0e/f(x,X-1w)

x I {^x.x-^,uMfpJa)Ea(x,u)Ep(y,u) du,

K   (x,y)=-  £   x(detx)x(detv)f <p(g)x(detg) dg;
1  X£A JGFZA\GA

x2 = »

here (as in 1.3) {/„}, « e^(XiX"1(J) is an orthonormal basis of H(x,x~lu)

consisting of ^T-finite functions and Ea(x, u) = Efa(x, u). The /C-finiteness assump-

tion on <p implies that the triple sum on x, ot, B in the first formula and the sum on

X in the second formula are finite (independently of x, y). The matrix coefficient

(^x-x'^f^f^fp) occurring in the integral is the "Selberg transform" of tp. It is

given explicitly by

(■"x.x-^.uMfaJ/}) = / (wx,x-V«(s)/«> fp)<P(g) dg

= / f Sa(kg,u)f^(kjdk<p(g)dg
JZn\Gn  JK

= / / Sa(g,u)U(kj<f>{k-lg)dgdk
JK JZA\GA

"/     /    /   hSk')]p(k)<p\k-ln(a    °)k']X(a)\ar1dkdk'dndxa,
•/Ax   JNA  JK JK L \ U       1 /      J
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where in the last line we have used the Iwasawa decomposition and the transforma-

tion behavior of fa(g, u). This expresses (irx -iw u(y)fa, fp) as the Mellin transform

of a function

a ~ L   L lKMk'W>v\k~ln[l    \)k\dkdk'dn,

which is of compact support on Ax, and therefore shows that it is a rapidly

decreasing function of |Im(u)| for Ste(u) fixed (or bounded). It follows that the

integral in the formula for K^s(x, y) converges normally for x and y in compact

sets.

We will also need

Lemma. The function K0(x, y) = K(x, y) - /CEs(x, y) - Ksp(x, y) is of rapid

decay with respect to both variables.

Proof. We may assume that <p is a triple convolution q>r * <p2 * tp3 of highly

differentiable functions (since any <p is a linear combination of such convolutions);

then K0 = <pi * Koy<P2 * <P3 where the first convolution is with respect to x and the

second to y, and the lemma follows because the convolution of a function which is

L2 and cuspidal with a highly differentiable function is of rapid decay.

2. Calculation of l(s) for <%e(s) > 1. We fix once and for all—two idele class

characters w, t e A,—a Cx function <p on GA which is bi-AT-finite, transforms

under ZA by the character w, and has compact support modulo ZA,—a Schwartz-

Bruhat function $ e yo(A2). Let E(x, $, t, t~\ s) be the Eisenstein series defined

in 1.1 (since $ and t are fixed we will often write E(x, s) for this function and

similarly f(x,s) instead of f(x,<f>, t, t"\ s)) and K0(x, y) the kernel function

defined in 1.4. Then both K0(x,x) and E(x,s) are invariant under ZA as well as

left GF-invariant (this is why we took two characters with product 1 in the definition

of E(x, s)), so the integral

l(s) = /(5,<p,0, t) =   / K0(x,x)E(x,s) dx
JGFZA\GA

makes sense. The lemma of 1.4 implies that it converges for all 5 where E(x, s) is

finite (i.e. all s, except 0 and 1 if t2 = 1). It is our purpose to compute it.

2.1. Decomposition of I(s). The calculation of 7(5) will be based on the following

decomposition of the restriction of K0 to the diagonal

*„(*>*)= E-*c-(*)+■*;(•*).
c

where the summation is over all conjugacy classes C =/= (1) in GF/ZF and Jfc, Jfx

are defined by

■^c(x) =      E     <p{x~l\x),

\<£PF/Zr

■%lo(x)=      E     <p(*_1A*)- KEAS(x,x)-Ksp(x,x).
\EPF/ZF
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Since each of these expressions is left invariant under PF, we obtain (for 0ie(s) > 1)

I(s) = J K0(x,x)     Y,    f(yx,s)dx
GFZA\GA y<=PF\GF

=  I K0(x,x)f(x,s)dx
JPFZ0i\GA

c

where

/c(5)=   / Jfc(x)f(x,s)dx,

Us) = f        jrjx)f(x,s)dx.

The integrals Ic(s) and Ix(s) will be calculated in 2.2 and 2.3-2.6, respectively.

Note that the above decomposition cannot be applied to the integral

jGFzn\cAK0(x,x)dx, because the individual terms Jfc(x) (C not elliptic) and

$fx(x) are not GF-invariant. This is why our calculation of 7(5) and subsequent

calculation of trp0(<p) as Resi=17(5) is in principle (though not in practice!) actually

easier than the direct computation by integrating K0(x, x) over GFZ^ \ GA; in

particular, the usual convergence problems associated with the nonelliptic conjugacy

classes are avoided here and the truncation of the fundamental domain which is

needed, say, in the proof of the trace formula in [2], is unnecessary. We also observe

that there is no asymmetry involved in the fact that we have singled out one

particular parabolic subgroup PF to define Jtx, because this choice is already

implicit in the definition of E(x, s).

We can make the above decomposition of 7(5) more explicit by classifying the

various conjugacy classes (=£ 1) as elliptic, hyperbolic, or unipotent. Each elliptic

element A e GF generates a quadratic extension E = F[X] with Fxc GF; con-

versely, by fixing an embedding £xc GF for each quadratic extension E of F and

taking C = {X} (= conjugacy class of X in GF/ZF) where X runs over Ex/Fx- {1},

we get each elliptic conjugacy class C exactly twice. Also, every hyperbolic element

of GF/ZF is conjugate to exactly two elements of the form (g °) with a e Fx- {1},

and every unipotent element is conjugate to (g \). Thus we have

7(5) = 7ell(5) + Ihyp(s) + Iurap(s) + Ijs)

with

'ell(*)=     E     hi*),       '*(*)-5     E     /{X}('),
[E: F} = 2 \<bEx/Fx

'hyp(*)=2     £     7{(5?)}(5)> W5) = /{(ii»-



16 H. JACQUET AND D. ZAGIER

2.2. The contributions from conjugacy classes. Let C be a nontrivial conjugacy class

in GF/ZF and X any element of C. Since every element of C has the form y_1Ay for

an element yeCf which is determined uniquely up to left multiplication by an

element of the centralizer G(X)F of X in GF, we have

■#"c(*) =        E        <p{x-'y-'Xyx).
YGC(X)F\CF

y-l\y*PF\ZF

Clearly the condition on y in the summation depends only on the double coset

G(X)FyPF^G(X)F\GF/PF.

Lemma. The y in GF such that y~JAy £ 7>f/ZF form exactly one double coset

G(X)Fy0PF. Moreover, yg" 1G(A)Fy0 Pi PF = ZF, so the elements y0p (p e PF/ZF)

form a system of representatives for G(X)F\{y e GF\ y _1Ay £ PF/ZF }.

Proof. If A is elliptic, A e £X/Fxc GF/ZF, then the condition y_1Ay £ PF/ZF

is satisfied for all y, so we need only show that G(X)FPF = GF and G(A)Fn PF =

ZF. But this is clear since GF/PF = F X F - {(0,0)} = £x= G(A)f. If A is hyper-

bolic, then we may assume A = (g °) (a e Fx, a =£ 1). So G(A) = A. Since

(c     d)   (o     l)(c     I/H^"*^ (!-'«)«     *)
the condition y~*Ay £ PF/ZF for y = (" J}) is equivalent to a # 0, c # 0, and it is

easily seen that such a y has a unique representation (up to g -» gz, /? -* /?z_1 with

z e Zf) as g(J °)/> with g G G(A)F, fePf (namely g = (g »), /» = (g ^_fc/a)),

so the lemma is true with y0 = (} °). Similarly, if A is unipotent we can suppose that

A = (g \); then G(X) = N and the condition y^Ay £ Pf/^f 1S equivalent to c + 0,

and we can easily check that the statement of the lemma holds with y0 = (° g).

Applying the lemma to the formula preceding it we find

•*c(*) =      E     9>(*"1/'"1Yo1AYo/>*)>
p£PF/ZF

from which

Jc(s) = j y(x-1yQ1Xy0x)f(x,s)dx.

But /(a:, 5) = f(x, $, t, t"1, 5) can be written in the form

f(x,s)= I    $[(0, l)zx]T(detzx)|detz^| dz,

so this can be written as an integral over all GA:

7C(5)= [   (p(x-lyolXy0x)$[(0,l)x]T(detx)\detx\S dx

= [   <p(x"1Ax)$[(0,l)y0"1x]T(detJc)|detJcf dx.

We now look at the three types of terms individually.
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Elliptic contribution.  Let  C = {A},   A <= £X/Fxc GF/ZF,  y0 = 1. Since x >-»

tp(x_1yx) is left invariant under G(A)A = £A, we find

Ic(s)= ( ^(x-'Ajt)/"    $[(0,l)ex]T(detex)\detex\Sdxedx,
JEi\GA JE£

where dxe is a Haar measure on £A and dx a complementary measure on

£A \ GA. Thus, formally at least, the contribution from a given quadratic extension

£ of F is

'*(*)-/„       \\     E      <p(x~lXx)
EA\GA   1       \eEx/Fx

X*l

X   |    $[(0,l)ex]r(detex)|detexf Jxe   dx.

But the first expression in parentheses is easily seen to have compact support on

£A\GA, so this expression certainly converges. As to the second factor, if we

identify £A with the ideles of £, det|£x: £x-> Fx with the norm map NE/F,

e *-» |det e\F with the idele norm in £, and y(A2) with ^(£A), we see that this is

just the Tate integral for LE(s, r ° NE/F).

What about the sum over £? We claim that it is in fact finite; in particular, there

are no problems about the convergence of the elliptic contribution. To see this

consider the function 8: x >-> tr(x)2/det(x) from G^/Z^ to A. This map is

continuous and hence maps the support of (jd to a compact set in A. On the other

hand, it is invariant under conjugation. Therefore the set of elements 0(A) with

A e G(F) such that <p(x~1Xx) ¥= 0 for some x e GA is the intersection of F with a

compact set and hence finite. On the other hand, for A elliptic the field £ = F( X) is

determined by 8(X), at least if 8(X) * 0 (namely £ = F\{\ - 4/0(A)]), so we get

only finitely many quadratic fields F(A) with tr(A) ¥= 0 and q>(x~lXx) ¥= 0 for some

x e GA. For tr(A) # 0 we use a similar argument: the map A —> det(A) from G^/Z^

to the discrete set A X/A x2U (U = maximal compact subgroup of A x) is continu-

ous, so the image of supp(tp) is finite; since Fxl has finite index in Fxn A x2U, we

deduce that there are only finitely many values of det(A) (mod Fx2) with A £ GF

and <p(x'xXx) i= 0 for some x e GA, and since F(X) for A of trace zero is

determined by det(A) (mod Fx2) this completes the argument. (Compare the above

proof with the formula for 7i(5) given in Theorem 2, p. 323, of [12], where the fact

that the sum of zeta-functions is finite when tp has compact support follows from the

inequality |z2 + 1 - t2/A\2/y2 > t2 - 4 for t e R, z = x + iy e 77.)

Summarizing, we have proved that 7ell(5) = Z[£: F]=2IE(s) where 7£(5) is an

entire multiple of LE(s, t ° NE/F) and 7£(5) = 0 for all but finitely many £.

Hyperbolic contribution. This is similar; here we take

C={A},       X = (j    J)    («e£x,«*l),

G(X) = A,       y0=(J     J),        ((Mho1 = (1,1)
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and find

^aV-a   \      oG/r* \ '

a*l

x   [   $[(l,l)ax]T(deta:c)|detaxf dxa \dx.

Again the integral converges because the first factor has compact support on

AA \ GA, and the inner integral

T(detx)|detx| /       [ $[(al,a2)x]T(al)T(a2)\a1\S\a2(dxaldxa2

is a Tate integral for LF(s, r)2. Thus Ihyp(s) is an entire multiple of LF(s, t)2.

Unipotent contribution. For A unipotent we must proceed differently because

x <-^> y(x~lXx) no longer has compact support modulo G(A)A. Fixing A = (g J),

Yo = (? o) and using the Iwasawa decomposition x = (g °)(g ")&, we find

w^)=/Jt«pH; i)*]*<<oi«i>*)
X(/x /  $[(',")^]^l'|2'"lT2(0^x^(detA:)^,

and since a <-* <p[k~1(l0 ")k] and / >-* jA$[(t,u)k]du are Schwartz-Bruhat functions

on A for each k e K and K is compact, we deduce that Ianip(s) is an entire

multiple of LF(s, t)Lf(2s - 1, t2).

2.3. Decomposition of Ix(s) and computation of I^(s). We now turn to Ix(s), the

"contribution from the cusps." We compute this by what is called Rankin's method

—namely, since f(x,s) is A/A-invariant and transforms by r(a)\a\s under x >-» ax,

we have

Ioo(s)=( f(x,s)jfooN(x)dx
JAFNAZA\CA

= //(*•')/ ■*».*[( J     \)k\r(a)\aCldxadk,

where

*a,.Ax)=f        *Jnx)dn
JNF\NA

is the "constant term" of Jtx and we have used the Iwasawa decomposition. The

first term in the definition of ^fx(x) can be written

a#l

and the constant term of this is

E f> x~l[n   , )x +     E     / «pU_1(o   1)x du-
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Write the other two terms in Jfx(x) as -h(x, x), where h(x, y) = -KEis(x, y) -

K (x, y). Since h(x, y) is (left) A^-invariant with respect to each variable, the

constant term of h(x, x) can be expressed as a diagonal sum of Fourier coefficients

of h(x, y) with respect to x and y separately by the identity

/ h(nx,nx)dn =      //      h(nlx,n2x)n1dn2

+   E       ff    k \        Ul  x, "2  x i//(«"i - au2)duxdu2.
«GfX v/Ff    Ll°     l'    l°     l >   J

In the first term on the right we can replace h(x, y) = -K(x, v) + K0(x, y) by

-K(x, v), since K0 by definition has no constant term with respect to x or v; in the

second term we can replace h by -KBis since Ksp(x, v) has no nonconstant Fourier

coefficients. We also use the identity

K(x,y)= i Ja-1!; ?WJ+ e vfW; °W
a^Fx oeF"

(Bruhat decomposition) to rewrite the first term as

-//     E    <P  x"1"r1   o     1W"2X   dnldn2-    £    J  ^[^^(q     ")*   ^M-
A/£    neFx oefx     A

Recombining the terms and making the substitution ui -> aw, in the integral

involving Kms, we find that we have obtained the decomposition

•*;.*(*) = ■*"»(*) + JC(*) + JC"(*)

with

"•M-sA-il f)*]-/.*HS I)*]*-
JC'(*)"-//      E    »[*"'»r'(S      5)*»2*]*1*1.

A^J     a£Fx

*S(x)--I.       ff     KmsL(a    °Ax,n2(a    ^xUn^dn.dn,.
a^Fx   (NA/NF)2 L      V ; \U       1/     j

We write the corresponding decomposition of 7^ as

l£(*)=f f(x,s)^(x)dx
JAFNAZA\GA

=Lf{k's)L/FxM(l !)*]-(-)i-rv«A.

The integrals /£(5) and /^"(s) are fairly hard to compute and will be treated in

the next two sections, but the integral I'^s) is easy and will be done now. By the
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Poisson summation formula,

■*£(*)=    E    /  <p[*"'(J     \)x^(au)du

- LJA'~io ?Hi;)(; ?)*]♦<»>*•
SO

'-<*>-/,><*••>/../.*K ?)"'(! ")(o ?H
Xi//(m) J«T(a)|a|i~1dxaJA:

= / f(k,s)f    jN[*_1(J    j)* *(«0<Ma)|a|Vfl«ft,

where in the last line we have made the substitution u -* au. The function

and hence also its Fourier transform

a^f^\k~\\     \)k\t(au)du,

are Schwartz-Bruhat functions for any k, so the inner double integral is a Tate

integral for Lf(s,t); using the compactness of K and the TC-finiteness of cp, we

deduce that 7^(5) is an entire multiple of LF(s, r)LF(2s, t2).

2.4. Computation of F^(s). Substituting the identity

♦Hr ?)(i r)(; ?)-(! ?)(; ?H

into the formula for 7^(5) and making the change of variables ui -> a«,, m2 -> aw2,

we find—after an interchange of summation and integration which will be justified

below—the formula

In(s)=-(    ( E   ts(wn,a2a)Tu(a) dxadn,

Jn*   J*X/F*   a^Fx

where we have set

Ss{g,a)=\a\U+W1fKf(k,s)fN  <p[^1«(j"1     \)gk\dndk

(5eC,aG Ax, geGA).

We apply to it the following lemma.

Lemma. Let £ be a smooth function of compact support on A x and w (= A. F/ie«

f £   £(aa2Ma)dxa = ^   I   £x
■V/f* aeF* ^ X2=u
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where the summation is over all x G A with x2 — <*> and

£x=f    i(a)X(a)dxa.

Proof. We first observe that, since the function a •-» E„efx £(aa) has compact

support on Ax/Fx and the map a -> a2 from Ax/Fx to itself is proper, the

integrand on the left-hand side of the equation has compact support, so the integral

converges. We now use the decomposition Ax= R x X A f (see §0) and set

£>,)=/    ^t)dxt       (tfrGAf);

then

•'A*

is just the xth Fourier coefficient of £, and we find

f o>(a)   E   Z(aa2)dxa=( co(a,)   £    f    £(«a2r2) Jx^xa,

= /       «K)   E    Ul(aa2)dxa1
J^/F aefx   <*

(substitution t -* v^)

= f        «(«i)y E £xx(a2)^x«i
•^Af/FX l xeA

(Poisson summation formula),

and since the integral of x(ai)w(ai) over A^/Fx is 1 for x2 = w and 0 otherwise

this completes the proof.

We apply the lemma to £^(g, •)> which has compact support for g fixed. The

function

g^i cp(k-lgk)f(k,<t>,s)dk
JK

is TC-finite on both sides (because the restriction of / to K is), and it follows that the

function a <-^> £s(g, a) transforms by a finite-dimensional representation of U (the

maximal compact subgroup of A x) which is independent of g. Therefore the Fourier

coefficient £s x(g), defined in the lemma is zero for all x not belonging to a certain

finite subset of A which depends only on <p. The formula

0*) = 4   E    /   l,.x(wn)dn

which we have obtained therefore expresses F^(s) as a finite sum of integrals.

Moreover, the function £ belongs to 77(x,x"lw» (s + l)/2) and so these integrals

are precisely the intertwining operators discussed in 1.3 and known to converge

absolutely. Thus the final expression obtained is finite, and since the whole argu-

ment could have been applied with 5 replaced by 9$-e(s) and <jp by a positive and
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bi-7C-invariant majorant, we see a posteriori that our integrals were absolutely

convergent at every stage and all the steps of our computation valid. The calculation

given at the end of 1.3 (together with the usual argument about the TC-finiteness of

qp) now shows that F^(s) is an entire multiple of L(s, t)L(2s, t2)/L(s + 1, t).

2.5. Computation of I^"(s). We need a closed expression and an estimate for

f , ■^Eis('Il^."2^)lrV("l),/'(«i1)^ni^2-
J(NA/NF)2

To obtain them, replace Kms by its expression as a sum of integrals, recalling from

1.3 that the sum is finite and the integrals normally convergent on compact sets. It

follows that the above integral equals

E E i/ ("x,x->u.u(<P)fp,f*)Wa(x,u) Wp(x,u) du,

where Wa = Wfa is the Whittaker function defined in 1.2. We have to check that

this can be integrated against f(x, s) for @e(s) sufficiently large. Using Lemma 1 of

1.2, we can majorize the resulting double integral by

/     f |("x.-V./2 + ,(?)/0./^)k(^)$i(«)^(«)|arH*^,
;AX   •'-00

where P(r) is an "elementary function", $j and $2 are Schwartz-Bruhat functions,

and e is an arbitrary positive number. Since this clearly converges for @e(s) > 1 + e,

we see that the integral I^'(s) converges absolutely for @e(s) > 1 and is given in

that domain by the formula

Ito"(S)=-'L E 777  \ (""X,X-lu,u(<P)fflJa)ja,fi(s,u)du

where

JaB(s,u) = I f(x,s)Wa(x,u) WJx,l - u) dx
JNAZA\GA

(we have replaced u by 1 - u in W^ to make /0/3 holomorphic in u), which can also

be written

Jap(s,u)= f        $[(0,l)x]Wa{x,u) Wp(x,\ - «)T(detx)|detxrJx.
JNA\GA

We need the analytic properties of Jap(s, u). They are given by the following four

propositions.

Proposition 1. Let /,, f2 e 77(xr, X2) be K-finite, t g A, $ g S(A2), u g C.

Let J(s, u) = J(fi,f2, ^,t; s, u) be the function defined for <%e(s) sufficiently large
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by

J(s,u)= f        <t>[(0,l)x]Wf1(x,u) Wf2(x,l - i/)T(detx)|detxf dx.
JNA\GA

Then J(s,u) is given by an expression of the form

r.      .      R(s,u) L(s,t)2L(s + 1 -2m,xr1X2T)L(^ + 2"- l>XiXiM
J(s,u) = ,    .-:-:-:-z-77-

P(u) L{2-2u,xi1X2)L{2u,X,X21)

where P(u) is a polynomial in u and finitely many q",q„u which has no zeros for

0 < 0te(u) < 1 and R(s, u) is a polynomial in s, u and qsv, q~s, q", q~u for finitely

many v.

Proposition 2. The residue of J(s,u) at u = (1 - 5)/2 (s fixed), r = xiLX2> 's

given by

Resua,(1_,)/2/(5,M) = -2/ Sf^x, —^-j Sf2\^wx, —j^j f(x,s) dx.

Proposition 3. The function J satisfies the functional equation

/(/i'/V. $»*; s,u) = /(/1,/2; 4>,t"1; 1 - s,u)

where f g 77(xi1, Xi'1) « defined by f,(k) = f(wk') (k G K).

Combining Propositions 2 and 3, we obtain

Res J(s,u) = -\f Sfl(x,^)sf2(wx,l - s/2) f'(x,s) dx,
u-s/2 2JAA\GA V       l!

for t = XiXi1 (tbe residue is 0 for other t), where

/'(x,5)=/(x,$,T"1,T,l-5)

= T(detx)|detx|1_i/"    $[(0,t)x]¥2(t)\t\2~2sdxt.

Proposition 4. lim s _t(s - l)2/(5,w) = 6Tl ■ C ■ (fY, f2) (independent of u), where

C= jj^(x,y)dxdy.

Proof of Proposition 1. By the lemma in 1.1, we may assume that

5/2(x, u) = ——-wf(x, $2) Xi, X2> ")>
L(2u,XiX2 )

where <J>2 is a Schwartz-Bruhat function and P is a rational function of u and

finitely many q"; then Ef2(x,u) and Wf2(x,u) are P(u)/L(2u, XiXi1) times the

functions £(x, 02, Xi> X2> u) and W(x, $>2, Xi> X2' ") whose analytic properties were

given in 1.1 and 1.2. It follows from the estimate of Whittaker functions given in 1.2

that the integral /(5, u) converges absolutely for 9ie(s) > 2 max(32e(u), @le(\ - u))

(the shaded region in Figure 1), and although we were originally interested in (5, m)

with 3?e(u) = \ and 0le(s)> 1 we now pass by analytic continuation to a region
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where ®e(u) < 0. Then @e(l - u) > 1 and we can replace Wf2(x,\ - u) by its

original definition as an integral over /, obtaining

J(s,u) = B(u)f   $[(0,l)x]Wfl(x,u)
CA

X /(wx,$2,Xi,X2>l _ S)T(detx)|detx| dx,

where

B(u)=P(l-u)/L(2-2u,Xi1X2)

(the \p(n) in the definition of Wf(x, $2, Xi, X2>1 ~~ ") is absorbed by the function

$[(0, l)x]W//1(x, u) which transforms by \p under NA). We now substitute for

f(x, <&2, X\, X2' 1 — «) its definition as an integral over A x (convergent for &e(u) <

0) and interchange the order of integration to obtain

J(s,u) = B(u)f     i   <D[(0,l)x]$2[(r,0)x]
•'ax jga

xWf1(x,u)rX-l1(d^x)\detx\s + l~u dk\t\2~2ux^lx2(t) dxt;

in this integral we replace t by t~l and then x by (g ?)x in the inner integral and

interchange the order of integration again to obtain

J(s,u) = B(u) (    4'(x)K/1(x,w; 5,T)Tx_1(detx)|detxf+   "dx
JGA

where <&(x) = $[(0, l)x]O2[(l,0)x] and Vfx(x,u; s, t) is the function defined in

Lemma 2 of 1.2 (this transformation is due to Shalika). Since the proof that the

original integral converged used an estimate only for the absolute value of Wfx and

since all other steps could have been carried out for t, Xi and X2 trivial, 5 and u

real, and $ and $2 positive, we see that the double integral over GA X Ax is

absolutely convergent and the interchanges carried out therefore justified.

Figure 1
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Now the analytic properties of Vfx(x, u; s, t) as a function of s and u were given

in 1.2. but since we do not know the behavior of this function with respect to the

adelic variable x we cannot immediately make use of them in the above integral.

However, Vfx(x, u; s, t) depends only on the section Sfx(x, u) g 77(xi, X2> m)> and

writing fx in terms of the standard orthonormal basis {/y}ve/((Xl,x,) of 77(xi,X2)

we see that

S/1(*,u) = »XllXl>I,(*)/i(l)

=        E       (»x,*..(*)/i./y)/t(1)
y^Mxi.Xi.)

(here tr u is the representation of GA on 77(xi, X2> M)> transferred to 77(xi, X2)

by means of S) and hence

Vfx(x,u; s,r) = '£(irXuXi<u(x)f1,fy)Vy(l,u; s,t).
y

The advantage of this formula for V is that the dependence on x and that on u

have been separated. Substituting it into the above expression for J and interchang-

ing the summation and integration, we would obtain

J(s,u) = R(u)Z,Vy(l,u;s,T)f   *(x)(»Xi>XatI1(jc)/1,/r)
y CA

XTx_1(detx)|detx| dx.

We now show that this interchange of summation and integration is justified and

that the resulting sum of integrals is finite. To do this, we use the standard device of

introducing an elementary idempotent £ on K (= finite sum of characters of

irreducible representations divided by the dimension of the representation) such that

[ y(kx)£(k)dk = V(x).
JK

This is possible because ^f is the restriction to GA of a function in yo(A4) and

hence AT-finite. We substitute this into the absolutely convergent double integral for

J(s, u) which was obtained above, getting

J(s,u) = H(u)fGJKf^ Wf\[l    J^-jrx^l-r-1

X',I'(A:x)£(A:)Tx1(detx)|detxf + 1<7'>WA:</x.

Because the functions x >-* ̂ (kx) (k G K) are bounded by a fixed Schwartz-Bruhat

function, this triple integral converges absolutely (in the region 0 > @e(u) > 1

— 2-<%e(s)), so we interchange the integrations over GA and K, make the change of

variables x -* k~lx and interchange back to get

J(s,u) = R(u)fc   f^fKWf\[l    °)/cx]£(/c^1)TX1(detfc)^

X7x2(a)\a\s      "<7xa^(x)TXi(detx)|detx|J+    " dx.
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Now, observing that the function k •-> £(/c_1)TXi(det k) is an elementary idempo-

tent on K and that the expansion

Sfi(yx,u) = Tt{vXuX2tU(x)fl>fy)Sy(y,u)
y

converges normally on compact sets, we find that

f Sf1(ykx,u)Z(k-1)Txl(delk)dk
JK

= E/ {^l,X2Jkx)f1,fy)Hk'1)rxl(d^k)dkSy(y,u)
y   J«

where the sum on y is finite (independently of x). From this the corresponding

formula with S replaced by W follows immediately (first for 3?e(u) > 1, then by

analytic continuation for all u); substituting it into the last formula for J(s, u) we

obtain

J(s,u)=B(u)f    £/ {^X2Jkx)f1,fy)ak-l)TX1(d^k)dk
GA y K

X/x Wy[(o    1)>"]TX2(«)|detar+1"uJxa^(x)Tx1(detx)|detxr1""Jx

= B(u)ZVy(l,u;s,T)Cy(s,u),
y

where

Cy(s,u)= f    f^XxX2U^x)fl,fy)i(k-')rxM^kx)^(x)\Acixf^"dkdx

= /    (^1,X2,„(x)/1,/Y)^£(/c)^(^x)^Tx1(detx)|detxr1""^x

(x-> k-lx,k-* k~l)

= /    (wx,.x2,«(x)/i'/y),I'(JC)TXi(detx)|detxf + 1""jx.
GA

Thus we have proved the representation of J(s,u) as a sum which was given above

and shown that the sum is finite.

Now B(u) = P(l - u)L(2 - 2m, X1X2) '> where F(l - u) is the quotient of a

polynomial in u and finitely many q ~ " by a polynomial in u which does not vanish

for 9%e(u) < 1, and we also know (by Lemma 2 of 1.2) Vy(l, u, s, t) equals

Qy(s,u)L(s,T)L(s + 2m - 1,tx1X2)l(2m'XiX2)"1

where Qy is the quotient of a polynomial in 5, u and finitely many q*s, q*" by a

polynomial in u, nonzero for 8#e(u) > 0. Therefore to prove the proposition we have
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to show that Cy(s, u) is an elementary multiple of L(s, t)L(s + 1 - 2m, txiX2)- To

see this, we substitute for the scalar product ("^ x «(x)/i, fy) its value

fKSfx(kx,u)fy(k)dk and then make the substitution x -* k~*x in the resulting

double integral to get

Cy(s,u)= f    f •*{k-lx)fy(k)fXl(d<*k)dkSfl(x,u)TX1(d*x)\detx\s+1~udx.
GA     K

Using the Iwasawa decomposition x = (g "h)k' and the definition of SfY(x,u) we

can rewrite this

X/"i(*') fy(k) rxi(det k~lk') dkdk'dv\

Xr(a)\a\STxlX2(b)\b\s + 1-2udxadxb,

and since the expression in parentheses is (the restriction to A x2 of) a Schwartz-

Bruhat function of a and b this is a Tate integral for L(s, t)L(s + 1 - 2u, txt1X2)

as claimed.

Proof of Proposition 2. We return to the formula

J(s,u)=B(u)Y,Vy(l,u;s,r)Cy(s,u).
y

The function Cy(s, u) is analytic at u = (1 - 5)/2. By Lemma 2 of 1.2, the function

V (1, u; 5, t) has a simple pole with

Res„_(1_,)/2*;(l,u; 5,t) = -|5/Y(1,(1 - s)/2) = -i/y(l)

if t = XiXX2 and no pole if t ^ xT^- Hence

Res^(1^)/2/(5,M) = -^(^)E/Y(l)CY(5,^)

= ~\fi{l:r]SG   Sf\x> 1y1)^(^)TXi(detx)|detxr+1)/2^,

where in the last line we used the same identity as was used to decompose J(s, u) as

a sum over y. Using the Iwasawa decomposition, we get

"M1^)/    /    / /   *[(0, *>)*] *2[(0, «)"»»*]i   \    i    /yAx yAx jK jNa

XSfl(k,^-)r2(b)\b\2sr(a)\a\1+STXil(deik)dndkdxadxb.
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But

f    <S>[(0,b)k}T2(b)\b\2sdxbT(detk)=f(k,s)

and (recall that XiXi' = ?)>

^("P)/^  ^[(0,«)g]T(a)|arix,1(detg)|detgr+i)/2

Hence our residue can be written as

-\f    fKSfl[k,'^^Sf2[wnk,^Ajf(k,s)dkdn,

which is equivalent to the formula given in the proposition.

Proof of Proposition 3. We first observe that

Sfl(g,u) = Sf(wg\u)

and hence by an easy computation

By the lemma in 1.1 we may assume that

Sfi(g,u) = a,(«)/(g,$„Xi,X2.")>

Wf,(g,u) = a,(u)Wf(g,<S>„xl,X2,u)

where otj(u) depends only on u and $,, <I>2 are Schwartz-Bruhat functions. It

therefore suffices -to prove the functional equation

f $[{0,l)x]Wf(x,91,x1,X2'")
JNA\GA

X W//(x,$2,Xi,X2-l _ u)r(detx)\detx\Sdx

= / ^[(O.lHwyff-1    °)wje',«1,Xi,X2.«
jna\ga L\ U      1/ J

XWf[(~0        l)WX'>*2>Xl>X2>"

1 — s
xf(detx)|detx|     dx,

where u is fixed and the equation is to be interpreted in the sense of analytic

continuation in s. We may assume that <fr1 and $2 are products of local Schwartz-

Bruhat functions <$,„. Then the desired functional equation follows by multiplying

together the corresponding local equations as given in [5, p. 20 or 3, p. 475] and

taking into account the functional equations of the £-series involved.
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Proof of Proposition 4. It is clear from Proposition 1 that J(s, u) has a double

pole at 5 = 1 only if t = 1, which we now assume. The representation

J(s,u) = B(u)ZVy(l,u; s,l)Cy(s,u)
y

together with the fact that Vy(l, u; s, 1) and Cy(s, u) both have simple poles at s = 1

implies

J(s,u) ~ ^-EResJ=1(Fy(l,«; s,l))Cy(s,u)
y

as 5 -> 1. By Exercise 2 of 1.2, the sum on the right equals

Y,Sfy(w,u)Cy(s,u) = f   4'(x)5/1(wx,M)xr1(detx)|detxr+1""^x
y ^A

= /"/(/   f *[(a,v)k] ®2[(0,b)k] x:\tetVMVdodk)
Jnx J/\x\Ji\ jk I

Xxl\2(b)\a\S\b\s + l-2"dxadxb,

where in the last line we have replaced x by wx and used the Iwasawa decomposi-

tion. By the usual argument, the residue of this at s = 1 is obtained by replacing

U«C ■■) \*\sdxa by f*(■■■) da, so

lim(s-l)2J(s,u) = B(u)[   f   If   <&[(a,v)k]dadv)

x ®2j(orbjk]x-1iX2(b)\b\2-2udxbx-1i(detk)f1(k) dk

= CB(u)f  f(k,*2,Xl,XiA-ii)A(k)dk
JK

= c(   Sf2(k,\-u)fx(k)dk
JK

= cf fMftW) dk.
JK

3. Analytic continuation and applications.

3.1.  Computation of I(s) for 0 < Res < 1. In §2, we calculated the integral

7(5) = 7(5, <p, $, t) for 3%e(s) > 1 and obtained a formula of the form

/(*)=     E     /*(')+£ I,(s) + Zlx(s)
[E: F]-2 i-1 x
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where the sum over £ and x are finite (for a given <p) and

IE(s) = Ie(s,<p,<I>,t)

= ( \     £      <p(x~lXx)  If    $[(0,l)ex]r(detex)|detexfdxe\dx
EA\GA   y      XeEx/Fx J \   EZ I

~ Le(s,t°Ne/f),

I1(s)(=Ihyp(s)) = Il(s,<P,^,T)

= ( ^     E     vix^Xx) \\ f   <f>[(l,l)ax]T(detax)\detax( dxa\dx
^a\Ca   \Z \eAF/ZF \^a /

A#l

- LF(s,r)2,

h{s){=I^{s)) = I1(s,9,<5>,r)

X(/x / ^[U,u)k]du\t\2s'1T2(t)dxt\j(dctk)dk

~ L(s,t)L(2s- 1,t2),

h(s){=I'Js)) = I3(s,cp,<t>,r)

= fj(k,s)f^ (/a<p[^_1(J    Ul)k^(au)du\r(a)\a\Sdxadk

~ LF(s,r)LF(2s,r2),

h(s){=I'^(s)) = I4(s,9,<l>,T) = -\   £    /   isJwn)dn

LF(5,T)£f-(25,T2)

£f(5 + 1,t)

(finite sum) with £     g 77(x, X 1<0> (s + l)/2) defined by

£s,X(g) = £(^<P,$,T,X,g)

= /     //(*,*)/   vU"1"!0;1    °)gk]x(a)\a\(s + l)/2dkdxadn,
•'ax  •'a' •'a'a     L \   0        1/       .

and

7x(J) = /x('s'(P'a>'T)

= -4^t(H)-i/2 ^ (*x.x-..-(»)//i./.)^('.«)*
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(finite sum) with

Jap(s,u) = [ $[(0,l)x]Wfa(x,u) Wfp(x,\ - M)T(detx)|detxf Jx
JNA\GA

Lf(s,t) LF(s + 1 - 2m,x2wt)Lf(5 - 1 + 2m,x2w_1t)

Lf(2-2M,x2«)LF(2M,XV1)

(in all of these formulas, f(s) ~ L(s) means that / is an entire multiple of L).

We define one more function 75(5) by

I5(s) = 75(5,<j),0,t) = 74(1 - 5,<J>\<t>,f),

where <p'(x) = cp(x').

Theorem 1. With the notations above the function I(s) is given in the strip

0 < 3&e(s) < 1 by the formula

i(s) = £/*(*) +£/,(*) + Y.ix(s).
E 1 = 1 X

In the half-plane <%s(s) > 1 (resp. @e(s) < 0), 7(5) is given by the same formula but

without the term I5(s) (resp. I4(s)). The substitution s -* 1 — s, r -» f, $ -» $,

<p -» <p', M»i/er w/ii'c/i 7(5) « invariant, interchanges I2 and 73, interchanges 74 and J5,

and leaves all the other terms unchanged.

Corollary. The quotient I(s)/LF(s,r) is entire, except for simple poles at s = 0

ands = 1 if t2 = 1, t # 1.

Proof. The original definition of 7(5) as an integral shows that it is an entire

function of s except for simple poles at s = 0 and 1 if t2 = 1. To prove Theorem 1

and its corollaries we have to investigate the analytic continuation of each term in

the formula we have obtained for 7(5), @e(s) > 1. The only terms for which this is

not immediate are the terms 7X(5).

Recall that 7X(5) is given as an integral of the form

where L denotes the line 0te(u) = \ and 7X(5, u) has the form

it      \      J   (      \2A(s,u)
Ix(s,u) = LF(s,r)^y

where D(u) is a meromorphic function of u having no zeroes on the line L (D(u)

equals L(2 - 2m, x2w)£(2m, x2"_1) times the product of the functions P(u) occur-

ring in the proposition of 2.4 for fl = fa, f2 = fp) and ^4(5, m) is holomorphic in 5

and u except for possible poles at the points

,,. 5.5       1+5       1— 5
(•) «=2>    !"2'    -J-'    ~2~'
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where it has poles if x 2" = T±1> these poles being simple unless two of the

numbers (*) coincide. The integral jLA(s,u)/D(u)du converges for all igC

except that it does not make sense if 9le(s) = 0 or 1 because at least one of the poles

(*) lies on L. It therefore defines a holomorphic function of s in each of the three

regions

R0: 9te(s) > 1,

RX:Q <@e(s) < 1,

R2: 0te(s) < 0.

However, the function it defines in these three regions are not analytic continuations

of one another.

To obtain the analytic continuation, let B be a box in the M-plane with center at

u = \ and sides parallel to the axes which does not contain any zeroes of D(u) and

let L' be the deformation of L obtained by going along L, then around the right

edge of the box B, and then continuing along L. See Figure 2. Then for the same

reason as before, the integral fL,A(s,u)/D(u)du makes sense for all seC for

which none of the points (*) lies on L' and in particular for all s in the interior of

the box B' = 2B = {51 ̂ 5 G 7?}. To obtain the analytic continuation of the integral

over L from 7? 0 to R v we will compare this integral with the integral over L' in the

right and left halves of the box B'. See Figure 3. For s g R0 n B' we have

~—:l /   —  /   -,'      du = —-,-rRes„_c/',^4(5, m)
2mi\)L,     JLJ   D(u) D(s/2)       u~s/2    y      '

by Cauchy's theorem, since the only pole of the integrand between L and L' is at

5/2. Similarly, for s g R1 n B' we find

2^(i-/J^^=7)(l-5/2)ReS"--/2^'M)-

l_ u-plane

11
—■-777$ aO-'-

Figure 2
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R2 R1 ._._R0

iifP^iP s-plane
0 IIP ̂IP

Figure 3

Together, these formulas give the analytic continuation of 7X(5) to the region

R0 U 7?! U B'\

(   1    f
j—J  I%(s,u)du (s G R0),

7x^)= { 2^/L,/x(^M)^-Res—/2/x(^") (s^B'),

1    c
— J 7x(5,M)JM-(Res„=j/2-Resu,1_j/2)7X(5,M)     (s G Rx).

V ^

Since we can take the box B (and hence 5') to be as tall as we want by making it

thin enough, this in fact provides the analytic continuation of 7 (s) to the entire

half-plane 3#e(s) > 0. (The continuation to the entire plane could then be obtained

by the same method, taking for B a box with center u = 0, but since we will prove

functional equations for all the terms in the formula for 7(5) it will not be necessary

to carry this out.)

We will now compute the residues of 7X(5, m) at u = s/2 and u = 1 — 5/2,

obtaining

ReSu-V27x(^'") =  -ReSu=l-V27x(S'M) =  -UsC*)

where 75(5) is the function defined just before Theorem 1; this and the above

discussion then give the formula for 7(5) (5 G 7?x) which was stated in the theorem.

To compute the residues of 7X(5, u) we use the formulas for the residues of J(s, u)

given after the statement of Proposition 3 of 2.5. Substituting the first of these

formulas into the definition of 7X(5, m) gives

Resu=j/27X(5,M) = -- £ K.x-'u.v2(<P)/)./«)

"./S^/Kx.X"1")

xjf    c  S/a(x,|)s/;(Wx,l- ^jf'(x,s)dx
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if x2 = «t (the residue is 0 if x2 * wt). But

L{*x,x-iu,s/2(<P)fp,ftt)Sfa(x,s/2)= I,{vxa-i,x-i,s/2(<p%Ja)Sfa{x,s/2)
a a

=   /    Sffi(h,s/2)<p'(X-lh)dh,
JGA

where <p'(x) = (p(x'). Substituting this into the formula for the residue and comput-

ing the integral over h by the Iwasawa decomposition, we find that the residue

equals

~\^ fA   G   fKSU[k,{)sfp[wx,\-^Fxx(k)f'(x,s)dkdx,

where we have set

^.x(*)- fN   /^'[^"(o    °1)h]x^1(a)\a\s/2-ldxadn.

Note that h -* Fxy(h) belongs to 77(x_1w, x»l _ s/2), as does the function h

-» Sfp(h,\ -s/2). Hence

£ fK Sfp(k, §) S?p(wx,l - I) FxJk) dk = FxJwx),

so we obtain

Res_/27x(5,M) = -i/ /    /    /   A-kk"1    °W
4 JK JNA  JNA  JAA       [ \   0 1 / _

XX-lu(a)\a\l~s/2f'(k,s) dxadnxdn2dk

lr
= ~A        £(t ~ s,<p',&,T-\x~l«>,H'n)dn

(with £(•••) defined as at the beginning of the chapter) and

EResu=s/27x(5,M)=    £    Resu=j/27X(5,M)
X X2 = «t

=   i/4(l-5,(P',$,T-1)

= iI5(s,<p,<!>,t).

To obtain the other residue, we use the trivial functional equations

7(/,,/2; $,t; s,u)= /(/2,/i; $,t_1; 5,1 -S)

and

(^.X-^.^f)//?'/") =    (WX.X-1",1-»(<PV )/«'//?)

(where <pv(x) = <p(x_1); this formula can be obtained easily by applying the

Iwasawa decomposition to the integral defining the scalar product) to get

7x(5,m; <jp,$,t) = 7X(5,1 - m; <pv ,0,f)
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and hence

£    Res„_1_,/27X(5,M; cp,$,t) = -   £     Resu=s/2Ix(s,u, <pv ,&,f)

X2-wf X2 = "T

= -$I5(s,~^7,$,f).

To see that this last expression equals - ^I5(s, <p, 0, t), we have to show that 75 (or

74) is invariant under <p -» <pv. We recall the definition of 74,

74(*,9,«,t)-4   £    /    /    //   /(^U*-1"^"1    ?W*
2 X2_-T jna •'ax •'at X L        \0       1/        J

Xx(a)|a|(5+1)/2d«*^xa^'.

Replacing cp by <pv in this formula (note that this replaces u, the central character of

<p, by uT1) and using the identity

<pv k-lnia~l    °)wn'k   = co(a)<p k'ln"x[a'1    Q\wn~lk

we find (after the change of variables n ~* n''1, n' -* n~l, x ~* xw)that 74(5,<p, $, t)

equals 74(5, <pv, 0, t).

It remains to investigate the effect of the substitutions s -* 1 — s, <p -» <p',

<i> -» &, t -» t"1 on the various terms in the formula for 7(5). These interchange 74

and 75 by definition. We consider the other terms

IE(s). The invariance of IE(s) under the substitution in question follows by the

usual Tate method for proving the functional equations of L -functions if we identify

£A with A2 and observe that the Haar measures and additive characters on these

two spaces agree. In any case, this functional equation is evident a priori since IE(s)

is the integral of the Gyr-invariant function EXlEG ■fix\se(:p(x_1Ax) against

E(x,<S>,t,t\s).

Ii(s). Again the invariance follows easily by applying the Tate method to the

inner integral

x(detx)|detxf f     [    0[(a, b)x}r(a)\a\Sr(b)\b\Sdxadxb.
J\x •'a*

72(5), 73(5). The fact that these integrals are exchanged by the substitution in

question is again a corollary of the Tate functional equation since the Schwartz-

Bruhat function
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occurring in the definition of 73 is the Fourier transform of the function a ^>

•p[^_1(o ?)^] occurring in 72 and

f     [  $[(t, u)k] du\t\2s~\2(t)dxt = f    k$[(t,0)}\t\2s~\2(t)dxt
/Ax     JA JftX

= ( k$[(t,o)}\tr2sT-2(t)dxt

= f(wk',$,t-\1 - s).
Lx /7X(5, u)du. We have

^r'(l -s,qr,&,r,u)

= \ £ {^-\x\u(9%,fa)j{faJ^^,;r,l-s,u)

= \       £       ("■x--.x-..(v,)//i./«)^(/«,4r;*.^'.«)
a./SG/ItXw-'.x"1)

by Proposition 2 of 2.4. Since (/a)ae/<(X1J-'.x-') is a basis of 77(x,x *") and (as is

easily checked)

{^-\x-\uW)U,fa) = (wx.x-'-.»(<P)//i'/«)'

this gives

/x„-i(l  -5,<p',$,f,M) = 7x(5,<p,$,T,M)

and hence the desired invariance of Ex / 7X(5, u) du.

This completes the proof of Theorem 1. We still have to prove the corollary on the

holomorphy of 7(5)/L(5, t). Looking at the analytic behavior of the various terms

7,(5), IE(s), /Ix(s,u)du in Theorem 1, we see that the quotient of each of these

terms is holomorphic except for possible _simple poles at 5 = 0, 1 and 5 (for

example, IE(s) ~ Le(s,t ° NE/F) = L(s,t)L(s,txe) where Xe is the quadratic

character associated to the extension £). It remains to investigate these three points.

If t2 ¥= 1, then the definition of 7(5) as an integral shows that it is regular at

5 = 0 and 5 = 1, and since L(s, t) is nonzero at these two points the quotient is also

regular. If t = 1, then both 7(5) and L(s, r) have simple poles at 0 and 1 and the

quotient is again regular there. If t # 1 but t2 = 1, then 7(5) has a simple pole and

L(s, t) ¥= 0, so the quotient also has a simple pole.

As to the point s = \, the only terms whose quotient by L(s, r) might have a pole

are 72, 73, 74 and 75, only if t2 = 1.

Near 5 = \ we have

T(deU)/"     f $[{t,u)k]du\t\2s~ldxt = —^ppr+0(l),
'A"   •'A s        1/Z

C{k) = \r(dQ\k)( ®[(0,u)k]du

and hence

l2^ = -J^y2fKC^iAk'il    fy]*(*)\'{ ****+-•
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where " • ■ ■ " denotes a function whose quotient by L(s, t) is regular at 5 = \. The

inner integral is for each k an entire multiple of L(5, t) and hence has the form

L(s,r){M(k) + 0{s-\))        (*-»*),

so

his) = -y^fKC(k)M(k)dk+.--.

Similarly

implies

i>w-7=mfKcwfAJAk~il ;)*]*m*'(«)i«i>«+-

=73172IKC^L"Hi ;Ht(-)i«i1-^&+-

(by the usual functional equation and because r = r'1)

= s~^T/lfK C(/c)L(1 - '>t)(m{1c) + 0(5 - i)) dk + ■ ■ ■

= fi£$fKC(k)M(k)dk+....

Hence (72(5) + 73(5))/L(5, t) is regular at 5 = \.

A similar argument works for 74 and 75. Near 5 = \ we have

X  -a'W       v '

Xf/    /     /    ̂ f^1"^^     1)w«2fclx(«)k|("1)/2^1^^«2) dk
\JNA   J*x   JNA       I \   0 1/ J / anal.cont.

and 75 is given by a similar expression except that <b is replaced by $ (this changes

C(/c) to C(wk')), 5 by 1 - 5 and <p by <p'; using the identity

we again deduce the divisibility of 74 + 75 by £(5, t) at 5 = \.

3.2. Residue at s = 1: 77ie Selberg trace formula. Looking at the various terms in

the formula we have obtained for 7(5), we see that each term is regular at 5 = 1 if

t2 ¥= 1. Of course, the regularity of 7(5) itself in this case is clear since £(x, s) has

no pole at 5 = 1.

If on the other hand t2 = 1, then £(x, 5) has a simple pole with residue

(C/2)i-(detx) at 5 = 1, where

C = 4>(0) = ff <!>(u,v)dudv,
A2
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so we have

f K0(g,g)r(detg)dg = j;Res,.ll{s).
JGFZA\GA C

From the formula for 7(5) near 5=1 given in 3.1, we see that this equals

\   £ResJ=1/£(*)+ £ Res,.1/,(*) + ^ResI.1/5(5)

\ e 1 = 1

1 /* \
+ 777 E J   Ress=1Ix(s,u)du \,

x    '-' /

where £' is the line <%e(u) = \ deformed slightly so as to pass the point u = \ to

the right (cf. Figure 2). So there are seven residues to compute. We distinguish two

cases, according as t is trivial or not.

Case 1. t2 = 1, t + 1.

Here the terms lx(s), 73(5), 74(5), jvIx(s,u)du (all x) and all IE(s) with

t o NE,F # 1 (i.e. all but one £) are regular at 5 = 1, while the three remaining terms

all have simple poles. The residues are calculated as follows.

Let £ be the quadratic extension of F associated to the quadratic character t, so

that t ° NE/F = 1. Then the inner integral in the definition of IE(s) has residue

Ci-(detx) at 5 = 1, so

— Ress_1IE(s) = f £      <p(x~l\x)r(detx)dx.
£a\Ga   XgEVF"

\*i

Similarly, the residue at 5 = 1 of the double integral over t and u in the definition of

72(5) is C/2 (independent of k), so

|ResJ=172(5)=/^/AX(P[A:-1(J    ^^(a^af dxar(dctk) dk\s^

(the integral converges for <%e(s) > 1 and is a holomorphic multiple of L(s, r), so

this "contains" £(1, t)). Finally, we have

Res,_175(5) = -Res,=0/4(5,<p',<f>,<r).

Looking at the formula for 74, we see that the pole at 5 = 0 comes from the function

f(k, 5) in the integrand. Since

ResJ=0/(A:,$,T,T,5) = -^(OMdet*),

this means that the value of fRess=lIs(s) is obtained by replacing f(k,s) by

2-r(delk) in the formula for 74(5,<p',6, t) and evaluating the resulting function at

5 = 0 (in the sense of analytic continuation), i.e. it equals

-T    E    /    /    /     / ritetkfrhnA*-1     °\wn2k
4     2 JNA  JN.  J\x   JK L \   0 1 /

X    =WT A A

Xx(a)|a| dkdxadnldn2\s=l/2.
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This can be interpreted as a trace in the following way: for each x with x2 = WT

consider the composite operator

= »,,,,(?)
AT.x,sM: H(tx,x)^H(tx,X,s)     -*     /7(tX,X.-0

■T=det      . M(X,tX,s) ,    s        , .

-»   H(x,tX,s)      -»      H(rX,X^ ~ s)■^H(TX,X)■

lt is given by the kernel function

r(delkjf     f     f    <p k^nJ0'1    °)wn2k2 x(a)\a(dxadnxdn2
JNA  JNA  J/X x       L \   U 1 / J

(klfk2eK),

so its trace at s = | is the multiple integral above. Summarizing, we have proved

Theorem 2. Let r be a character of order 2 on IK F/Fx and E the corresponding

quadratic extension of F. Then

f K0(g,g)T(detg)dg= f ^ £      <p(x-1Ax)x(detx)fix
GFZA\GA EA\GA   Xe^x/fx

+ lim f /x<pU_1(1    l)k T(a)\a\Sdxaj(detk)dk

-4   £    tr^TX(<p),

X2 = TU

where ATiX(<p) is defined as the composition

, ,,"(,<P)     , ,,-Todet      , ,.W(x,tx,|)

H(rX,xA) ~> H(rX,xA)   ^   H(X,TXA)      -      77(TX,x,i).

We have written out the result in full detail because it is, if known at all, in any

case less well known than the formula for / K0(g, g)dg without any character.

However, we hasten to add that the integral j K0(g, g)r(detg)dg could be calcu-

lated directly (indeed, considerably more easily than in the usual case t = 1, just as

our residue calculation was simpler than for t = 1; in fact the calculation can be

carried out for GL(3) or even for GL(p), p prime [6]). We indicate how Theorem 2

can be reinterpreted as essentially equivalent to a theorem of Labesse and Langlands

[8]; however, we will be brief since this is not too different from the route followed

in Labesse [7].

It is shown in [8] that one can find a "smoothing function" m: £A \FA -» C,

with w(A) = 1 for A g £X\FX and m(ab) = m(a)j(b) for b e Fx, a g £x \Fx,

such that the function

f(X) = m(X)[ <p(x~1Xx)T(detx)dx,
JE£\GA

a priori defined only for A g £a \ F£, extends to a smooth function on £A with

/(l) equal to the term limi_1 • • ■ in Theorem 2. Then the first two terms on the

right-hand side of the theorem equal

E   /(a)-|e/G0
\eEx/Fx f
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by the Poisson summation formula, where / is the Fourier transform of / and the

sum runs over all characters ju. of £A/£X with ju| F* = cot. (The factor \ arises

because Vol(£A/R A£x) = 2 with our choice of Haar measures.) For each u there is

a unitary representation (tr^, J^) of GA with central character u and an operator

A- Jifa^J^IL  such that

%{g)-r(detg)All = irfl(g)Afl       (geCA)

(these are the dihedral representations associated to the quadratic extension £/£),

and f(n) = tr(7^(1)5)° A^). If /x = x ° NE/F for some character x of £ then Jf^ s

^fTXxl/2    (the   "7"   is   the   value   making    ^x,x,s     unitary)   and    A^ =

M(tx, X' 2)°('t °det). Since x and tx give the same ju, we find that the right-hand

side of Theorem 2 equals

\      £       tr(ir„(<p)o^),

v-
AFA =<jt

P*X°NE/F

where now ju, runs over characters on £A/£X which are not of the form x ° NE/F

for any character x of F£/Fx, i.e. such that ju" ¥= n (a = nontrivial element of

Gal(£/£)). The representations (wM, J^) and (ir^,^^) are isomorphic, so this

equals Ewtr(77((p)° Aw), where now tt runs over all dihedral irreducible representa-

tion associated to £.

On the other hand, the left-hand side of the formula of Theorem 2 equals

tr(p0((p)° BT), where

BT: L20(GF\G*,u) -> L2(GAGA,co)

is the operation <p(g) -> <p(g) ■ T(detg), which makes sense because the restriction

of t ° det to ZA is trivjal. Only those irreducible constituents m of L\ which are

invariant under BT, i.e. which satisfy it = m ® t, contribute to this trace, so Theorem

2 can be reexpressed as the identity

£     tr(w(<p)oflT)= £ tr(Wo^J.

fr cuspidal tj irreducible
^^^^j dihedral representation

associated to E/F

This shows that the dihedral representations associated to a quadratic extension are

automorphic (which had been known for a long time) and that all irreducible

cuspidal representations it with it = it ® t arise in this way (which is the result of

Langlands-Labesse). It also shows that the operators BT and A„ correspond, giving

an explicit intertwining operator tt -> tt ® t.

Ca5e 2. t = 1.

This case is much harder, since all terms in the formula for 7(5) have poles at

5 = 1 and three of them have double poles. Since the final result, the usual Selberg

trace formula for GL(2), is also much better known than the result for t ^ 1, we

content ourselves with a sketch of the calculation; indeed, we must confess that the

computation of the residue of 7X(5) is so monstrous that we have not ourselves

carried it out completely. The occurrence of double poles is related to the ap-

pearance of logarithmic divergences of the individual terms when the Selberg trace
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formula is proved by the usual method of truncating the fundamental domain, as in

[2]; our use of the complex parameter s should be thought of as an alternative to

truncation as a method of getting around the problem of the divergence of the

various integrals into which / K0(g, g) dg splits.

Our goal is to calculate (2/C) ResJ=17(5) and to show that the result is the usual

trace formula, as given, e.g., in [2]. The terms IE, 73, 74 and \I5 have simple poles

and easily calculated residues; the difficulty lies in the double poles of Ix, I2 and

fL'Ix(s, u) du. The contribution from IE is found as in the case t = Xe °f Case 1 to

be

— ResJ_17£(5) =  / £      <p(x_1Ax)dx;
C JEXA\GA   AGi-x/Fx

\#1

adding up these contributions for all quadratic extensions £/£ gives the elliptic

contribution (second term) in Theorem 6.33 of [2]. Applying the identity

Ress=lf    If F(u)xP(au)du\\a\Sdxa = F(0)        (FgS(A))

(§0) to F(m) = <p[k~l(l0 l)k], we find

Ress_1Ii(s) = <p(l)f f(k,2)dk

= <p(l)(   f    <S>[(0,t)k]\t\2dxtdk,
jK yAx

and this equals

cp (1) •$ (0) • i Vol( ZAG A <?a)

by the identity at the end of §0, so the contribution of 73(5) to (2/C) Res^.j 7(5) is

the volume term <p(l)Vol(ZAGF \ GA) in [2] (note that the Tamagawa number of

PGL(2) equals 2). The term 74 is a finite sum of terms like the function z,(s, x) of

Lemma 3 of 1.3 (but with <p replaced by fKf(k,s)cp(k'lgk)dk); applying the

formula for Res^j H(j, x) given in that lemma, we find (with c = |Vol(ZAGF\ GA)

as in §0)

ResJ=174(5) = -^-   £   / f(k,\)f <P(k-1gk)x(dctg)dgdk.
lC x2 = u JK J2A\GA

Since the inner integral is independent of k and (again) jKf(k, 1) dk = Cc, we find

?7ResJ = 174(5) = -  £    f <p(g)x(detg)dg

C x2—   ZAG*

= -  £   <<P,X°det);

x2 = "

this is the term -trpsp(<p) in (6.33) of [2]. Finally,

^•^ResJ=175(5) = --   £   tr^lx(^) = --rtr(M(x,X,21)°'K4>))

X2 = w

by the same calculation as for t2 = 1, t ^ 1; this is the term (6.37) in [2].
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There remain the three terms Iv I2 and 7X with double poles at 5 = 1; their

leading coefficients must cancel and their residues combine to give the three terms

(6.34)-(6.36) of [2]. To simplify the calculation somewhat, we shall suppose that $ is

right AT-in variant; this is no restriction since we can get the trace formula using any

function O e 5(A2) with C = <t>(0,0) =£ 0, and there are certainly AT-invariant

functions with this property. We will give the proof that the double poles in 7X, 72

and £ 7X cancel, and show that the contribution of 7j + I2 to the residue gives (6.34)

and (6.35) of [2], but, as mentioned in the introduction, we will not compute the

residue of the 7X terms, so that our derivation of the Selberg trace formula will be

incomplete.

For any function <f> g y(A) we define the finite part f.p.(^>) by

^x *(fl)|fl|Vfl = f^\ + f.p.(*) + 0(S - 1) (5 - 1)

or equivalently (using the Tate integral calculations reviewed in §0) by

f.p.(*)=(        4>(a)\a\dxa
J\a\>T

+ [ 4>(a)dxa-<t>(0)T + 4>(0)logT   (any T > 0)
J\a\>T~l

= lim If        <j>(a)\a\dxa + $(0)logr|.

It is easily checked that

f.p.(a -> <t>(ta))=\t\~li.p.(4>) - ^(0)|rf^og)/1

for any t e A x. Using the finite-part functional we can give the Laurent expansion

near5 = 1 of the double Tate integral Jf®(t,u)\tu\sdxtdxu for any 0 g^(A2):

ff <b(t,u)\t\'\u\'d*tdxu
AX2

=  /Ax(5^l/A 9(t>U)du + fP(*('' 0) + 0(S - l))\tUXt

(S - 1)      A2

+ y^jf.p.lf Q(t,-)dt+ f Q(-,u)du) + 0(1)

_    C(tt)    + B(<b) + B(w*) + 0(1)

(5-1)2 '"I

where C(4>) = 4>(0,0) as before and

£(*) = {.pit -» f <&(t,u)du\ = f.p.(*(-,0))
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(<l> as in §0). If 0 is right Af-invariant then w$ = 0 and we write simply B, C for

B(<&) and C($). An easy calculation shows that in this case B, C transform by

C(g$)=|detgr1C(«>),

5(gO)=|detgr1(B($)-Hlog|detg|+log77(g))C($))

for g G GL(2), where 77(g) is defined by 77(g) = \a/b\ if g = (g "h)k  with a,

fr g A x, m g A, A: g 7C Hence the above formula applied to g$ gives

\det g( ff *[(t,u)g]\t\'\u\' dxtdxu
AX2

_       C       + 2B-k_Clog[H(g)H(wg)] +

(5-1)2 *-l

We apply this to the inner integral in the definition of Ix(s) to get

«*i

X   ff <b[(t,tt)nk]\t\'\u\' dxtd*u\dndk
\AX2 /

X(_C      + 2B-2-ClogH(Wnk) + \     dk

=  —^-i + -^t)a + -^-r1 + o(i)
U-i)2   ^-m     '-1

with

^i = /Ja  E ♦[*-1(S   J)*]**,a€Fx

Tl = ~\f   f E     ̂ [^"'""'(q       j)«*]l0g#(»W!*)fl>lfl*.

a*l

For 72 the definitions of 72 and of the finite-part functional immediately give

h{s) = fJ[L ^H    ai)khdXa)( 2^2 + B+0(s- 1)) dk

= [ ~^—2 + -^tUi + -^jT2 + 0(1)
\(5-l)2 S-lJ     2        5-1
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with

A*-UAk~ii aMdadk<

T2 = i.p.[a~fK*[k-\\    J)*]*).

The expressions 7\ and £2 are just the terms (6.35) and (6.34) in [2]. Hence to

complete the proof of the trace formula we would need a formula of the form

7^-f   Ix(s,u)du=l     K   ■+-^TUx + -^rT+0(l)
2TTI JL'   x \{s — X)        5 - 1 I    x      5 - 1   x

with Ex Ax = -Ax - A2 and Ex £x equal to the term (6.36) in [2]. Recall that 7X(5, m)

has the form

7x(5,m) = -- £ (wx>x-.Ui„(«/))/p,/a)/0^(5,M)

«./3e/l(x.X~1<">)

where Jap(s, u) is a function whose analytic properties are given by Propositions

1-4 of 2.5. The first of these propositions shows that Jap(s,u) is a meromorphic

function of 5 and u which is regular near 5 = 1, u = \ unless x2 = w, in which case

it has the form

,    ,      ,      T , ,2£(s + 1 - 2m)£(5 - 1 + 2m) ,    ,
Jatp(s, u) = L(s) -l(2_2m)l(2m)-X ^gular function

(L(s) = LF(s, 1)). From the Taylor expansion

£(5 + 1 - 2m)£(5 - 1 + 2m)     ,     /£',„     „   v     L'      ,\,       ,,     „.       ,,2
£(2-2m)£(2m)    ■    )-^[T(2-2u)+T(su))(s-l) + 0(s - I)

and the fact that (£'/£)(2 - 2m) + (£'/£)(2m) is regular at \, we see that

Jap(s, u) has a Laurent expansion at s = 1 of the form

a„R(u)       b„o(u)

J«^u) = rh2 + i^T + 0{l)(5 - 1)   s i

with aap(u) and bap(u) holomorphic at u = \. Proposition 4 of 2.5 gives the

formula aap(u) = C • 8a p, and refining its proof we find that bap(u) has the form

2B ■ 8ap + C • tap(u) where tap(u) depends only on <J>, not on 0, and by the

remarks above is regular at u = \. This gives a Laurent expansion of ^nJL'Ix(s, u) du

of the form written above with

Ax = -      £        y-ff+'"K.x-v^)/a'/J^

=-iCtr(vv"w)"

and

rx--      E      ^7/1/2+'°° (*x^...(*)W.)'.>)*.
a,/?e/Hx,X-'") 1/2    '°°
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The formula for (trXtX^UtU(4>)fp, fa) at the end of 1.4 gives the identity

trl>x,x-lu,tt(</>)) = /ax ^ ^ 4>[k-i(aQ    \)k\x(a)\a\"  "dxdkdxa,

and together with the Mellin inversion formula

E^"/172"00!/    F(a)X(a)\ar1dxa)du=    £   £(«)        (£g^(A))
x   2-ni Ji/2-ioo   \J/\.X I ae/rx

this shows that Ax + A2 + LXAX vanishes (as indeed it must to make (s - 1)7(5)

regular at 5 = 1). As stated previously, we will not calculate tap(u), but only

mention that the result needed to show that Lx £x agrees with the term (6.36) in [2]

would be the formula

where Mx(u) is defined as the composition

MXX->„»W

H(x,X-^)^H(X,X-^,u)   ■•-»'      //(X-Vx,l-«)^//(x-Vx)

and M'x(u) = dMx(u)/du (we are obliged to identify all fibers of the fiber bundle

U„77(xi, X2>M) with a fixed fiber 7/(xi, X2) in order to make sense of this

derivative).

3.3. On the holomorphy of certain Dirichlet series. In this section we prove

Theorem 2. Let tt be an irreducible cuspidal representation of GA and t a character

of A X/Fx. Then the quotient of the L-series L(s, tt ® t X tt) by L(s, t) is holomor-

phic except possibly for simple poles at s = 0 ands = 1 if t2 = 1, t ¥= 1.

As mentioned in the introduction this theorem was proved in [3] using a method

introduced by Shimura to prove the same theorem in the holomorphic case [10].

We remark that the behavior near 5 = 1 of L(s,tt X tt') for any pair of cuspidal

representations tt, tt' is given by Rankin's method (see for instance [3]). In particular

the poles mentioned in the theorem can only occur if tt ® t = tt, in which case tt is

a dihedral representation. However, the real interest of Theorem 2 is the vanishing of

L(s, tt ® t X tt) at the zeroes of L(s, t).

Proof. Let u be a character of Ax/£x and denote by V the Hilbert space

Lq(Gf\ Ga, w_1); then V = © Vn (Hilbert space sum) where tt varies over the set

of irreducible cuspidal representations of GA with central character aT1 and Vn is

the corresponding isotypical component. By "multiplicity one", the representation

of GA on Vm is actually equivalent to tt. For each tt, choose an orthonormal basis Bm

of V^ made up of TC-finite vectors. Let <p as always be an element of the Hecke

algebra of GA with central character a> and K0(x, y) the kernel function for the

action p0(y) of qp on V. Then we have the decomposition

K0(x,y)= I,Kw(x,y),
TT

Kv(x,y)=   £   Tr(<p)a(x)~aTy~) .
a SB,
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All of the functions occuring here are of rapid decay in x and y. The first sum

converges in £2 and hence also in the space of rapidly decaying functions, by the

usual estimates on the growth of cusp forms. The second sum is finite uniformly in x

and v for a given <p because of the TC-finiteness of <p.

Proposition. Let F(x) be a function on GFZX \ GA which is K-finite and of slow

growth (polynomial growth in a Siegel domain). Then the following statements are

equivalent:

(>) lcFzA\cA Ko(x> x)F(x) dx = 0 for all <p;

(ii) fCFzA\cA K„(x,x)F(x) dx = 0 for all <p and all tt;

(hi)  JGfza\ga al(x)a2(x)F(x)dx = 0 for all it and any K-finite functions av

«2 £   Vv.  '   *

To deduce the theorem from this proposition, we choose

£(x)=-^-£(x,<I>,T,T-1,5)|^p,
osJ

where p is a zero of L(s, t) of order np, j an integer between 0 and np - 1, and $

an  arbitrary function in  £f(/\2). The corollary to Theorem 1  (divisibility of

7(5,9, <E>, t) by £(5, t)) implies that statement (i) of the proposition holds for this F,

and statement (iii) of the proposition implies that the function

/ aY(x) a2(x) E(x,<b,T,r~l,s) dx

JGFZA\GA

is divisible by L(s, t) (except for possible poles at s = 0 and 1) for all a1, a2 G V„

and $ey(A2). Since the £-series L(s,tt ® t X tt), defined as the "greatest

common divisor" of these integrals, is actually the sum of a finite number of them,

the theorem follows.

Proof of the Proposition. The implication (iii) => (ii) is trivial since the sum in

the formula for K^ is finite. To prove the converse, choose an elementary idempo-

tent £ such that w(£) fixes aY and a2. The image V^ of tt(^) is finite-dimensional.

We may assume that Bn contains an orthonormal basis B„| of V% and that

a2 g B,j. Let /f{ be the subalgebra of the Hecke algebra consisting of all <p with

£ * <p * I = <p. Then any <p g 77^ maps the basis vectors in 7?w - J5„£ to 0. Since the

representation of 77£ on V^ is algebraically irreducible, we can find a qp G 77£ which

maps a2 to ax and the other elements of 7?„ { to zero. Applying (ii) to this <p gives

the identity (iii).

It remains to prove that (i) implies (ii) (the converse is trivial because of the rapid

convergence). Let 5 be a finite set of places containing all infinite places. Let 77s be

the set of all functions on Gs = UviSGv which are bi-7C-finite and have central

character co. From now on we consider only functions <j> of the form (p(x) =

<ps(xs)<ps(xs) with <ps = Hv^sWu and 9s G Hs. Then the K„ are nonzero only for

those tt which contain a vector invariant under Ks = n<, c s A7

Let K/ be the space of 7Cs-invariant vectors. We can choose the basis B„ such

that B„ contains a basis B% of Vf and 77s annihilates the vectors of B„ - B%. We

have an operation tts(<ps) on V% by convolution over Gs, and for a G V% we have

m(<p)a = A„((ps) -7rs(<ps)a
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where Xs„: 77s -» C is an algebra homomorphism. By strong multiplicity one, the

homomorphisms A^ are distinct for different tt. Our decomposition of K0 now

becomes

A-0(^)=£A„(<ps)A^(x,v),

IT

KsAx,y)=   £   TTs(<ps)a(x)a(y)     (finitesum).

Then

0= f K0(x,x)F(x)dx = £A„(<ps)c„

where

c„- / K*(x,x)F{x)dx.

Taking q>s = characteristic function of Ks, we see that EJcJ < oo. We now appeal

to the following lemma.

Lemma. Suppose c„ is a family of complex numbers with EJcJ < oo and

£cAr(<ps) = 0        (V<psG7/S).

•n

Then c„ = 0 for all tt.

Proof (the argument we use can be found essentially in Langlands [9]). We have

77s = <g) „//„ and A = <g) „ _ A_,,, where the local Hecke algebra 77„ is isomor-

phic to a polynomial algebra C[zJ and the homomorphism A„ „ corresponds to the

homomorphism C[zJ -» C obtained by specializing zv to a number 8„ v which is

real and bounded, 0 < 8^ < Cv. Indeed, the usual description of Hv is as the set of

symmetric polynomials in two variables xv and yv subject to the relation xvyv = tv,

where tv is the value of a>v on a uniformizer at v and is a complex number of

absolute value 1. The isomorphism Hv = C[zJ is then obtained by mapping zv to

t~1/2(xv + yv). The homomorphism A„ „ sends xv to t\/2qsv and yv to t\/2q~s, where,

since tt is unitary, s is either pure imaginary or else real and between - \ and \;

thus zv - 8„v, 0 < J„ < q1/2 + q-1/2.

Thus each Xv corresponds to a point 6„ = (0„v)ums in the compact set 7 =

Hvms[0, Cv], and we have the relation L„c„f(8„) = 0 for all polynomials f on I (by

"polynomial" we of course mean polynomials in finitely many variables of the

infinite product).

Now let 77j be one of our representations and e > 0 arbitrary. Choose a finite set

Fof representations tt such that T 3 ttx and zZniT\cJ < e. Then

£  cwf(Ow)   =-£  c„/(0   <emax|/(0)|
wer ttCT ffG/
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for all polynomials /. By the Stone-Weierstrass theorem, this inequality holds for all

continuous functions / on 7. Choose a continuous function / + 0 such that

f(8„) = 0 for all tt in T except tt1 and \f(8^)\ = max r\f(6)\; then the inequality

above becomes \c  \ < e, and since ttx and e were arbitrary this proves the lemma.
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