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Introduction

In the last few years Jacobi forms have begun to play a role in several contexts:
the proof of the Saito-Kurokawa conjecture, the theory of modular forms of half-
integral weight and, more recently, the theory of Heegner points. The theory of Jacobi
forms was systematically developed in [E-Z].

The purpose of this paper is to state and prove a general trace formula for Jacobi
forms. The exact statement of this trace formula can be found in §1, especially
Theorem 1. In this statement there occurs a certain quantity G,,(&), the trace of a certain
operator on a space of fundamental theta functions. This quantity is computed explicitly
in §4 ( Theorems 2 and 3). In the course of these latter calculations two minor results,
which may be of independent interest, incidentally drop out: a Gauss sum reciprocity
law (Proposition 4.2) and a nice formula for Gauss sums associated to binary quadratic
forms (Theorem 3). Two proofs of the trace formula will be given, in § 2 and in § 3. The
main ingredient of the first proof is the construction of a reproducing kernel function for
Jacobi forms (Lemma 2.1 and Proposition 2.2), while in the second proof the trace
formula for Jacobi forms is reduced to the trace formula for modular forms of half-
integral weight as given in [Shi]. The first method is nicer because it is elementary and
completely self-contained, but for convergence reasons we must assume that the weight
k is greater than 3. The second proof works for all weights and is shorter modulo results
in the literature, but it is considerably more abstract and is longer if one wants a
complete proof “from scratch”.

The specialisation of the general trace formula to Jacobi forms on the full modular
group will be given in [S-Z]. It turns out that J, (S L,(Z)) (= space of Jacobi forms on
SL,(Z) of weight k and index m) is isomorphic as a Hecke module to a certain very
natural subspace of M,,_,(I,(m)) (=space of modular forms on Iy(m) of weight
2k —2), the existence of which was apparently not noticed before. These liftings play a
role in the relationship of Jacobi forms to Heegner points (cf. [G-K-Z]).



Skoruppa and Zagier, A trace formula for Jacobi forms 169

The original idea to study Jacobi forms and, especially, to develop a trace formula
is due to M. Eichler. He proposed a different procedure to deduce such a trace formula:
namely, to consider the kernel function

Q2 TCEAIW | Gac2a)
K (T’ z, Tls Z,) = Z Z —————
a . at+b Z+ AT+
(éh)esLaz) P12 (ct+df| —— =1 ZHATHM z'
ct+d ct+d

This function transforms like a Jacobi form (on the full modular group) of weight k and
index m in the variables 7,z and, modulo a function with no poles in t' and z’,
transforms with weight 2 —k and index —m in 1/, z’; moreover the sum of the residues
of

A (t,z;7,2) (', 2)d1 dz’,

taken over a fundamental domain, equals ¢(z, z) for any Jacobi form ¢ of weight k,
index m. One then applies a Hecke operator (w.r.t. 7, z) to ., sets (', z')=(z, z), and
sums the residues over a fundamental domain. This approach, which is more
geometrical than ours, works for the elliptic contributions of the trace formula but
seems to be not so suitable for obtaining the parabolic contributions (one would have to
study the behaviour of the line bundles whose sections are Jacobi forms when
compactifying the cusps).

Originally the deduction of a trace formula for Jacobi forms and the study of its
consequences were planned as chapter IV of the monograph [E-Z] (cf. [E-Z], p. 5,
second paragraph). However, this project turned out to be much more time-consuming
than expected and had to be dropped, to be taken up again by the present authors.

Finally, we mention the paper [E] of Eichler, which gives an interesting trace
formula for Jacobi forms. However, his trace formula is of a completely different type
and seems to be unsuitable for comparison with the usual trace formula for modular
forms and therefore for proving the existence of the above mentioned lifting from

Jiom(SLy(Z)) to My, 5 (o (m)).

It is a great pleasure to us to dedicate this paper to its initiator Martin Eichler.

§ 0. Preliminaries on Jacobi forms

As main reference for the basic facts and definitions from the theory of Jacobi
forms we refer to [E-Z]. To fix the notation we briefly summarize those items that we
shall need in the following.

By ¢ () we denote the Jacobi group SL,(R)x R*-S', i.e. the set of all triples
(4, x,s) with AeSL,(R), xeR?* and seS' (the multiplicative group of complex
numbers of modulus 1), supplied with the composition law
xA’
x' '

(4, x, s) - (A", x/, s’)=(A A, xA"+x',ss'e (

82 Journal fiir Mathematik. Band 393
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. al ’
Here xA'=(Aa’+uc’, Ab’ + ud’) with x=(4, p), Al:[c’d’ , a
determinant of the matrix built from the row vectors x4’ and x’. Furthermore, e(...)
always means e?™-”) (and we shall use variations of this like e™(...)=e2™™(") etc.).

xA’
nd , I denotes the
X

We identify SL,(R) and S' with the subgroups {(4,0, 1)|4eSL,(R)} and
{(1,0,5)|s € S'} respectively, and for x € R? we use [x] for the element (1, x, 1) of ¢ (IR).
Then each element ¢ of #(/) can be written uniquely as &= A[x]s with suitable
AeSL,(R), xe R* and se S*.

For subsets G, L, K of SL,(R), R? S* respectively we set

GxL-K={A[x]s|A€G, xeL,seS"}.

Obviously this defines a subgroup of #(R) if and only if G, L, K are subgroups of
SL,(R), R?, S* respectively, L is invariant under G with respect to the usual action of

’

G on R? and K contains all numbers e ( );

) with x, x" € L. Special subgroups of this

kind are the groups

F(@)=SL,(@)x @*-S".
I’'=rxZ*(=rxz?*-{1}), I any subgroup of SL,(Z).

We adopt the usual notations for special subgroups of SL,(Z):
I'ny={AeSL,(Z)|A=1 modn}, [,(n= {A eSL,(2)|A =|:: j with nlc}.

$ denotes the upper half plane {t € C|Im(t)> 0}. The Jacobi group # ([R) acts on
H xC by

(A[x]9) (. Z)=<A’L’, Z—i—ggﬁ) <A=[Z Z:l,x=(/1, ), reﬁb,ze@)

at+b
ct+d’

where At is given by the usual action of SL,(R) on 9, i.e. A1=

Let k be a real number and m an integer. Let
a b 5 .
A= J eSL,(R), x=(4 we R+ seS’.
c

Then we have, generalizing the operator

(hlA) (t)=(ct+d) " *h(A7)
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on functions h(t) on $, the operator

(@lim(A[x]9) (r, 2)

=(ct+d)*kem <_C(z+/h+~'li)i

(1
- +,12r+2,12+,1u> S'"¢<AT,

ct+d

z+At+p
ct+d ct+d

on functions ¢(z, z) on 9 x C.

Here and in the following w" (w, r € C, w+0) is always defined by
W= eliArBI *loslwhr = (7 < Arg(w) < + 7).

If k is an integer, then (1) defines an action of # () on the space of functions of
$x C. In one or two instances we have to consider the case of half integral , i.e.

k e%«i—Z. In this case one has

(@, m(ALx] i,m(BLyI 1) =0(4, B) dlim((A[x] ) (B[] 1)),

where o (A, B)= + |; more precisely

(cBt+ad)'*(c't +d')'/? P x % * %
2 A B = = = —_ .
(2) o(4, B T d)? . \A=|, 4| B o oal 4B o g

Let I" be a subgroup of finite index in SL,(Z) and k, m be positive integers. Then
Ji.m(I') denotes the space of Jacobi forms of weight k and index m on I, i.e. the space of
all holomorphic functions ¢(z, z) on § x C such that

) @limé=¢ forall el

(i) for each A€ SL,(Z) the function ¢|, A has a Fourier development of the
form ¢, A= Y  c(nr)g"{ for some integer t.

nreZ
4mi-r2z0

Here and in the following ¢"" and (" denote the functions e (? r) on H and e(rz)

on C respectively.
If ¢ has for each A e SL,(Z) a Fourier development (ii) satisfying the stronger

condition 4m ;—r2>0 then ¢ is called a cusp form. The subspace of cusp forms in

Ji.m(I') will be denoted by S, ,(I').

For integers ¢, m with m>0 set

3) Ome= 2. 4",
reZ
r=g¢mod2m
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and denote by Th,, the span of the 0, ,(¢c € Z). Obviously Th, is a 2m-dimensional
vector space.

As a consequence of the transformation law with respect to Z?(< I'’) every Jacobi
form ¢ in J; ,(I') can be uniquely written as

2m
(4) P, 2)= Y hy() O (7, 2)
e=1
with suitable functions h,(r) on $. It is a fact that the h,(r) are elements of

Mk_l(F(4m)mF),
7

1
where Mk_l(l“) for any I' < I'j(4) denotes the space of modular forms of weight k_§
2

on I', i.e. the space of holomorphic functions h(z) on & satisfying
h(A1)j(A, 1) "2*=h(z) for all Ael

and h| , A for any 4 € SL,(Z) having a Fourier development of the form Y ¢(N)g™"
2

NzO
(t a suitable integer). Here and in the following j(A, ) denotes the usual theta multiplier
which can be defined by

Jj(4, 1) =0(47)/0(1), <A € (), 0=}, q’2>-

reZ

One has j(4, 1)=¢(ct+d)'* [ A= ;
e=¢(A) (even e(A) e {1} for A € I'(4)), but we shall not need such explicit formulas.

with a well-known fourth root of unity

Conversely, let h,(t) (¢=1,..., 2m) be given elements of M, _, (F(4m)nr) such
7

that the function ¢ defined by (4) transforms with respect to I' like an element of
Ji.m(I'). Then it is easy to check that ¢ is indeed in J,_,(I').

Via (4) we occasionally identify J, ,,(I') with the subspace of elements in

M ,(I'4m)nT)® Th,,

1
k=7

which are fixed by I' with respect to the obvious action “

”
1 ® |4 of I':
k_f |2-‘m

Jim(I') = M, (IF'4m)nT) @ Th,),

1
k-7

(5) 2m
¢ — Z h, ® 0,,-
e=1

It is easily seen that by (5) the subspace S, ,,(I') corresponds to

(S,_1 (F@m)AT)® Th,,)",
2
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where Sk,L(F) for any I' < I';(4) denotes the subspace of cusp forms in Mk (). Also
2 2

note that we may replace in (5) the group I'(4m) I occurring on the right side by any
subgroup X of finite index in I'(dm) N T.

§ 1. The statement of the trace formula

Let k, m denote positive integers and let 4< ¢ (@)=SL,(@)x @*-S! be a finite
union of double cosets with respect to a subgroup I'’ of finite index in SL,(Z)".

We define an operator H, ,, (4) on J, (') by
(M P Hemr(A)= ) Pliml.

tel\4

Here the sum is over a complete set of representatives & for the I'’-left cosets of A.

Proposition 1. 1. The operator H, ,, (4) is well-defined (i.e. the sum in (1) is finite
and does not depend on the choice of representatives £) and maps J, (') to Jy ,.(I')
and Sy ,(I') to S, . (I).

Proof. We first show that I'’\I'’¢I7 is finite for any é e #(@).

Let £=A[x]s, let y:I'7EMY — T'AT be the canonical map #=B[y]t— B and
let y,:I'\I'"ér’ — r\r AT be the induced map. For Be ' AT the fibre 7 '(B) is
invariant by left and right multiplication with Z?(< ), and it is easily seen that a set
of representatives for Z?\y~!(B) defines also a set of representatives for the I'/-left
cosets in y, ' (I' B). Hence, in view of the well-known fact that I'\I" A T is finite, it suffices

to show that Z2\y~!(B) is finite for any Be ' AT.
A simple calculation shows that y~!(B) is the union of all double cosets
Z*B[xG]sZ? with Ge A"'T'BnT. The number of such double cosets is actually

finite: if />0 is an integer such that IxeZ, and if G,G'e A"'I'BnI' with
G =G modI[? then [xG] Z*=[xG'1Z% But A"'I'BAT modI?< SL,(Z/I*Z) is finite.

Thus it is left to show that Z>\Z*yZ? is finite for any n € #(@Q). But this is
immediate, since a set of representations for Z?\Z*nZ? is given by ny' with 1’ running
through a set of representatives for (n~'Z*nnZ*\Z?, and n 'Z?*y2NZ? for a
suitably chosen positive integer N (depending on #).

Since 4 is a finite union of double cosets of the kind considered above, we deduce
that I''\4 is finite.

That ¢|H, , r(4) in (1) is independent of the choice of representatives ¢ is clear
from the transformation law of ¢ € J, ,(I'), and also it is obvious that ¢|H,, r(4)
transforms like a Jacobi form in J, ,,(I") with respect to I'’.

In order to check that (¢|H . (4)li.mA, (A€ SL;,(Z)) has the correct Fourier
development one writes for each ¢ in (1) ¢4 = A"B[y]t with a suitable A" € SL,(Z) and
an upper triangular matrix B € SL,(@Q). Let

Bz[g 2_1}’ y-_—'(i,ﬂ)

83 Journal fiir Mathematik. Band 393
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By assumption |, ,,A' =) c(n,r)q"(" with ¢(n,r)=0 unless 4mn—r*=0. (Here r is
integral and n is rational with bounded denominator.) Hence

¢Ik,méA =a"t”’ Z c(n, r) e(abn+a,ur+m/lu) qazn+alr+m).2€ar+2ml’

and since 4m(a’n+ air+mi?)—(ar+2mi)*> =a*(@mn—r?), we see that in the Fourier
development of (¢|H,. . r(D)..mA only powers g" (" (n,r’ rational numbers) occur
where 4mn’ —r’> = 0. Finally, using the fact that (¢|H,_,.(4))l..4 is invariant with respect
to Z?% so that only integer powers of { occur in the Fourier development of
(¢|Hyu(M)|x.mA, one ends with the required Fourier development. Also, these argu-
ments show that H, , (4) maps cusp forms to cusp forms.

Remark. Let I'' be a subgroup of finite index in I". Then 4 is also a finite union
of double cosets with respect to I'"” and we can consider the operator Hy . (4). Tt is
obvious that the image of J, ,(I'') by H, . r(4) is contained in J, (') and that the
restriction of |[I'\I'| ™' - H, ,, (4) to J, ,,(I') coincides with H, ,, (4). Thus we obtain

) tr (Hym,r(4), S (D)= T\L1™1 0 (Hy o (4), Ji (7)),

and the same applies to cusp forms.

The simple formula (2) will become important in the derivation of the trace
formula for H, ,, r(4) given in § 3.

The aim of this paragraph is to state a formula for the traces of the operators
H, ,.r(4). In order to do this we have to introduce another operator.

Recall that Th,, denotes the span of the theta series

om,pz Z qr2/4mCr’ (Q= 1,..., 2Wl)

r=9(2m)

For each ¢ e #(@Q) we define an operator U,,(¢) on Th,, by

3) 01U ():=IL\Z*I"" ) Olpmé[x].

xeL\Z2

Here L is any subgroup of finite index in Z? such that ¢L&¢™!'< Z% From the
transformation law of 0 with respect to Z? it is clear that 0|U,,(¢) depends neither on
the choice of L nor on the choice of representatives x for L\Z?2 In §4 we shall show
that U,,(¢) actually maps Th,, to Th, (cf. Prop. 4. 1).

Note that U, (A) for 4 € SL,(Z) coincides with the usual projective action of
SL,(Z) on Th,,. Using this it is easy to check that

Un(AEA™) = £ Un(A) U, () Up(A)~!

for any ¢ and any A in SL,(Z). Thus the essential part of the trace of U, (&) should
only depend on the S L,(Z)-conjugacy class of &

To be more precise set

4 Gn()=e(A) tr U, (), (=A[x]se (@)
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where

(5) g(A):{—l if ¢<0 and tr(A)<2, (AZI:* *:D

+1 otherwise
Lemma 1.2. The expressions G, (&) defined by (4) satisfy
Gu(MEM™Y)=G,(¢) and G,(BE)=G,()

for all £ e #(Q), M € SL,(Z) and all parabolic B € I' (4m).
Proof. Let {=A[x]s. Then

UnM) Up(§)=0(M, A) U, (ME)=0(M, A)s(MAM ™', M) U, (MEM™") U,,(M)
with (-, *) as in (0. 2). Hence by (3) of the Appendix we find
e(A) Upy(M) U, (§) U, (M) ' =e(MAM YU, (MEM ™),

which immediately implies the first assertion of the lemma. The second one is a simple
consequence of the first and the fact that every parabolic B e I'(4m) is S L,(Z)-conjugate

. 1 4mt
to a matrix of the form [

0 1 :|, (t € Z), and that such a matrix obviously acts

trivially on Th,,.
We can now state the trace formula.

Theorem 1. Let k>2, m>0 be integers, ' €S L,(Z) a subgroup of finite index,
and A a finite union of double I'’-cosets in ¢ (@Q). Then
(6) tr(Hk,m,l'(A)a Sk,m(r)) = Z Ik,m,l‘(A) gm(A* A)v

AeP(4)/~m,r

where P: ¢ (@Q)— SL,(@Q), P(A[x] s)= A, denotes the canonical projection, ~,,  is the
equivalence relation defined by

A and B are I'-conjugate

or
A and B are parabolic and G A is
I'-conjugate to B for some Ge I ,nT (4m),

A~, B if and only if

and g,,(4, A), I .. r(A) are invariants of the ~,, r-equivalence class of A defined as follows:

— gnld, A)= 2 |Z\Z2*£ 2% G (£),

EeZ2\P~ 1 (A)n4A|Z?
with G,,(¢) as in (4) and the sum being over a set of representatives of the double cosets in
P~ Y(A)n A with respect to Z*(<T).

a 0
— IfA~[O a:] then
y-k 2k—3

Limr(A)=[SLy(Z):T']" a’ BVTI
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— If A is elliptic, A—_—I:: *:l, let o, o' denote the eigenvalues of A such that
*

Im(g) and ¢ have the same sign. Then
o
Ik,m.r(A)=|FA|_l sign (c) 0 7

— If A is hyperbolic with tr (A)*> —4 a square in @, let o, ¢’ denote the eigenvalues
of A such that |g|>|o'|. Then

3k
QZ
0—o

Lm,r(A)= — T4

— If A is hyperbolic with tr(A)* —4 not a square in @Q, then I, ,, r(A)=0.
— If A is parabolic, then there exists a D € S L,(Z) and numbers s> 0, r such that

1
D™ 'TI',(4m) D is generated by |:0 j] and D“AD=% tr(A)-[(l) ::| Then

. 1 ifzeZ,
s

1 -
lmr(4) = =3 [La:Tym)] ™" ()27 o
l-icotn; if;éZ.

Here I, denotes the subgroup of all GeT such that GAG™'=A, and I',(4m) the
subgroup I'y,NT (4m).

Remarks. (i) The formulas for I, ,, (4) are completely explicit. In §4, we will
calculate G,,(¢), thus obtaining a “ready to compute” formula for the trace of H, ,, r(4).

(i) To check that the statement of the theorem makes sense we need the
following observations:

— the sum in (6) is finite, since the matrices in P(4) have bounded de-
nominators and since there is no contribution from the conjugacy classes of the non-
split hyperbolic elements in P(4).

— The expressions defining I, ,, r(A) make sense (because I', is finite for elliptic
or split hyperbolic 4) and depend only on the ~,, -conjugacy class of A (recall that the
sign of the left lower entry of an elliptic 4 is invariant with respect to SL,(Z)-
conjugacy).

— The sum defining g, (4, A) is finite (in the proof of Prop. 1. 1 we showed that
the set Z*\P~'(A)n4 is finite); also g,(4, A) does not depend on the choice of
representatives & for Z2\P~'(A) N 4/Z? (it is obvious from the definition of G,,(¢) that
Gu([x] &)= Gn(¢[x]) =G, (¢) for all xeZ?).

— One can easily deduce from Lemma 1.2 that g,(4, A) depends only on the
~m.r-conjugacy class of A.

(iti) There are also formulas for tr(H, , (4), Sy (') in the case k=1,2. For
details of this the reader is referred to the end of § 3.
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§ 2. First method: Kernel function for Jacobi forms

Throughout this paragraph I' denotes a subgroup of finite index in SL,(Z), and
k, m denote positive integers. We shall mostly assume that k>4. This assumption is
needed to ensure the convergence of several expressions occurring below. A proof of
Theorem 1 which is valid also for smaller values of k will be given in § 3.

As indicated in the title the derivation of the formula for the trace of H, ,, ;(4) on
Si.m(I') will depend on an explicit description of the reproducing kernel function of
Si.m(I') with respect to the Petersson scalar product (which was introduced in [E-Z]).
The procedure will be very similar to the derivation of the trace formula for Hecke
operators on the space of cusp forms on SL,(Z) as given in [Z].

To fix the notation let us recall the definition of the Petersson scalar product for
Jacobi forms.

For 1€, ze C let
(T, 2)i= 012720,
Here and henceforth we use

t=u+iv,z=x+iy (v x, yeR).

It is easily checked that

at+b z+/1r+u)

Mk,m(é '(Ta Z))zﬂk,m (C’C-{-d , ct+d

Hi,m(1, 2)

=|ct+d|7* +lzr+2iz>

m(—c(z+/11+u)2
e
ct+d

for all &= [‘c’ Z} [4 1] e 7 ().

Thus, given any two functions ¢, y on $ x C invariant with respect to the action
of I'’ given by “|; >, we deduce that ¢ypu?, is a I'’-invariant function on $ x C.

The ¢ (R)-invariant volume element in $ x C is given by
dV=v3dudvdxdy.

Note that the volume of I'’\$ x C (with respect to d V) equals [I'n{+1}|™! times the
volume of I'\$ (with respect to v™>dudv); in particular, it is finite.

The Petersson scalar product of two cusp forms ¢, y € S, ,(I') is now defined by

Khw>= |  ovul,dV.

rN\§xC

The convergence of this integral follows from the easily proved fact that for any cusp
form ¢ € S, ,,(I') the expression |@(t, z) ty (7, z)| is bounded on $ x C.
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Finally, we define a function h, ,, on ($ x C)* by
_ _ 2
(1) hk,m(r’ Z, TOaZO)::(T'—fO)—kem <—(?—_ZO")'“>

It is invariant under ¢ ([R) acting by |, ,, on (t, z) and in the complex conjugate way on
(to, Zo), 1.€.,

—c(z+At+up)?

22 m
it d +4 r+2£z+/l,u>s

hk,m(é ' (Ta Z); é : (TO9 ZO)) : (CT +d)—kem (

—c(zog+Ato+p)?
cto+d

(cto+d) kem ( + A2 r0+2)tzo+/1u> $™ =My (T, 2579, Zo)

for &= [: Z:I [4, u] se #(R). This can be verified by a messy direct computation
which becomes somewhat simpler if ¢ = 0, the only case we shall need.

The basic lemma is:

Lemma 2.1. Let k> 3. Then one has for any (14, zo) € D x C:

(i) The integral
j' Ihk.m(fa z, TOaZO) .uk,m(T: Z)l dV
HxC
is finite.
(i) Let ¢(1, z) be any holomorphic function on  x C such that |$(z, z) (7, 2)| is
bounded in § x C. Then

@ ] O hnl 7500 20) (s 2 V= (e 20

(Note that the integral in (2) is absolutely convergent by (i) and the boundedness
condition for ¢.)

Proof. First of all we observe that it suffices to prove the lemma for
(t9, 29)=0(i, 0), as we see by choosing ¢e #(R) (with upper triangular SL,(R)-
component if so desired) sending (i, 0) to (o, zo), replacing ¢ in (ii) by @[, <, and using
the transformation laws of yu, ,, and h, ,. Write simply h(z, z) for hy (1, z; i, 0). Now to
prove (i) we observe

vk/2

| I,; ean(lm {?-li-_i_} x2+2Re{r—}_—i—} xy*[lm{ﬁi—} +%] yz)‘
T+i

(3) Ih(‘f, Z) :uk.m(ra z)':

k/2 T
—————— where D denotes the
le+il* /D
absolute value of the discriminant of the negative definite quadratic form in the
(4mm)?

vt +il*’

Integrated over C with respect to dx dy this yields

exponential of the right hand side of (3). A simple calculation shows D =

I Ih(, 2) py m(z, 2)] dv=->1 ) (

H*xC 4m %

It +i v?

pl/? >"_1 dudv
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Identifying the upper half-plane with the unit disk and introducting polar coordinates

) . Tl
i.e., setting %:Lvl,:re"’, 0<r<1,0=<0<2n), we find

v 1—r2  dudv 4r
4 = =
) frirT 4 e e 404

and hence finally

22-kp 1 k-3
[ 1h( 2) ot DAV =" [ (1=1?) 2 rdr<oco.
$xC m 9

To prove (ii), denote the integral on the left-hand side of (2) by I; then

1
7
szd’(r) v dudv'

where
c
with
1 Z-2 1 ,
g(t,z)=(F—i) 2 e || v e 4mmil,

T—1

. . T—1i ; -
To evaluate the integral I we again set T=re“’ and use (4), obtaining
T11

1 - 4
I= f(f O(0) (x+i)* zd0>< 4’> a--:%)fdr.

r

Let us assume for a moment that @(z) is holomorphic. Then the inner integral equals
_1
27t(2i)k 2 ¢(i) by Cauchy’s theorem, so

- 7ok k%
(21) o) | (1—4f>k : dr=-2-~—7_r_l——— &(i).

2k—3
But
72 R
®(i)=(—2i) 2 j ¢ (i, z) e'”( ) e~ AT g dy
c —2i
© 2n
-2i) ? j [ @G, z) e 2™t rd0dr, (z=re"),

)

and since ¢ (i, z) is holomorphic this gives finally

1

o« 4T

(D(l)z(—zl)A%ZTC(b(l, 0) j' o= 2mmr? L (—21i) B
0 m
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It remains to show that &(z) is holomorphic, or—equivalently—that

0 0
©) FF <P(T)=£ ¢(.2) o gt 2)dxdy

vanishes. A simple calculation gives

0 1 0 I—2z9 Z—2z
7 g1, 2)= 53z {(f—ro +f——f> g(1, Z)}~

Introducing this in (5), taking into account that ¢(t, z) is holomorphic and applying
Stokes’s Theorem, one obtains

9 qb@):fi lim | é(2) (Z:_Z°+Z£—§) g(t, 2) dz.

6‘f row |zi=p T—Tp T—
But the right hand side of this is obviously equal to zero by the boundedness condition

for ¢ and since g(t, z) = O(e ®I*1* ¢~ 2"™/*) (as function of z for fixed t and |z| — o) for
a suitable ¢>0. This completes the proof of the lemma.

Proposition 2.2. Let k=4. For (z, 2), (7o, Zo) € H X C define

(6) K(t, z; 19, 2g):= }“k,m Z (hk.mlwn ¢) (1, z; 19, 20)>
ter’y
2k —3)mi*
where hy ,, is a function defined by (1), /1,‘,,,,=(A72—2—_—k);n1, and where “|{!)” denotes the

action of I'’ with respect to the first pair of variables (t, z). Then one has:

(i) For any (ty, zo) € H x C the series on the right hand side of (6)—considered as
a series of functions in (t, z)—is normally convergent on every compact subset of # x C.

(i) K is the reproducing kernel function for S, ,(I") with respect to the Petersson
scalar product (-, ->, i.e.:

—  for any (tq, zo) € 9 X C the function K(-; 1y, zo) is a cusp form in S, ,.(I')

— for any (tq, zo) € 9 X C and any cusp form ¢ € S, ,, one has
() {$, K(*, 79, 20)) = P (%0, 2o)-

Proof. The proposition is an immediate consequence of the foregoing lemma.
Indeed, to prove (i), let K be a compact subset of $ x C. We have to show that on K
the series is majorized by a series whose terms are independent of 7 and z. Choose a
compact subset K’ < $ x C such that each point of K is an interior point of K’, and by
standard function theory there exists a constant c¢,, such that for any holomorphic
function f on $ x C and all (z, z) € K one has

If@2P<e, [ If@, )W dudvdx'dy, (t'=u+iv,z2’=x"+y,u,v,x,y eR),
2
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and hence

= [ @ D) et 2)dV (T, 2),
C2 k'

where ¢, denotes the minimum value of y (¢, z')v' "3
equality to f(c, 2) = (A mliinm €) (1, 25 7o, 20)"? yields

on K'. Applying the last in-

Z I(hk,ml;c%r)n é) (T, Z; To, ZO)I

tery
C 14 14 !’ ! ’ I3
(8) é—}— Z j thy'"l}‘{')" 5) (T 4 ;TO’ ZO)l : uu'k,m(r yZ )dV(T ) Z)
2 ¢eIv K’
C /7 ’ ! ’ !’ !
=2 Y [ w2 0, Zo) em(T 2) AV (T, 2).
€2 gerv ¢k

But this last series is convergent: since K’ is compact it can be cut into a finite
number—say n— of pieces, each of which is contained in a fundamental domain for
I'’\$ x C; hence the series in the right hand side of (8) can be estimated by

ne § w2570, 2o) m(t', 2) dV (T, 2),
HxC

which is finite by Lemma 2.1 (i). This proves part (i). It now follows that for fixed
(To, 20) € O x C the function K(-; 14, z9) is holomorphic on $ x C, and from the
definition it is clear that it transforms like a Jacobi form in J,,(I'). That it is even a
cusp form is easily deduced from

dom | 1K(T, 2570, Z0) e m(T, 2) AV
rngxc

é j Z I(hk,mlur)n é) (‘C’ z; TO? ZO)| ’ :uk,m(T’ Z)dV

N\ xC &er’

= j- |hk,m(T’ z; IO»ZO)l.uk,m(T’ Z)dV<OO'
HxC

Also, by the same procedure of “unfolding the integral” and by Lemma 2.1 (ii) one
deduces (7).

Since the reproducing kernel function K for S, , can also be written in the form

K(z, z; 19, Zo)=z ¢i(1, 2) ¢i(10, 2o)

where ¢, runs through any orthonormal basis of S, ,,(I'), it is clear that the trace of an
operator H, , r(4) on S, ,(I') is given by the integral of

Z (K I;c%r)n 7’) (T’ z; T, Z) .uk,m(T’ 2)2

nelJ\4

over I''\$ x C with respect to dV, i.e.:
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Corollary 2.3. Let k=4 and the notation as in Theorem 1 and the following
proposition. Then one has:

(9) tr(Hk,m,I‘(A)9 Sk,m(r)) = 'lk.m _“ Z (hk,m”:r)n é) (Ta Z; T, Z) ”k,m(r’ 2)2 dV

r’\g$xc sed

We must now evaluate the integral in (9). First of all we rewrite (9) in the form

tr(IIk,m,l"(A)’Sk,m(r))=/lk,m.n j { z j Z

NS (4eP(4) Z1+2\C eez2\P-1(A)n4
(19 dxdy)| dud
xay uav
’ Z (hk,ml(l)né)(Taz;f’z)#k,m(’[sz)z'—_°_~ T
nez? v v

where, as in the notation of Theorem 1, P denotes the canonical projection from the
Jacobi group onto SL,(RR), and where n=|I"n{+1}|! (the factor n comes in since I'/
identifies (t, z) and (7, —z) if —1€T).

Using the formula

B pelirn) venseo

one easily verifies that

_ 5\
Y (ol 1) (570,20 =~ ) * T em( R ) +/121+2/lz>
nez? IpeZ T—To
=(t—T) 7% ) )" "% 2 At—2 12t +21z)
= 07" L\ i Zze im rP+(z+Ait—zZo)r+m(A*t+24z
(11) re )
=2mi) 2 (=7 27k Y e<4—:h~(r+2mi)2+z(r+2mi)>e(i—’%orz~z‘0r>
AreZ
2m S —
=(2mi)_1/2(’[_f0)1/2—k Zl Om,o(r’ Z) Om,g(ro, ZO)'
0=
Thus the inner integral in (10) may be written as
_1 1_ 1_ 2m
@m) 2(Ar—9? ‘co+d? | Y Y (Ongy,dE2)

Zt+Z\C EeZ2\P~1(A)n4 e=1

' Om.o(r’ Z) .uk,m(ra 2)2 éivijz’

or — in terms of the operators U,,(¢) introduced in § 1, (3) — as

1 1_ 1_
(12) @mi) Z(At—9° “(cr+d)® " | y 1Z2\Z%¢ 72
Zt+2Z\C EeZ2\P~1(A)n4/Z?
2m - dxd
Y, (O Un(E) (5 2) O g5 2) (5, 2 ey
R-

¢, d denoting the lower entries of A.
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By the formula
j OM‘Q(L Z) Om,a(r’ Z) /lk_m(f, Z)

Zi+z\C

dxd e
2 kxvlzéga(‘“") ZU" z

(here 9,0 € Z/2mZ and 6, , denotes the Kronecker d; for the simple proof cf. [E-Z]) we
now find that (12) is nothing else but

1 1
- k=
i 2 v 2

3

2Zm (At1—1)

i Y, |Z3\Z* 73| tr (U, (6))-

1 -
(ct +d)k 2 fez?\P-1(A)n4)2?

k_
Inserting the last formula in (10), we thus arrive at

X dudv

(13)  (H s (), SupD) =i one [T ful0) gl A) 248

g AeP(4)

where g, (4, A) is the expression explained in the notation of Theorem 1, where
k_l
2

fa(®)=¢(A4)

_1 1
(Ar—9" Z(cr+d) 2
with ¢(A4) as defined in § 1, (5), and

_1
Qk—3)i" 2
ho=
—k
22 'n

Using Proposition A. 1 it is easily verified that
faM - 1) =fy-1am(1), (A, M € SLy(R)).

Also, by Lemma 1.2, one knows that g, (4, A) only depends on the ~,, -equivalence
class of A, where “~, /" is the relation explained in Theorem 1. Therefore—
disregarding questions of convergence — we may write the integral in (13) in the
notations of Theorem 1 (and with # denoting a set of representatives for P(4)
mod. ~,, ;) as

dudv
Z gm(A: A) j‘ Z fB(T) 02
AeR rns B
B"‘m,rA
dudv

= Z gm(Aa A) j Z fM"‘AM(T) - UZ

A€ Rnp N Mela\I'

dudv

+ Z gm(A’ A) j Z Z fM“BAM(T) PIE)

AcR, NS Mel A\I' Bel (4m) v

where 4,, and #, denote the subsets of non-parabolic and parabolic elements of #

respectively.

dudv .
Now an integral of the form j Y. fu-1am(1) —5— can be written as
g Mel AT v

AL e UL

2
s Melar v r4\$
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and similarly for the integral belonging to parabolic A. Hence we find
tr(Hk,m,F(A)’ Sk,m(r))

4 =3 {ik'n' [ £, d“d”} gnld, A)

AERnp ra\s v?

dudv
5 Lan [0 5 f 28 g
AeR, F4\9 Bel 4(4m) v

Unfortunately, the integrals appearing in (14) diverge for split-hyperbolic and
parabolic A. To compensate for this, one has to interpret the corresponding integrals
[ in the sense lim j , where C/(g) is the interior of the (one or two) horocycles
ra\% £20 e -ce)
of radius ¢ tangent to the (one or two) fixed points of A4 (if one fixed point of A equals
oo, then “interior of the horocycle of radius ¢ tangent to o0” means the region

1
TE Sjllmr>g . It can then be shown that the integrals in (14) make sense, and also

the above deduction of (14) from (13) can be justified. For details of this, the reader is
referred to [Z] or [O], where integrals exactly as in (13) were treated (the suspicious
reader will also need some estimate for the number g,,(4, A): this is easily provided by
the explicit formulae in § 4).

Finally, the reader will easily verify (or cf. [O]) that the expressions in brackets in
(14) equal the expressions I, ,, r(A4) as stated in Theorem 1.

Thus, in the case k=>4, Theorem 1 is proved.

Remark. The reader who is acquainted with the Eichler-Selberg trace formula for
modular forms of one variable will have noticed that in the last part of the foregoing
proof of Theorem 1 there has been a strong trend towards modular forms of half
integral weight. The starting point of this was (11), i.e. to write the kernel function K in
the form

k_l
2k—13)i ?
19 Kzt =230 V™ s @i 4y @z, 20),
27_"7.[ Ael

where

1-—k 2m -
O(1,z;19,20) = (1 — fo)f Z Om,g(fs z) gm,Q(TO’ Zp)-
e=1

This is the pendant to the fact that each Jacobi form ¢ can be expanded as

2m
o(z, 2)= z ho(7) 0, (7, 2).
e=1

Indeed, starting with K as defined in (15), it is not hard to verify directly that K is a
reproducing kernel function for S, ,,(I'). Also, (15) makes sense even for k =3.
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In principle, this is the point of view that we shall adopt in the next paragraph;
but we shall even go a step further and shall reduce the proof of Theorem 1 directly to
the Eichler-Selberg trace formula for modular forms of half integral weight.

Nevertheless, we think that the presentation of this paragraph has its own rights,
since it shows the possibility of a completely self-contained proof of Theorem 1 without
passing to modular forms of half integral weight. Indeed, to proceed more systemati-
cally, it would have been possible to compute the inner integral in (10) without referring
to the 0, , and the operators U,(¢). However, the result and the procedure would

m,Q

essentially have been the same as in §4 below.

§ 3. Second method: Reduction to half-integral weight

In order to derive a formula for the trace of H,, ,(4) we can as well consider
H, . s(4) where X is any subgroup of finite index in I' (cf. § 1, (2)). But if we choose
Xcrl'(4m), say =1 nT(4m), then we have the canonical isomorphism

Jim@) M 15(2) ® Th,

as explained in § 0. It is reasonable to expect that via this isomorphism H, ,, s(4) can be
written in terms of double coset operators on M, _,,,(Z) and operators on Th,,. This
turns out to be true, and hence we may apply the Eichler-Selberg trace formula for
double coset operators on modular forms of half integral weight to derive the desired
trace formula for H,,, (4). This is the idea of the proof that we shall now sketch.

~—_ )
By SL,(R) we denote the well-known double cover of SL,(R), i.e.

T2 o)

equipped with the composition law

[Z ﬂ e SL,(f), w(z) a holomorphic function}

on $ satisfying w(t)> =ct+d

(4, w(r))- (A", w' (1)) =(A A", w(A'T) W(1)).
Let £ =I'(4) be a subgroup of finite index and let
DMES {(Avf(A’ T))|A € Z}

(j(4, 1) the theta automorphy factor as explained in §0). Then X* is a subgroup of
N
SL,(R).
- N
For A € SL,(R) denote by A the element (4, w(t)) € SL,(/R), where

wt)=(ct+d)"? for Az[z d]

n
(ct +d)Y? being that square root of ¢t +d with —%<Arg (ct+d)? gi (cf. § 0).
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Let Ae SL,(@Q). Then it is known ([Shil], Prop. 1.1) that the canonical pro-
jection X*AX* — ¥ AX ((A, w(t))— A’) is one to one. Thus there is a map

(1) g TAZ {1,

such that for all A"e 2AZ the element A’ (1,t,(A") is the inverse image of A’ by the
canonical projection Z*A4X* —» Y AZ.

With these notations one then has for any 4 € SL,(@) the operator Tk 1 E(A) on
-1,

M (Z) given by

1
k=3

@) WT_ (= 3 L A)h], AL e M, ().

Ak A’ €3\ZAZ 2

The operator Tk_1 E(A) is well-defined and maps M ,(2) to Mk . (¥) and
1, -

k=% z
cusp forms to cusp forms (see e.g. [Shi]).

Lemma 3.1. Let the notations be as in Theorem 1. Let X be a subgroup of finite
index in I' nI'(4m). Then, via the identification Jk‘m(Z)sz 1(2) ® Th,, one has
"7

Hypr= Y T 1Z(A)®{ ) IZZ\ZZCZZIUm(i)}-

Aes\P(ayr T EeZ2\P- Y(A)n4/Z2

Proof. Let heMk_,(Z), 0 e Th,. Writing out the definition of H, ,, ;(4) one
finds z

h® O HemsB= 5 (h® Olynt
(3) EeXi\4

=) ) > (h ® Oli.m,

AeZ\P(4)/E A’ €eX\ZAY ¢eZ2\P~Y(A')nd

where we have used once more the fact that a complete set of representatives for the X’-
left cosets in a fibre y,'(ZB) of the canonical map y, :2’\4 — Z\P(4) is given by a
complete set of representatives for Z?\P~*(B)n 4 (cf. the proof of Proposition 1. 1).

The inner sum on the right hand side of (3) may be written in terms of the
operators U, (&) as

hlk_%A’®{ > \z*\zZ*¢Z%| 0| Um(é)}-

EeZ2\P~1(A')n4/Z2
Let A'=G,AG, for suitable G,, G, € 2. Then
(4)

) |Z\Z*£ 22U, (8) = ) |Z\Z*£Z%| U, (G, £G).

¢eZ2\P~1(4")n4/2? £eZ2\P~ 1(A)n4/Z?
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Now, using that 0|, sz—(%() for all Gz[: ;]el"(4m)22, one easily

2" . vi
(ct+4d)
verifies that for a & on the right hand side of (4) one has

Um(GléGZ)ztA(A,) Um(é)‘
Thus the inner sum on the right hand side of (3) equals

ta(A)h| A" ® D |Z*\Z*&Z3| 01U, (&),
k=3

EeZ2\P~ 1(A)n4)/22

and in view of the definition of T, (A) (in (2)) this is exactly what we had to prove.

b~

Equation (2) of § 1 combined with Lemma 3.1 now immediately implies:

Corollary 3.2. Let the notations as in Theorem 1 and let X be any subgroup of
finite index in I' "I'(4m). Then, for any integer k,

(5)

tr(Hy o r(4), S D)= I2\T|7" Y. e(A) (T, (A), Skﬁé(Z))'g,,,(A,A),

AeZ\P(4)/x k=32

where Tk_1 (A) is the operator defined by (2) and ¢(A) as in § 1, (5).

5 Z

We shall now apply the Eichler-Selberg trace formula for the traces of the
operators 71_1 z(A) occurring in (5) (cf. [Shi], or for k=3, [O]). Using our notations it
reads z

(T, ()5,

=) -t (T, (A.M, ()
2" 2z
(6)

= Y Lws(A)1,(4)e(4)

A €ZAZ/~m £

Here t,(A’) is as in (1), €(4’) as in § 1, (5), I} p 5(A"), “~,. 5 as explained in Theorem 1,
and one has to sum over a set of representatives A’ for the “~,, ;"-equivalence classes of
AL,

Note that we have not quoted the Eichler-Selberg trace formula in exactly the
form given in [Shi] or [O]. Apart from some obvious simplifications coming from the
assumption X < I'(4m) (which also implies that our “~, ;” coincides with the notation
of “Z-equivalence” in the sense of the Eichler-Selberg trace formula) we have made use
of our Proposition A. 1. Using these remarks the reader will find it easy to identify (6)
with the formulas given in the literature.

Substituting (6) into (5) and using.

£(4) gm(d, A)=e(A) 14(A) gu(4, A)), (A€ ZA2Z)
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(cf. the proof of Lemma 3. 1) we obtain

(o () SemD) = IE\I1 Y e 0(Ty_, (A My (5)) gu(d, 4)
2" 2

AeX\P(4)/Z

D = Y T Ls(4)) gn(d, A)

A’ eP(d)~m,z

Theorem 1 is now a consequence of (7) by noticing that M, k(Z)=O for
5-

k=3, that g,(4, A) only depends on the ~, r-equivalence class of 4, and by the
following

Lemma 3. 3. Let X be a subgroup of finite index in T, and A € SL,(Q). Then
@®) |-’\:\F|_l Z Ik‘m.Z(A,)ZIk,m,F(A)'

A’ eSLAUQ)/ ~m,
A’ ~mrA

The easy proof of this is left to the reader (for non-parabolic A the equation (8) is
almost obvious; for parabolic 4 one needs the identity ) ¢ (—Zi> =nc(z) for ze C,
t(modn) n

n e N, where c(z) denotes cotnz if z¢ Z, 0 if z € Z).

We observe that the preceding arguments also give formulas for k=1 and k=2,
in particular (specializing (5) to k=1)

9) tr(H1,m,r(A), Sl,m(r))=|2\rl_l Z &(A) tr(Tllz,E(A)’ SI/Z(Z))gm(A’A)

AeZ\P(4)/2
and (inserting (7) for k=2 in (5) and applying Lemma 3. 3)

tr(H,, . r(4), S5,,(I') =(Same formula as in Theorem 1 with k=2)
(10)

s PAVA I Y e(A) tr(Tyy 5(A), My2(2)) ga(4, A),

1Y P(4)/E
where X again denotes any subgroup of finite index in I' n I"(4m).

If I' is a congruence subgroup of SL,(Z), then one can choose X to be a
congruence subgroup also, and then one can apply the theorem of [S-S], which gives an
explicit description of the spaces M,,,(X), to obtain from (9) and (10) “ready-to-
compute” formulas for tr (H, ,, (4), S..(I')) with k=1 or 2.

Finally, we mention an interpretation of the correction term in (10) which is
helpful in explicit calculations (cf. [S-Z]). Denote by J§ ,(I') the subspace of functions
¢ (1, z) in

M,(F"T'(4m) @ Th,

(here M, is the space of complex conjugates of forms in M, ,) satisfying ¢|¥ ,,{ = ¢ for
all £eI”’, where the action |¥,, is defined like |, , but with (ct+d)™* replaced by

lct+d|™! (e, |¥,, is m ® l1/2.m)» and define an operator Hf,(4) on J¥,(I') by

¢— ) dlin

4
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Then the arguments of this paragraph can be repeated to show that the second term in
(10) is the trace of Hf ,,(I') (we leave the details to the reader), so (10) can also be put in
the form

tr(HZ.m.[‘(A)’ S2,m(r))
(11) = Y Lnr(A) g A+ tr(HE,(4), JF (D).

AeP(4)/~m,r

§ 4. Evaluation of G, (¢)

Throughout this paragraph we shall use the following notation: if f(x) is a
periodic function on Z’, then /v, f(x) denotes the average value of f, i.e.

mxf(x>=13i;r;( ICT 1)

[x|=N Ix|=N

=|L\Z'I"" ) f(),

xeL\Z"

where in the second formula L £ Z" is any lattice such that f(x + y)=f(x) for all x € Z",
ye L

The main result of this paragraph is summarized in the following

Theorem 2. Let (=A[x,]s€ # (@), let t=tr(A) and Q, the binary quadratic form

Qullh )=b*+(d—a) A —cp? <A=[a ﬂ)

c

Let ¢(Q )= —1 if Q4 is negative definite and ¢(Q,)= + 1 otherwise. Then one has the
following formula for the trace G, () (cf- §1, (4):

s sign(t—2) (t—2)"2 Ao, e(t—TE QA(x+x0)+m}i°D if 142,
G,(&)=

s™-me(Q,) sign(t+2)(t+2)* Ao, e <;(—t.1;7) Q. (x+mxo)+

;‘°l) if 14 —2,

the two expressions on the right hand side being equal for t+ + 2.

(Recall that (t—2)'* and (t+2)"* denote those square roots which are positive or have
positive imaginary part.)

To make Theorem 2 completely explicit, we need to compute &/, e(p(x)) where
p(x) is a polynomial of degree <2 with rational coefficients. As usual with Gauss sums,
one can reduce to the case that p(x) is a homogeneous quadratic form. Such a form can
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. 1 . . . .
be written p(x)=M Q(x) where M is a natural number and Q is a binary quadratic

form with integer coefficients which is primitive modulo M, i.e.:
Q4 W=ai’>+bip+cu* with (a,b,c, M)=1.

The formula for o/», e(p(x)) in this case is an easy consequence of the classical
calculations of Gauss sums in one variable. The result, which will be proved below, is

Theorem 3. Let Q be an integral binary quadratic form with discriminant A and M
be a positive integer such that Q is primitive modulo M. Then

Q(x) 1 a4, A/A1
® o e (V)’M 2 (I) (M/w, m) 4%

where A is any integer represented by Q and prime to M and the sum extends over all
integers Ay such that |A{|=(M, A) and A, A/A; are both congruent to 0 or 1 mod 4.
(Note that the sum has at most two terms.)

The first step towards Theorem 2 is to derive explicit formulas for the operators
U, (&) (and to prove that U, (&) actually maps Th,, to Th,,).

Proposition4.1. Let A= [z b] € SL,(@), xo=(Ag, o) € @*. Then one has for

d
any 1<9<2m:

2m
Gm.gl Um(A [xo]) = Z Kg,u 0m.a’
o=1
where

1
(2) K‘,,,=(2mci)'l/zl_2 Z Z e(___‘ [aQIZ_zgl(o_/_zmAO)
o’'mod2ml @' mod 2mcl 4mc
a'=ac(2m) o' =9(2m)

+d(0’ —2mig)*] + (0’ —mi,) ,uo>

if c+0 and
bd(c' —2mi,)?
3) K,,=d 1217 y o (PA=2MA Lt i) e
' a’mod 2ml 4m
¢'=a(2m)

ld(¢’ — 2mAg)=1e(2ml)

if c=0. Here | is any positive integer such that |A and lx, have integral entries.

Note that (2) and (3) immediately give formulas for the trace of U,,(A[x,]).
Namely in (2) one has to sum over all ¢'mod2ml in the first sum and over all
o'mod2mcl with ¢’ =¢'(2m) in the second sum. Writing 4 for ¢’ and summing over
A+2mu, pmodcl in the second sum one finds

1/2
@) trUn(ALx]) = <‘3’E) ¢ (Tﬁ 33— mzouo)

t—2 -1
xdvl’ﬂe(—ﬁ%————a /lu+in£,u2+<
4dmc c c

2m
p lo‘*‘#o) A+ 4o e /1>
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if ¢+ 0. A similar formula can be derived in the case ¢ = 0; however, we shall need such

formulas only in the case 4= —1 or tr(4)=2 <i.e. A——-I:(l) ﬂ) Here (3) simplifies

and one easily sees

b(A—2m o)
2mslv, e<l—1"—19l+(z—mxo)uo> if o€,

1 b 4m
rUn ([0 1] [x"]) - {0 otherwise,

_{—21‘ if mxqeZ?,

tr Up,((— 1) [x0]) 0 otherwise.

Proof of Proposition 4.1. By definition of U,,(4[x,]) we have

9m,9|Um(A[xo])=l_2 z 0m,g|1/2,m(A[x0] [4, u]).

A,umod!
We consider the case ¢+ 0.

Observing that 0, 4 is invariant with respect to [Z? hence invariant by
z+1— z, we obtain

_q ! SX
(6) OmolA=Y M7 | e<——»)-(0,,,_a|A)(r, x)dx.

seZ 0 l

Now

e(“s‘:{)wm,am)(n N=(ct+d) Y e(P(x),

r=e(2m)
where
r xr mex?  sx
) a
Using Ar_;_c(cr+d) we find
RO R X
P(x)=1 im +4mc(ar 2r(s/l) +d(s/1)?)
mc r (s/) (ct+d)\?
- Xx—3—+ .
ct+d 2me 2mc

Inserting this in (6) gives

(D) O A=Y geempn Y e(-1~ [a0’2—29’(S/l)+d(S/l)2]>'C(S)

seZ @'mod 2mcl 4mc
e'=e(Zm)
with

& mc r (s/D)(ct+d)\?

— -1/27-1 _ _ p

C(S) (Ct+d) l g r‘—_‘g%mcl) e( Cf+d (x 2mc+ 2me ) X

_ , 5

- “y2p-1 [ M€ 0 /D)(ct+d) i

=(ct+d)™"?1 _jw e( crrd \ X T ame S X

=Qmeci) V2171,
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From (7) we obtain
Om,glA [xo] _ Z q(s/l)2/4m+}.0(s/l)+ml(2) CS/HZ"'AOe((S/l—t—m/lO) ﬂo)

seZ
1
x(Q2mei) 2ty e<v~—~[aQ’2—2Q’(S/1)+d(S/1)2]>,
¢’mod 2Zmcl 4mc
¢'=e(2m)

and hence, replacing s by s—2mlA4,,

O olAlxo] =Y. qe#misitx 2mei)™ 217 Y f(0), 9),

seZ ¢'mod 2mcl
e’ =e(2m)
1
flo, s)=e (4mc [ag* =20 (s/l—2mig)+d(s/l—2mAg)*]+(s/l—mi,) u0>.

Finally
Om,QI(A [xo] [;t’ N])
_ Z q(s/1+2m/1)2/4m(:5/l+2""1 e <§B> X (2mei) 127t Z (--),

seZ ! o
and after summing over x mod ! only the terms with [|s survive.

Thus, replacing s by I(s—2m41), we get finally

O o Un(A[xo)= Y, @m0 x @med) 2172 5 % f(e', l(s—2m4)).

seZ Amod! ¢'mod2mcl
e’ =e(2m)

Here the coefficient of ¢*”/*™(* only depends on s modulo 2m, which shows that
O, olUn(A[x,]) is an element of Th, and gives the formula stated in the proposition.

The case ¢=0 is left to the reader.

In order to bring the formula (4) into a more useful form we obviously need some
lemmas on Gauss sums. We shall derive these lemmas from the transformation formula
in the foregoing proposition.

Proposition 4.2. (i) Let A,B,C,D,E be rational numbers, A+0, and let
A=B*—4AC. Then one has

Av, ,e(AA>+Bip+Cpu*+Di+Ep)

®) 2
) 1 B A D . BD-2AE
=(2A4i)1? . A2 At P A )
(240) e<4A > Poin <4A'1 YV YRy "‘)

(i) Let Q be a rational binary quadratic form with discriminant A+0, let ye Q@
and x,e€ Q2. Then

9) ,wxe(Q(x+yxo)+‘;“’Dﬂ(@mﬂm,‘eGQ(x+xo)+v
(e(Q) as in Theorem 1, i.e. e(Q)= —1 if Q is negative definite and ¢(Q)= +1 otherwise).

Xo
X
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. b
Proof. (1) Let xo=(4¢, o) € @2, M=[Z d:|eSL2(@) with a,c+0, let
0 —1 —c —d
S—I:1 O],henceSM—[ . b]'

The formula (8) will result from the identity

(10)  Up(S) Un(M[x5]) = Uy (S M [xo]), where 82(“”1?)“2 (T +d)'?

ct+d (at+b)'?’

by applying the transformation formula (2) in the case m=1.

2
Namely, let 0, ,U,S)=) K,,(8)0,, and similarly K, ,(M[x,]),

K,,(SM[x,]). Then (10) gives  °~"
‘él Ko.(8) K,o(M[X])=£Kg.0(SM[x,]),

and writing this out we find (I denotes a positive integer such that /M, Ix, are integral):

Qi) 12Qci)y 12172 Y Y, ul, Q)
1 o'mod2! @¢'mod2cl
¢’'=0(2) @' =0(2)

SIS

=¢(2ai)" 12172 Y Y v(d )

oc'mod 2! ¢'mod2al
6'=0(2) ¢'=0(2)

u(d’, @)=e <% [ag”? —20'(6" = 24o) +d(0' —246)*1 + (0" — 4) #o>,

1
(o, @)=e <E [—co*—=20'(0'=24p)+b(a" —24p)* ]+ (" — Ao) uo>,

i.e. (setting ¢'=2pu, ¢'=4 on the left and ¢’ =2pu, ¢'=24 on the right)

- . d a 1 d A d
(20)7Y2(2ci) V22| e (E ig) Ay, e <% AZ—Z Au+; u2+~;0~ A+2 <_Z %‘*‘#o) u)
an b 2 b 24 b
- _[c 0
=¢(2ai) Y?|a| e (5 /1(2,> Av,, e ! <5 /12+5 /hu-a #Z_T A+2 (5 io—u()) u).
Now assume that B=0. Then taking in (11)
a=—44B™' b=AB" 1

=-DB', py=-E—CDB™!
c=—B"' d=-CB" fo=-DB", Ho=5E-CDB

and checking the factors in front of the Gauss sums in (11) yields (8).
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N ND
If B=0 then choose an integer N +0 such that id and 4 are integral, write

Avy, (AP +Cp>+ DA+ Ep)=olv, , e(A2*+ NAip+Cp*+ D+ Ep)
and apply (8) to the right hand side of this.

(i) Applying (8) two times, where in the second application the A plays the role

of the A in (8), yields after a simple calculation the identity (9) for y=0 and for all Q
with Q(1,0)+0. But since the class modulo GL,(Z) of any quadratic form with 440
contains such a Q, and since it obviously suffices to prove (9) for one element of a given
class modulo GL,(Z) in order to prove it for the whole class, we have proved (9) in the
case y=0.

X1

If y+0, then let x, € @2 such that B(x,, x) = N for all x, where B denotes the

)

bilinear form associated to Q. With this x, we may write

YXy1+Xo
X

Xo

A, e(Q(x+Axo)+ «

>=e(V2Q(xo)) x v, e (Q(x)+

and by the case we just have proved this equals

8(Q) 47 e(? Q(xo) x v, € G 0x+7x, + xo)>

~o@) 4% (1 (Qw+ 066 x e (§ Q030+ L BOxy xx0))-

Now using the easily proved fact that B(x,, x)=4 io
obtains (9).

As an application of the formulae (8), (9) we give the

for all x one immediately

Proof of Theorem 3. The Gauss sum on the left hand side of (1) depends only on
the SL,(Z)-equivalence class of Q and furthermore, using standard Galois theory, it is
easily seen that it suffices to consider the case of primitive Q and Q =0 if 4<0. Thus
we can restrict to Q(4, u)= AA*+ Biu+ Cu® with A relative prime to 4 and A=1,
B=C=0if 4=0.

If A=0, then by (8)

o)\ 2\ (2i\12 —MA2\_ (140) (1 +i™M)
Jﬂ?)xe<7>—&{vle<ﬂ>—<ﬁ> ﬂvle( 4 >—— ) I/M

which may be written as

ot e<%i4’9)=% > A,

1
|41]=M,4,=0,1mod4

i.e. in the form (1).
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If A+0, then by (9)

Q(x)\ 4'2 M
ﬂi}x 4 (_]\/[-> —"M‘* dl* (Z‘ Q(X)) .

Now Q(4, p) is SL,(Z)-equivalent to a form which is congruent modulo 4 to 442 if 4

ad . . . .
is odd and to AA? +—4~ u? (« an integer with a4 = — 1 mod 4) if 4 is even. Hence
Q(x)\ 42 M A 1 if 4 is odd,
ﬂ’()x e (7 7 SZ{’U)_ e T 12

A4 . .
.cz{rz:u e <9¢4_ ;ﬁ) if A is even,
i.e.—by the one variable case proved above—

Q(x)\_4"* (M, 4 A\ Ao\ .. [V if 4isodd,
‘Q/“"e<M )' a2 lea)\aiona) % 140

|40l =|4]/(M, 4) 5 if 4 is even,
40=0,1mod 4

where ¢ =sign(4).

Now it is an easy exercise to check that the last equation can be written in the
form (1). (Consider the six cases according as 4 is odd or even and 4/M, 4) is odd,

Y|
exactly divisible by 2 or divisible by 4, and make use of (Z):l.)

We can now complete the proof of Theorem 2.

Proof of Theorem 2. To begin with we consider the case ¢ +0, t+ 2 (notations as
in the statement of the theorem).

First of all replace A by A—mp in the formula (4) for the trace of U,(A4[x,]) to
obtain

/2
trUn(A[x0]) = (21:10) (m_d Ag— mioﬂo)

1—d d+1

Next apply to this the inversion formula (8) which yields
2mc\'?  [(md
tr U, (A[x0]) = < i > (‘“ A _mlo#o>

t=2 \"? [—mc[1—d 2
X chl ¢ t—2 c Ao+ Ko

= 1—d
x“””“e(?ZmE{C*2+(“—d)iu—bu2+2c( - Ao+uo)1
d

a—d [1— 2 (d+1
e (o) g (e )
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Some simple calculations show

V2 (p—2 \'/2 A si 5 12
: ot =¢(A)sign(t—2)(t—2)

(e(A) as in (1. 5)),

C
a—d (1—d t—2  [d+1
2c|:7< : aoﬂto)—mm( : Ao—u(,)}—2bzo+[(a—d)+r—2]uo.

Thus the last expression for tr U,,(A[x,]) equals
tr U,,(A[xo]) = &(A) sign(t —2) (t —2)'/2

X vy e (t—”_—'% {c(ht o) +(a—d) (1 o) (u-+ o) = b (u+ 2o ~(t=2) (zoi—uou)}>,

and using G,,(&)=¢(A) tr U,,(A[x,] s) =s"¢e(A) tr U,,(4[x,]) we see that we have proved
the first equation of Theorem 1—of course, for the present only in the case ¢+ 0. But
G,.(¢) depends only on the SL,(Z)-conjugacy class of A4, the same is obviously true for
the expressions given for G,(¢) in Theorem 2, and every AeSL,(@), A+ +1 is
S L,(Z)-conjugate to a matrix with non-vanishing left lower entry. Thus we deduce that
the first equation in Theorem 2 is true for all 4+ —1 (and with tr 4 % 2).

If A=—1 or tr4=2, ¢=0, then the corresponding formulas of Theorem 2 are
easily verified by using (5), and again we can drop the assumption ¢=0 (because any
S L,(Z)-conjugacy class with trace +2 contains an upper triangular matrix). Finally, the
equality of the two expressions for G,,(¢) in Theorem 2 follows from (9) of Proposition
4.2. This completes the proof in all cases.

Appendix: Conjugacy classes in the double cover of SL, (R)

For A= [z Z} € SL,([R) define J(A, t)=(ct +d)"> Recalk that SL,([R) consists

of all pairs (A4, w(r)), where 4 € SL,(R) and w(r) is a holomorphic function on $
satisfying w(t)? = J (4, 1)%, i.e. w(t) = + J (4, 1), together with the composition law
(4, w(x))- (A, w(T))=(4 A", w(A' 1) W (7)).

Finally recall the definition (cf. § 1, (5))

—1if ¢c<0 and tr(A)<2, % %
s(A)={ (A=|:c *]ESLZ(R)>.

+1 otherwise,
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Va7
Proposition A.1. For a € SL,(R) define
e(@):=¢e(A)s (x=(A4, 5 J(A4 1), s==+1).
a4
Then g(x) depends only on the SL,(IR)-conjugacy class of a, i.e.

(1) o) =g(uap ")
~—
for all o and p in SL,(R).

Remark. Equation (1) is obviously equivalent to

J(M, AM ') J(A, M~ '1) J(M, M~ 7)"!

2  e(A)=e(MAM™Y) T AN

(x=(A, %), u=(M, *)). In terms of the cocycle a(-, -), introduced in § 0, (2), this can also
be written as

3) e(A)cMAM ™', M)=e(MAM ') a(M, A).
. N
Proof of Proposition A.1. Let € be any conjugacy class in SL,(R). It suffices to

TN
show that & contains one element o = (4, *) such that (1) is true for all u € SL,(R), i.e.
that (2) is true for all M.

If # contains only elliptic elements, then let o be one of these. It is clear (e.g. by
continuity) that for any M e SL,(/R) the signs of the left lower entries of 4 and
MAM™! are equal, i.e. e(d)=e(MAM™"). Thus, for t=M1,, where 1, denotes the
fixed point of A4 in the wupper half plane, equation (2) becomes
J(A,t9)=J(MAM™', Mt,), and this can again be verified by a simple calculation or by
continuity considerations.

If the elements in € are not elliptic then € contains an element « where the left
a

0
the left lower entry of M is 0. Otherwise let M=[: :], MAM“=|::, ::| and
T=Mit, (t € R). Then (2) becomes

[ua?i+uab+v)/t]"* [a” "1V? [ui+v/t] 1?2

C, 1/2
a__ SO
u(uit+v)

-1 if ¢'<0, a<0,
+1 otherwise.

lower entry of 4 vanishes, say A =|: Z_ 1]. For this 4 equation (2) is easily checked if

1=e(MAM™Y)

Considering this for t — oo one obtains
eMAM Y= {

But this is correct since tr(MAM ) —2=tr(4d)—2=a"'(a—1)%
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