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On singular moduli
Dedicated to J-P. Serre

By Benedict H. Gross at Providence and Don B. Zagier at Bonn

0. The values of the modular function j(z) at imaginary quadratic arguments ©
in the upper half plane are known as singular moduli. They are all algebraic integers.
In this paper we will study the prime factorizations of the differences of two singular
moduli. These differences turn out to be highly divisible numbers. For instance, we will
determine the set of primes dividing the absolute norm of j(z) — 1728 = (1) —j (i) (and
the multiplicities with which they occur); they turn out to be contained among the
prime divisors of the positive integers of the form d— x2, where d is the discriminant of
7, and hence smaller than or equal to d, e.g.:

i <1i'_2____ 1/163>_ 1728 = — 26 36 72 112 192 1272 163.

1. Let j(z) denote the elliptic modular function on the upper half plane $. This
is a holomorphic function which is invariant under the action of the modular group
I'=PSL,(Z) and has a Fourier expansion

1
1.1 jk =%+ 744 + 196884 g + 21493760 ¢> + --- =¢_I+ > g
nz0
with g =e?"* and ¢, e Z for all n.
As a function on $, j(1) enjoys the following remarkable property:

Whenever © lies in an imaginary quadratic extension K=Q(t) of the rational
numbser field, j(7) is an algebraic integer in an abelian extension of K. If at? +bt+c¢=0
where a, b and ¢ are integers with g.c.d. (a, b, ¢)=1, and we define

d=disc (1) =b%—4ac,

then j(7) is an integer of degree h = h(d) over Q. Here h(d) is the class number of primitive
binary quadratic forms of discriminant d, or equivalently, the order of the class group

of the order Z [b +2W]. The conjugates of j(z) are the A values j(z'), where 7’ ranges

over all roots of primitive quadratic polynomials of discriminant d. Finally, the field
H=K(j(t)) is abelian over K and “dihedral” over Q; it is the ring class field of conductor
f over K, where d=dy f* ([3]).

Now suppose d, and d, are two fundamental discriminants which are relatively
prime, and define D=d,d,. Let w, and w, be the number of roots of unity in the
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quadratic orders of discriminants d, and d, respectively, and let 4, and 4, denote their

class numbers. Consider the product
4

1.2) Jd,, d2)=( : ]I_[I ] (j(Tl)—j(Tz))>W

discti=d;
where [1;] denotes an equivalence class modulo I'. Note that this is the absolute norm
of the algebraic integer j(t,) —j(t,) of degree h, h,, provided that d,, d, < —4. In those
cases, J(d,, d,) is an integer which depends only on d, and d,; in general, J(d,, d,)? is
an integer and our first result is a specific formula for it.

For primes / with (d‘—d3>=t= —1 we define

I
<5’li) if (,dy)=1,

e()=
(d72> if (I,dy)=1.

If n=]T I with (?—)#: —1 for all i, we define e(n) =TT (/).

Theorem 1.3. J(d,,d,)*’=+ T[] n*™.

x',l:l’,;l:ol
x2+4nn’=D
n . .., D—x? D
Note that ¢(n’) is well-defined, for if / divides —7 then 7 # — 1. Also note
42

that since ¢ (D 4x >= —1 we could replace ¢(n’) in the formula by — ¢(n). In fact, one

can replace &(n’) by sign (m) —"% = sign (m) Zz , where m is any integer prime to D
which is represented by the binary quadratic form [r’, x, —n].
If neither d, nor d, equals —4, the sign in 1.3 is always +.

We may rewrite 1. 3 in the form )
(1.4 Jd, dy =% I F<DZX )

x2<D
x2=D(mod4)

where
1.5) Fm)= [] n*™.

nn’'=m
n,n’>0

An interesting fact about F(m) is that it is either 1 or the power of a single prime /.
The latter case occurs if / is the unique prime dividing m to odd exponent with

e(l)= —1. More precisely, if
m=[2a*1 2ar . [2as gh . gbr

with e(/)=¢(l;)= —1, e(g;)= +1, then F(m)=]@*DCE:+D &+ Tp particular, we have

Corollary 1.6. If | is a rational prime dividing J(d,, d,)* then (%’—)4: 1, (d—lz>=¢= 1,
—x? . D .
YR In particular, l§—4—; if D=1 (mod 8)

then 1<-§ and if d,=d,=5 (mod 8) then 1< 196-.

and | divides a positive integer of the form b
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As an illustration of the theorem, we take d, = — 67, d, = —163 (the last two
discriminants with class number 1). Then

1+i)/67 i1/1
J(_67, _163)=j( +;f)_j<1+l2 63):_2153353113+2183353233293

=215.37.5%.72.13.139.331,

2
while F (D 4x ) for |x| odd and less than |/d,d, =104.5... is given by the following
table:
— 2 2 —_ 2 —_ y2 —_ 2 —_ 2

" D4x F(D4x) x| D4x F(D 4x> x| D4x F(D4x>

1 2.3.5.7-13 1 35 23.3.101 1 69 22.5.7.11 1

3 23.11.31 1 37 22.3.199 3?2 71 2.3.5.7% 1

5 22.3.227 32 39 2.5%2.47 22 73 2.3.233 1

7 2.32.151 22 4 2.3.5.7-11 1 75 2%.331 331

9 2.5.271 1 43 2%2.34.7 7 77 2%.3.13 1

11 2%2.33.52 32 45 2*.139 139 79 2.32.5.13 1

13 27.3.7 1 47 2.3%.11 2 81 2.5-109 1

15 2.7.-191 1 49 2.3.5.-7 1 83 2¢.32.7 7

17 2.3.443 1 51 2%2.5.13 1 85 22.3.7-11 1

19 2*.3.5.11 1 53 22.3.132 3 87 2-419 p

21 22.5.131 52 55 2.3.329 1 89 2.3.53 1

23 2.3.433 1 57 2-7-137 1 91 22.3.5.11 1

25 2.32.11.13 1 59 2%2.3.5.31 1 93 23.71 24

27 2%.7%.13 13 61 23.3%2.52 22 95 2-3.79 1

29 23.32.5.7 1 63 2-11.79 1 97 2.33.7 1

31 2.3.5.83 1 65 2-.3%.31 1 99 23.5.7 1

33 2.1229 22 67 23.3.67 1 101 22.32.5 5
103 2-3.13 1

2
X >=1 is due to the fact that F(n)=1

<The large frequency of x with F (

' - -163
whenever /°¥||n for at least two primes / with <—1—6§> = —1, and (—) = —1 for all

/ l
I< 40.)

) The cases of Theorem 1.3 when d; = —3 or —4 give formulas for the norms of

Jj(©)* and (j(r)—1728). We have tabulated the results for all known fundamental
discriminants with A=1 or h=3 (and for one discriminant each with A=5, 7) in the
table on the next page (Table 1). They agree with the computations of Berwick [2],
who in 1928 computed j for all known discriminants with <3 and gave the ful
factorization of j and j— 1728 in the appropriate quadratic or cubic field.

Besides tabulating the prime factors, Berwick made several conjectures on con-
gruences satisfied by j(r) and j(r) —1728. We will prove all of these divisiblities; for
€xample:

92 Journal fiir Mathematik. Band 355
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@7 {If |d|=3 (8) then j(r)=0 mod 2'%.

If |[dj=1 (3) then j(z)=1728 mod 3°.

We shall also present some refinements and generalizations of theorem 1. 3 in the
course of the paper. When d, =d, it is natural to replace the absolute norm of
j(z,) —Jj(t,), which is equal to zero, by the discriminant of the integral polynomial satisfied
by j(r). We will give a formula for the discriminant, which, in turn, determines the
index I of the order Z[j] in its integral closure. This index, also given in Table 1,
grows rapidly with d; for example when d= —71, so h="7, our formula gives the value
74211211321171323831641%472 53259361267, a number which was found by McKay
and Ford by a computer calculation ([15], p. 349). In general, we show all prime
factors / of the discriminant are less than or equal to |d|. Finally, we shall prove some
results on ¢, (x,y), where ¢, is the m-th modular polynomial, at singular moduli.
For m=1 we have ¢,(x, y)=x—y, so this generalizes our previous results. In par-
ticular, we will show that any prime dividing ¢,,(j(t,), j(r,)) has residue characteri-

m*dyd, m*D m?D — x?

stic I 7 3 more precisely, / must divide — for some x with

|x]<m [/D— (see Table 2 for m=2).

Table 2. Factorization of ¢,(j,,j,) for 0>d;,d,> =20, hy=h,=1

d, d, ¢2U15J2) d - dy ©2U1,J2)

-3 -3 —212395% -12 -8 —2105923.29247.71

-4 -3 —21239116 -12 -1 —21911.17%241283.107 - 131

-4 -4 0 -12" -12 —28395%11217223

-7 -3 -3%5°173 —16 -3 2939233473

=7 -4 32073192 -16 -4 0

=17 -7 0 -16 -7  =3297319231.103

-8 -3 —21259233 -16 -8 —2107623.31.47.79-103 - 127
-8 —4 21376232312 —-16 —-11 —2%7°113192127 - 151 - 167

-8 -7 —5%7313331. 47 —-16 -12 —273%11623.71.167- 191

-8 -8 0 —-16 —16  —263207619%223.31

—-11 -3 _212113173293 —-19 -3 _21239413533

-11 -4 —212711.19243?2 -19 —4  —21232019.672

-11 -7 —7213%17219%41.61-73 -19 -7  —32013%19.31297

-1 -8 —2127613329279 -19 -8 —21213329.31.37.71-.103-127 - 151
-11 -11 —2127611.13317219 -19 -1 —2'213319.292412109 - 173 - 193
-12 -3 0 -19 —12 —2193929259.107-179.227
-12 —4  2193%9112232472 -19 —16  —2932°19.31.59279.223

-12 -7 —3%95%17259.83 —-19 —19  —21232013319.29.31237

The body of this paper is divided into two parts (§§ 2—4 and §§ 5—7), as we
have two proofs of the above results which are of an essentially different nature. The
first method is algebraic, and works at the “finite primes”. It relies on the work of
Deuring on the endomorphism rings of elliptic curves, and exploits the connection
between the arithmetic of maximal orders in quaternion algebras of prime discriminant /
over Q and the geometry of supersingular elliptic curves in characteristic /. Some of
these methods were already used by Deuring in [6]. The second method is analytic, and
works at the “infinite primes”. It is based on the calculation of the Fourier coefficients
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of the restriction to the diagonal <= H x$H of an Eisenstein series for the Hilbert
modular group of 0(1/5), and was suggested by a paper of Siegel [18]. Both methods
may be viewed as the special case N =1 of the theory of local heights of Heeger points
on X,(N). The general case, and its relation to the derivatives of L-series and to forms
of half-integral weight, will be treated in forthcoming papers [9], [10].

2. Let W be a complete, discrete valuation ring whose quotient field has
characteristic zero and whose residue field is algebraically closed of characteristic /> 0.
Let © be a prime of W, and normalize the valuation v so that v(n)=1. We will adopt
the convention that v(0) = + co.

Let E and E’ be elliptic over W with good reduction (mod =n). These curves have
plane cubic models of the form

E: y*+axy+ayy=x*+a,x*+a,x+ag,

E': y*+a xy+ayy=x>+a,x*+a,x+a
as in Tate [20], which will be our basic reference in this section. The coefficients a;, a;
are elements of W, and the discriminants 4, A" are elements of W*. Let j=j(E) and

J'=Jj(E") be the modular invariants of the two curves; these are independent of the
model chosen, and we have the identity

2 .3 12 .3
i _C6Ca —C6 Ca
2.1 =) =718 44

For each integer n>1, the set Iso,(E, E’) of isomorphisms from E to E’ which
are defined over the ring W/n" is finite of order 0,2,4, 6,12, or 24. We define

2.2) i(n) = Card (Is02,l (E, E")) .

in W.

The main result of this section is the following

Proposition 2. 3. v(j—j)=3 i(n).

21

Note that this formula refines the well-known result that v(j—j')> 0 if and only
if the curves E and E’ are isomorphic over the algebraically closed field W/xn. For the
rest of this section, we shall assume that an isomorphism exists (mod ); otherwise,
both sides of 2. 3 are equal to zero.

Proof. We first assume that /> 3, so v(1728) = 0. Since 1728 4 =c, — ¢, at least
one of the quantities c,, ¢ must be a unit in W. We may choose models for E and E’
with a,=a;=0, a,=a,=0, and ay;=a3=0 in W. Then c,=—2*3a, and
ce = — 25 33ag; hence one of the coefficients a,, a is a unit in W.

Since the curves E and E’ are isomorphic (mod 7)), we can solve the simultaneous
congruences:

— 4 4

a,=u’a
* s, (modm)
ag=u’ag

for a unit u e (W/n)*. We have i(n) =1 if and only if these congruences can be solved
(mod n").
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Assume that i(n) 1. If a, is a unit, we may normalize a, =a, =1 and choose
(ag, ag) so that v(as —ag) is maximal. When i(n) 21,

() = 2 if ag=ag=0 (mod n"),
W= i ag%0,a,£0 (mod 7).

Hence, v(j—j')=v(ai —ad)=v(ag—az) +v(ag+ay) =Y i(n) as claimed.

If ag is a unit, we may normalize a5 =a, and modify (a,, a;) by a cube root of
unity so that v(a, —a;) is maximal. When i(n)>1,

i(n) = 3 if a,=a,=0 (modn"),
)1 if a, %0, a, £0 (mod 7).

Hence v(j—j") =v(ai — a})=v(a, — a,) + v{a, — {a,) + v(a, — {*a}), where { is a primi-
tive cube root of unity in W*. Hence v(j—j')=3 i(n) as claimed.

Now assume /= 3. The proof then splits into several cases; we will treat the case
when b, =b; =0 (mod 3), which is most useful in our applications, and leave the others
to the reader. Changing models, we may assume a, =a; =0, a,=a;,=0, a;=a3=0 in
W. The quantities a, and a; must then be units in W*, and we may change models to
insure a, =a; =1 and v(as —ag) is maximal. Then

v(j—j)=v(3%(a%—ad))=6v(3)+v(as — as) + v(as + ag).
The curves E and E’ are isomorphic (mod n") if and only if the simultaneous

congruences
3r
u4
uba

can be solved for u e (W/a")* and re W/n". If i(n)=1 then

(mod 7")
ag+r+r

m
=<

o~

2 if 3%0, ag=a,=0 (mod "),

6 if 3=0 (mod ="),
i(n)=
1 if 3%0, ag%0, agx0 (mod n").

Hence v(j—j") =Y i(n) as claimed.
Finally, assume / = 2. Again the proof breaks into several cases; we will only treat the
case when a, = aj =0 (mod 2) here. Changing models, we may assume that
a,=a;=0, a,=a,=0, and ag=a¢=0. ‘

Then a, and 4} are units; we may change models to insure that ay=a3=1 and
v(a, — a}) is maximal. Then

v(~) = v(22 (@} - ) = 120(2) + v(a, — 44) + 0(a, — {a}) + v(a, — {*a)).
93 Journal fiir Mathematik. Band 355
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The curves E and E’ are isomorphic (mod #") if and only if the simultaneous con-
gruences

25=0
3r=s?
w=1+2t (mod n")

way=a,—s+3r?
t2+t=ra, +r’

can be solved for u e (W/z")* and r, s, t in W/n". If i(n) 21, then
_ 12 if 2=0 (mod =),
imM=1 3 if 2%0, a,=a,=0 (mod =",
1 if 2%0, a,%0, a, %0 (mod n").
Hence v(j—j’)=3 i(n) as claimed.

Corollary 2.4. If (I—1) divides 12 and the curves E and E' both have supersingu-

lar reduction (mod &), then v(j—j') = 11T21'

Proof. In this case, there is a single supersingular invariant in characteristic /, so

E=~E’ over W/n. But then v(i—j')éi(i)=‘_11_21-

We are in a position to prove Berwick’s congruences ([2], pg. 66—76) for the
moduli j=j(r) of an imaginary quadratic argument of discriminant d. Put ¢ =27 [z]

and K=Q(1)=Q()/d).

Corollary 2.5. 1) If d< —4 and (?>=1 then

N(j) N(j— 1728) %0 (mod ).

2) If(g;)= —1 and 1< 12 we have:

j=0 (mod 2'%) =2,
j=1728 (mod 3°) =3,
j=0 (mod 53) =5,
j=1728 (mod 7%) =1,
1 1
Jj3(j—1728)> =0 (mod 11) I=11.
Proof. 1) If |~ )=1 then the elliptic curve E with invariant j has ordinary

/
reduction (mod =) for all primes dividing / in K(j). Furthermore, by Deuring’s theory
[5], Endy,, (E) = Endy (E) is the ring O of complex multiplications. When d< —4 we
have @™ ={+1}; hence j+0 (mod n) and j# 1728 (mod =).
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It
dividing / in K(j) [5]. When /=3, j'=1728 is the unique supersingular invariant; when
/=5, j'=0 is the unique supersingular invariant; when /=7, j'=1728 is the unique
supersingular invariant; and when /=11, j'=0, 1728 are the unique supersingular
invariants. This gives the congruences for /<2, using 2. 4.

2) If -4)= —1 then E has supersingular reduction (mod ) for all primes

When /=2, j=0 is the unique supersingular invariant, so 2.4 gives j=0(2'?),
using the fact that i(1)=12 in 2. 3. To obtain the full congruence, we will show that
i(2)=3. The ring Endy ,(E) is isomorphic to Hurwitz’s order Z | i, j, k, 1—_—’—1—;&&]
in Hamilton’s quaternions, and the subring Endy,.(E) has index4 and contains
2 Endy ,(E) (Gross). The elements of order 6 in Endy,(E) have the form Lé%—]—i—k,
and one of these will be contained in Endy, . unless all elements in that ring have even
reduced trace. But Endy ,.(E) contains (), which has elements of odd trace. Hence
i(2)=3 and j=0 (mod 2'%).

We now present a refinement of Deuring’s lifting theorem [5]. Let E, be an
elliptic curve over the ring W/n", and let «, denote an endomorphism of E,. Assume
that the subring Z [«y] £ Endy/,»(E,) has rank 2 as a Z-module and is integrally closed
in its quotient field. Another way to express this is to associate to the endomorphism
%, its trace t=oa, + ag and norm n=a, - oy which may be viewed as multiplication by
fixed integers in Endy,,-(E,). Our assumption is then that the integer d=1>—4n is a
fundamental negative discriminant.

On the tangent space Lie (E,), &, induces multiplication by an element w, which
satisfies the quadratic equation x2 — tx + n=0. Clearly, a necessary condition for lifting
E, with the endomorphism o, to W is the existence of an element we W which
satisfies

2.6) {ws wo (mod "),

wr—tw4+n=0,

as the induced action of the lifted endomorphism on the tangent space will give rise to
such an element.

Proposition 2.7. Suppose a w exists which satisfies (2. 6). Then there is an elliptic
curve E over W and an endomorphism o of E such that

a) (E, a)=(E,, ap) mod n";
b) « induces multiplication by w on Lie(E).
If (E', &) is any other lifting, there is a commutative diagram
E ——E
l, Jl
E’ a’ Et

of morphisms over W.
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Proof. Let I be the characteristic of W/n. By the deformation theory of Serre
and Tate [16], it suffices to construct a lifting of the /-divisible group E, of E,,
together with an endomorphism lifting o,.

When E, is ordinary over W/n, we may take E to be the canonical lifting. This is
the unique curve reducing to E, where E is the direct product of a group of
multiplicative type with an étale group. Since Endy (E) = Endy .- (E) = Endy . (E,), we
clearly have an endomorphism lifting a.

When E, is supersingular over W/n, we may lift E, to a Lubin-Tate group £ of
height 2 over W with endomorphism a[x]=wx+---. The uniqueness of this lifting
shows that it is algebraic.

3. We now turn to the algebraic proof of 1.3. We shall assume that d, = —p
is prime, which facilitates some of the computations, but the method works quite
generally. (See Dorman [7] for the details.) For d, we take an arbitrary negative
fundamental discriminant prime to p.

Let =1—+-2@, s0 O =Z[1] is the ring of integers in K= Q(]/ —p). Let j=j(1);

then H = K(j) is the Hilbert class field of K. If v is a finite place of H, we let 4, denote
the completion of the maximal unramified extension of the ring of v-integers in H, and
let W, denote the extension of A, obtained by adjoining a fixed element w which
satisfies an integral quadratic equation of discriminant d,. This extension will be non-
trivial if and only if the residual characteristic / of A4, divides d,. We let e denote the
ramification index of W,/A,.

Define the algebraic integer a =a(t, d,) by:

G.1) a= I U —j ()",

discty; =d;

This lies in H, and when d, + — 4 even lies in the subfield Q(j). Our aim is to calculate
the valuation of a at each finite place v of H, using the methods of § 2. To do this, let
E be an elliptic curve over W= W, with multiplication by ¢ and invariant j(E)=j.
This existence of such a curve with good reduction is guaranteed by a theorem of Serre
and Tate [17]; it is unique up to W-isomorphism as the residue field is algebraically
closed. Similarly, for each t, of discriminant d,, let E’ denote an elliptic curve over W
with multiplication by Z[w] and invariant j'=j(t,); then by 2. 3 we have

1
~ # ISO i E, E, .
ew;w, [%1 El 2 wiee (5 )
discrz=d2

3.2 ord, (o) =

We are therefore reduced to counting isomorphisms f: E = E’ (mod ="). Such an
isomorphism gives rise to an endomorphism w,=f"'.w.f of E(mod z") which be-
longs to the set ‘

S, = {0 € Endy pm E|Tr (2t9) =Tr (W), N (2t9) = N (W), oo =w on Lie (E)}.
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Furthermore, proposition (2. 6) insures that every element «, of S, is of the form w,
for some isomorphism f: E— E’ (mod n") to a curve E’ with complex multiplication by
Z[w]. Indeed, the pair (E, ay) can be lifted to (F,a) over W and since F has
multiplication by Z[a]=2Z[w] it is isomorphic to one of the curves E’ via a map
f:F > E’ with a=f""'.w-f. Reducing this map (mod =") shows that ay=w,; (2. 6) also
gives the uniqueness of E’ over W as well as the uniqueness of f up to a W-
automorphism of E’. Hence,

3.3) ord, (cx)=£v~ T

We now turn to a computation of the set S,. Recall that / is the residual
characteristic of v.

Lemma 3.4. If <£> =1, then ord,(a) =0.

Proof. In this case, E has ordinary reduction (mod n) and Endy . E= 0@ for all
n=1 [S]. Since this ring contains no elements of discriminant d,, #S,=0 for all
nz1.

Now suppose that l~l’ #1; then E has supersingular reduction (mod n) and

Endy,, E is isomorphic to a maximal order in the quaternion algebra B over Q which is
ramified at / and oo [5]. Our first task is a convenient description of this order, as well
as its subrings Endy,.. E for n21.

Since l—i #+1, the field Q(j) has a unique embedding into the field Q of /-adic

numbers [8]. If v, is the place of H= K(j) which corresponds to the two equivalent
extensions of this embedding, there is a unique element ¢ in G = Gal(H/K) such that
ord,(f)=ord,, (p°) for all e H*. Let a be a fractional ideal in K whose class
corresponds to ¢ under the Artin isomorphism. The algebra B is given by the subring
{[a, B1 =<—?B_ g )} of the 2 x 2 matrices over K; let 2 ~! denote the inverse different
of © and 1 a fixed solution of the congruence A*= —/(mod 2).

From now on we write d, = —¢q, ¢> 0.
4

Lemma 3.5. Assume lYpq. Then e=1 and
1) Endy . E={[a, l:0€2™, D~ 1" 'd/a,a=Af mod O,}.

2) The number of elements of S, is equal to % times the number of solutions (x, b)
of the equation x*+41*"~' Nb=pgq, where x is an integer and b is an ideal of O in the
class of a2, the solutions (x, b) with x=0 (mod p) being counted twice.

Proof. 1) When a~1 the ring Endy , E contains Endy E={[x,0]a€ O} as

0 1>=[0,1], since the

well as the @-span of the Frobenius endomorphism F=<_ 10
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reduced curve descends to the prime field of / elements. Since Endy , E is a maximal
order in B, it must be isomorphic to {[a, fllae 27, Be 2!, a=AB mod O}. The
calculation of Endy,,~ then follows from the observation that /*F is an endomorphism
of E(mod =") if and only if k=n—1.

When a is arbitrary, Endy,, E%¢ is isomorphic to the ring calculated above. Since
Homy, (E°, E) is isomorphic to a as a left 0 =Endy, (E)-module [3], we have
a-Endy,» E=Endy,,» E°-a in B. A short calculation yields the desired result.

2) If [, B] is an endomorphism of E(mod zn") with trace=Tr(w) and norm=N(w)

—_ n—1
then a =2 +Tr(w) ? with x an integer and f= v/ with yea/a.
2) -p V—p

Let b=(y) a/a; then b is an integral ideal in the class of a? and
x2+412""'Nb=pq.

Conversely if (x, b) solves this equation with b in the class of a?, and y is any generator
of the principal ideal ba/a, we may obtain an element [«, f] of B with trace =Tr(w)
and norm=N(w) by reversing the above definitions. To determine whether or not
[«, B] lies in Endy,.E we must test the congruence a=Ap mod 0,. This will hold

for 5721 choices of the generator y if x££ 0 (mod p), and for w, choices if x=0 (mod p).
To see this, note that for any choice of generator we have «* = — /% mod 0,. For this

is equivalent to the congruence x*= —4/?"~'y? (mod ]/ —p), which follows from the
fact that
y2=y7=Ny=Nb (mod |/ —p).

Finally, to count the elements of S,, we must determine which endomorphisms
[, B] induce multiplication by w on Lie(E). If [«, ] has this property, then the dual
endomorphism [a, f]1Y=[& — f] induces multiplication by Wz w(modz). Hence we
may count elements of S, by taking exactly one half of the solutions (x, b).

Now consider the case when /|q. Lemma 3. S gives the endomorphism ring of £
over A,/I"A,, and W is a quadratic ramified extension of 4,. We therefore find

v

Endy /e E= {[2, fllac@™*, feI"~" 4/a, a=f(mod 0,)} with m=[n; 1].

The elements a, of this ring of trace =Tr(w) and norm = N(w) give solutions (x, b) of
the equation x2+4/>""!Nb=pq as in 3.5. Clearly such solutions can exist only
when m=1, so n<2. Since «, induces multiplication by an element of W/x on Lie(E),
and the reduction of w(mod n?) does not lie in the residue field, we see that S, is
empty for n=>2. Since w=w(mod n) we have the equality:

S, ={ag € Endy,, E: Tr(ao) =Tr(w) and N(xg) =N(w)}.
Hence

Lemma 3.6. Assume l|q. Then e=2 and S, is empty for n=2. The number of
Wy
2
x is an integer and b an ideal of O in the class of a?, the solutions (x,b) with x=0
(mod p) being counted twice.

elements in S, is —~ times the number of solutions of the equation x* +4INb=pq, where
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Finally, we turn to the case where /=p. A computation similar to 3.5 gives the
result: Endy . E={[a, Bl:a€ O, B e 2" %*a/a}. Let ay=[a, B] be an element of trace

. -1
=Tr(w) and norm=N(w) and write a=m—tzlﬂ, B=L£§_:p_)— with y an
-p

integer and y € a/a. Letting x=py and b=(y) a/a we find a solution to the equation
x24+4p"Nb=pgq.Hence n=1. Conversely, any solution with b integral in the class of a?
gives exactly w, elements a, with the correct trace and norm, as this is the number of
choices for the generator y. Again, exactly half of these elements will lie in S, as
w % w(mod n), so we have

Lemma 3.7. Assume [=p. Then e=1 and S, is empty for n=2. The number of
Wy
2
where x is an integer (divisible by p) and b is an ideal of O in the class of a?.

elements in S, is times the number of solutions (x, b) of the equation x*> + 4pNb=pq,

We may combine the last three lemmas as follows. For m =1 we let r,.(m) denote
the number of ideals of O in the class of a? of norm equal to m. For an integer x, we
define

2 if x=0(mod p),
1 otherwise.

6(x)={

Proposition 3.8. Assume (;i)#:l. Let v be a finite place dividing | and a the
ideal defined before 3. 5. Then
1 pq— x*
ordv(a)"‘i 2 Z 5(x)ra2< 4" )

nez nz1

Next note that by (1.2) and (3. 1) we have the relation:
3.9 J(—p, —q)=Ng ().
Furthermore, the sum Y r,.(m) is equal to the number R (m) of ideals of O of norm m,

as the class group of Q(]/ —p) has odd order. Hence we have

Proposition 3.9. If A is a prime of O of characteristic I, then

2
ord).‘](_p9 —Q)=% Z Z 6(x)R<pq4lnx )

xeZ n21
It is an exercise to derive theorem 7.3 from this proposition, using the identity

Rmy=Y (g) afforded by Dirichlet’s factorization of the zeta-function of K.
n|m
n>0

4. To express the results in the previous section neatly, and to find appropriate
generalizations, it is convenient to introduce the modular polynomials. For each
negative discriminant d, we define

4.1 Hx0)=1I1 TII (x- j(‘,_-))Z/w(d/fz)‘
f2d
disct=—d-

f2
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This “polynomial” has integral coefficients and degree
H(d)= ¥ —=<,
Wl 2z

the Hurwitz class number. The first few examples are

fral) =, HE) =1,
fa) =G-8}, H@ =,
fo,(x) =x+3375, H) =1,
£ o (x) =x—8000, HE) =1,
fo1 () =x+ 32768, H(A1)=1,
£ 13(6) = x5 (x — 54000), H(12)=§.

2
In the last section, we factored a =f;,(j;)"* in the integers of the field Q(j;). Note
that when (d,, d,) =1, the value J(d,, d,) is equal to the resultant of the polynomials

Ja,(x) and f3, (x).

For m=1, let ¢, (x, y) be the polynomial in Z[x, y] defined by
4.2) (Pm(j(zl)aj(zz))= IT (j(zl) —j()’zz))-

dety=m
modSLz(Z)

Here the product is taken over the equivalence classes of 2 x 2 integral matrices of
determinant m, modulo the left action of SL,(Z). The polynomial ¢, (x, y) is often
referred to as the “modular equation of level m”, although the usual definition takes
the product only over the primitive classes y in order to obtain an irreducible curve in
P! x P which is a model for X,(m). The fact that ¢, (x, y) has integral coefficients is
well-known. We have

@1(x, p)=x—y,
006, ) =x3+> —x2y?+24.3.31(x2y+y*x)—2*.3*. 53 (x2 + y?)+3*.5%.4027 xy
4£28.37.56(x4y) —212.39.59;

for the tabulation of ¢;, ¢, and ¢, see [14].

The polynomial ¢, (x,y), when restricted to the diagonal, is related to the
polynomials f;(x) by Kronecker’s identity
(4 3) (Pm(x’ X)= i H j;z_.4m(X),

teZ
t2<4m
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which holds whenever m is not a perfect square. Taking the degrees of both sides of
(4. 3) gives the famous Kronecker-Hurwitz class number relation

4.4 > max(d,d)= Y H@m-—1t?),
m=dd’ t2<4m
d>0 teZ

which is the weight 2 case of the Eichler-Selberg trace formula on PSL,(Z). The
identity (4. 3) can be extended to hold for all m, provided we replace the term (x — )

2 1
which divides ¢, (x, y) when m is a square, by [ f._,(x)=x3(x—1728)? in the
t2<4
limit. Similarly, (4.4) holds for all m if we take the sum over t><4m and define

HO)={(~1)= 1.

1+ —p

Now suppose j= j( 5 ) is a singular modulus of discriminant —p, and that

bl/ - .
m=1 is not the norm of an element Zj_—z———p in @. Then the value ®,(j,j) is non-

zero; by 3. 8 and (4. 3) we have the formula

i[ 4m— 2\ _ 42
(4.5) ord, (pGii)")=2 % {%2 s 5(9r (4—%)—3‘—)}

W r2<4m x k21

=3 3 () r(n)re (’""lf ”),
n20 k21

2+pt2

4

where r, (n) counts representations of » as (i.e. as the norm of an ideal in the

principal class) and we define rb(0)=;lv— for any class b. We can generalize (4.5) as

follows. Let b be an ideal of @ and m =1 an integer which is not the norm of an ideal
in the class of b. Then the element

4
w2

(4.6) B=0ml,J%

is a non-zero algebraic integer, and the following result gives its valuation at places v
of H.

Theorem 4.7. If <;f>=1 then ord,(B)=0. If (I_i>=“ and we define a as in
Lemma 3.5, then

ord,(B)= T T 6(1)ry-s(n) reg: (@)

20 k21

. The case when m=1 and b is not principal is particularly interesting, as (4.7)
gives the prime factorization of (j—j°). Taking the norm of this quantity to K and
then the product over all classes b4 1 gives the discriminant of the monic polynomial
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of degree h satisfied by j. From this, we can obtain a formula for the index I of the
order Z[j] in the ring of integers of Q(j), as the field discriminant is equal to

(-p) © [8]
Corollary 4.8. For any rational prime | we have

0rd,(1)= Z Z R(n)“rl(n) R<p_n>

k
nz1 kx1 2 [

In particular, if | divides I then I<p and <;l)—)= —1.

We now sketch the proof of 4. 7, again using the methods of § 2. We will assume
for simplicity that 117 = —1 and that / does not divide m. Let W be the completion of
the maximal unramified extension of the ring of v-integers of H, and let E be an elliptic

curve over W with multiplication by @ and invariant j as in § 3. By (3. 5) we have

(4.9) Endy,.mE={[0, fl:ae D!, Be D 1" 'd/a,a=Af mod O,}.

Let b be an ideal of @ which is prime to / and in the class of . By [17] we have
Homy, (E°®, E)=b as an 0 =Endy (E)-module. Hence Homy,,.(E°®, E) = Endy . E-b
inside B, ,,. Hence
(4.10) Homy,,.(E E)={[a, f]:0€ 2~ b, P2 " 'bd/a,a=Af mod 0,}.

If ¢ =[a, ] has degree m, then Nao+ /NB=mNbD.

On the other hand, by the definition of ¢, and the results in § 2, we have

op
(4 1 1) ordv ('B) = wii Z Card (HomW/""z(E ’ E)degreem) .

nz1

Y n—1
If o= and ﬁ:——
V__p l/__—;
4.12) Nc+72""INd=mp

where ¢=(y)/b and b =(J) a/ba are integral ideals of O in the classes of ¢~ ! and o0,:

correspond to an isogeny of degree m we have

2
respectively. Conversely, given a solution to (4. 12) we retrieve either 2 - (g) or 2w?

elements [a, f] of degree m in Homy ,.(E° E) by choosing generators for the
principal ideals b¢ and ba/ad. The second case occurs when N¢=0(p). This Completes
our sketch of the proof of 4. 7.

5. The analytic approach to the theorems of this paper consists of two parts:
first, to give an expression for log|j(z,) —j(t,)| as an infinite sum over PSL,(Z) (or,
rather, as a limit of such sums) which for imaginary quadratic arguments can be
rewritten as a sum over rational integers, and secondly, to show that certain combina-
tions of these infinite sums equal finite sums of logarithms of rational numbers. We
carry out the first part in this section.
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For s e C with Re(s)> 0 let Q,_, be the Legendre function of the second kind,
defined by

Qs_l(t)=°f (t+)t*—1coshv)*dv (t>1)
0

or

0.1 (157) =3 =0 Fesi2si1-0) @<

([11, 3.2 (36); F=hypergeometric function), and define for t;=u;+iv;e $ (j=1,2)

(uy —uy)* + 0} + 03
20,0, ’

g&(ty, 1)=—-20Q,_, (COShd(Tu Tz))= -2Q,, (

where d denotes hyperbolic distance. This is not defined at 7, =1, since g, has a
singularity log|t; —7,|* along the diagonal. Because d(t,, 1,)=d(y1,, yt,) for any
y€ PSL,(R), the function G, defined by the absolutely convergent series

Gy(ty, 1) = Zr gs(t1,772) (F=PSL2(Z))

is I-invariant in each variable separately. The function G, is called the automorphic
Green’s function or resolvent kernel and is.studied in various places, e.g. [13] (note that
our function is 47 times Hejhal’s). The properties we need are:

a) G, is real-analytic on (I'\®)*\(diagonal) but has a singularity
loglt, — 1,1+ 0() as 1, > 1,;

b) 4,G;=s(s—1)G,, where 4; (j=1,2) is the hyperbolic Laplace operator
0> 02
N A P
Ui (6uf+6v?>’

¢) For 1, fixed and v, =Im(r,) large (larger than marx Im(yt,)), G, has a
Fourier development of the form '

47

l N
Gs(h, 12)=1————§§ E(‘cz,s) v}‘s__4n. ;0 E.(Tz,s) 012 Ks_%(zﬂlnlvl) e‘z’"""‘,

where the series converges with exponential rapidity; here E(z, 5) is the Eisenstein series

o= E mo9=3 I g (L=(o1))

2s
yerlr \I' c,deZ |C‘L’+d|
(c,d)=1

K | is a K-Bessel function, and the F,(t,, s) are meromorphic in s and holomorphic

s—=

for Re (s)> -12— The Fourier expansion of E(z, s) is

_m > |m|s_%a (m)v%K (2n|m|v) e*mimu
I (s){(25) m+o 1o s-3 ’

() Dcrs
()= O , av(m)=d%' d.

E(t,s)=v°+ o(s)v' 5+




208 Gross and Zagier, On singular moduli

Hence G,(t,,1,) can be meromorphically continued in s, the only pole in Re(s)>%

being a simple one at s=1 with constant residue —12.

Using these properties, we can now prove

Proposition 5.1. For 1., t, two points of $ not equivalent under I' we have the
identity

log|j(ry) —j ()1 =1im (G,(ty, 75) + 4n E(y,5) + 4 E (12,5) —4n ¢ (s)) — 24.

Proof. The limit exists by what was said above, since all four terms in the limit
are meromorphic functions with simple poles at s=1, the residues being —12, 12, 12,
and —12, respectively. We consider 7, as fixed and both sides of the asserted identity
as functions of 7,. Both are I'-invariant. The function on the left is continuous in I
except for a singularity log|t, —1,|> + O (1) as 1, — 1,; by a), the function on the right

has the same property. Both functions are harmonic; this is clear for the function on
the left and follows for the function on the right by b), since

}}_1}11 (Gs(Tx » 1) +4nE(zy, s))
is the limit of eigenfunctions of A, with eigenvalue s(s— 1) and
lim (4mE (15, 5)—4n p(s))— 24

is constant (and hence harmonic) with respect to t,. Therefore it suffices to show that
the two functions differ by o(1) as v; =Im(z,) — 0. We have

log|j(z,) —j(12)|2 =1°g|e_2"ir' +o0M)? =4nv, + 0(9‘2”1) (v, —00),

while, by c) and the formula K, (x)= /5"; e,
2

lim (Gs(t1, T2) +4nE(ty, 5) +4nE (1,5, 5) —4n 9 (s))
=4 lim (E(rz, s) <1 +ﬁ v{“)>+4n lim (E(zy, 8)— @(s))

-1 .
—-2n Z 'nI 2 F,',(Tz, ]) e'2"|"|°1 e—Zmnu,
n*0

=12(logv, +2) + (4nv, — 12logv, + O (e” ™))+ O (e~ 2™).
Thus the functions agree within O (e”2™') as v; — oo and the Proposition is proved.
We remark that the Proposition extends immediately to give a formula for the

logarithm of the absolute value of the quantity ¢, (j(z,), j(t;)) defined in (4.2).
Indeed, applying the m™ Hecke operator 7,, with respect to 7, (i.e. replacing 7, by y 72,
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where y runs over a set of representatives modulo SL,(Z) of matrices of determinant m,
and summing), and noting that E(z,s) is an eigenfunction of T,, with eigenvalue
m*a, _,,(m), we find

logltpm(J(Tl) J(Tz)) _hm (G (t1, 1) +4na,(m) E(ty, 5)

+4nmta,_,,(m) E(ty, s)—4na,(m) (p(s))-—24a1 (m)

(5.2) =£111'11 (Gr(ty, ;) +4na,(m) E(zy, 5)+ E(t,, 5)— q)(s)])——240'1(m)
—-12 dlz'jn dlog 7
where

1 at,+b
Gsm(IIS 12)=§ Z &s <T19 : )

a,b,c,deZ CTZ + d
ad=bc=m

We apply the Proposition to compute log|J(d,, d,)|> where (as in Section 1) d,
and d, are coprime negative fundamental discriminants and J(d,, d,) is defined by
(1.2). Let K; be O(]/;z';), hj=h(dj) the class number of K, and w;(=2, 4 or 6) the
number units of K;; then

2 2 . .
log|J(d,, dy)I>*=—-— ¥ log|j(r;)—j(z;)I?
Wi W2 [0, [e2)

where the sum is over the h h, pairs of points t,, 1, € I'\§ ([ =PSL,(Z)) of discrimi-
nant d,,d,. Let I', ,cr be the stabilizer of 7;; then

2 2
o Y Glr)= T T g,im)
172 [1)[r)en® [f:i]:[r;}el‘;\ib yel \[T,,
lSCtj=j
= X 2 &s(1 715 ¥2T2)s
[t [x,]€ N\ (1, v2) € NN XTI )
diSCtj=dj

where we have written y=y; !y, with y,, y, € I’ well-defined up to right multiplication
by elements of I', , I',, and up to simultaneous left multiplication by an element of I'.
The set of y;7; as [r;] ranges over a set of representatives for I'-equivalence classes of
T€ $ with discriminant d; and y; over I \I is simply the set of all points in $ with
discriminant d;. Hence

2 2
o Z Gs(’rl’tZ)': Z gs(Tl’rl)'
Wy W, [t1],[z2] (ry, 1) e N\H?

disct;=d;

The points 1;€ 9 of discriminant d; are in 1-1 correspondence with the positive
definite bmary quadratic forms Q;(x, y) a;x*+b;xy+c;y* of discriminant b7 —4a;c;
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+Va

—b.
the correspondence being that 7 j=——’2a—’ is the root of Q;(r,1)=0 with positive

imaginary part. Under this correspondence we have

g,(1,, 1) = =20, _, (V%) where D=d,d, and n=2a,c,+2a,c, —b;b,.
Hence
2 2 n
___Gs(11’12)=_2 Z p(n) Qs-l <__>
w w n>
! 2 nED(nl{oBdZ) VI)_
where

p(n)=% #{(Q1, Q) e /T |4(Q) =d;, B,(Q1, Q3) = —n};

here Q~ Z3 is the set of all integral binary quadratic forms with the usual action of
I', 4:Q— Z the discriminant function, and B, the associated bilinear form

By([ay, by, 1], [ay, by, ©21)=b1 by —2a, ¢, —2a, ¢4
the factor % arises because two forms Q,, Q, satisfying the conditions given (with
d,, d, <0, n>0) are either both positive definite or both negative definite and we want
only the first case. The three conditions 4(Q,)=d,, 4(Q,)=4d,, B,(Q,, Q,)= —n are

equivalent to
AEQ,+nQy)=d E* —2nén+d,n?,

i.e. (Q,, @,) yield a representation of the indefinite binary quadratic form [d,, —2n, d,]
by the ternary quadratic form 4. Since the automorphism group of (Q, 4) is {+1} x T,
p(n) is simply the number of inequivalent representations of [d;, —2n, d,] by 4. On the
other hand, we have

E(, =% 129"t 0),

where o/; is the ideal class of K; corresponding to [7;] € I'\$ and {x, ,, the correspond-
ing zeta-function (the sum of N(a)™* for all integral ideals a € &;). The sum of the
{k,«, Over all ideal classes «; is the Dedekind zeta-function (x (s). Hence we have
proved:

Proposition 5.3. Let K,, K, be two imaginary quadratic fields with coprime
discriminants d,, d, and J(d,, d,) the number defined by (1.2). Then

T n 4n . |y 3
IOSIJ(dl,dz)lz—}ljf}[—Z n>ZVl_) p(n) Q"‘<ﬁ>+—C(2s) (hz ) {k, (9
n=D(mod 2)
1 1
d, |3 F(z)r<s—5>

+h |7 k() —hihy C(ZS—1)>]—24hih'z,

4 I (s)

where D=d1d2,h}=£—hj(=% or % if d;=—4 or —3 and h(K;) otherwise ) and p(n) is
j

the number of inequivalent representations of the binary quadratic form [d,, —2n, d,] by
the form A=b*—4ac on Q={[a, b, c]la, b, ce Z}.
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Using (5. 2) instead of Proposition 5.1 we can give a similar formula for

Z loglgom(rla t.2)|2
[t1],[z2]

n

VD

instead of log|J(d,, d,)|?, the argument of G,_, now being for some n> m ]/B,

n=mD (mod 2). The details are left to the reader.

6. The formula for log|J(d,, d,)|* obtained in section 5 is not yet very useful
because p(n) is expressed as the number of orbits of an infinite set by an infinite group.
In this section we will give an expression for p(n) as a finite sum.

Proposition 6. 1. Let d,, d,, D and p(n) (n> ]/5, n=D (mod 2)) be as in the last
proposition. Then

pn)= % &(d),

2.
a|= 72

where ¢(d) for integers d> 0 such that D is congruent to a square modulo 4d is defined as
in Section 1 (namely as the multiplicative function which for primes / equals whichever

of (%) and (d—lz> is non-zero).

Proof. Let K =O(1/5) be the real quadratic field of discriminant D, and y the
genus character of K corresponding to the decomposition D =d, -d,. We recall that x
is a character from the narrow class group to +1 with y(p)=1 if p is an inert prime
ideal and y(p) =¢e(Np) otherwise; because y corresponds to a decomposition of D into

negative factors, we have y(a)= —1 if a is a principal ideal generated by an element of
2

. - . -D
negative norm. Let u ___n_2@ € Og; then the principal ideal (1) has norm n )

is primitive (not divisible by a natural number > 1) because the coefficient of [/5 in
2p is 1, and one easily deduces that

and

2 ed=% x®).
d|27R bI()

Let L=Q()/4,, |/d,); then L/K is the unramified quadratic extension corresponding to
the character y, so

> x(®@)= "L/x(a)

Dla

for any integral ideal a of K, where rx(a) is the number of integral ideals A of L with
N x (W) =a. Therefore the identity to be proved is

-l/D
(6.2) p(m)=ryx (W), N=n 21/—-’

i.e. we would like to establish a correspondence between the representations of
[d,, —2n, d,] by 4 and the ideals A of L with norm (y).
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There is a one-to-one correspondence between positive definite binary quadratic

forms Q; of discriminant d; and triples (a;, a;, f;) modulo the action of K}, where q; is

a fractional ideal of Kj, («;, B;) an oriented Z-basis of q; (i.e. one with Im(«;B;)> 0)

and K* acts by A(aj,a;, B;)=(Aa;, Aa;, AB;); this correspondence associates to

(aj, a;, B;) the quadratic form Q;(x, y)=E(i’r;‘x(—:)£1L). The action of SL,(Z) on qua-
i

dratic forms corresponds to the action of SL,(Z) on oriented bases:

ab
(C d) o (aj, aj, BJ)=(aJ’ aaj+bﬂj, Caj+dﬂj).
If 9,=1[a,,b,,c,] and Q,=[a,, b,, c,] are forms of discriminant d; and d, corre-
sponding to (a,, a;, f;) and (a,, a,, #,), and B,(Q,, @,) = —n, then (denoting conjuga-
tion in L/K or K;/Q by ') we have:
Nk (e By — 0z B1) = (01 B, — a3 By) (@1 By — 3 BY)

= N () N(Ba) + N () N(By) — 3 (21 By + 0 By) (@ By 3 )
3 By~ i ) ez By — 3 o)

1 1
=N(a;) N(a,) <axcz +a,cy _'2_b1b2_5 % d1d2>

=N(a;) N(a;) n—_?_@

Hence
p(n)=#{(Q,, Q,) € Q*/I' | Q; positive definite, disc Q;=d,, B,(Q;, Q,) = —n}
= #{((ay, @y, By), (az, 2, B,)) mod K¥ x KF X SL, (Z)|Nx (%, B, — 5 By)
= uN(ay) N(a,)},

where a;, a;, f; (j=1,2) are as above, SL,(Z) acts simultaneously on (a,, f,) and

-VD . L
(a3, B,), and p . , € O. Write a, a, for the set of Z-linear combinations of elements

v;v, (v;€ a;) and p for the element o, B, —a,p; of L. Then p € a,a, and

Npx(p)=N(a;) N(a,) p.

Conversely, any element p of a,a, with N(p)=N(a,) N(a,) u has the form a, f,—a,p;

for some oriented bases (a,, f;) and («,, f,) of a, and a,. Indeed, choose an arbitrary

oriented basis («,, ;) of a;; then p € a, a, implies p=0a, f, —a, B, with some a,, B, € a,
N(p) .

1 .
and the fact that the coefficient of |/D in —————is — implies that (a,, 8,) is an
N@) NGy © 2P » P2

. N . . . 1.
oriented basis of a, <1t would be _-|;—2— if Zoa, +Z B, had index N in a, and +3 if the

basis were unoriented). The same argument shows that p determines (x,, ;) uniquely
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given (a;, B,); since all oriented bases of a, differ by elements of SL,(Z), the choice of p
uniquely determines both oriented bases (a;, ;) up to the simultaneous action of SL,(2).
Hence

p(n)= # {(a,, a,, p)|a; a fractional ideal of K;, peay,a,,
NL/K(P) =N(a,) N(a,) u}/K¥ x K%,

where KX K3} acts by (aj, ap, p)— (4,0y,4,0;,,4,4,p) (4;€ K¥). The freedom of
choosing A; and 4, means that we can fix the choice of a; and a, within their ideal
classes; then we still have the freedom of changing 1; by a unit of K;. Hence

(6.3) pm= 3% H#{peaay/U, - U, |Nyk(p) =N(a;) N(ay) p},

[e1]eCk,
[az2]eCk,

where Cy, and Uy, denote the class and unit groups of K;(j=1,2), a;(j=1,2) is any
(fractional) ideal of K; in the class [a;], and a,a, denotes the set of Z-linear
combinations of elements 0, 6, with §; € q; (it is clear that the summand depends only on the
classes of a; and a,). Let C,and U, denote the class and unit groups of the biquadratic field L
and C¢ and Uy the strict ideal class group and group of totally positive units of K. Then we
have the exact sequence

0— {+1} > Ug, x Uy, > U, B UZ — C¢, x Cy,—» C, B C¢ B {1} —0.

This is proved by a standard argument using elementary class field theory and the
analytic class number formulas for K, K,, K and L as in Hasse [11] (esp. § 26); we
omit the proof and the definition of the map Ug — Cy, x Cx,, which depends on
genera theory. Using the exact sequence, we can establish a 1:1 correspondence
between the triples ([a,], [a,], p) counted in (6. 3) and the integral ideals A of L with
norm (u), establishing (6.2). Indeed, because d, and d, are coprime we have
0, =0k, ® ; Ox,, 80 a;a, is a (fractional) ideal of L and A=p~'a,a, for p as in (6. 3)
is an integral ideal with N, (W)= (u). Conversely, let U be an integral ideal with norm
(w). Since u has positive norm, the ideal class [2] is in the kernel of Ny x: C, — C s,
so the exactness of the sequence at C, implies the existence of ideals a,, a, with
A~a, a,, and the exactness at Cx, x Cx, and Uy implies that there are exactly
Q=[Ug: N x(U.)] (=1 or 2) choices for ([a;], [a;]). From A~a,;a, we have
A~ 'a, a, =(p) for some p e L, and then N(A) = (x) implies that Sﬁ”—‘é—?=su for some
1 2
unit ¢ of K. Since Ny (p) and u are totally positive, e€ Ug. Among the Q choices of
([a,], [a,]), exactly one will correspond to e€ N, x(U,). We make this choice; then p

can be modified by a unit of U, to achieve ¢=1, i.e. M——=u, the choice of p
N(a;) N(a;)

now being unique up to an element of Uy, - Uy, (exactness at U;). This completes the
proof.

7. The result we want to prove, Theorem 1.3, can be written

—log|J(dy, dy)|* = > >  e(n)logn
x2<D x2—D
(7 1) x2=D(mod4) "l 4

= X X x(mlogN(m),
ved-1 n(v)d

v>0

Tr(v)=1

101 Journal fiir Mathematik. Band 355
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where again we have written D for d, - d, and y for the corresponding genus character
on K =D(]/_D—) and b=(]/5) is the different of K; the second line follows from the

first on setting v=zc2il/g and noticing that the correspondence n— N(n) gives a

bijection between the ideal divisors of the primitive integral ideal (v]/D) and the
2

al , with y(n)=¢(n). Formula (7.'1) is very reminiscent of the

positive divisors of

4
formulas
0klk(k+1)= X ¥ Nm' (k=2,4)
ved~ 1 n|(v)d
T:(V))gl

of Siegel ([18], see also [21] or [4]), the only difference being that N(n)*~! is replaced
by x(n)log N(n). Siegel’s formulas came from restricting to the diagonal z=2z' the
Hecke-Eisenstein series
, 1
Exx(z,2)= ¥ N X

3 %
faleCk mmeazox (Mz+n)* (m'z' +n’)
(m,n) *(0,0)

(z,Z€9)

of weight k on SL,(0f) and identifying the resulting modular form of weight 2k on
SL,(Z) with a multiple of E,,(z). Thus the term N(n)*~! corresponds to a holomorphic
Eisenstein series of weight k£ on SL, (0x), so one can except the analogous formula with

0
a Es(za Z)ls=0; Where

Es(z’ zl)=EK,x,l,s(z9 Z,)

x(n) log N(n) to be related to the function

2,8
7.2) = a) N(a)'*2 > )
(7.2) [GECK x(@) N() (,,,,,,,g':’,zw-ﬂ (mz+n)(m'z' +n)\mz+n|*|m'z +n'|*
(m,n) %(0,0)

(z=x+iy, Z/=x"+iy' € 9)

is the non-holomorphic Eisenstein series of weight 1 on SL,(0f) introduced by Hecke
[12]. Hecke’s purpose was to produce a holomorphic Eisenstein series of weight 1 by
y'y®
|mz+n|*|m'z' +n'|*
senstein series and then letting s — 0 (“Hecke’s trick”). By computing the constant
term of the limit, he thought he had shown that the function obtained at s=0 was
different from zero, but as is well-known (cf. Schoeneberg’s corrections on p. 949 of
Hecke’s “Werke”) the computation is invalidated by an error of sign and in fact the
functions obtained by letting s — 0 always vanish identically. This fact, unfortunate for

introducing the factor (Re(s)> 0) into the non-convergent Ei-

. . .. 0 . .
Hecke, is very fortunate for us, for it means that the derivative 25 E,|;-o is the leading

term of the Taylor expansion of E, at s=0 and therefore computable. We now describe
this.

We begin by noting that Cy in (7. 2) can be taken to be the wide ideal class group
of K, because replacing a by Aa (4 € K*) changes the inner sum by a factor

1

NODINDE sgn (N(A))IN()|~ 1%,
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while y(a) changes by a factor sgn (N(4)) (because y is a genus character corresponding
to a decomposition of D into negative factors) and N(a)' *2* by [N(A)|'*25. If K had a
unit of negative norm, the series would vanish identically, but this cannot be the case
for D=d, -d,. Following Hecke—the method is by now quite standard—we find the
Fourier expansion of E (z, z'):

1
E(z,2)=Lc(1+2s, ) y'y*+ D ? Lg(s, x) 2,(0)* y~*y'~*

1
+D *yy'Tt ¥ 020, () D) By (v) B, (v'y) 270X+,

vED ™
v¥0

where Li(s, ) = L(s, (29) L(s, (%)) is the L-series of x and

© = 2mixt
20= | Groerrny @ (ER) o@=3 x N

By deforming the path of integration we see that &,(z) has an analytic continuation to
all s and is bounded (uniformly for s in compact sets) by |¢|2® e~ 2" a5 |t| — o0, sO
this gives the holomorphic continuation of E,(z, z’) to all se C. At s=0 we have

—2mie™*™ >0,
¢0(t)={—ni t=0,
0 t<0,

so the coefficients of E,(z, z') wlith v not totally positive vanish. On the other hand, the

constant term Lg(1, x) —n*D 2 Lg(0, y) of Ey(z,z') vanishes by the functional equa-
tion of Lg(s, ) (this is the fact that Hecke’s mistake of sign caused him to miss), while
the terms with v> 0 vanish because the contributions of n and (v) D™ 'n cancel (this
was also overlocked by Hecke; cf. his remarks on pp. 386 and 394 of [12]). This shows
that E (z, z) vanishes at s=0 and also permits us to calculate its derivative there:

4 ;
35 B2 2)ls=0=2Lx (1, x) log (yy) +4C;

_1 . .,

+ 87‘[2D 2 Z a,;( ((V) b) e2m(vz+v z’)
b-—l
va>0

_1 ; r
—47I2D 2 g_l 00,1((v) h) <P(|v’|y’) e2m(vz+vz)
vv>EO>v’

1 : iy

—41‘[2D 2 Z ‘70,1((") b) ¢(IV|)’) e21n(vz+vz)
ved~!
v<O<v

with

C=Ly(1,pn+ G log D —logm — y> Ly(1, x) (y=Euler’s constant),

@ = 55 0ux @lh=o = £ 1) logN (),

i i}
¢ -_=— —2mt —_
@ 27 ¢ ds %(=1)

s=0
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(The terms with v<< 0 contribute nothing because &,(vy), &,(v'y’) and a,,((v)d) all
vanish at s =0, so the corresponding Fourier coefficients of E, have a third-order zero.)
Therefore the function

VDo g, | e

F(z)=
()828 -0

has the Fourier expansion

F(2) =g (L,((l, ¥) logy + Cx)+ Y a, ((v) b) £2miTrMz

vedb~!
v>0

- %_1 00.1((") b) ¢(|v’|y) ezﬂi'fr(v)z

v>0>y

(convergent because ®(1)=0(e”*") as t— ). Now we apply to this the following
result.

Proposition 7.3. Let F(z) be a function on § which transforms under SL,(Z) like
a modular form of weight 2 and satisfies F(z)=A logy+ B+ O (y~%) as y — 00 for some

constants A, B and ¢> 0. Let the Fourier expansion of F(z) be Y a,(y) e*™™. Then

m=-—o
CI

lim ( j' a;(y)e 4wy dy+24A) 244 (22—(2)+ 1 +log4>—24B.

For m>1 there is an analogous formula for

b

lim <4nm | an(y) e ™™ y*dy +z4_A_s‘f_(ﬂ)>
L ind 0

where a(m) denotes the sum of the divisors of m.

This result is an extension of a result of Sturm on holomorphic projections of
modular forms [19]. We do not give the details of the proof, since a more general
result (for forms of arbitrary weight and level) is given in [10], but merely sketch the
idea. For Re(s)> 0 the m" non-holomorphic Poincaré series of weight 2 is defined by

2nim 8210
e cz+d
PN()= ¥ F ol
(@Yerar (cz+d)* |cz+d|
c ©

If F(z)=0(y™ %), then the Petersson scalar product of F and P{" converges absolutely
(even if the terms in the Poincaré series are replaced by thelr absolute values) and

equals | a,(y) e"*™ y*dy for Re(s)> 0. On the other hand, it is known that P{") has
0

an analytic continuation to s=0 and vanishes there (because there are no holomorphic
modular forms of weight 2 on SL,(Z)). This proves the proposition in the case 4=0,
B=0. For the general case it then suffices to consider a single function with 4 =0, B+0
and one with 4+0, and taking the value and derivative at s=0 of the non-
holomorphic Eisenstein series E, ;= P{°) we obtain the formula given.
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In our situation we have A4 =g L1, p), B=2K7;2; C, and

a(= % oy ((vV)d)— Zb: Go,,((v) D) D(|V'[).
vve>0 vv>E0>v'
Tr(v)=1 Tr(v)=1

The first term, which we denote by S, is independent of y and equals the expression

occurring on the right-hand side of (7.1). In the second term we write v=E§_—VKEE;

then n>1/D, n=D(mod 2) and

00,x ((V) b) =09, <(ﬂ_+—2[)) = 2 e(d)=pn)

a 52

by Proposition 6. 1. Therefore

@ —a4ny =F(S+1) _ n——kD)
4n (,! a, (y)e ysdy (475)3 S n:%l/(—lz)p(n) Ws( 2‘/5
with
(7.4 Y,(A)=4n of D(Ay) e *™ysdy (A>0),
0

and Proposition 7.3 gives

: n—/D\ 121D -
7.9 S=£1_1;18 (":%/E)p(n) 'Ils< 21/5 >_ 2 LK(la X) s l>

12}/D ' 12}/D
+—n2£LK(1,x)<2%(z)+1+1og4)— =G,

To complete the proof we must calculate the function ¥, (4) defined by (7. 4) near
s=0. First we need a formula for &(y). For t>0 we can deform the path of
integration in the integral defining &,(¢) to a path C circling the positive imaginary axis
from —g+ioco to +e+ioo in a counter-clockwise direction. The resulting integral is
convergent for all se C, so we obtain the holomorphic continuation (in s) of &,(¢)
and —differentiating under the integral sign and setting s =0-—the formula

__—_l - 2nt 1 2 2nixt t>0
P(N)=7_e z[x—_'_ilog(x +1) ™ dx  (t>0).

Since log (x2 4 1) changes by 27i as one crosses from the left to the right side of C,
this is equal to

- e'Zm'xt dx.
i X+1
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Setting x =i(2u—1), we obtain the formula
D(t)=[ e iuli (t>0)
1

(exponential integral). Substituting this into (7. 4) gives

res+1) < du

'Ps(/l)=4ﬂ (4n)y 'l[ u(1+ly)‘“

Oty 8

©
I e—41m3.y —41:yysd —
1

for any se C, Re(s)> —1. In particular,

® (1 A u |« 1
7o) ={ (i) e=ror ] s (1)
and
res+1 ¢ -s—1, —s— -5—2, —s—
w.(1) = ((jn)s) [ D 00 )] du
_ 1 r(s+1) -s—1 -s—2
T AT 0G0,

On the other hand, from the definition of Q,_, in terms of the hypergeometric definition
given in § 5 we find

140\ 12 @=eptt 11
Q°<1-z)"§ 2, ax1 ey (O<i<h)

1+1¢ F(s) s ot

or
(¢! +21)— log (1 +%>,

I (s5)?
2T 25)

O,-1(14+24)= [A*+0(A*" D] (A—0).

2 (2s+2)

m 0,(1+24)is O(A"* %) as A— 0 and

It follows that the function ¥ (4) —

vanishes identically for s=0, so

o] 3,0 (512)-2

0 n= D(2) V_
. 2r2s) K
= [(47:)s Trs+1) ,.>z'y- pr) Qs 1(1/5) ETI—]
n=D(2)
n @n 'r(s+1) «
; Ii’I);, p(n) Qs-l(l/ﬁ‘)_ I-v(zs) S___l:l

n=D(2)
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where k is chosen to make the limit exist. Comparing this with (7.5), we see that

121/D
K=—7;2[ Ly(1, x) and

s-im| 23 o0 0 () -2 2]

n=D(2)

+%‘{—B Le(1, ) [2+2 S -3 log DJ—I—z—nz@ L, ).

Comparing this with Proposition 5. 3, and using the Taylor expansions
Ck,(9)=C(s) L(s, xp)
1 .
=[s—_—1+v+'-} L, )+ L', ) —D+---1(=12),
Ly (s, x) = L(s, 1) L(s, 12)
L L
=LA ) LU ) |1+ T L)+ (L0 J =D+,

m

Vidi

L, x)= ki =1,2),

we find

S=—log|J(dy, dy)|?

as was to be shown. This completes the analytic proof of the formula for J(d,, d,). A
§imilar calculation for the m™ coefficient of F(z), using the general formula referred to
in Proposition 7.3 and the generalization of Proposition 5.3 mentioned at the end of

§5, leads to a formula for ¥ log|g,(t;, 7,)|%; we omit the details.
(1], [z2]
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