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An elementary proof of
the Eichler–Selberg trace formula

By Alexandru A. Popa at Bucharest and Don Zagier at Bonn

Abstract. We give a purely algebraic proof of the trace formula for Hecke operators
on modular forms for the full modular group SL2.Z/, using the action of Hecke operators on
the space of period polynomials. This approach, which can also be applied for congruence
subgroups, is more elementary than the classical ones using kernel functions, and avoids the
analytic difficulties inherent in the latter (especially in weight two). Our main result is an alge-
braic property of a special Hecke element that involves neither period polynomials nor modular
forms, yet immediately implies both the trace formula and the classical Kronecker–Hurwitz
class number relation. This key property can be seen as providing a bridge between the conju-
gacy classes and the right cosets contained in a given double coset of the modular group.

1. Introduction

Our aim in this paper is to give a short, algebraic proof of the trace formula for Hecke
operators on modular forms for the full modular group. We use the action of Hecke operators
on the space of period polynomials associated to modular forms, bringing to completion an idea
introduced by the second author 25 years ago [13]. A completely different (and considerably
more complicated) proof based also on the action of Hecke operators on period polynomials
was given in [11]. The proof given here depends on purely algebraic properties of a special
Hecke element, independent of its action on period polynomials. The same Hecke element has
been used by the first author in two sequels to this paper to obtain simple trace formulae on
modular forms for congruence subgroups as well [8,9]. Our approach is more elementary than
the classical automorphic kernel method, and applies uniformly in all weights, whereas the
classical approach requires additional technicalities in weight two.

Let � be the group PSL2.Z/, which is generated by the two matrices S D . 0 �11 0 / and
U D . 1 �11 0 /, modulo the relations S2 D U 3 D 1, and let T D US D . 1 10 1 /. For n > 1, let
Mn be the set of 2 � 2 matrices with integer entries of determinant n, modulo ¹˙1º, and let
Rn D QŒMn�. The group � acts both on the left and on the right on the Q-vector space Rn.
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It was shown in [3] that an element eT n 2 Rn acts as the nth Hecke operator on period polyno-
mials if

.1 � S/eT n � T1n .1 � S/ 2 .1 � T /Rn;(A)

where T1n D
P
M2M1

n
M , for M1n �Mn any set of representatives for �nMn fixing1. It

was stated in [13] that there exists such an element eT n which further satisfies the properties´ eT n.1C S/ 2 .1C U C U 2/Rn;eT n.1C U C U 2/ 2 .1C S/Rn;
(B)

and shown that any such element would lead to an explicit formula for the traces of Hecke
operators on modular forms on � . The proof of existence, omitted in [13], will be given below
in Lemma 3.

If S is any subset of Mn and � D
P
cMM 2 Rn, we denote by h�;Si the numberP

M2S cM . There are three natural actions of � on Rn, by left multiplication, right multi-
plication, and conjugation, and we will be particularly interested in the cases when S is an
orbit with respect to the second or third of these, i.e., a right cosetK DM0� or a �-conjugacy
class X D ¹�1M0 W  2 �º, respectively, where M0 2M.

The �-conjugacy classes of elementsM 2Mn are of five types: scalar (M D ˙
p
n �I2),

elliptic (tr.M/2 < 4n), split hyperbolic (tr.M/2 � 4n a positive square), non-split hyperbolic
(tr.M/2 � 4n a positive non-square), and parabolic (tr.M/2 D 4n, M ¤ scalar). We define
the weight w.M/ in these five cases by the formulae

M scalar elliptic split hyperbolic non-split hyperbolic parabolic

w.M/ 1/6 �1=j�M j 1 0 0

where �M is the centralizer of M in � , which for elliptic M has order equal to 2 or 3 if M
is conjugate to a matrix in ZI2 C ZS or ZI2 C ZU , respectively, and to 1 in all other cases.
Note that in the last three cases we can also write w.M/ D 1=j�M j, with the convention that
1=1D 0 if j�M j D 1. Since w.M/ depends only on the conjugacy class X of M , we can
also denote it by w.X/.

Our main result can then be stated as follows.

Theorem 1. Let n be a positive integer, and let eT n 2 Rn satisfy both (A) and (B).

(i) For any right �-coset K �Mn we have heT n; Ki D �1.

(ii) For any �-conjugacy class X we have

heT n; Xi D w.X/:(C)

We will show in Section 2 that the theorem immediately implies the Eichler–Selberg
trace formula for modular forms for � . As a warm-up, and to introduce the class numbers, we
observe that computing heT n;Mni in two ways, using parts (i) and (ii) of the theorem, yields
the Kronecker–Hurwitz class number relation in the form

(1)
X

X�Mn

w.X/ D �j�nMnj;
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where the sum is over all conjugacy classes X . To bring the formula to its classical form, we
use the �-equivariant bijection . a b

c d
/$ cx2 C .d � a/xy � by2 between integral matrices

of determinant n and trace t and quadratic forms of discriminant t2 � 4n to write

(2)
X

X�Mn

tr.X/D˙t

w.X/ D

´
�2H.4n � t2/ if t ¤ 0;

�H.4n � t2/ if t D 0;

where tr.X/ is the trace of any element in the conjugacy class X (well-defined up to sign), and
H.D/ is the Kronecker–Hurwitz class number, extended to all D 2 Z as in [13]. That is, for
D > 0, H.D/ equals the number of �-equivalence classes of positive definite integral binary
quadratic forms of discriminant�D, with those classes that contain a multiple of x2 C y2 or of
x2 � xy C y2 counted with multiplicity 1=2 or 1=3, respectively, H.0/ D �1=12, H.D/ D 0
if D < 0 is not the negative of a perfect square, and H.�u2/ D �u=2 if u 2 Z>0.

Using (2), the relation above becomes
P
t2ZH.4n � t

2/ D
P
d jn d , and the classical

Kronecker–Hurwitz relationX
t264n

H.4n � t2/ D
X

nDad; a;d>0

max.a; d/

follows by observing that
P
t2>4nH.4n � t

2/ D
P
nDad; d>a>0 a � d . We gave a yet differ-

ent, simpler proof of (a refinement of) the Kronecker–Hurwitz formula in [10]. As a by-product
of the proof of Theorem 1, we will obtain a different refinement here (Proposition 5).

We prove part (i) of the theorem in Section 3 (Corollary 2), after a preliminary study of
the relation between operators eT n satisfying only one of properties (A), (B). The hardest part
of this approach to the trace formula is the proof of part (ii), given in Section 4. We give an
explicit element eT n satisfying part (ii) by construction, and then show that it satisfies part (i),
as well as property (B). It then follows from the theory in Section 3 that eT n satisfies (A) as
well, and Theorem 1 follows.

The proof of the trace formula in Section 2 does not require the full statement of Theo-
rem 1, but only the existence of an element eT n satisfying properties (A), (B) and (C). For
example, to finish the proof given in Section 2 for the trace of the first two Hecke operators, it
is enough to check that the following elements satisfy (A)–(C):

eT 1 D I2 � 1
2
.I2 C S/ �

1

3
.I2 C U C U

2/;

eT 2 D  2 0

0 1

!
�
1

2

 
1 1

�1 1

!
�
1

2

 
1 �1

1 1

!
�

 
1 �1

2 0

!
�

 
0 2

�1 1

!
�

 
0 �2

1 0

!
:

(Both of these expressions were given in [13]; the element eT 2 constructed in Section 4 is
different from the above).

While the methods of this paper are elementary, we point out that the formula we obtain
has a cohomological interpretation with wide-ranging generalizations. Let V be a finite-dimen-
sional complex SL2.R/-module. For a �-double coset � we denote by Œ�� the correspond-
ing action on the group cohomology H i .�; V /. Then we have the following formula for the
Lefschetz number of the correspondence on the modular surface determined by the double
coset �:

(3)
X
i

.�1/i tr.Œ��;H i .�; V // D �
X

X��=¹˙1º

w.X/; tr.MX ; V /
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where the sum is over �-conjugacy classes X with representatives MX 2 �. The results of
this paper can be interpreted as proving this formula for irreducible representations V , and
therefore for all finite-dimensional representations. Indeed, for the trivial module V D C only
H 0 is nonzero and the formula reduces to the Kronecker–Hurwitz relation (1). If V D Vw is the
unique irreducible representation of SL2.R/ of odd dimension wC 1 > 3, onlyH 1 is nonzero,
and the formula above is proved in (4), taking into account the Eichler–Shimura isomorphism
H 1.�; Vw/ ' Sk ˚Mk , withMk , Sk the spaces of modular forms, respectively cusp forms of
weight k D wC 2 for � . In a sequel to this paper [8], the first author has proved the cohomo-
logical trace formula (3) for arbitrary congruence subgroups � of the modular group, under a
mild assumption on the double coset �. Surprisingly, Theorem 1 is central for the proof in the
congruence subgroup case as well.

Another case where formula (3) is known for more general groups � is when� D � , the
trivial double coset, in which case the left hand side reduces to an Euler–Poincaré characteristic.
For a large class of groups � including arithmetic subgroups of linear groups, it follows from
work of Bass and Brown [1, 2] that (assuming for simplicity that � has trivial center)X

i

.�1/i dimH i .�; V / D
X

M2T.�/

�.�M / tr.M; V /;

where T .�/ is a set of representatives for the conjugacy classes of � , �M denotes the cen-
tralizer of M , and �.G/ 2 Q denotes the homological Euler–Poincaré characteristic of the
group G. The sum on the right-hand side actually runs over finite order elements in T .�/,
because of a theorem of Gottlieb–Stalling that states that �.G/ D 0 if the group G contains
an infinite order element in the center. Moreover, if G is finite, we have �.G/ D 1=jGj, and
�.PSL2.Z// D �1=6, so for � D PSL2.Z/ the formula specializes to the case � D � of (3).
Therefore we have a geometric interpretation of the coefficients w.X/ in (3) – they are nega-
tives of “local” Euler–Poincaré characteristics.

Perhaps the ultimate generalization of (3) is the topological trace formula of Goresky
and MacPherson [4], where � can be any arithmetic subgroup of a reductive group, and the
algebraic group cohomology can be replaced by other geometric cohomology theories. Our
work can therefore also be seen as giving an elementary proof of an explicit version of the
topological trace formula, in the special case of the modular group PSL2.Z/.

2. Deduction of the trace formula

Let w > 0 be an even integer, and let Vw be the space of complex homogeneous polyno-
mials of degree w. The group GL2.R/ acts on Vw by P j.X; Y / D P.aX C bY; cX C dY /
for  D ˙. a b

c d
/, which extends by linearity to a right action of the algebra R D

L
n>1Rn,

where Rn D QŒMn� as above. The space of period polynomials Ww is defined as

Ww D Ker.1C S/ \ Ker.1C U C U 2/:

For even k > 2, let Mk and Sk be the spaces of modular forms and cusp forms of
weight k for � , respectively; so we have Mk D CGk ˚ Sk , with Gk a suitably normalized
Eisenstein series of weight k. To each f 2 Sk we associate its period polynomial

Pf .X; Y / D

Z i1

0

f .z/.X � zY /w dz;
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where w D k � 2, which is an element ofWw. Its even and odd parts, PC
f

and P�
f

, also belong
to Ww. One can also define PC

f
for non-cuspidal f (see [12]), and we have

PCGk
.X; Y / D �k.X

w
� Y w/

for a certain number �k ¤ 0.
For n > 1, the Hecke operator Tn acts on Mk by f jTn D nk�1

P
M2�nMn

f jkM , with
f jkM.z/D f .Mz/.czCd/�k forM D . � �c d /2GL2.R/. The Eichler–Shimura isomorphism
can then be stated as follows. For a generalization to modular forms for congruence subgroups
see [7].

Proposition 2. Let w > 0 be even. We have a Hecke-equivariant isomorphism

MwC2 ˚ SwC2 ' Ww; .f; g/ 7! PC
f
C P�g ;

where the action of the Hecke operator Tn on period polynomials P 2 Ww is defined by
P jTn D P jeT n for any element eT n 2 Rn satisfying (A).

Proof. The fact that the map is an isomorphism and that Pf jTn
D Pf jeT n for f 2 SwC2

and any eT n 2 Rn satisfying (A) is shown in [3] or [13]. For completeness we briefly sketch
the proof of Hecke-equivariance: The Eichler integral

ef .z/ D Z i1

z

f .t/.t � z/w dt (with z 2 H )

has the property that ef j�w.1 � S/ D Pf .z; 1/ and ef j�w.1 � T / D 0, so for any eT n satisfy-
ing (A) we have

Pf .z; 1/jTn D Pf .z; 1/jeT n D ef j�w.1 � S/eT n D ef j�wT
1
n .1 � S/ D Pf jTn

.z; 1/;

where the last equality follows from the easily verified equality ef j�wT
1
n D

Af jTn.
For the period polynomial Xw � Y w D Y wj.S � 1/ of the Eisenstein series, using (A)

and the fact that Y wj.1 � T / D 0 we obtain

Y w
j.S � 1/jTn D Y

w
j.S � 1/eT n D Y w

jT1n .S � 1/ D �wC1.n/Y
w
j.S � 1/;

where �wC1.n/ D
P
d jn d

wC1 is the eigenvalue of GwC2 under Tn.

The next result, proved in [13], is the reason for introducing property (B). For complete-
ness we give here a different, shorter proof.

Proposition 3. Let w > 0 and n > 1 be integers with w even. If eT n 2 Rn satisfies (B),
then eT n preserves the subspace Ww of Vw and satisfies

tr.eT n; Ww/ D tr.eT n; Vw/:

Proof. Property (B) implies that the operator eT n maps the subspaces A D Ker.1C S/
and B D Ker.1C U C U 2/ of Vw into each other, so it maps Ww D A \ B into itself. On the
other hand AC B D Vw, because Vw is endowed with a natural, nondegenerate �-invariant
inner product, and the orthogonal complement .AC B/? is the �-invariant subspace

V �w D Ker.1 � S/ \ Ker.1 � U/;
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which is trivial for w > 0. The claim now follows immediately from a simple linear algebra
fact: if T is a linear transformation of a vector space to itself, and A;B are subspaces mapped
into each other by T , then tr.T; A \ B/ D tr.T; AC B/.

To state the trace formula, let pw.t; n/ be the Gegenbauer polynomial, defined by the
power series expansion

.1 � tX C nX2/�1 D

1X
wD0

pw.t; n/X
w:

It satisfies tr.M; Vw/ D pw.trM; detM/ for anyM 2 GL2.R/ (in particular pw.t; n/ is an even
function of t for w even).

Corollary 1 (Eichler–Selberg trace formula). For all w > 0 and n > 1 we have

tr.Tn;MwC2/C tr.Tn; SwC2/ D �
X
t2Z

pw.t; n/H.4n � t
2/:

Proof. For odd w both sides vanish trivially, so we assume w even. Let eT n 2 Rn sat-
isfy (A) and (B). Combining the two propositions and part (ii) of Theorem 1, we obtain for
even w > 2:

tr.Tn;MwC2/C tr.Tn; SwC2/ D tr.eT n; Ww/ D tr.eT n; Vw/(4)

D

X
X�Mn

tr.MX ; Vw/w.X/;

where the last sum is over all conjugacy classes X , and MX is any element in X . The con-
clusion follows by rewriting the last sum using the property of pw.t; n/ above, together with
formula (2).

Note that tr.Tn;Mk/ � tr.Tn; Sk/ D �k�1.n/, so that Corollary 1 can be rewritten as
a formula for either tr.Tn;Mk/ or tr.Tn; Sk/ (k > 2 even), which is the form usually given in
the literature.

Remark. The formula in Corollary 1 is generalized to modular forms on congruence
subgroup � with Nebentypus in [9], using the same operator eT n as in Theorem 1 acting on
the space of period polynomials for � . The trace on the Eisenstein subspace is also explicitly
computed there, yielding a simple formula for the trace of a composition of arbitrary Hecke
and Atkin-Lehner operators on cusp forms for �0.N /.

3. General properties of Hecke operators

In this section we analyze and generalize properties (A) and (B) of the introduction for
arbitrary double cosets of � in the set M of 2 � 2 matrices with integer entries and positive
determinant, modulo ¹˙1º. We let R D QŒM�, which is a left and right module for the action
of the group ring R� D R1 D QŒ��.
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Generalizing the definition of the subspaceWw � Vw of period polynomials, we can con-
sider for any (right) R� -module its period subspace Ker�S \ Ker�U , where

�S D
1C S

2
; �U D

1C U C U 2

3

are the idempotents corresponding to the generators S and U of � of order 2 and 3. Equiva-
lently, the period subspace of a (right) R-module is the space annihilated by the right R� -ideal

(5) I D �SRC �UR;

and the most general subset of R which preserves the period subspace is

A D
®
� 2 R W �I � I

¯
D
®
� 2 R W ��S 2 I; ��U 2 I

¯
:

Note that elements eT n satisfying property (A) (and of course their multiples) belong to A.
Indeed multiplying (A) by �S , �U , and using the relation .1 � S/�U D .1 � T �1/�U and the
fact that T1n .1 � T / 2 .1 � T /R, we obtain .1�S/eT n�S and .1�S/eT n�U 2 .1�T /R, soeT n�S , eT n�U 2 I by the characterization of I in the next lemma.

Lemma 1 ([3]). We have � 2 I if and only if .1 � S/� 2 .1 � T /R:

For the purpose of proving the trace formula, we introduce the subset B of A given by

(6) B D ¹� 2 R W ��S 2 �UR; ��U 2 �SRº;

which contains those elements satisfying relation (B). To show that the set B contains elements
satisfying (A) as well, we need a preliminary lemma.

Lemma 2. The action of �S and �U on R satisfies

Im.�S / \ Im.�U / D Ker.�S / \ Ker.�U / D ¹0º:

Proof. The first statement is clear since any element in �SR \ �UR is left invariant
under both S and U , hence is �-invariant, and hence equal to 0. The second property, called
“acyclicity” in [3], was proved there using the action of R on rational period functions. For
completeness we give a shorter, more direct proof here.

Assume that � 2 Ker.�S / \ Ker.�U /, so in particular .1C S/� D .1C U C U 2/� . Set-
ting T 0 D U 2S D . 1 01 1 /, and recalling that T D US , we obtain � D .T �1 C T 0�1/�. Letting
� D

P
c.M/M , it follows that c.M/ D c.TM/C c.T 0M/ for all M 2M, and this immedi-

ately leads to a contradiction if c.M/ ¤ 0: we would get c.iM/ ¤ 0 for an infinite sequence
of elements i 2 � with 0 D 1 and iC1 D T i or T 0i , and this is impossible since the i
are distinct (they have non-negative coefficients whose sum increases strictly), and hence the
iM are also all distinct. Therefore � D 0.

Lemma 3. For � 2 A, there are unique elements �S 2 �SR, �U 2 �UR such that

��S � �S 2 �UR; ��U � �U 2 �SR:

The map P W A! A given by P.�/ WD � � �S � �U is a projection onto B, and the image of
the ideal I under this map is the set J � I given by

(7) J D �SR.1 � �S /C �UR.1 � �U /:
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Note that the projection P W A! B defined in the lemma satisfies P.�/ � � 2 I. This
proves the existence of elements satisfying both (A) and (B), since any element eT n 2 Rn

satisfying (A) belongs to A as we saw above, and P.eT n/ 2 eT n C I satisfies both (A) and (B).

Example. We have 1 2 A, and 1S D �S , 1U D �U , so P.1/ D 1 � �S � �U 2 B.

Proof. The existence of �S , �U follows from the definition of A, and their uniqueness
from the first part of Lemma 2. The element P.�/ belongs to B because

P.�/�S D .��S � �S � �U /�S 2 �UR

(using �S D �2S ), and similarly for P.�/�U . If � 2 B, the uniqueness of �S , �U shows that
�S D �U D 0, so P.�/ D � .

We have P.I/ D I \B, which clearly contains J. To show the other implication, let
� 2 I \B, that is, � D �SX C �UY , with �SX�S 2 �UR and �UY�U 2 �SR. By the first
part of Lemma 2 we get

�SX�S D 0;

and since Ker.�S / D Im.1 � �S /, we have �SX 2 R.1 � �S /. Multiplying on the left by
�S D �

2
S , we obtain �SX 2 �SR.1 � �S /. Similarly one shows �UY 2 �UR.1 � �U /, and

so � 2 J.

We now come to the main results of this section, for which we need to consider elementseT� satisfying analogues of (A) and (B), defined for any � which is a double coset �ı�
(ı 2M), or more generally a left- and right-�-invariant subset of Mn (which is a finite union
of double cosets).

We set R� D QŒ��, A� D A \R�, B� D B \R�. As in the case � DMn, we
define

T1� D
X

M2M1
�

M 2 R�;

where M1� is a set of representatives for �n� fixing 1. The set � gives rise to a Hecke
operator T� acting on modular forms f 2Mk by

f jT� D n
k�1

X
M2�n�

f jkM

(for � �Mn). One can show as in the case � DMn that the corresponding action on period
polynomials is by any element eT� satisfying

.1 � S/eT� � T1� .1 � S/ .mod .1 � T /R�/;(A0)

and the existence of such elements follows as in [3]. The same proof given above for eT n shows
that any such eT� belongs to A�. The next theorem shows that for a single double coset the
converse is also true up to scaling.

Theorem A. Let � be a double coset. Then any element T 2 A� satisfies

(8) .1 � S/T � ˛ � T1� .1 � S/ .mod .1 � T /R�/

for a unique number ˛ D ˛.T / 2 Q.
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Equation (8) says that T � ˛eT� .mod I/ for any eT� satisfying (A0). The theorem can
be reformulated as the existence of a linear map ˛ W A� ! Q and of an exact sequence

0 �! I� �! A�
˛
�! Q �! 0;

where ˛ is uniquely determined by the normalization ˛.eT�/ D 1 for any element eT� satisfy-
ing (A0).

Proof. Suppose T 2 A (we will assume T 2 A� only at the end of the proof). By
Lemma 1, we get

(9) .1 � S/T �S 2 .1 � T /R; .1 � S/T �U 2 .1 � T /R:

Let �1, M1, and �1 be the subsets fixing 1 of � , M, and �, respectively, and for
�1-orbits K 2 �1nM, we denote by MK 2 K a fixed representative.

For any � 2 R we have � �
P
K2�1nM

h�;KiMK 2 .1 � T /R, so

(10) � 2 .1 � T /R ” h�;Ki D 0 for all K 2 �1nM;

where the notation h�; �i was defined in the introduction.
Set � D .1 � S/T , and define the function a D a� W �1nM! Q by a.K/ D h�;Ki, so

a.K/ is nonzero for finitely many K. From (9) and (10) we obtain

a.K/C a.KS/ D 0; a.K/C a.KU /C a.KU 2/ D 0:

It follows that a.K/ D a.KT /C a.KT 0/. Since elements in K share the same second row,
we conclude as in the proof of Lemma 2 that a.K/ D 0 unless one of the elements on the
second row of matrices in K equals 0, that is, unless K �M1 or K �M1S . For K �M1
it follows that a.KT 0/ D 0, so a.K/ D a.KT / for K 2 �1nM1.

The set of orbits �nM can be identified with �1nM1 by choosing for each K 2 �nM
a representative MK 2M1. With this identification, the function a gives rise to a functionea
on �nM, byea.K/ D a.�1MK/, and we have shown thatea.K/ Dea.KT / and

(11) � �
X

K2�nM

ea.K/MK.1 � S/ .mod .1 � T /R/:

Recalling that � D .1 � S/T , we have h�;Ki D 0 for all K 2 �nM. Therefore

ea.K/ Dea.KS/:
We now assume that T 2 A�, so the sum in (11) is over K 2 �n�. Since � is a double

coset, the group � acts transitively on �n� on the right. Since S and T generate � , fromea.K/ Dea.KS/ Dea.KT / it follows that ea.K/ D ˛ is constant for K 2 �n�. We conclude
from (11) that T satisfies (8), and then Lemma 1 shows that T � ˛eT� .mod I/ for any eT�
satisfying (A0).

For the uniqueness of ˛, note from Lemma 1 that any two elements eT� satisfying (A0)
differ by an element in I�, so it is enough to show that eT� 62 I�. But eT� 2 I� would imply
that T1� .1 � S/ 2 .1 � T /R�, which is easily seen to contradict (10).

Remark. An equivalent formulation of condition (A0) is due to L. Merel (for the case
� DMn), and it was used as the definition of Hecke operators acting on modular symbols
in [6]. For a matrix M D . a b

c d
/, we denote its adjoint by M_ D . d �b

�c a /, and we extend the
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notation to elements of R by linearity. Then the operator T 2 R� satisfies (A0) if and only if
its adjoint T _ satisfies Merel’s condition:

T _K .Œ0� � Œ1�/ D Œ0� � Œ1� for all K 2 �=�;

where T _K D
P
M2K cMM if T _ D

P
cMM . Here M, and by linearity R, act on the set of

divisors supported on the cusps by fractional linear transformations.
Indeed, after taking adjoints condition (A0) is equivalent with

T _K .1 � S/ � .MK � SMSK/ 2MK �R�.1 � T / for all K 2 �=� ;

where we denote by MK the unique representative of the coset K which is in .M1� /
_. The

previous relation is equivalent to Merel’s condition by the following immediate consequence
of the adjoint of equivalence (10): for � 2 R� we have �Œ1� D 0 if and only if � 2 R�.1 � T /.

We now study more closely elements in the subspace B� D B \QŒ�� of the vector
space B.

Theorem B. Let � �M be a double coset and let T 2 B� � A�.

(a) There exists ˇ.T / 2 Q such that hT ; Ki D ˇ.T / for all K 2 �=� .

(b) We have ˇ.T / D �˛.T /, with ˛.T / defined in Theorem A.

Moreover, the map ˇ W B� ! Q is surjective.

The theorem implies that the exact sequence stated after Theorem A can be a completed
to a commutative diagram with exact rows:

0 I� A� Q 0

0 J� B� Q 0,

˛

�ˇ

where J, which was defined in (7), was already shown to equal I \B in Lemma 3.

Proof. (a) For T 2 R�, denote by TK the part of T supported on a coset K 2 �=� .
For T 2 B�, we have .1 � U/T �S D .1 � S/T �U D 0, hence

TK�S D U TU 2K�S ; TK�U D STSK�U

for all cosetsK 2 �=� . It follows that hT ; Ki D hT ; UKi D hT ; SKi for all cosetsK. Since
U and S generate � , which acts transitively on the cosets �=� , we obtain that hT ; Ki is the
same for all cosets K.

(b) To show ˇ D �˛, and to prove surjectivity of ˇ, we give a direct construction of
elements T 2 B� having prescribed ˇ.T / D ˇ. Without loss of generality assume ˇ D 1, as
we can always scale elements in B�. Choose A;A0 2 R� such that

(12) hA;Ki D hA0; Ki D 1 for all K 2 �=�; and

´
A�S 2 �UR�;

A0�U 2 �SR�:
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(For example, letting T� D
P
K2�=�MK , T 0� D

P
K2�=�M

0
K with arbitrary representatives

MK ;M
0
K 2 K, we can choose A D �UT�, A0 D �ST 0�.) Since S and U generate � , there are

B;B 0 2 R� such that A0 � A D B.1 � S/ � B 0.1 � U/, and it follows immediately that

(13) T D AC B.1 � S/ D A0 C B 0.1 � U/

belongs to B�, and ˇ.T / D ˇ.A/ D 1.
We now prove exactness in the middle of the second row in the diagram above. Let

� 2 B�, and we show that � 2 J�. Indeed, we have h�;Ki D 0 for all cosets K 2 �=� , and
since S and U generate � , we have

� D A.1 � �S /C B.1 � �U /

for someA;B 2 R. Since � satisfies the second relation in (6), settingX D .1��S /A.1��S /,
we have X�U D 0. But X�S D 0 as well, and we conclude from Lemma 2 that X D 0.
Since Ker.1 � �S / D Im�S , it follows that A.1 � �S / 2 �SR, and by multiplying on the
right by .1 � �S / D .1 � �S /2, we obtain A.1 � �S / 2 �SR.1 � �S /. Similarly one shows
B.1 � �U / 2 �UR.1 � �U /, and we conclude that � 2 J.

Coming back to the proof of ˛ D �ˇ, we assume without loss of generality that

� D �. 1 00 n /�:

All operators T 2 B� with ˇ.T / D 1 differ by an element in J�, by the exactness proved in
the previous paragraph, so they have the same value of ˛.T / as well. Therefore it is enough to
prove that ˛.T / D �1 for a particular such element.

For n D 1, the claim can be verified using the example following Lemma 3. Hereafter we
assume n > 1, and we construct an element T 2 B� as in (13), by making a particular choice
of A;A0.

LetK0 2 �=� be the coset . 1 00 n /� . Clearly UK0 ¤ K0 and SK0 ¤ K0, so we can take
A;A0 in (12) to be given by

A D .1C U C U 2/. 1 00 n /C � � � ; A0 D .1C S/. 1 00 n /C � � � ;

where the part of A;A0 supported on other cosets than K0; SK0 D U 2K0; UK0 can be chosen
such that (12) is satisfied. We have

AK0
D A0K0

D . 1 00 n /; ASK0
D U 2AK0

D SAK0
T �n; A0SK0

D SAK0
:

Using that 1 � T �n D .1C T �1 C � � � C T �nC1/
�
.1 � S/C S.1 � U 2/

�
, we get

A0SK0
� ASK0

D SAK0
.1C T �1 C � � � C T �nC1/Œ.1 � S/C S.1 � U 2/�;

which implies that BSK0
.1 � S/ D SAK0

.1C T �1 C � � � C T �nC1/.1 � S/ in (13), and we
conclude

TK0
� STSK0

D . 1 00 n /
�
1 � T �n � .1C T �1 C � � � C T �nC1/.1 � S/

�
:

On the other hand, by Theorem A we know that T � ˛eT� 2 I for some eT� satisfying (A0)
and a number ˛ D ˛.T /. Taking only that part of (A0) supported on matrices in K0 we have
(using that TK0 D K0)

TK0
� STSK0

� ˛.T /
X

b .mod n/

. 1 b0 n /.1 � S/ 2 .1 � T /R:
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From the last two equations it follows that .1C ˛.T // �
P
b .mod n/.

1 b
0 n /.1 � S/ 2 .1 � T /R.

Since the matrices in the last sum are in distinct �1-orbits in �1n�, from (10) we obtain that
˛.T / D �1.

For the proof of Theorem 1, we only need the following immediate consequences of
Theorem B.

Corollary 2. Let � DMn and T 2 B�, that is, T satisfies property (B) in the intro-
duction. We have hT ; Ki D �1 for all cosets K 2 �n� if and only if T satisfies (A).

Corollary 3. Let � DMn and T D eT n 2 Rn an element satisfying both (A) and (B).
Then for each conjugacy class X � � the quantity hT ; Xi depends only on X and not on the
choice of T .

Proof of corollaries. We decompose Mn D
F
�0 into a finite disjoint union of double

cosets �0. For T 2 B�, we have a corresponding decomposition T D
P

T�0 . Clearly T sat-
isfies property (A) if and only if all such T�0 satisfy (A), and the same holds for the con-
dition hT ; Ki D �1 for all cosets K 2 �n� . Therefore Corollary 2 follows from part (a) of
Theorem B.

If two elements T ; T 0 2 B� satisfy (A), by the exact sequence following Theorem B we
have T�0 � T 0�0 2 J�0 for each double coset �0 � �, so T � T 0 2 J�. But J� is spanned by
M � M�1 for  2 �;M 2 �, so hT ; Xi D hT 0; Xi for each conjugacy class X , proving
Corollary 3.

4. An explicit Hecke operator

Explicit elements eT n 2 QŒMn� satisfying condition (A) were first given by Manin [5]
using continued fractions (as re-interpreted in [11], where this condition was introduced), and
other constructions were given in [13] and [6]. In this section we prove Theorem 1 by giving
an explicit element satisfying all three properties (A), (B) and (C). Since property (C) is the
hardest to prove, we start with an element that satisfies it by construction, and then show that
it verifies (B) and property (i) of Theorem 1 as well. The corollaries at the end of the previous
section then show that it satisfies (A) as well.

Since we want to give a uniform formula for all n, it is convenient to introducebR DO
n

Rn;

the vector space of infinite formal linear combinations of elements of R with only finitely many
elements of any fixed determinant. We look for eT of the formeT D �E CH CX ci .Mi � iMi

�1
i /;

whereE 2 bR contains representatives of all elliptic, andH 2 bR of all hyperbolic split together
with scalar conjugacy classes in M, and such that h�E CH;Xi D w.X/ for all conjugacy
classes X �M, with w.X/ defined in the introduction. Any such eT satisfies (C).

Choosing representatives for elliptic conjugacy classes amounts to choosing a fundamen-
tal domain of � acting on the upper half plane H . Let � be the characteristic function of the
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�
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F C

F �

Figure 1. The fundamental domain F D ¹z 2 H W 0 6 Re z 6 1
2 ; jz � 1j > 1º.

fundamental domain F shown in Figure 1, modified on the boundary by setting �.z/ equal to
1=2� times the angle subtended by F at z (i.e., � is 1 in the interior of F , 0 outside of F , 1/2
on the boundary points different from the corner � D e�i=3, and 1/3 at �). Our choice of eT is
then

(14) eT D �E CH CX � SXS C Y � U 2Y U CZ � U 2ZU;
with E;H;X; Y;Z 2 bR defined by

E D
X

M elliptic

�.zM /M D
D
06a�d6�bI a�d6c

b<0<c

E
; H D

˝
a�d6�b6c
cD0<a

˛
;

X D
D
06a�d I �b6c

b<0<d

E
; Y D

˝
a�d6�b6c
0<c<a

˛
; Z D

D
a�d6c6�b
0<aI 0<c

E
:

Here zM is the unique fixed point in H of an elliptic matrix M , and the notation h#i, where
# is a collection of inequalities written on two lines, means the sum

P
c.M/M 2 bR over

matrices M D . a b
c d

/ with entries satisfying these inequalities, weighted with a coefficient
c.M/ 2 ¹1; 1=2; 1=4; 1=3; 1=6º according to the number of inequalities in the first line of # that
become equalities for M : it is 1 if there are no equalities, 1=2 if there is exactly one, and 1=4,
1=3 or 1=6 if there are two and they are independent (A 6 B , C 6 D), overlapping (A 6 B ,
A 6 C ), or nested (A 6 B 6 C ), respectively. Note that in these definitions the first line of #
involves only the coefficients of the quadratic form QM D Œc; d � a;�b� associated to M .
Note also that the definition of the coefficient c. � / behaves correctly (additively) if # splits up
as a union of two sets of inequalities, as we will use several times below. Recall that elements in
M are defined up to˙1; we always choose representatives with non-negative lower left entry.

As already explained, the above choice of eT automatically satisfies property (C). The
difficult part was to find a choice of elements X; Y;Z for which it satisfies (B) as well, and
this particular choice was found numerically with the help of a computer. Before checking
property (B), we first show that formula (14) hides considerable cancellation.

Lemma 4. The following statements hold:

(a) The element eT belongs to bR, namely eT DP1nD1eT n, where eT n 2 QŒMn�.

(b) The element eT simplifies to

(15) eT D ˝ a�d6�b6c
06c<a

˛
�

D
�b6a�d6c
b<d60

E
�
˝
06a�d6c6�b

a60<c

˛
�

D
06a�d6�b6c
d60<�b

E
:
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Proof. (a) The terms E and H clearly contain finitely many elements of a given deter-
minant. For X and Y , and for Z in the case d > a, we have that a; d > 0, and c;�b > 0, so
ad � bc D n has finitely many solutions for each n. For Z in the case 0 6 a � d the corre-
sponding matrix is elliptic with fixed point in F , so the same conclusion holds.

(b) Splitting F into the parts F C, F � for which jzj > 1, jzj 6 1, as in Figure 1, we have

E D
˝
06a�d6c6�b

0<c

˛
C
˝
06a�d6�b6c

b<0

˛
DW AC B:

We decompose:ADA1CA2, the parts ofA for which a > 0, respectively a6 0;B DB1CB2,
the parts of B for which d > 0, respectively d 6 0; Z D Z1 CZ2, the parts for which a 6 d ,
respectively a > d (with boundary coefficients as indicated below); and

U 2ZU D
D
�b6a�d6c
b<0Ib<d

E
D Z3 CZ4;

the parts for which d > 0, respectively d 6 0. We check easily that

Z1 D SXS D
D
a�d60I c6�b
0<aI 0<c

E
; Z2 D A1 D

D
06a�d6c6�b
0<aI 0<c

E
;

X D B1 CZ3 C U
2Y U D

˝
06a�d6�b6c

b<0<d

˛
C
˝
�b6a�d6c
b<0<d

˛
C
˝
�b6c6a�d
b<0<d

˛
:

The term H in (14) can be absorbed in the sum Y as the boundary term for which c D 0,
yielding the first term in (15), and (14) simplifies to (15), where the second, third, and fourth
terms are Z4, A2, and B2, respectively.

Theorem 4. The following statements hold:

(a) For each n > 1 the element eT satisfieseT �S 2 �U bR; eT �U 2 �SbR;
namely each component eT n satisfies (B).

(b) We have heT ;Ki D �1 for all right cosets K DM� 2M=� .

Theorem 1 immediately follows: by construction, each component eT n of eT satisfies (C),
and the previous theorem and Corollary 2 show that it satisfies (A) as well. Corollary 3 then
shows that any element satisfying (A), (B) also satisfies (C).

Proof. (a) Write eT D T1 � T2 � T3 � T4 in (15). We will show more precisely thateT D �F � UFS � U 2F C T1.1 � S/;(16)

eT D �G � SGU C T1.1 � U/C 1

12

�
a�dDcD�b
d60<a

�
.1 � U/;

so that eT �S D �.1C U C U 2/F�S , eT �U D �.1C S/G�U , and part (a) follows. Here

F D
D
06a�d6cI a�d6�b

d6b<0<c

E
; G D

D
06a�d6cI a�d6�bI a6�b�c

a60I b<0<c

E�
;

with h#i� 2 bR denoting the sum of matrices . a b
c d

/, weighted by 1=2 if at least one inequal-
ity on the first line of # becomes equality, except that matrices with a � d D c D �b or
a D d D �b � c are weighted by 1=4, and Œ#� 2 bR denoting the corresponding unweighted
sum of matrices.
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For a sum � 2 bR given by inequalities # on two lines, as in h#i or h#i� above, we denote
by �ı its “interior”, that is, the subsum of the terms for which at most one inequality on the
first line becomes equality (therefore the terms are weighted by either 1 or 1=2 if there is no
equality or exactly one equality, respectively).

To prove the first formula, we decompose T3 D T3;1 C T3;2, T4 D T4;1 C T4;2, where
T3;1, T4;1 and T3;2, T4;2 have the added inequality b < d and d 6 b, respectively. We have
F D T3;2 C T4;2 and

T3;1 D
D
06a�d6c6�b
a60<cI b<d

E
; T4;1 C T2 D

D
06a�d6cI �b6c

b<d60

E
DW T5;

so eT D T1 � T3;1 � T5 � F . We also have

T1S D
D
d6a6bCc
b<d60

E
; UFS D

D
d6a6cCd I bCc6a
a60<cI b<d

E
; U 2F D

D
a�d6cI �b6c6a�b

b<d60<a

E
;

and we now decompose the terms by adding inequalities on the first line as follows:

T1S D T1;1 C T1;2;

where T1;1, T1;2 are obtained by imposing the extra inequality �b > c, respectively �b 6 c;
and

T5 D T5;1 C T5;2; T3;1 D T3;1a C T3;1b;

with the range of summation split according as a 6 b C c (for T5;1 and T3;1a), or a > b C c

(for T5;2 and T3;1b). We check that T ı1;1 D T
ı
3;1a, T ı1;2 D T

ı
5;1, and

T5 D T
ı
5;1 C T

ı
5;2 C

1

3

�
a�dDcD�b
b<d60

�
C
1

4

h
aDd I cD�b
b<d60

i
C
1

2

h
aD0I cD�b
b<d<0

i
;

T3;1 D T
ı
3;1a C T

ı
3;1b C

1

4

h
aDd I cD�b
b<d60

i
C
1

2

h
aDdDbCc
b<d60

i
;

T1S D T
ı
1;1 C T

ı
1;2 C

1

2

h
aDd I cD�b
b<d60

i
C
1

6

h
aDdDbCc
b<d60

i
C
1

2

h
aD0I cD�b
b<d<0

i
;

UFS D T ı3;1b C
1

3

h
aDdDbCc
b<d60

i
;

U 2F D T ı5;2 C
1

3

�
a�dDcD�b
b<d60

�
(in the sum T ı

3;1b
there is an ambiguity whether to include the term with a D 0 D b C c, and

we choose to include it, by taking the first line inequalities to be 0 6 a � d 6 c 6 a � b; the
inequality c 6 �b, which was part of the first line of T3;1, is then implied by a 6 0 on the
second line). We obtain that

T3;1 C T5 D T1S C UFS C U
2F ;

so the first equation in (16) follows.
To prove the second equation, we first note that T2 D T1U , soeT D �T3 � T4 C T1.1 � U/:

We decompose T4 D T4;1 C T4;2, the subsums for which we add a 6 �b � c, respectively
�b � c 6 a on the first line of T4. We have

SGU D
D
06a�d6�b6cI �b�c6a

�c<d60<�b

E�
;
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and we check the following relations:

T3 D T
ı
3 C

1

6

�
a�dDcD�b
a60<c

�
C
1

4

h
aDd I cD�b
a60<c

i
;

T4 D T
ı
4;1 C T

ı
4;2 C

1

6

�
a�dDcD�b
d60<c

�
C
1

4

h
aDd I cD�b
d60<c

i
C
1

2

�
aDdD�b�c
d<0<�b

�
C
1

2

h
aD0I cD�b
0<�d<c

i
;

G D T ı3 C T
ı
4;1 C

1

4

�
a�dDcD�b
a60<c

�
C
1

2

�
aDd I cD�b
a<0<c

�
C
1

4

�
aDdD�b�c
d60<�b

�
;

SGU D T ı4;2 C
1

4

�
a�dDcD�b
d60<a

�
C
1

4

�
aDdD�b�c
d60<�b

�
C
1

2

h
aD0I cD�b
0<�d<c

i
;

hence T3CT4�G�SGU involves only the four terms with a�d D c D �b above. Moreover,�
a�dDcD�b
d60<c

�
D
�
a�dDcD�b
a60<c

�
C
�
a�dDcD�b
d60<a

�
;

�
a�dDcD�b
d60<a

�
� U D

�
a�dDcD�b
a60<c

�
;

and we conclude that

T3 C T4 �G � SGU D
1

12

�
a�dDcD�b
d60<a

�
.U � 1/;

yielding the second line in (16).
(b) We have a decomposition of M into a disjoint union of double cosets

M D
[
a;m>1

�. a 0
0 am /�;

and a corresponding decomposition eT DPa;m
eT a;m, with eT a;m the part of eT supported on

the corresponding double coset. Each eT a;m satisfies (B) by part (a), and eT a;m D . a 00 a /eT 1;m,
so by Theorem B it is enough to show that heT 1;m; K0i D �1 for all m, for the particular coset
K0 D .

1 0
0 m /� .

For m D 1 we have eT 1;1 D eT 1 D 1 � �S � �U ;
and the claim is clear. Assuming therefore m > 1, we have to find the matrices

M D . a b
mc md

/ 2 K0

with a; b; c; d 2 Z, ad � bc D 1, in each of the four terms in (15). For the first two terms we
have hT1 � T2; K0i D 0, as T2 D T1U . For the sum T3 we write m D detM as follows:

m D mc.�b/C .�a/.a �md/C a2 > m2c2 > m2;

so there are no matrices from K0 in the sum T3. For T4 we write

m D mc.�b/Cmd.a �md/Cm2d2 > b2 Cm2d2 �mjdbj >
3m2d2

4
;

so d D 0, c D �b D 1, and 0 6 a 6 1. Therefore

hT4; K0i D
1

2
C
1

2
D 1;

so heT 1;m; K0i D �1.
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We already pointed out in the introduction that Theorem 1 immediately implies the classi-
cal Kronecker–Hurwitz class number formula. In fact, the proof of Theorem 4 implies a refine-
ment of this class number formula, similar in spirit to the refinement proved by different means
in [10]. More precisely, in [10] the class number formula was proved by establishing a corre-
spondence between an easily countable subset of the right cosets Mn=� and half the elliptic
conjugacy classes of matrices in Mn, whereas now we obtain a “weighted” bijection between
all right cosets and an easily countable subset of the elliptic conjugacy classes, namely those
conjugacy classes containing the matrices in the third and fourth sums in (15). We indicate the
argument briefly.

Define a weighting function ˛ on M by setting ˛.M/ D 0 for non-elliptic M , while
˛.M/ for an elliptic matrix M D . a b

c d
/ 2M with c > 0 is given by

˛.M/ D �C.zM / � ı.a/C �
�.zM / � ı.d/;

where �˙ are the characteristic functions of the half-fundamental domains F ˙ in Figure 1
(having boundary values given as for � in terms of the angle subtended), and ı is the char-
acteristic function of the set of non-positive integers. Conjugating by . 0 11 0 / 2 GL2.Z/ and
simultaneously changing the sign of the matrix to preserve the condition c > 0 interchanges
matrices with fixed point in F C with those with fixed point in F � and interchanges a and �d
in the formula for ˛, so we haveX

M2Mn

˛.M/ D
X

M2Mn

��.zM /
�
ı.�d/C ı.d/

�
(17)

D

X
M2Mn

��.zM /C
X

06a6�b6c
nD�bc

˛
�
. a bc 0 /

�

D
1

2

X
t264n

H.4n � t2/C
1

2

X
nDbc
b>0

min.b; c/;

where the final equality follows from the well-known �-equivariant bijection between matrices
and binary quadratic forms. (The calculation of the final sum must be modified slightly for the
terms with �b D c when n is a square, but this is compensated by the term H.0/ D �1=12.)
The Kronecker–Hurwitz formula can be rephrased by saying that the expression in the last line
of (17) equals �1.n/ D jMn=�j. The above-mentioned refinement is then:

Proposition 5. The sum
P
M2K ˛.M/ equals 1 for each right coset K 2M=� .

Proof. In the proof of Theorem 4 we saw that eT D T1.1 � U/ � T3 � T4, so part (b) of
the theorem gives hT3 C T4; Ki D 1 for each right coset K 2Mn� . But

T3 C T4 D
X
M2M

˛.M/M

by the very definition of ˛.
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